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Abstract

Philadelphia chromosome–positive acute lymphoblastic leu-
kemia (Phþ ALL) is currently treated with BCR-ABL1 tyrosine
kinase inhibitors (TKI) in combinationwith chemotherapy.How-
ever, most patients develop resistance to TKI through BCR-ABL1–
dependent and –independentmechanisms. Newly developed TKI
can target Phþ ALL cells with BCR-ABL1–dependent resistance;
however, overcoming BCR-ABL1–independent mechanisms of
resistance remains challenging because transcription factors,
which are difficult to inhibit, are often involved. We show here
that (i) the growth of PhþALL cell lines and primary cells is highly
dependent on MYB-mediated transcriptional upregulation of
CDK6, cyclin D3, and BCL2, and (ii) restoring their expression
inMYB-silenced PhþALL cells rescues their impairedproliferation
and survival. Levels of MYB and CDK6 were highly correlated in

adult PhþALL (P¼ 0.00008).Moreover, PhþALL cells exhibited a
specific requirement for CDK6 but not CDK4 expression, most
likely because, in these cells, CDK6 was predominantly localized
in the nucleus,whereasCDK4was almost exclusively cytoplasmic.
Consistent with their essential role in Phþ ALL, pharmacologic
inhibition of CDK6 and BCL2markedly suppressed proliferation,
colony formation, and survival of PhþALL cells ex vivo and inmice.
In summary, these findings provide a proof-of-principle, rational
strategy to target the MYB "addiction" of Phþ ALL.

Significance: MYB blockade can suppress Philadelphia chro-
mosome-positive leukemia in mice, suggesting that this ther-
apeutic strategy may be useful in patients who develop resis-
tance to imatinib and other TKIs used to treat this disease.
Cancer Res; 78(4); 1097–109. �2017 AACR.

Introduction
B-cell acute lymphoblastic leukemia (ALL) is a molecularly

heterogeneous malignancy with <50% 5-year overall survival in
adults (1–3). The Philadelphia chromosome (Ph) is the most
common cytogenetic abnormality in adult ALL with an incidence
of approximately 30% (4, 5). Standard chemotherapy has a
modest impact on long-term survival of Phþ ALL patients, and
only bone marrow transplantation extends long-term survival in
40% to 60% of cases (6). Treatment with the tyrosine kinase
inhibitor (TKI) imatinib and chemotherapy has significantly
improved the outcome of Phþ ALL patients (7). However, resis-
tance to imatinib and second-generation TKI develops rapidly in

most Phþ ALL patients (8), probably because of secondary muta-
tions in transformed B-cell progenitors (9, 10) due to aberrant
RAG-dependent recombination and/or AID-dependent somatic
hypermutation (11–13). Thus, inhibiting the BCR-ABL1 kinase
fails to eradicate most Phþ ALL cell clones due to the activation of
BCR-ABL1–dependent and –independent pathways that need to
be targeted for an effective treatment.

We and others have identified transcription factors (TF) whose
expression/activity is required for BCR-ABL1–dependent leuke-
mogenesis (14–18). In particular, BCR-ABL1–transformed mye-
loid and lymphoid cells rely on MYB expression more than the
normal counterpart (15, 18), supporting the concept that certain
leukemic cells are "addicted" to MYB (19–21). This concept was
validated in a model of MLL-AF9 AML (22), in which partial and
transient suppression of MYB expression phenocopied MLL-AF9
withdrawal, eradicating an aggressive leukemia with no effects on
normal myelopoiesis.

Targeting MYB or relevant protein interactions essential for its
activity is an attractive strategy to exploit the MYB dependence of
BCR-ABL1–transformed B cells. However, it is inherently difficult
to specifically target MYB or its partner proteins, as recently iden-
tifiedMYB inhibitorsmayalso function throughMYB-independent
mechanisms. For example, parthenolide inhibited TF activity of
MYB and viability of Phþ K562 cells (23); however, this drug has
multiple mechanisms of action (24, 25), suggesting that its effects
may be, in part, MYB-independent. Naphthol AS-E phosphate and
celastrol block the interaction between the MYB transactivation
domain and the KIX domain of p300, which is required for MYB
function (26, 27). However, naphthol AS-E phosphate induces
apoptosis more rapidly and effectively than MYB silencing (26),
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and celastrol is a potent proteasome inhibitor that has pleiotropic
effects including the inhibition of NF-kB (28, 29).

To overcome these limitations, we sought to identify MYB-
dependent pathways thatmaybe targeted therapeutically.We show
here that cyclin D3, CDK6, and BCL2 are relevant MYB targets with
essential roles for in vitro growth and leukemogenesis of Phþ ALL
cells. These findings provide a "proof of concept" demonstration of
how to exploit the TF "addiction" of leukemic cells.

Materials and Methods
Cell culture

BV173 (CML-lymphoid blast crisis cell line) were kindly pro-
vided by Dr. N. Donato (NIH), SUP-B15 (Phþ ALL cell line) were
purchased from the ATCC, and Z181 (Phþ ALL cell line) were
kindly provided by Dr. Z. Estrov (M.D. Anderson Cancer Center,
Houston, TX). TKI-resistant BV173 cells were generated by
step-wise selection in the presence of increasing concentrations
of imatinib, which induced the outgrowth of cells with the
BCR-ABL1 T315I mutation. Experiments were performed on cell
lines cultured for less than 30 passages. Mycoplasma was tested
monthly following an established procedure (30). Cell lines were
routinely authenticated by monitoring B-cell markers and BCR-
ABL1 isoform expression. Cell lines were cultured in Iscove's
Medium (Gibco) supplemented with 10% FBS, 100 U/mL pen-
icillin–streptomycin, and 2mmol/L L-glutamine at 37�C. Primary
human Phþ ALL cells were maintained in SFEM (Stem Cell
Technology) supplemented with SCF (40 ng/mL), Flt3L (30
ng/mL), IL3 (10 ng/mL), IL6 (10 ng/mL), and IL7 (10 ng/mL;
PeproTech). Information on primary Phþ ALL samples used in
this study is shown in Supplementary Table S1.

