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BATALIN-VILKOVISKY ALGEBRA STRUCTURES ON  (Co)Tor AND

POISSON BIALGEBROIDS

NIELS KOWALZIG

ABSTRACT. Inthis article, we extend our preceding studies on highgataaic structures
of (co)homology theories defined by a left bialgebroid A). For a braided commutative
Yetter-Drinfel'd algebralV, explicit expressions for the canonical Gerstenhaberbaige
structure orExty; (A, N) are given. Similarly, if(U, A) is a left Hopf algebroid where
Ais an anti Yetter-Drinfel'd module ovdr, it is shown that the cochain complex com-
puting Cotorr (A, N) defines a cyclic operad with multiplication and hence theigso
Cotorgr (A, N) form a Batalin-Vilkovisky algebra. In the second part othiticle, Pois-
son structures and the Poisson bicomplex for bialgebraidsraroduced, which simul-
taneously generalise, for example, classical Poisson hsaweyclic homology. In case
the bialgebroidJ is commutative, a Poisson structure @rieads to a Batalin-Vilkovisky
algebra structure offory (A, A). As an illustration, we show how this generalises the
classical Koszul bracket on differential forms, and codelly indicating how classical
Lie-Rinehart bialgebras (or, geometrically, Lie bialgats) arise from left bialgebroids.
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1. INTRODUCTION

1.1. Gerstenhaber and Batalin-Vilkovisky algebras. It is by now common knowledge
that the cohomology or homology groups of a given matheraltioject, although at first
glance only a graded module over some base ring, often caynghalgebraic structures,
such as products, brackets, and differentials. One of tHeestaaccount for such struc-
tures on the cohomology groups of associative algebras®uprably Gerstenhaber’s pi-
oneer article[[G], but in the meantime more general (co)Hogytheories such as for
Lie-Rinehart algebras (Lie algebroid$) [Hué2, Huel., KaxI] or for Hopf algebras
[FaSo,[ Kad| Mel[ MeZ, Tai2] as well as Hopf algebroids [KdKinave been investi-
gated in this direction. What is more, some of these strestaiready appear on the
(co)chain levell[TaTs], and in an even more abstract sginlogous structures (up to ho-
motopy) have been found for the cochain spaces or the cologyof (certain) operads

[BraLa,(GaToVa. GSch, GHJ, GV, MaShriSt, McCSm, Me1].

Definition 1.1. Let £ be a commutative ring.
(i) A Gerstenhaber algebraverk is a graded commutativealgebra(V, )

V=@V avp=(-1PBwacVP aecVP eV

peN
with a graded Lie bracket, -} : VP+! @, VIt — VPTatl on thedesuspension
V[1]:=Pvr!
peN

of V, for which all operatorg$~, -} satisfy the graded Leibniz rule
{rav By ={r,a} « B+ (-1)a~{y,8}, yeVI*aeV
(i) A Batalin-Vilkoviskyalgebrais a Gerstenhaber algebraith ak-linear differential
B:V"—=V" !l BB=0
of degree-1 such thatforalhe VP, g e V
{a, B} = (=1 (B~ B) = B(a) = B — (~=1)Pa — B(B)).

A Batalin-Vilkovisky algebra is also called axactGerstenhaber algebra and the
differential B is said togeneratehe Gerstenhaber bracket.

Since we shall continuously deal with the desuspensionioreed above, it is conve-
nient to introduce the notation

In|:=n—-1, neZ.

On the other hand, as we will see §&.8, in some cases Gerstenhaber algebras come
with a differential that, in contrast to the generating @per of a Batalin-Vilkovisky alge-
bra, increases the degree:

Definition 1.2. A differential Gerstenhaber algebria a Gerstenhaber algebvawith a
k-linear differential

SVt SVt 56 =0
of degree+1 such thav is a graded derivation of the cup produat, such that
0(a~—fB)=da~ B+ (-1)Pa 8, aeVP BeV,

holds. It is calledstrong differentialif ¢ is, additionally, a graded derivation of the Ger-
stenhaber bracket, that is, if

8a, B} = {0, B} + (1), 08},  aeVP BeV,
holds true.
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1.2. Aims and objectives. The principal aim of this paper is to investigate under what
conditions the (co)homology groups

Exty (A, M), Cotory (A, M), andTor? (4, A)

admit a Gerstenhaber resp. Batalin-Vilkovisky algebracitre, wherd/ is a left bial-
gebroid (ax 4-bialgebra) or a left Hopf algebroid (a ,-Hopf algebra) over a possibly
noncommutativé-algebraA. In §2 we indicate the necessary details for this sort of gener-
alisation of ak-bialgebra resp. Hopf algebra to noncommutative base .ridgee, we only
seize the occasion once again to point out that the ringsrgmgemost parts of classical
homological algebra can all be described by such a strucisra consequence, our results
apply to, for example, Hochschild and Lie-Rinehart (in fasar Lie algebra, de Rham,
Lie algebroid and Poisson) (co)homolo@g,, give access to both algebra and geometry,
but also to that of any Hopf algebra (which leadsda, group (co)homology) as well as
to (étale) groupoid homology.

1.3. Yetter-Drinfel'd algebras as coefficient modules for Gersénhaber algebras. The
aim of §3is to give explicit expressions of the canonical Gersteehalgebra structures on
(simplicial) cohomology and (coring) cohomology assaaikio a left bialgebroid/ and
taking values in general coefficient modules: the left @algid structure of/ leads not
only to a monoidal structure on the categoiedvlod andU-Comod of left U-modules
resp. leftU-comodules, but also to one §f¥D, the category of Yetter-Drinfel'd mod-
ules. Considering monoids in this latter category and withhelp of a well-known result
about Gerstenhaber structures in relation to the cohompalbgperads with multiplication
[GSch][McCSm, Me1], we can prove:
Theorem 1.3. If N is a braided commutative Yetter-Drinfel'd algebra over & l@alge-
broid U, then

C*(U,N) := Hom yor ((U®4°7*),, N)
defines an operad with multiplication. Hendé; (U, N) := H(C*(U,N), ) carries the
structure of a Gerstenhaber algebra.

Here,§ : C*(U,N) — C**1(U, N) defines the canonical cochain complex that arises
from the bar resolution off. We refer to the main text for all details and in particular
all notation used throughout this introductory section.e Tiheorem implies in particular
that if ,U is projective as a lefd-module, therExt;; (A, N) is a Gerstenhaber algebra,
and generalises not only relatively recent results [Tai2ZMn bialgebra theory (where
A := k is a commutative ring that is central iA) but also in bialgebroid theory [KoK[3]
by introducing general coefficients.