Cell proliferation, cell-cycle analysis, and colony formation
assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay was performed in 96-multiwell plates. Cells
were incubated with 0.5 mg/mLMTT (Sigma Aldrich) at 37�C for
2 hours; then, formazan crystals were dissolved with 0.1 mol/L
HCl in 2-propanol and absorbance was measured at 570 nm.
Cell-cycle analyses were performed by propidium iodide staining
(50 mg/mL) of cells permeabilized with 0.1% Triton and 0.1%
sodium citrate followed by flow cytometry determination ofDNA
content. For clonogenic assays, cells were pretreatedwith 1 mg/mL
doxycycline (Research Product International) for 24 hours or
treatedwith drugs and immediately seeded in 1%methylcellulose
medium (Stem Cell Technology) at 2,500 to 5,000 cells/mL.
Colonies were counted after 7 to 10 days.

Immunoblot
Cells were counted and lysed at a density of 10,000/mL in

Laemmli Buffer. Lysateswhere run onpolyacrylamide gels (Biorad),
transferred onto nitrocellulose membranes, and incubated with
primary antibodies (described in Supplementary Methods) and
horseradish peroxidase–conjugated secondary antibodies (Thermo
Fisher Scientific). Images were obtained by chemiluminescent reac-
tion and acquisition on autoradiography films (Denville Scientific).
Different antibodies were probed on the same nitrocellulose mem-
brane; if necessary, previous signals were removed by incubation in
stripping buffer (62 mmol/L Tris-HCl, pH 6.8, 2% SDS, b-mercap-
toethanol 0.7%) for 20minutes at 50�Corby incubationwith0.5%
sodium azide for 10 minutes at room temperature.

Quantitative reverse-transcription PCR
RNA was isolated with RNeasy Plus Mini Kit (Qiagen) and

reverse-transcribed with the High-Capacity cDNA Reverse Tran-
scription Kit (Thermo Fisher Scientific). A total of 10 ng of cDNA
was used as template and amplified with Power SYBR-Green PCR
Master Mix (Thermo Fisher Scientific). When possible, primers
were designed to span exon–exon junctions and are listed in the
Supplementary Methods section.

Lentiviral/retroviral vectors
For MYB silencing, we used the MYB shRNA kindly provided

by Dr. Tom Gonda (31). For silencing of p21 (the protein
product of the CDKN1A gene), CDK4, and CDK6, the pLKO.1
plasmids constitutively expressing the shRNAs and conferring
puromycin resistance were purchased from GE Dharmacon
[pLKO.1-Scramble: Addgene #1864; p21 (CDKN1A) shRNA:
GE Dharmacon #TRCN0000040125; CDK4 shRNA: GE Dhar-
macon #TRCN0000000363; CDK6 shRNA: GE Dharmacon
#TRCN0000010081]. For exogenous expression of CDK6, the
RNA extracted from BV173 cells was reverse transcribed, and the
full-length cDNA corresponding to transcript variant 1 (NCBI:
NM_001259.6) was PCR-amplified with a forward primer intro-
ducing the XbaI restriction site and a reverse primer introducing
the BamHI site. Then the product was digested and inserted in the
XbaI-BamHI sites of the lentiviral vector pUltra-hot developed by
Dr.MalcolmMoore (Addgene plasmid # 24130), which expresses
the cDNA of interest and the mCherry protein as a bi-cistronic
transcript under the control of the ubiquitin C promoter. The
cyclinD3 cDNA(NCBI:NM_001760.4)was similarly obtainedby
total RNA purified from BV173 cells and inserted in the XbaI-
BamHI sites of the pUltra-chili lentiviral vector (Dr. Malcolm
Moore; Addgene plasmid #48687), which expresses dTomato as a
reporter protein. To obtain a nucleus-localized CDK4 protein,
CDK4 (NM_000075.3) was PCR amplified from BV173 cDNA by
using a forward primer introducing an XbaI site and a reverse
primer introducing a BamHI site following a sequence encoding
the nuclear localization signal from the SV40 large T antigen
(CCAAAGAAGAAGCGTAAGGTA). The CDK4-NLS product was
then inserted in the XbaI-BamHI sites of the pUltra-Hot vector.
MYB cDNA was PCR amplified from the MigR1-MYB plasmid
(32) and inserted into theXbaI-NheI sites of pUltra-hot. To obtain
the shRNA-resistantMYB cDNA, the entire plasmidwas amplified
with primers harboring point mutations in the MYB sequence
targeted by the shRNA, which were designed to preserve the
integrity of the amino acid sequence of MYB. Then, the linear
plasmid was self-ligated and sequenced to confirm that the
expected mutations were introduced. The E308G mutation was
introduced by a similar method. The pLXSP-BCL2 retrovirus was
previously described (33). Lentiviral or retroviral VSV-G pseudo-
typed particles were produced by calcium phosphate transfection
of plasmid vectors into HEK-293T cells in combination with
helper plasmids. Twenty-four hours later, the supernatant was
collected, 0.45 mm filtered, and used to transduce BV173 or SUP-
B15 cells by spinoculation in the presence of 8 mg/mL polybrene
(Sigma-Aldrich). Transduced cells were either FACS-purified
on the basis of the fluorescent reporter protein or selected with
3 mg/mL puromycin (Sigma-Aldrich).

Microarray analysis
MYB-shRNA SUP-B15 and BV173 cells were treated for 24

hours with doxycycline or left untreated. RNA was isolated by
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using the RNeasy Plus Mini Kit (Qiagen). RNA was quantified
on a Nanodrop ND-100 spectrophotometer, followed by RNA
quality assessment by analysis on an Agilent 2200 TapeStation
(Agilent Technologies). Fragmented, biotin-labeled cDNA was
synthesized using the Affymetrix WT Plus Kit (Thermo Fisher
Scientific) for BV173 cells or the Ovation PICOWTA-system V2
and cDNA biotin module (NuGen Technologies) for SUP-B15
cells. cDNA from BV173 cells was hybridized onto Affymetrix
gene chips, and Human Clariom S assays (Thermo Fisher
Scientific) and cDNA from SUP-B15 cells were hybridized onto
Human Gene 1.0 ST Array (Thermo Fisher Scientific) following
the manufacturer's instructions. Arrays were scanned on an
Affymetrix Gene Chip Scanner 3000, using Command Console
Software. Quality Control of the experiment was performed by
Expression Console Software v1.4.1. Genes were considered
differentially expressed when cDNA fold change was >1.5.
Differentially expressed genes common to both datasets were
used for pathway analysis using IPA software. Microarray data
obtained in this study have been deposited in NCBI Gene
Expression Omnibus under GEO Series accession number
GSE105826.

Immunofluorescence
Cells were cytospun on polylysine-coated glass slides, fixed

with 3.7% formaldehyde, permeabilized with Triton 0.1%, and
incubated overnight at 4�Cwith primary antibodies anti-CDK4or
anti-CDK6 followedbyAlexa Fluor 594–conjugated anti-rabbit or
anti-mouse secondary antibodies (Thermo Fisher Scientific, 1
hour at room temperature) and then mounted with DAPI-Fluor-
omount G (Southern Biotech #0100-20). Imaging was acquired
with a Nikon Eclipse Ti C2 laser confocal microscope with
objective Plan Apo 60X/1.40 oil and processedwithNIS Elements
AR 4.5 software.

Chromatin immunoprecipitation
BV173 and SUP-B15 cells were processed with the SimpleChIP

Enzymatic Chromatin IP Kit (Cell Signaling Technology; #9002)
following the manufacturer's instruction. Chromatin from 4 �
106 cells was used for each immunoprecipitation with specific
primary antibodies or equal amounts of normal rabbit immu-
noglobulins. The purified DNA segments were quantified by
qPCR and normalized to the amount of input material.

Animals
Phþ ALL cells (2� 106 cells/mouse) were injected intravenous-

ly in 6- to 8-week-old NOD/SCID-IL-2Rg–null mice (Jackson
Laboratory). Doxycycline was administered at 2 g/L in the drink-
ingwater starting 7days after injection. Peripheral blood leukemic
cells were monitored by flow cytometry detection of GFP, human
CD10, and/or CD19 (based on cell type–specific expression). For
immunoblot analysis, leukemic cells were purified from murine
cells by FACS or with the EasySep Mouse/Human Chimera
Isolation Kit (StemCell Technologies). Palbociclib (obtained by
Pfizer) was dissolved at 15 mg/mL in 50 mmol/L sodium lactate,
pH¼ 4.0, and given by oral gavage for 10 consecutive days at 150
mg/kg. Sabutoclax (SelleckChem) was dissolved at 0.5 mg/mL in
10:10:80 Kolliphor-EL (Sigma-Aldrich)-ethanol-PBS and admin-
istered intraperitoneally every other day at 5 mg/kg for a total of
fivedoses. Animal experimentswere approvedby the Institutional
Animal Care and Use Committee of Thomas Jefferson University
under protocol number 00012.

Statistical analysis
Results are expressed as mean � SEM. Statistical significance

was determined by unpaired two-tailed Student t test. Bonferroni
correction was applied in cases of multiple comparisons. Corre-
lation studies were analyzed by the Pearson test, and significance
was calculated by the Student t distribution. Significance in
survival experiment was assessed by the log-rank test. For drug
combination studies, the combination index (CI) was calculated
by the Chou–Talalay method (34), and synergism was defined as
CI < 1.

Results
MYB silencing suppresses Phþ ALL cell growth

We showed previously that loss of aMyb allele impairs colony
formation of p190-BCR-ABL1–transformed B-cell progenitors
and suppresses B-cell leukemia in mice, but has no effect on
normal B-cell development (15).

To investigate if MYB is similarly required in Phþ ALL, we
assessed the effects of MYB silencing in human cell lines BV173,
SUP-B15, and Z181 transduced with the doxycycline (DOX)-
inducible, GFP-expressing pLVTSH-MYB shRNA lentiviral vec-
tor (31). DOX treatment abolished MYB expression in the three
cell lines (Fig. 1A; Supplementary Fig. S1A and S1B). Compared
with controls, DOX-treated BV173 cells exhibited (i) cell-cycle
arrest in the G0–G1 phase (Fig. 1B); (ii) growth inhibition
revealed by MTT assays (Fig. 1C); and (iii) reduced colony
formation (Fig. 1D). These effects were also observed in SUP-
B15 and Z181 cells (Supplementary Fig. S1C–S1F). These
findings were not due to off-target effects, because expression
of an MYB cDNA carrying synonymous point mutations on the
shRNA target sequence (Supplementary Fig. S2A–S2C) rescued
the impaired proliferation and colony formation of MYB-
silenced BV173 cells (Supplementary Fig. S2D and S2E). The
effects of MYB silencing were also tested in TKI-resistant T315I
BV173 cells; as shown in Fig. 1E–H, growth suppression
induced by DOX treatment was undistinguishable from that
in parental BV173 cells. As expected, treatment with imatinib or
dasatinib markedly suppressed colony formation of parental
BV173 cells but had no effect on the TKI-resistant derivative line
(compare Fig. 1D and H).