Another cohomology theory attached to any bialgebroid taioled by considering the
cobar resolution ofl, i.e., by dealing with the coring cohomology. This leads to a catha
complex

B:Co(U,N) = (U)®4* @, N — Cof Y (U, N),
which again admits the same sort of higher algebraic strectn §3.2 we prove:

Theorem 1.4.Let N be a braided commutative Yetter-Drinfel'd algebra overfaliéalge-
broid U. ThenC¢,(U, N) defines an operad with multiplication. Hence, the cohomplog
groupsH;, (U,N) := H(C:,(U,N), 3) carry the structure of a Gerstenhaber algebra.

In particular, ifU, is flat as a rightd-module, therCotorj, (A4, N) is a Gerstenhaber
algebra. Also this theorem is an extension of the bialgeasa &nown before (implicitly
in [GSch] and rediscovered more recently(in [Kad], see digel]]) to bialgebroidsi(e.,
to noncommutative base rings) and nontrivial coefficients.

For both cochain complexes mentioned above, we will givdieixpxpressions 2.4
for the graded commutative produetand the brackef-, -} that belong to any Gersten-
haber algebra by defining (in the spirit bf [G}erstenhaber products onC* (U, N) resp.
Ceo(U,N).
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1.4. The Batalin-Vilkovisky algebra Cotor. If U is not only a left bialgebroid but rather
a left Hopf algebroid (ax ,-Hopf algebra) and if on top of that the base algelrearries
a rightU-action (which is both fulfilled ifU is, for example, dull Hopf algebroid), this
equips the cochain spac€s, (U, N) with the structure of &yclic operad with multiplica-
tion. Since by Menichi’s theorerh [Mé1] any such cyclic operadwitultiplication defines
the structure of a Batalin-Vilkovisky algebra on the asatexl cohomology, we can prove:

Theorem 1.5. Let N be a braided commutative Yetter-Drinfel'd algebra over f kopf
algebroidU and assume thadl is an anti Yetter-Drinfel’d module. Then one can define
a right U-action onN such thatN together with its lefi/-comodule structure becomes
an anti Yetter-Drinfel'd module as well, and i¥ is moreover stable with respect to this
action, therC: (U, N) defines a cyclic operad with multiplication. Hence, the cobtogy
groupsH; (U, N) carry the structure of a Batalin-Vilkovisky algebra.

In particular, if U, is flat as a rightA-module, thenCotorj; (A, N) is a Batalin-
Vilkovisky algebra. This, once more, extends a result knowropf algebra theory [Mée1]
not only to bialgebroids, but also to nontrivial coefficientoreover, we confirm the con-
jecture in [Me2,510] that in case of a Hopf algebra oveendowed with a modular pair
(6, 0) in involution, one apparentlgannottake °k; unless the grouplike elemedtis the
unit element in the Hopf algebra, s§&for details.

1.5. Poisson structures for bialgebroids. As is shown inf4.2, the definition of &oisson
structureor (quasi-)triangularr-matrix for a left bialgebroidU, that is, a2-cocyclef e
C?(U, A) that fuffills
0 o1 0=20 O9 0

generalises not only Poisson structures for (noncommededissociative algebras and tri-
angularr-matrices for Lie bialgebroids (and hence Poisson marsfalsl well as skew-
symmetric solutions of the classical Yang-Baxter equaiiohie bialgebra theory [D])
but also the ring structure in an associative algebra orergeneral, the notion of operad
multiplication for the operad’* (U, A) as given ing31.

We then define the differentials

be : Cn(Uvj\/[) - Cnfl(UaM)v (m,:z:) = *Lg(m,lﬂ),

Bl C(UA) - C™THUA), » = {0,
whereL, is the generalised Lie derivative on left Hopf algebroid€4dl) that was intro-
duced in[[KoKr3]. The triple(C, (U, M), b’, B) can be shown to form a mixed complex,
which allows for the definition o€yclic Poisson homologyThis approach conceptually

unites, for example, Hochschild with Poisson homologygregclic homology with cyclic
Poisson homology), se&.3.

1.6. The Batalin-Vilkovisky algebra Tor. In caseU is a commutativdeft Hopf alge-
broid, the shuffle productx - defines the structure of a graded commutative algebra on the
homology group$7, (U, A). In casel is Poisson, this structure can be extended to that of
a Batalin-Vilkovisky algebra. 1§4.4 we will prove:

Theorem 1.6. Let U be a commutative Poisson left Hopf algebroid with trianguta
matrix . Then there is &-bilinear map

{30 Co(U,A) @ Cy(U, A) = Cpogr (U, A),  pog =0,
@y — (=P (z x ) + (1P x y + z x by,
which induces a Batalin-Vilkovisky algebra structure Bp(U, A).
Again, if ,U is projective as leffd-module, this yields a bracket
{.,.}o : Tory (A, A) ® Tor} (4, A) — Tory),, (A, A).
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In our examples in§4.4.4, we illustrate how the Batalin-Vilkovisky structui@n
Torg, (A, A) for a commutative Poisson left Hopf algebrdid generalises the classical
Koszul bracket on forms,e., the Batalin-Vilkovisky algebra structure on the extem@br
gebra/\°, L* of the dual of a Lie-Rinehart algeb(al, L).

We conclude by dealing with the case of how the idea of LieeRart bialgebras
(Lie bialgebroids) induced by a Poisson bivectioe.( a triangular--matrix) transfers in
complete analogy t&xt; andTor”: whereas a triangular Lie bialgebroid (in the sense
of [MacX]) gives rise [Kosll, XI] to a pair of strong differéat Gerstenhaber algebras in
duality — one of which is Batalin-Vilkovisky —, in case of amonutative Poisson left
Hopf algebroid bottf* (U, A) andH, (U, A) are strong differential Gerstenhaber algebras
as well, the latter being again Batalin-Vilkovisky.

Acknowledgements. It is a pleasure to thank Fabio Gavarini and Ulrich Krahnoer f
inspiring discussions and helpful comments.
This research was funded by an INDAM-COFUND Marie Curie gran

2. PRELIMINARIES

In this section we not only recall preliminaries on bialgats, Hopf algebroids, (anti)
Yetter-Drinfel'd modules and algebras, and (co)cyclic mled for bialgebroids — mainly
from our papers [KoKri2, KoKr3] —, but simultaneously inttozk the notation and con-
ventions used throughout the text. Seé [B] for more detar&mmation on bialgebroids
and Hopf algebroids, and references to the original sources

2.1. Bialgebroids. Throughout this paperd andU are (unital associative}-algebras,
wherek is a commutative ground ring (sometimes of characterigioz As common,
whenever an unadorned tensor product appears, it is mebatdeerk. Furthermore, we
assume that there be a fixkehalgebra map

n:A°:=A®; AP - U.
This induces forgetful functors
U-Mod — A°-Mod, U°’-Mod — A°-Mod
that turn left/-modulesV respectively right/-modules) into A-bimodules with actions
arnab:=n(a®;dbn, armab:=mnb®;a), abeAneNmeM. (2.1)

In particular, left and right multiplication ity define A-bimodule structures of both these
types onU itself.

Generalising the standard result for bialgebras (whichéschsed = k), Schauenburg
has proven[Sch] that the monoidal structuredeMod for which the forgetful functor
to A°-Mod is strictly monoidal (whered®-Mod is monoidal via® ,) correspond to what
is known as(left) bialgebroid(or x ,-bialgebra) structures obi. We refer,e.g, to our
earlier paper[KoKTrl] for a detailed definition (which is dieeTakeuchil[T]). Let us only
recall that a bialgebroid has a coproduct and a counit

A:U->U.®,.U, €:U— A, (2.2)

which turnU into a coalgebra iM*-Mod. Unlike for A = k, the counite is not neces-
sarily a ring homomorphism but only yields a Iéftmodule structure o with action of
u e U ona e A given by

ua = ¢e(u<a). (2.3)
FurthermoreA is required to corestrict to a map frarhto the Sweedler-Takeuchi product
U x4 U, which is theA®-submodule oV ® , U whose elementy;; u; ® , v; fulfil

Dar U ®u v =, U ®, 0« a, Yae A (2.4)
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In the sequel, we will freely use Sweedler’s notatid(u) =: u(1) . u(2).

In the same paper [Sch], Schauenburg generalised the naftilopf algebra to the
bialgebroid setting by introducing ,-Hopf algebras which we usually refer tolaft Hopf
algebroids The crucial piece of additional structure on top of the drdiroid one is the
translation map

U — .U ®Aop Uq, U= Uy ®A0r) U—, (25)
where the right hand side is to be understood as a Sweeglemiytationj.e., indicating
a sum. We will make permanent use of the following technigantities that hold for the
map [2.5), seé [Sch, Proposition 3.7]:

Proposition 2.1. LetU be a left Hopf algebroid oved. For all u,v € U, a,b € A one has

Uy Qpop - € U X 4op U, (2.6)

Uyp()) ®atipyu— = u®41€Us®a4.U, (2.7)

Uy Qaor Uy)—Uzy = URuor 1 €,U Q4o Us, (2.8)
Up(1) ®a Up(2) Quor U = U1y @ U2)4 Puor U2)—, (2.9)
Up @aor U_(1) ®aU_(2) = Upt Quop U @4 Uy, (2.10)
(uv) 4 Quor (UV)— = ULV Qo0 V_U_, (2.11)
uru— = s(e(u)), (2.12)

e(u_)ruy = wu, (2.13)

(s(a)t(b)+ ®aer (s(@)t(B))— = s(a) @aor 5(b), (2.14)
where in(2.8) we mean the Sweedler-Takeuchi product
U X oo U := {23, i @uor 0 € U @a00 U | D3, U5 9 @@ uop v = D Ui @aop @ >V},

which is an algebra by factorwise multiplication, but withpmsite multiplication on the
second factor, and where i (Z2]12) and (2.14) we usestheceandtargetmaps

s,t: A—-U, s(a):=n(a®;l), tb):=n(l®kbd). (2.15)

Beyond the obvious example of a left Hopf algebroid given byopf algebraid with
antipodeS, where the translation map is given by

h+®h, = h(1)®S(h(2)), hEH,
we recall below three (by now) standard examples of left Hdgébroids since they will
be used as test cases throughout the text: the first one gizessto the Hochschild theory

of associative algebras, the second twaetg, multivector fields and differential forms in
differential geometry:

Example 2.2. Recall from [Sch] thatA® := A ®, A°P is for anyk-algebraA a left Hopf
algebroid overd with structure maps

s(a) :=a®il, t0b):=1®kb, A(a®irbd):=(a®r1)®,(1Rkb), c(a®ib):= ab.
The translation map is given by
(a ®k b)+ & aop (a Rk b), = (a Rk 1) & a0p (b Rk 1)-

Example 2.3. Let (A, L) be a Lie-Rinehart algebra (geometrically, a Lie algebroir

a commutativé-algebrad andV'L be its universal enveloping algebra (se€ [Ri]). The left
Hopf algebroid structure of L has been given in_[KoKi1]; as therein, we denote by the
same symbols elemenise A andX € L and the corresponding generatordih. The
mapss = t are equal to the canonical injectioch— VL. On generators, the coproduct
and the counit are given by

AX) = X®R414+4104X, e(X) = 0,
Aa) = a®4,1, e(a) = a, (2.16)

=)
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whereas the translation map is defined by
X, Quor X := X Quor 1 — 1 ® 00 X, Ay ®qov a_ :=a®, 1. (2.17)
By universality, these maps defined on generators can bededetoVL. If (A, L) =

(C*(M),T*(E)) arises from a Lie algebroi&@ — M over a smooth manifold\,
one can consideVL as the space of-differential operators ooM (see, for example,

[Canvye]).

Example 2.4. The third example (se€ [KoPo, NT<1, CaVdB]) is in some sense @
the preceding one: let agafd, L) be a Lie-Rinehart algebra and define thdinear dual
JL := Hom,(VL, A), thejet spaceof (A, L). By duality, JL carries a commutative®-
algebra structure with product

the unit given by the counit of VL, and source and target maps given by
s(a)(u) = ae(u) = e(au), t(a)(u) := e(ua), ae A,ue VL. (2.19)

The A°-ring JL is complete with respect to the (topology defined by the) ekesing fil-
tration whose degreg part consists of those functionals that vanish onAkknear span
(VL)<, < VL of all monomials in up tp elements ofZ. In caseL is finitely generated
projective overA, Rinehart's generalised PBW theoremi[Ri, Thm. 3.1] idessifil. with
the completed symmetric algebra of tHemoduleL* := Hom, (L, A). Moreover, the
filtration of .JL induces one of/L ®, JL; if we denote byJL& ,.JL the completion, the
product of VL yields, as in[[KoPo, Lem. 3.16], a coprodust: J. — JL& ,JL by

fuv) =2 A(f)(u®aor v) = f1y(ufi)(v)). (2.20)

Along with this coproduct comes the counitff given by evaluation on the unit element,
thatis,f — f(1,.). These maps are part ocamplete (left) Hopf algebroistructure on
JL, see[[Q, Appendix A] for complete Hopf algebras, its Hopkdigpid generalisation be-
ing straightforward. Finally, extending tl&othendieck connectidinom L to VL defines
amap

(SHu) = e(us f(u)), we VL, f e JL. (2.22)
With this map that may be called, as the notation suggestattipodeof .JL, the jet space
is not only a left but dull complete Hopf algebroid in the sense of Bohm and Szladhany
[B]l. A short computation yields that the antipode is an imi@n, S? = id, and the
translation mad(215) results as

f+®A°Pf— = f(1)®A°pS(f(2))a (2.22)

formally similar to the case of Hopf algebras. Again,(#,L) = (C*(M),I*(F))
arises from a Lie algebroif — M over a smooth manifold\1, the jet spaceL can be
considered as the space@fdifferential forms on the manifold.