MYB silencing suppresses leukemia development in NOD/
SCID-IL-2Rg–null mice

Then, we assessed the requirement of MYB for leukemia
development in NOD/SCID-IL-2Rg–null (NSG) mice (35)
injected with BV173 cells and treated with DOX. Six weeks
after cell injection, DOX treatment induced a dramatic decrease
of leukemia burden revealed by flow cytometry and cytokine-
independent colony formation of bone marrow BV173 cells
(Fig. 2A and B).

Mice injected with shMYB BV173 cells were also monitored for
survival. Untreated mice died of leukemia (bone marrow heavily
infiltrated by leukemic cells and splenomegaly) within 8 weeks
(average survival ¼ 42 days); mice given DOX to induce MYB
silencing survived up to 200 days with no signs of disease, except
for one animal whose cause of death could not be determined
(Fig. 2C). All mice were sacrificed at the 200th-day endpoint, and
flow cytometry of bone marrow cells revealed no leukemic cells
(Supplementary Fig. S3A), indicating that MYB silencing marked-
ly suppressed or eradicated the disease. As expected, ectopic

CDK6 and BCL2 Mediate the MYB Addiction of Phþ ALL

www.aacrjournals.org Cancer Res; 78(4) February 15, 2018 1099

on April 12, 2018. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst December 12, 2017; DOI: 10.1158/0008-5472.CAN-17-2644 

http://cancerres.aacrjournals.org/


expression of shRNA-resistant MYB rescued the leukemogenesis
of shMYB BV173 cells (Fig. 2C).

DOX treatment also induced a marked increase in the survival
of NSG mice injected with shMYB SUP-B15 cells. Control mice
survived 53.0 � 2.2 days; by contrast, one DOX-treated mouse
died 115 days after cell injection with no obvious signs of disease
(<10% circulating leukemic cells and no evidence of splenomeg-
aly), and remainingmice were sacrificed, whenmoribund, 139 to
163 days after injection (Supplementary Fig. S3B). Interestingly,
MYB expression was not silenced in bone marrow or spleen
leukemia cell lysates from two terminally ill DOX-treated mice,

whereas one sample displayed a shorter MYB isoform that may
lack the shRNA target sequence (Supplementary Fig. S3C), likely
explaining leukemia development in these animals. As control,
MYB levels weremarkedly reduced in leukemic cells fromamouse
injected with shMYB SUP-B15 cells and DOX-treated for 4 days,
when peripheral blood GFPþ cells were >50% (Supplementary
Fig. S3C, lane 6).

We also investigated the requirement of MYB in NSG mice
injected with shMYB-transduced patient-derived Phþ ALL cells
(ALL-674). For this experiment, transduced cells (approximately
10% GFP-positive) were expanded in a recipient NSG mouse,
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Figure 1.

MYB silencing reduces viability and
proliferation of Phþ ALL BV173 cell
line and of its TKI-resistant (T315I)
derivative. A–C, immunoblot (A),
cell-cycle analysis at 48 hours of
treatment (B), and cell growth at the
indicated times (C) of untreated or
DOX-treated BV173 shMYB cells. D,
methylcellulose colony formation
assay of BV173 shMYB cells
untreated, treated with DOX to
induce MYB silencing (shMYB),
imatinib (IM) 1 mmol/L, or dasatinib
(DAS) 2 nmol/L. E–H, Experiments
performed as in A–D on the
TKI-resistant cell line T315I BV173
shMYB. N.S., nonsignificant.
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GFP-sorted from the bone marrow and injected in female NSG
recipient mice to obtain a more efficient engraftment (33). Leu-
kemia progression was monitored by periodic analysis of total
leukemic (CD19þ) or shMYB-transduced (GFPþ) cells. At 6
weeks, DOX-treated mice showed reduced numbers of CD19þ

or GFPþ cells compared with untreated mice; however, by 10
weeks, we observed an outgrowth of leukemic cells, a fraction of
whichwasGFP-negative (Fig. 2D). In addition, amongGFPþ cells,
average GFP intensity was reduced (Fig. 2E) and MYB expression
was not downregulated (Fig. 2F), suggesting selection of leukemic
cells expressing low levels of the MYB shRNA.

MYB modulates the expression of cell-cycle–regulatory genes
To investigate mechanisms responsible for the "MYB depen-

dence" of Phþ ALL cells, we performed microarray analysis of
MYB-silenced SUP-B15 and BV173 cells. Seventy-nine genes were
differentially expressed in both cell lines (Fig. 3A). Ingenuity
pathway analysis revealed that cell-cycle progression, DNA rep-

lication, and cell-cycle checkpoints were the pathways most
significantly affected by MYB silencing. In addition, BCL2 was
also significantly downregulated (Fig. 3A). qPCR analysis con-
firmed the downregulation of CDK6, cyclin D3 (CCND3), CDK2,
cyclin E2 (CCNE2), and FOXM1 and the upregulation of the CDK
inhibitor p21 (CDKN1A; Fig. 3B; Supplementary Fig. S4A). Immu-
noblots of MYB-silenced BV173 and SUP-B15 cells confirmed the
increase in p21 expression and the downregulation of CDK6 and
cyclin D3 (Fig. 3C and D); these changes were associated with
markedly reduced CDK4/6-dependent RB phosphorylation (36,
37) and expression of FOXM1 (Fig. 3C and D), a CDK4/6
substrate stabilized through phosphorylation (38). Expression
ofRBwas partially reduced inMYB-silenced cells; instead, levels of
p130-RBL2were increased and the proteinmigrated faster than in
untreated cells consistent with loss of phosphorylation (Fig. 3C
and D). These changes were confirmed in MYB-silenced ALL-674
cells purified from the bonemarrow of two DOX-treated (4 days)
mice (Fig. 3E). By chromatin immunoprecipitation (ChIP) in
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Figure 2.