2.2. Comodules, (co)module algebras, and (anti) Yetter-Drinfid modules.

2.2.1. Comodules over left bialgebroid&ecall,e.g, from [B] that a left comodule for a
left bialgebroidl is a left comodule of the coring underlyirig, i.e., a left A-module M
and a leftA-module map

AM M- U, @4 >Ma m = m(-1) ®a (0)

satisfying the usual coassociativity and counitality axgo We denote the category of
left U-comodules by/-Comod. On anyM € U-Comod there is an inducedght
A-action given byma := £(a » m(_1))m(y), and A, is then anA°-module morphism
M — U, x, ,M,wherelU. x, ,M is the A°-submodule ol/, ® , , M whose elements
Zi U; Qa4 My fulfil

D aru ®umy =D, u @, mia, Ya € A. (2.23)
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In particular, theA¢-linearity reads
Ay (amb) = av>m_1)y«b®mey, Yme M, a,be A. (2.24)

For later use, let us mention that the base algebitself is a leftU/-comodule with
canonical coaction
Ay, A->U®®,A~U, aw s(a), (2.25)
wheres is the source map frorbh (Z.115).

2.2.2. (Co)module algebrasln order to introduce coefficients for the subsequent Gerste
haber algebras, we will additionally need the subsequerteqats. Similarly as for bialge-
bras, there exist the notions of monoid in the categdridslod resp.U-Comod of left
modules resp. left comodules over a left bialgebi@idvith some particular attention to
be paid to the underlying-bimodule structures:

Definition 2.5 ([KaSz]). A left U-module algebral/ is a monoid inU’-Mod. That is,
M € U-Mod carries a canonical-ring structure withA-balanced multiplicatiomn ® ,

m' — m -, m' form,m’ € M, and unitmapd — M, a — a >1,, = 1,, < a such that
forue U, m,m' e M

u(m -y m') = (uym) - (uym’) and uly =e(u) v ly =1y <e(u)  (2.26)
holds.

For example, the base algebtas a leftU-module algebra witlt/-action given via the
counit as in[(ZB), bul/ itself usually is not. We remark that in cal§e= A° an A°-module
algebra is also called a#-ring or an A-algebra

Observe in particular that with the inducdd-module structure o/ given as in[(Z11)
and theA¢-linearity of the coproduct, one has

av(m-ym’)=(a>m),m,
(m oy m/) aa=m-y (m/ q a)7 (2.27)
and moreover
m-y (a>m’) =(maa)-,m. (2.28)
Dually, we shall need the notion of a monoidiiiComod, seege.qg, [BS]:

Definition 2.6. A left U-comodule algebraV is a monoid inU-Comod. That is, NV €
U-Comod with coactionAy : n — n_1) ®.4 n) Moreover carries a canonicatring
structure withA-balanced multiplicatiom ® 4 n’ — n -y n’ forn,n’ € N such that

Av(ly) =1, @41y, Ay(n-yn')= n(_l)n'(_l) ®a 1(0) "N ”/(0)- (2.29)

For example, both the base algebfawith left U-coactiona — s(a) as well as the
ring U itself by means of the coproduct are U-comodule algebras. Observe that for a
left U-comodule algebra relations with respect to the underligfigA°-module structure
identical to those in(2.27) follow froni (2.24).

Of course, one can also define comonoids iMod andU-Comod, respectively, but
they are not needed in the sequel.

2.2.3. (Anti) Yetter-Drinfel’d modules and Yetter-Drinfel'd @&lgras. For a left bialgebroid
U there exists the notion of Yetter-Drinfel'd module @ossed bimodu)ei.e., a module
which is simultaneously a left comodule with a certain cotityility between action and
coaction. For bialgebras, this concept goes backto [Y],re@ethe bialgebroid version is

due to [Sch]:

Definition 2.7. A left U-module N which is simultaneously a left comodule over a left
bialgebroidl is called aYetter-Drinfel'd module (YDif the full A°-module structure .V,
of the module coincides with that underlying the comoduhel & one has

(wnyn)(—1)ue) @a (uyn)o) = u@)n-1) @a u)n(o)- (2.30)
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The category; YD of Yetter-Drinfel'd modules is monoidal with respect to tte@sor
product in [Z.P), equipped with the diagonal module and thgiagonal comodule struc-
ture. We only mention as a side remark [Sch, Prop. 4.4] ¥héD is equivalent to the
weak centre of the categotjy-Mod with (pre)braiding

Oy nt i Na®a o N = N'o®4 N, n®un' = n_yn' @i n)-

The importance of the existence of this braiding for ourrlatasstructions of Gerstenhaber
algebras is provided by the following notion (see, for ex@Em|[BrzMil):

Definition 2.8. A Yetter-Drinfel'd algebras a monoid in] YD, i.e,, an A-ring N which

is both a leftU/-module algebra and a leffi-comodule algebra plus the compatibility con-
dition (Z:30) between action and coaction. A Yetter-Drildfalgebra is said to bbraided
commutativef the multiplication in NV is commutative with respect g, ,, that s,

n-yn' = (n_yn') -y ng), foralln,n'eN. (2.31)

Observe thaf(2.31) is well defined by (2.28) as well[as (2.Réedless to say that the
notion of braided commutativity is entirely independentdfetherN itself as an algebra
is commutative: for example, the base algeliraf any bialgebroidJ is always a braided
commutative Yetter-Drinfel'd algebra by means of the cacalnleft U-action [2.8) and
left U-coaction[[2.2b).

If U happens to be keft Hopf algebroid one can give a sort of opposite notion of anti
Yetter-Drinfel’d modules. The following particular clae$right modules which are also
left comodules was introduced JS] for Hopf algeband in[[B] for left Hopf
algebroids:

Definition 2.9. A right U-module leftU/-comodule)M over a left Hopf algebroid/ is
calledanti Yetter-Drinfel'd module (aYDj the full A°-module structurgeM, of the mod-
ule coincides with that underlying the comodule, and if oas h

(mu)(—1) ®a (mu) o) = u—m_1)Uy (1) ®a M(0) U (2) (2.32)
forallm € M,u € U. Such aright module left comoduld is calledstable (SaYDif one
has

m(0)MY(-1) = M-
Observe that the categoRaYD,, of anti Yetter-Drinfel’d modules over a left Hopf

algebroid isnotmonoidal, not even in the Hopf algebra caise, for A = k.

Remark 2.10. Note that for a left Hopf algebroiti and a Yetter-Drinfel’d modulév, the
compatibility condition[(2Z.30) can be expressed as

(un)(—1) ®a (un)(0) = Ut )N (—1)U- @a Ut (2)T(0), (2.33)

showing more structural symmetry with respect to the antieYeDrinfel'd case. How-
ever, this formulation obscures the fact that Yetter-Deidf modules already exist on the
bialgebroid level.

2.3. The para-(co)cyclick-modules C, (U, M) and C¢,(U, N). The Gerstenhaber and
Batalin-Vilkovisky algebras that we are going to study iisthaper are obtained as the
(co)simplicial (co)homology of para-(co)cycliemodules of the following forni [KoKr2]:

Proposition 2.11. (1) For everyM e U°P-Mod over a left bialgebroidU there is a
well-defined simpliciak-module structure on

CoU,M) := M Qo0 (,U,)®4"*
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whose face maps in degree> 1 are given by

1 n n—1 H I
9 9ty ) - Y
(m,u e(u™) »uh) ifi=0
di(m,x) =< (m,...,u" = ) ifl<i<n-—1,
(mut,u?, ... u") if i=mn,

and vanish fom = 0, that is, for elements id/. The degeneracies for > 0 read:

(m,ut, ... u" 1) if j=0,
si(myz) =< (m,...,u" 7, LumIT o um)if 1<j<n—1,
(m, 1,ut, ... um) if j=n.

Here and in what follows, we denote elementary tenso€s, i/, M) by
(m,x) := (m,u*,...,u"), meMu', . u"el.

For a right U-module leftU-comodule) over a leftHopf algebroid U, the k-module
C, (U, M) becomes a para-cyclicmodule via

t(m,x) = (m(o)ui,ui, oulul e uim(_l)).

This para-cyclick-module is cyclic ifV is a stable anti Yetter-Drinfel’d module.
(2) On the other hand, fol’ € U-Comod for a left bialgebroidl, there is a well-
defined cosimpliciat-module structure on

C: (U M) = (LU)®4»®, M,

with cofaces in degree > 1 given by

(L', um) ifi =0,
8i(z,m’) = { (uh, .. A, . u™,m) ifl1<i<n,
(ul,...,u",m’(fl),m’(o)) ifi=n4+1,
and forn = 0, that is, onM’ by
(1,m) if j — (2.34)
0;(m') = ’ PR
i(m') {(m/(l),m/(o)) if j = 1.

The codegeneracies far> 1 read, on the other hand,
oi(z,m') = (ul, ... e(utth),. .., u™,m') 0<i<n-—1,

and vanish onM/’. Similarly as above, here and in what follows, we denote efeary
tensors inCg, (U, M') by

1

(z,m/) = (u',...,u™,m'), m'eM, u ... u"el,

if no confusion with the homology case can arise. Again, foight U-module leftU-
comoduleM’ over a leftHopf algebroidU, the k-moduleC¢ (U, M') becomes a para-
cocyclick-module by means of

7(z,m') = (ui(l)uQ, o ui(nfl)u”, ui(n)m’(fl), m’(O)ui), (2.35)

which is cocyclic ifM is a stable anti Yetter-Drinfel'’d module.

Recall that in the first case this means that the operédors;, t,,) satisfy all the defin-
ing relations of a cyclié-module in the sense of Connes (se, [Co2,[Ld]), except for
the one that requires that™ = id on C,, (U, M), which, as mentioned, is only satisfied
whenM is an SaYD module; analogous comments apply to the cohomsiagtion. The
relation between the cyclic and the cocyclic module abov@asort of)cyclic duals(as
introduced by Conne5[Cb1] as well) is explainedin [KoKr&lthough we shall need the
full structure of the (co)cyclic modules, we are not goingtiady the cyclic (co)homology
of these objects, but rather their (co)simplicial (co)hdmgy:
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Definition 2.12. For any bialgebroid/ and anyM € U°P-Mod, we denote the simplicial
homology ofC, (U, M), that is, the homology with respect to the boundary map

b= i(q)idi (2.36)
i=0

by H,(U, M) and call it the(Hochschild) homology d¥ with coefficients inV/. Likewise,
if M’ € U-Comod is a left U-comodule, we denote the cosimplicial cohomology of
C:. (U, M), i.e, the cohomology with respect to the coboundary map

n+1
8= Z (—1)%; (2.37)
i=0
by H; (U, M') and call it the(coring or co-Hochschild) cohomology 6f with coefficients
in M.

Recall from [KoPo, Thm. 2.13] that ifU is projective as a lefd-module, then
H,(U, M) ~ Tor¥ (M, A),
and ifU, is flat as a rightA-module, we have
H:, (U, M") ~ Cotory; (A, M"). (2.38)

Mostly, we will work on the normalised compleéX, (U, M) of C, (U, M), meaning the
guotient by the subcomplex spanned by the images of the deggnmaps of this simpli-
cial k-modulej.e., given by the cokernel of the degeneracy maps. Likewisendhealised
complexC;, (U, M) of the cochain comple&’s, (U, M’) is obtained by dealing with the
kernel of the codegeneracy maps. We shall usually denotaitmpe that descend from the
original complexes to these quotients by the same symbotsdbnfusion can arise.

On every para-cyclié-module, one furthermore defines therm operator the extra
degeneracyand thecyclic differential

N =) (=)™, S_1 =15y, B=(d—t)s_1 N, (2.39)
=0

respectively. Remember th& coincides on the normalised complé€x(U, M) with the
map (induced by} _; N/, so we take the liberty to denote the latterByas well, as we, in
fact, will only consider the induced map on the normalisehplex.