MYB silencing suppresses leukemogenesis of Phþ ALL cells in immunodeficient mice. A and B, Leukemia burden in untreated or DOX-treated NSG mice (n ¼ 4)
injected with BV173 shMYB cells assessed by flow cytometry analysis of GFP-positive bone marrow cells (A) or methylcellulose colony formation assay (B).
C, Kaplan–Meier survival plot of untreated or DOX-treated NSG mice injected with BV173 shMYB cells or with BV173 shMYB cells expressing a shMYB-resistant
form of MYB. D, Peripheral blood leukemia burden (percentage of GFPþ or CD19þ cells) in untreated (n ¼ 6) or DOX-treated (n ¼ 5) NSG mice injected with
primary Phþ ALL (#674) cells transduced with the shMYB lentivirus. E, Flow cytometry analysis of GFP positivity in the bone marrow of terminally ill untreated
or DOX-treated NSG mice injected with ALL-674 shMYB cells (gated to exclude GFP-negative cells, plots display results from one representative untreated
and one DOX-treated mouse). F, Immunoblot of MYB expression in GFP-sorted bone marrow cells from NSG mice injected with ALL-674 shMYB cells and
continuously treated with DOX for 11 weeks (lanes 2–4) or after a four-day (4D) treatment initiated when peripheral blood GFP-positive cells were >50% (10 weeks
after injection). N.S., nonsignificant.
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BV173 (Fig. 4A–C) and SUP-B15 cells (Supplementary Fig. S4B),
we detected binding of MYB to the promoter of the CDKN1A
and CCND3 genes and to the promoter and intron 5 enhancer
of the CDK6 gene (39). These regions contain putative MYB-
binding sites, suggesting that CDK6, cyclin D3, and p21 expres-
sion is directly regulated by MYB. As a positive control, MYB
was detected at the promoter of the BCL2 gene in BV173 and
SUP-B15 cells (Supplementary Fig. S4C). To further investigate
the significance of these findings, mRNA levels of MYB and its
putative targets were analyzed in 24 primary human Phþ ALL
samples. We observed a strikingly positive correlation between
MYB and CDK6 expressions (P ¼ 0.00008), whereas that
between MYB and cyclin D3 or p21 was not significant after
Bonferroni correction (Fig. 4D–F). A positive correlation
between MYB and CDK6 expressions was also noted in 226
samples of adult B-cell ALL (Fig. 4G; ref. 40), in 207 samples of
Ph-negative, high-risk childhood ALL (Fig. 4H; ref. 41), and in
174 AML samples from The Cancer Genome Atlas (Fig. 4I).

CDK6 but not CDK4 expression is necessary for Phþ ALL cell
proliferation

InMYB-silenced BV173 and SUP-B15 cells, expression of CDK6
is markedly downregulated while levels of CDK4 are not affected
(Fig. 5A and B). Because CDK4 and CDK6 should have redundant

roles in G1–S phase transition and CDK4 is expressed in most
cases of Phþ ALL (Fig. 5C), we asked whether decreased CDK6
levels can explain the cell-cycle arrest of MYB-silenced cells. Thus,
BV173 and SUP-B15 cells were transduced with CDK4 or CDK6
shRNAs. Surprisingly, CDK4 silencing had negligible effects,
whereas CDK6 silencing suppressed cell-cycle progression, RB
phosphorylation, and FOXM1 expression in both lines (Fig.
5D–G). These data suggest that in Phþ ALL cells, CDK6 exerts a
function that is not shared by CDK4. Interestingly, confocal
microscopy analysis revealed that CDK6 is predominantly local-
ized in the nucleus of Phþ ALL cells, whereas CDK4 is almost
exclusively cytoplasmic (Fig. 5H). To investigate whether the
cytoplasmic localization of CDK4 may explain its inability to
rescue the growth suppression induced by CDK6 silencing, a
nucleus-localized form of CDK4 (CDK4-NLS) was expressed in
BV173 shMYB cells transduced with a lentiviral vector expressing
cyclin D3 (because the latter is also downregulated in MYB-
silenced cells). In cells expressing cyclin D3 alone, CDK4 was
predominantly cytoplasmic; by contrast, CDK4wasmostly nucle-
ar in cells expressing CDK4-NLS (Supplementary Fig. S5A). Upon
DOX treatment to silence MYB expression, coexpression of cyclin
D3 and CDK4-NLS partially restored RB phosphorylation and
FOXM1 expression (Supplementary Fig. S5B) and resulted in a
significant increase in the percentage of proliferating cells
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Figure 3.

MYB silencing alters the expression of cell-cycle–regulatory genes. A, Heatmap of 79 genes significantly modulated in BV173 shMYB and SUP-B15 shMYB
cell lines (C1, C2, and C3 denote untreated controls; D1, D2, and D3 denote samples treated with DOX for 24 hours). B, qPCR analysis of CDK6, cyclin D3 (CCND3),
p21 (CDKN1A), CDK2, cyclin E2 (CCNE2), and p21 (CDKN1A) expression in BV173 shMYB cells untreated or DOX-treated for the indicated time points (normalized to
GAPDH). C–E, Immunoblot analysis of cell-cycle–regulatory genes in MYB-silenced Phþ cell lines (C and D) or ALL-674 shMYB cells DOX-treated for 4 days
in vivo and GFP-sorted (E).
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(Supplementary Fig. S5C) compared with empty vector (EV)–
transduced cells.