2.4. Gerstenhaber algebras, operads with multiplication, and gclic operads. In this
section, we finally gather some well-known material abous@mhaber algebras and their
relation to operads, as well as Batalin-Vilkovisky algebaad their relation to cyclic op-
erads. We refer the interested reader to, for example, [(HASEVE, [MaShnSt, Me1] for
more details on operad theory; here, we only need the basiuitd® in the formula-
tion of Gerstenhaber-Schac¢k [GSch] (termed “strict umitathp algebra” therein) plus one
important consequence:

Definition 2.13. A (non-X) operadin the category ok-modules is a sequen¢®(n)}.,.>o
of k-modules with an identity elemerite O(1) together withk-bilinear operations; :
O(p) ® O(¢q) — O(p + ¢ — 1) such that

poip = 0 ifp<i or p=0,
(¢ 05 X) Citr—1 ¢ if j <1,
(poip)ojx = ©o; (Yoj_iv1x) if i <j<q+i, (2.40)

(P 0oj—g+1 X) 0 ¥ if j=q+1,
po, 1 = Lojp = ¢ fori < p,
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is fulfilled for anyy € O(p), ¥ € O(q), andy € O(r). The operad is called aperad with
multiplicationif there exists alistinguished elemeit operad multiplication: € O(2) and
an element € O(0) such that additionally

worp = Wozp, (2.41)
pore = poge = 1 '

holds.

In the rest of this article, the term “operad” will alwayseeto a non¥ operad in the
category oft-modules in the above sense.

Gerstenhaber algebra structures can be constructed gon@e, by means of the notion
of an operad with multiplication, as the following theorehows:

Theorem 2.14([G, [GSch,[ McCSin]) Each operad with multiplication gives rise to a
cosimplicialk-module the cohomology of which is a Gerstenhaber algebra.

For later use, we give the necessary structure maps thatitcomghe proof of this
theorem: for any two cochainse O(p), 1 € O(q), define

P
poyp = (~1)PI N (—1)llllpo; e Op+q—1),  |n[:=n—1,
1=1
and theirGerstenhaber brackéty
{, 9} = o — (—-1)Pllysg, (2.42)
whereas the graded commutative productdine productis given as
o~ 1h=(po1p)opr1 ¥ = (no29)o1p€O(p+aq). (2.43)

Finally, the cohomology mentioned in TheorEm 2.14 is definéH respect to the differ-
ential

oo = {p, ¢}
We will frequently use Theorem 2114 in the next section. Argphaed version of this
result is an analogous relation between Batalin-Vilkoyislkgebras andyclic operads

established in[[Mé1], as we will recall below. The notion gtkic operad goes back to
[GeK&], see alsd [MaShniSt, p. 247—-248]; the version we useibelue to[[Mell]:

Definition 2.15. A cyclicoperad is a (nons) operadO equipped withk-linear maps,, :
O(n) — O(n) subject to

Tip+aq| (por1v) = 7o, if1<p,q,
| 0; = T,pwo0,_1%, If0<gand2<i<yp,
il (¢ Tﬁff _ igf(n), ! 1 P (2.44)
T1]1 = 1

for everyp € O(p) andy € O(q). A cyclic operad with multiplicatioms simultaneously a
cyclic operad and an operad with multiplicatiorsuch that

Toll = [L. (2.45)

A crucial observation is now that Batalin-Vilkovisky algels arise, for example, from
cyclic operads with multiplication:

Theorem 2.16([Mell]). Each cyclic operad with multiplication gives rise to a colayc
module of which the associated cyclic differentialyields a generator for the Gersten-
haber bracket on the cohomology of the underlying cosingblicmodule, turning it there-
fore into a Batalin-Vilkovisky algebra.
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3. GERSTENHABER ANDBATALIN -VILKOVISKY ALGEBRA STRUCTURES FOR
BIALGEBROIDS

In this section, we will construct two operad structureshwitultiplication on two dif-
ferent cosimplicial modules attached to a left bialgebi@ithat compute, under suitable
projectivity assumptions, the derived functéist;; andCotory;, see below. The first one
is the A°P-linear dual toC, (U, N) from Proposition 211, whereas the second one is its
cyclic dual,i.e,, the cosimplicial modul€”: (U, N) introduced in the second part of the
same proposition.

3.1. C*(U, N) as an operad with multiplication. As for the first one mentioned, define
CP(U,N) := Hom op (U®4°PP N, N e A°P-Mod,
which is, by duality, a cosimplicial module. The differealts : C*(U, N) — C**1(U, N)

is given by

(3.1)

P
So(ul,. . uPt) = wlto(u®, . uP ) + Z(fl)lw(ul,...,ululﬂ, CuPth
-1
(WPt s P,

We denote the cohomology &f*(U, N) by H*(U, N) and call this thgHochschild)
cohomology ot/ with coefficients inV. If U, is an A°P-projective left bialgebroid, then
H*(U,N) ~ Extj; (A, N), but in general we use the symbi@t (U, N) for the cohomol-
ogy of the explicit cochain complefC* (U, N), §). Thenormalised compleg (U, N) is
given by the intersection of the kernels of the codegenesanithe cosimpliciat-module
C*(U,N).

The Gerstenhaber structure éft(U, N) for the caseV := A was already discussed
in [KoKr3] §§3.5-3.6], we insert here general coefficients:Nebe a leftU/-module (with
action denoted by juxtaposition) which is simultaneoudigfal/ -comodule with coaction
Ay 1 n = ne_1) ®a ny such that the underlying induced left®-module structures
coincide. Furthermore, assume that with respect to thisdefmodule structureV is an
A-ring, i.e,, a monoid inA°-Mod with multiplication denoted byn,n’) — n -y n’ in
what follows. Observe that by these requirements in pdaidtq. [2.28) holds. We then
associate to any-cochainy € C?(U, N) the operator

DY :U®a»? — U®, N,
(ulv"'vup) = Qﬁ(u%l),...,U?l))(,l)U%Q) ’U,€2) ®a go(uél)v"'v’l’L?l))(O)a

+ (71)p+1¢(u17

(3.2)
and this map is well-defined by (Z124) along with {2.4). Faiozeochainsi.e., elements
in IV, this map is given by the coactiah, of N. We introduce the notation
Dw(ul, v uP)(Z1) Qa Dg,(ul7 e uP) gy 1= D;’(ul, coouP).
This enables us to define
0;: CP(U,N)® C1(U,N) — CIP* (U N), i=1,...,p,
by
(po; P)(ul, ... ulPtd)
= (p(uél), . ,ul(r)l, Dy(u’, ... w0 Ly 't ,ulPral) (3.3)
w (ugg)ugy Dy(u', . u™ ) ),

which again is well-defined by (2.4}, (2]24), but also (2.4)r zero cochains € N, we
definen o; ¢ = 0 for all s and ally, whereas

poin = @(uél), . 7u1('1—)17n(_1), uly. P (ué) e ul(;)ln(o)) e CP"Y(U,N).
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The distinguished elemerite., the operad multiplicatiod (2.%41) is here given by

wi=(emy(-,-)) v 1y € C*(U,N), (3.4)
wherem,, is the multiplication map o/. Furthermore, define
1:=¢()rlyeCHU,N) and e:=1,eC%U,N). (3.5)

The cup producf(Z.43) can then be expressed as
((P ~ 1/1)(@61; e 7up+q) = (P(Uél), e 7“?1)) ‘N (u%2) U “1(72)1#(““1’ e 7up+q)),

wherep € CP(U, N), v € C4(U, N), as a short computation reveals by meang of (3.3)
and [3:4) with the help of (226, (2.4), aid (4.24).