Restoring expression of CDK6, cyclin D3, and BCL2 rescues
cell-cycle arrest and apoptosis induced by MYB silencing

Next, we asked whether restoring the expression of cyclin D3
and CDK6 would be sufficient to rescue the proliferative arrest of
MYB-silenced cells.

Expression of CDK6 alone partially restored RB phosphor-
ylation and rescued FOXM1 expression, whereas expression of
cyclin D3 alone did not (Supplementary Fig. S6A). CDK6
expression partially rescued the reduced growth of MYB-
silenced cells, whereas cyclin D3 expression had a modest effect
(Supplementary Fig. S6B).

Coexpression of CDK6 and cyclin D3 (K6/D3) restored RB
phosphorylation and FOXM1, CDK2, and cyclin E2 (CCNE2)
expression (Fig. 6A–C), and rescued the cell-cycle arrest of cells
treatedwithDOXfor2days (Fig. 6DandE).However,MYB-silenced
K6/D3 cells grew less vigorously after 4 days of DOX treatment
(Fig. 6F) and did not form colonies in methylcellulose (Fig. 6G).

Based on these findings, we asked whether induction of apo-
ptosis could explain the reduced growth of MYB-silenced K6/D3
BV173 cells. Indeed, although sub-G1 apoptotic cells were not
detected by cell-cycle analysis of shMYB BV173 or SUP-B15 cells
performed after 2 days of DOX treatment (Fig. 1B and F, Fig. 6D
and E; Supplementary Fig. S1B), a 4-dayDOX treatment increased
the percentage of Annexin Vþ cells and induced caspase 3 cleavage
in EV and K6/D3 cells (Fig. 6H and I).
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Figure 4.

MYB regulates the expression of cell-cycle–regulatory genes and is coexpressed with CDK6 in different types of leukemia. A–C, MYB binding by ChIP to
regulatory regions of the CDK6 (A), CCND3 (B), or CDKN1A (C) genes in BV173 cells (numbers refer to the position of the forward primer relative to the TSS).
As negative controls, ChIPs were performed with a nontargeting antibody (white bars) or with an anti-MYB antibody on lysates from MYB-silenced BV173
cells (gray bars).D–F,Plot of the correlation between themRNA levels (by qPCR) ofMYB andCDK6 (D),MYB andCCND3 (E), orMYB andCDKN1A (F) in 24 samples of
primary human Phþ ALL samples. G, Plot of the correlation between the expression (by microarray) of MYB and CDK6 in a panel of 226 B-cell ALL of mixed
cytogenetics (GSE79533). H, Plot of the correlation between the expression (by microarray) of MYB and CDK6 in a panel of 207 Ph-negative childhood, high-risk
ALL (GSE11877). I, Plot of the correlation between the expression of MYB and CDK6 based on The Cancer Genome Atlas data on 174 samples of AML of
mixed cytogenetics (RNA-seq, median expression).
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BCL2 was previously reported to be a MYB target (42–45),
and thus, its decreased expression may contribute to the apo-
ptosis of MYB-silenced cells (Fig. 6J and K). To test this
hypothesis, we generated a derivative shMYB BV173 K6/D3
cell line named KDB in which levels of ectopically expressed
BCL2 were not affected by MYB silencing (Fig. 6L). In these
cells, BCL2 expression inhibited apoptosis, restored cell
growth, and partially rescued the loss of colony formation
induced by MYB silencing (Fig. 6M–O).

The defective colony formation potential ofMYB-silenced KDB
cellswasnot causedby increasedp21 expressionbecause silencing
p21 did not further increase colony formation of DOX-treated
KDB cells (Supplementary Fig. S6C–S6F).

Finally, we tested whether these derivative lines induce leuke-
mia in NSG mice. Mice injected with shMYB BV173 cells expres-
sing K6/D3 or BCL2 alone and given DOX did not develop
leukemia. However, 10 of 12 DOX-treated mice injected with
KDB or KDBp cells developed leukemia, and 9 of them suc-
cumbed to the disease by 200 days (Fig. 6P).

The recruitment of p300/CBP is required for MYB-dependent
control of proliferation but is dispensable for its antiapoptotic
effects

The interactionbetweenMYBand thehistone acetyltransferases
p300/CBP is critically important for MYB function in hemato-
poietic cells (46–48). To assess the importance of p300/CBP
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Figure 5.

Expression of CDK6 but not CDK4 is required for the proliferation of Phþ ALL cells. A–C, Immunoblot of CDK6 and CDK4 expression in untreated or DOX-
treated BV173 shMYB cells (A) or SUP-B15 shMYB cells (B) and in untreated primary Phþ ALL cells (C). D and E, Representative experiment showing the
cell-cycle analysis of scramble, CDK4, or CDK6 constitutive shRNA-transduced BV173 (D) or SUP-B15 (E) cells. Compared with scramble-transduced cells, the
decrease in the percentage of S phase cells is significant in BV173 shCDK6 cells (P ¼ 10�5) and in SUP-B15 shCDK6 cells (P ¼ 0.001), but not in BV173 shCDK4
or SUP-B15 shCDK4 cells (results are from three independent experiments). F and G, Immunoblot analysis of CDK4, CDK6, RB phosphorylation, and FOXM1
expression in scramble, CDK4, or CDK6 shRNA–transduced BV173 (F) or SUP-B15 (G) cells. H, Subcellular localization of CDK6 (left panels) or CDK4 (right panels)
in BV173, SUP-B15, and primary human Phþ ALL cells (ALL-1222 and ALL-3934) by immunofluorescence-confocal microscopy (scale bar, 20 mm).
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recruitment for MYB transcriptional effects, shMYB BV173
cells were transduced with the EV, the shRNA-resistant wild-type
(WT) MYB, or the shRNA-resistant MYB-E308G mutant that
does not interact with p300/CBP (48) and were treated with
DOX to silence endogenous MYB.