Theorem 3.1. If N is a braided commutative Yetter-Drinfel'd algebra over & leial-
gebroidU, thenC* (U, N) with the structure given ii3.3—3.5) defines an operad with
multiplication.

Remark 3.2. As already mentioned, one can in particular take= A, the base algebra
of the left bialgebroid itself, and in this case the opem{8:1)-(3.5) coincide, by means
of the canonical left actio (2.3) resp. coactibn (2.25)hvie operators given in [KoKF3,
§3.5]. On the other hand, observe that even for general cmefficN one has for the
differential [31) the usual expression

op = {n, ¢},
where the right hand side is defined adin (2.42). This follvas (Z.4) and[(Z.24).

Proof of Theoreri 3]1Verifying the conditions in Definitiofl 2.13 is essentiallydaect
computation, but we want to show at least two of the iderstitid2.40) in detail to illustrate
where the various assumptions 8hin Definition[2.8 of a braided commutative Yetter-
Drinfel'd algebra appear; apart from that, the identifl@4{l) are easy to check considering
that for the distinguished elemehi(B.4)

Dy (u,v) =uv®,4 1y, forallu,vel,

holds in caseV is a comodule algebra. Somewhat less obvious is to checthnatentities
(2.40) are fulfilled: letp € CP(U,N), ¢» € C4(U,N), andx € C"(U,N), along with
1<j<gq+i. Then

((poi 9) 05 x)(ul,...,ullPraltrl)

= ((cp 0; ¢)(u%1),...,u{;)17DX(uj,...7uj+r_1)(_1)7uj+r, .. ,u||p+q‘+7"‘))

‘N (“%z)"'ufg)le(ujv---,ujw_l)(o))

. . — . o .
= 90(71%1)7 o '7u21)17Dd)(u21)7 o '7u‘21) 7DX(U‘J7 e '7UJ+T 1)(—1)7uj+r7

a2y et 7ullp+q\+r\)
.N (U%Q) B '“éz_)lDw(“fl)7 . ,u{;)17 Dx(uj, o 7uj+r—1)(71)7uj+r, o ,ui+q+r—2)(0))
o ey ity Pu 7))

(s uln)s Dy lufyy, oo ulnt Dalud o wl ¥ gyl *T i TR
uz‘+q+r717“_7ullp+q\+r\) N (u%g) s Dy ul ) Dy wd T g,
Wt ,ui+q+r—2)(0) ‘N (u'('g) cee u{;)IDX(uj, BN uj'”_l)(o))])

BB oy, suly ety ol Dl ol oyl )
ufa) gy Dxluyy, o ul) )ty - ougg
k=t ) o ()l eyl Dl ul T o

e T e (o Dty o))
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BB o ufy ol syl Dyl T
(ufe) - ulzy Dx(ufyys sy ™) (Cayulay -l ulay iz
yitatr=1 7ullp+q\+r\) N (“%2) ) "“Fl[w(uél), . %1— Dx(u(l),m’u{l)r)r—1)(7l)7
w7 0) v (ufyy e uly Daufyys s ul T )<o>)(0)])

2.2 ( by [w(u;‘l), ol Dyl _,ug;;—l)(_l),ug;;, )
o (ufay - ully Dyl ™0 eyl ol
quﬂilv---vu”Hqu‘) ‘N (“%2)"'”?5)1[1&(“21)7--- (1) va(U(Uv---v j;r)r_l)(—nv
T T o Dy 0] )

= e(udyy w8 0= )iy - ’“§1+>T+q72)(71>“22> eugy
witrta=l 7ullzﬂ+q\-¢—r\) N (ué) . -ué;)l(w 0jit1 X)(Uzl), o 7uﬂz';r)r4r¢172)(0)

_ ‘P(“%U’ B '7ul('I)l7D'¢0j7i+1X(ui’ 7ui+r+q—2)(71)7ui+r+q—l7 . .,qu+q|+r|)

o~ () uln) Do, ipx (Wl ufTTH2) )
= (poi (Y oj_it1 X)), ... ullPTatr)

holds. The conditior (2.31) appeaesg, when computing foj > ¢ + i that

((poip) oj X)(uls... H’DJ’(’IJ”"I)
= ((¢ o Qp)(u%l), L (1) 7DX(U 7uj+1"—1)(_1)7uj-%—»“7 o 7ul|P+q\-¢—M))
N (u@) el DT )
‘P(uzl)v"'7“?17)171)1,/1(“7{‘1)7-..7“?‘1'—)(1_1)(71)71142-5(17-~-7“{_1 DX(uj7 uj+7‘71)(71)7
uj+1",.__7qu+q|+1"|) N (Uég) "'“é;)lDw(”h)v'-- (1)q 1)(0))
v (ufy) uay uay ulyy Dxl, o w? T g))
- ; itq— i - i i
' :go(u%l),...,uzl)l,Dw(u%l),...,u(1+)q 1)(,1),u(;r)q,...,ufl)l,DX(uJ, Ludtr 1)(71)7
Wl o (ufyy utyt (Daays - oul Do)
v (ufa) +ulyy Dx ) )
23T i i itq— i j— ] o
= ap(uzl),...,u(l)l,Dd,(u, uttd 1)(,2),%5‘1,...,u{l)l,DX(uj,...,uJJr 1)(,1),
Wl PRy o ()l (Dy (T
(' ulgy Dx (oo™ ) o Dw(uiwwui*q“)(m))
2,201 i i itq— i j+r—
@(uzl)v"'vu(l)l7Dw(u seee, U +a 1)(—2)7“2-1*—;17"' (1) 7DX(UJ 7uj+ 1)(—1)7
Wl PR ey (ufy e ugy) Dot u T
gy gy Dl T ) (“(s)"'“fE)lDw(uﬁ---,u”q’l)m))
= ((QO Oj—q+1 X)(uél)v (1) 7D1/)(u i+q—1)(_1)7ui+q7“_7u||p+q\+r\))
v (uy) - "“(§>1Dw(“iv---vui+q_1)<0>)
= (¢ 0j—qt1 X) 0 ) (ul, ... ullPTaltrl)
is true. To check the remaining identities[in (2.40) is lefthe reader. O