Although expression of shRNA-resistant MYB WT complete-
ly rescued the effects of MYB silencing, DOX-treated MYB-
E308G–expressing cells displayed decreased S phase and col-
ony formation but no increase in Annexin V positivity (Sup-
plementary Fig. S7A–S7C). By immunoblot analysis, expres-
sion of MYB-E308G rescued levels of BCL2 but not CDK6 and

FOXM1 or RB phosphorylation (Supplementary Fig. S7D). To
investigate mechanisms that may explain the differential
requirement of p300/CBP in the regulation of CDK6 and
BCL2, ChIP experiments were performed at the regulatory
regions of these genes.

DOX-treated EV-transduced cells showed reduced levels of
MYB and p300 binding and H3K27 acetylation at the promoter
and enhancer of CDK6 and at the promoter of BCL2, compared
with cells expressing MYB-WT. MYB-E308G–expressing cells also
showed reduced p300 binding and H3K27 acetylation at the
promoter and enhancer of CDK6, but H3K27 acetylation was
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Figure 6.

Coexpression of CDK6/Cyclin D3 and BCL2 partially rescues the effects of MYB silencing. A, Immunoblot for MYB and its targets in untreated or DOX-treated
(96 hours) BV173 shMYB EV or BV173 shMYB K6/D3 cells.B andC, qPCR forCDK2 (B) and cyclin E2 (C) in untreated or DOX-treated (48 hours) BV173 shMYB EV cells
or BV173 shMYB K6/D3 cells. D and E, Cell-cycle analysis of untreated or DOX-treated (48 hours) BV173 shMYB EV (D) or BV173 shMYB K6/D3 (E) cells. F,
Cell growth by MTT assay of untreated or DOX-treated BV173 shMYB EV cells or BV173 shMYB K6/D3 cells (vertical axis is shown as a logarithmic scale). G, Colony
assay of untreated or DOX-treated BV173 shMYB K6/D3 cells. H and I, Annexin V positivity (top) and expression of cleaved caspase-3 by immunoblot (bottom) in
untreated or DOX-treated (2, 4, or 6 days) BV173 shMYB EV (H) and BV173 shMYBK6/D3 (I) cells. J andK, qPCR forBCL2 (top) and immunoblot for BCL2 (bottom) in
untreated or DOX-treated (2 or 4 days) BV173 shMYB EV (J) or BV173 shMYB K6/D3 (K) cells. L, Immunoblot of EV and KDB derivative BV173 shMYB cell lines
untreated or treated with DOX for 4 days. M–O, Annexin V positivity (M), cell growth by MTT assay (N; vertical axis is shown as a logarithmic scale), and
methylcellulose colony formation assay (O) of untreated or DOX-treated KDB cells. P, Kaplan–Meier survival plot of NSG mice injected with untreated
BV173 shMYB or DOX-treated BV173 shMYB derivative cell lines.
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not reduced at the BCL2 promoter, in spite of lower p300
binding (Supplementary Fig. S7E–S7G).

Cotreatment with theCDK4/6 inhibitor palbociclib and a BCL2
antagonist inhibits growth of Phþ ALL cells ex vivo and
suppresses leukemia burden in NSG mice

Based on their essential role in cell growth, CDK6 and BCL2
might serve as targets to exploit the MYB "addiction" of Phþ ALL
cells. First, we investigated the effects of the CDK4/CDK6 inhib-
itor palbociclib in primary Phþ ALL cells. Similar to its effects in
cell lines (49), palbociclib inhibited the S phase of Phþ ALL cells
(Supplementary Fig. S8A). Moreover, it suppressed colony for-
mation of primary Phþ ALL cells, whereas normal CD34þ cells
were less affected (Supplementary Fig. S8B). Then,we assessed the
effect of palbociclib inNSGmice injected with three different Phþ

ALL samples. Compared with vehicle-treated mice, drug-treated
animals displayed lower numbers of peripheral blood CD19þ

leukemia cells 6 to 8weeks after cell injection (Supplementary Fig.
S8C). However, the effect was transient, probably reflecting the
cytostatic effects of palbociclib and/or the insufficient length of
the treatment.

To mimic more faithfully the effects of MYB silencing, we used
palbociclib in combination with the BCL2 antagonist venetoclax
(50). The palbociclib/venetoclax combination had synergistic
effects in BV173 and additive effects in SUP-B15 cells (Supple-
mentary Fig. S9A–S9D). SUP-B15 cells were markedly more
sensitive to venetoclax than BV173 cells (Supplementary Fig.
S9E and S9F), likely because of lower MCL1 and BCL-XL and
higher BIM expression (Supplementary Fig. S9G). Primary Phþ

ALL cells display low proliferation in vitro, preventing analysis of
the effects induced by the palbociclib/venetoclax combination.
However, treatment with venetoclax induced apoptosis in three

Phþ ALL samples, albeit at different drug concentrations (Sup-
plementary Fig. S9H–S9J). In particular, sample #1006 was
resistant to treatment with venetoclax, most likely because of
much higher BCL-XL andMCL1 levels than in the other samples
(Supplementary Fig. S9K).

Due to the sample-to-sample variability in expression of BCL2
familymembers and sensitivity to venetoclax, we tested the effects
of the pan-BCL2 inhibitor sabutoclax (51). Treatment with the
palbociclib/sabutoclax combination synergistically reduced the
number of BV173 and SUP-B15 cells at most doses (Supplemen-
tary Fig. S9L–S9O, respectively).

Next, we evaluated the effect of the palbociclib/sabutoclax
combination on leukemia progression in NSGmice injected with
ALL-674 or ALL-1222 cells.

Treatment with palbociclib induced a moderate reduction in
peripheral blood leukemia burden (17% and 32% decrease in
ALL-674 and ALL-1222 samples, respectively), whereas treat-
ment with sabutoclax had negligible effects. However, the
combined treatment was significantly more effective than
either drug alone (77% reduction for ALL-674, Fig. 7A and
B and 90% reduction for ALL-1222, Fig. 7C and D) in sup-
pressing leukemia load.

Discussion
We show here that MYB expression is critically important for

growth and leukemogenesis of PhþALL cells. Mechanistically, the
effects of MYB depend on transcriptional regulation of many
targets, among which, CDK6 and BCL2 are crucial mediators of
its proliferative and antiapoptotic functions.

In addition toMYB-dependent regulation, several mechanisms
may contribute to enhanced expression/activity of CDK6 in Phþ
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Figure 7.

Sabutoclax and palbociclib cooperate
to suppress Phþ ALL in NSG mice. A
and B, Percentage of CD19þ cells in
the peripheral blood (A) and fold
changes in leukemia burden (B) of
untreated and drug-treated NSGmice
injected with sample ALL-674 before
(5 weeks after injection) and after
treatment (7 weeks after injection).
C and D, Percentage of CD19þCD10þ

cells in the peripheral blood (C) and
fold changes in leukemia burden (D)
of untreated and drug-treated NSG
mice injected with sample ALL-1222
before (5 weeks after injection) and
after treatment (7 weeks after
injection); palbociclib was given by
oral gavage for 10 consecutive days at
150 mg/kg, whereas sabutoclax was
administered intraperitoneally every
other day (five doses, 5 mg/kg).
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ALL. TheCDK4/6 inhibitor INK4A is structurally altered in 30% to
50% of Phþ ALL (11, 52), the CDK6 promoter is hypomethylated
in BCR-ABL1–transformed cells (53), and miR-124 is epigenet-
ically silenced in PhþALL, resulting in higher CDK6 levels (54). In
addition to its kinase-dependent effects, CDK6 is also involved in
transcriptional regulation (55, 56).

Silencing CDK6 (but not CDK4) alone suppressed S phase
entry of PhþALL cells; however, this effectmay not require kinase-
independent mechanisms because it was undistinguishable from
that induced by pharmacologic inhibition of CDK4/6. The essen-
tial role of CDK6 was noted in MLL-rearranged leukemias
(57, 58), but no explanation was provided for the differential
requirement of CDK4 and CDK6. Here, we show that CDK6 is
readily detectable in thenucleus ofPhþALL cells, whereasCDK4 is
almost exclusively cytoplasmic. The exclusion of CDK4 from the
nucleus likely explains its inability to compensate for the growth
inhibition induced by CDK6 downregulation because expression
of a nucleus-localized form of CDK4, in combination with cyclin
D3 expression, partially rescued the impaired proliferation of
MYB-silenced cells.

We do not know the reasons for the lack of nuclear import of
CDK4 in PhþALL cells. A possible explanationmight reside in the
expression levels of different cyclin D proteins because CDK4
appears to interact preferentially with cyclin D1, whereas CDK6
binds preferentially to cyclin D3 (59) and levels of cyclin D3
mRNA are much higher than those of cyclin D1 in BV173 and
SUP-B15 cells, based on microarray data. This may affect both
nuclear import and kinase activity of CDK4.

Interestingly,MYB expression is required for leukemogenesis in
amodel ofMLL-AF9AML (22) andMLL-rearrangedALL, andAML
cells are also dependent on CDK6 but not on CDK4 expression
(57, 58). Furthermore, MYB and CDK6 expression is highly
correlated in ALL and in adult AML, suggesting that MYB might
link different oncogenic pathways to the activation of CDK6
expression.

Decreased susceptibility to apoptosis mediated by BCL2 is also
important for MYB-dependent regulation of Phþ ALL cell growth.
However, even in combination with CDK6/Cyclin D3, BCL2
enabled MYB-deficient BV173 cells to develop leukemia only
after long latency, suggesting that other MYB-regulated pathways
are important for a complete recovery of the leukemogenic
potential of these cells.

A criticalmechanismwherebyMYB regulates gene expression is
through its interaction with p300/CBP, because mutations of
MYB in the p300/CBP-binding sites phenocopy the impaired
hematopoiesis induced by MYB knockout and prevent leukemia
formation (46–48). The MYB–p300 interaction seems necessary
for CDK6 expression and cell-cycle progression but not for reg-
ulation of BCL2 expression and cell survival. Thus, drugs that
disrupt this interaction might have limited efficacy in Phþ ALL
unless MYB-regulated antiapoptotic pathway effects are also
targeted.

Our approach of simultaneously inhibiting MYB-dependent
proliferative andantiapoptotic programs recapitulatesmore faith-
fully the effects of MYB silencing in Phþ ALL, as indicated by the
more potent suppression of ex vivo and in vivo cell growth by

combining palbociclib with venetoclax or sabutoclax. Of interest,
venetoclax treatment of patient-derived Phþ ALL cells revealed
sample-to-sample variations in induction of apoptosis. These
findings likely depend on the expression profile of BCL2 family
members and suggest that the choice of a particular BCL2 antag-
onist in the clinic should be guided by the pattern of BCL2 family
expression and the ex vivo drug sensitivity of Phþ leukemia cells
from individual patients.

On the other hand, given that CDK4 is dispensable in Phþ ALL,
CDK6-selective inhibitors might prove as effective as dual CDK4/
6 inhibitors in blocking the proliferation of Phþ ALL cells and
may cause fewer side effects in normal cells.

In conclusion, our data indicate that targeting CDK6 and
BCL2 is an effective strategy to exploit therapeutically the MYB
addiction of Phþ ALL cells and might provide an alternative
treatment for patients who develop resistance to TKI-based
therapies.
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