By Theoreni 2.4 one deduces at once:

Corollary 3.3. If N is a braided commutative Yetter-Drinfel'd algebra, the ontology
groups H* (U, N) carry the structure of a Gerstenhaber algebra. In partioula, U is
projective as a lefd-module, therixty; (A4, N) is a Gerstenhaber algebra.
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Example 3.4. For U = A¢ with the bialgebroid structure given as in Examiplel 2.2 and
in caseN := A, the Gerstenhaber algebra structurefx 4 (A, A) is (for A projective
over k) the classical one given in [G], as already mentionedin [K)K7]: one has an
isomorphism

C*(A° A) — C*(A, A) := Homy (A%, A), ¢ 3, (3.6)
where the right hand side refers to the standard Hochschittiain complex and is
defined by

P(a1 ®k -+  ap) 1= <p((a1 Qk1),..., (an Rk 1))
so that
¢((a1 @k b1), - .., (an Qp bn)) = Glar ®p -+ Qp an )by -+ br.
It is easy to see that the respective induced isomorphisnobaroology is moreover one
of Gerstenhaber algebras, and in particular one has

m:&ofld’;) 7::]‘5"'7p5
forall o € CP(A°, A), 1) € C1(A°, A), where the right hand side

(@of ¥)(ar, .., aptq) = @(al, e @i 1, (@i - i)y Qiggy s a‘erq‘) (3.7)
are the classical insertion operations found by Gerstest{&]j.

However, we want to underline that already lad. cit., p. 287], coefficients were in-
troduced by considering (what turns out to be) &ting N with an A-bimodule map
¢ : N — Asuch that

d(n)n’ =n-yn' =ng(n). (3.8)
We now show how these coefficients are examples of our geoenatruction: am-ring
N is, as said before, by definition a#f-module ring and ifN is also a comodule, the
Yetter-Drinfel'd condition [2.3D) is automatically fulidd by [2.24) and thet®-linearity
of the coproduct orA¢. Hence, everyAd-ring which also is anA°-comodule algebra is
automatically a Yetter-Drinfel'd algebra. If a morphistne Hom 4 (N, A) now fulfills
(38), itis clear that — (¢(n) ®x 14) ®. 1, defines am®-coaction which givesv the
structure of a braided commutative Yetter-Drinfel'd alggeb

Example 3.5. Another classical example fits in this theory as follows: #ebe a Hopf
algebra over a field with antipodeS, and denote the Hochschild cohomologyrfas an
algebra with values idf itself by i (H, H) := Ext},.(H, H), which, as mentioned in
the preceding Example_3.4, classically carries a Gerstetadgebra structure [G]. Now,
as follows from[CE, Thm. VII1.3.1], one has a vector spa@gmisrphism

Ext’,.(H, H) ~ Ext?, (k, ad(H)). (3.9)

Here,ad(H) is H as vector space but with leff-action on it given by the adjoint action
ad(h)h' := h)h'S(hey) for all h,h' € H. Itis a straightforward check thatd(H)
equipped with this action, the leff-coaction given by the coproduct iff, and the ring
structure given by the multiplication i forms a braided commutative Yetter-Drinfel'd
algebra, hencext?, (k,ad(H)) is also a Gerstenhaber algebra by Corollary 3.3.

We correspondingly want to show that (3.9) is also an isoimism of Gerstenhaber
algebras: recall frome.g, [FeT$,[Ki] thatExts, (k,ad(H)) can be computed by means
of the standard Hochschild cochain compléx(H, H) := Hom(H®*, H), but with
coboundary
dp(h', ... k™YY = ad(Bh)e(h?, ... k") 4 Y (=) p(Rt, .. TR R

1=1
+ (=) (A, .. RM)e(h™ Y.
Now, by means of thé-linear isomorphism

§:C*(H,H) - C*(H,H), (&(p)(h's....h") = @i}y, hiy)hiay - by
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with inverse

), .. ") = 1/)(1)(11), e ,v?l))S(v(lQ), e ,0?2)),

one proves[[KIr§2.4] thato¢ = &d with respect to the Hochschild coboundaryrom

(2.1) (adapted to this exampleg., for A := k andN := H) and hence(C'(H, H), 6) ~

(C*(H, H),d) as cochain complexes. Moreover, one has with respect tde€béaber’s
insertion operation§ (3.7) for ap € CP(H,H), ¢ € C1(H,H), andi = 1,...,p, by

means of the properties of a Hopf algebra and sintsecentral inH

(Mg of Ep))(ht,. .., nIPTal)
= (&0 0F €0))(hlyy, - hET D)) S iy - bl
B (o) (hhyys o i (€0) iy oo BV BT, ) Sy o nIE A

_ 1 i—1 i i+|ql i itlg| 1itq [p+aly;1 i—1
= oAy higy iy by D gy iy T B ) higy g

i i+ql i i+lqlyitq [p+aql 1 i—1,4 it+lalyitq Ip+ql
Ulhinys - by D@hiz) higy Ry gy Sy higy hlay by gy gy )

i— 1 it i i+ i
= W(h%1)7 T h21)17¢'(h21)7 s 7h(1)‘q‘)(1)h22) e h(Q)‘q‘,hH'q, caey h‘p+‘I|)
1 i—1 i i+q| 1 i—1
% h(2) . -h(Q) w(h(l)7 L. ,h(l)q )(Q)S(h(g) L. h‘(g)
= 1 i—1 i i+1q| i itlal pi
- ‘p(h(l)7 e 7h(1) 7w(h(1)7 e ,h?l)q )(1)h(2) e h?2)q ,h +q7 e ,h‘p+q|)

1 (ad(hig) -+ hig) e(hiyy, . ,h;'j)‘q‘)(g))

@Ry by Dy (Bt W1 gy, ¥, pletal)

i (ad(hlyy -+ b ) Dy (', ... hF19) )

(90 O3 w)(h‘lv s 7h|17+q‘)7

where, at certain places, we denoted the multiplicatiof iby -;; to better illustrate the
analogy to[(3.B). Hence, as claimed, the vector space igamsmé induces an isomor-
phism of Gerstenhaber algebras on cohomology.

Example 3.6. If H is ak-bialgebra and/ simultaneously art/-module algebra and a
left H-comodule, ther/# H is a left bialgebroid ovei if and only if V' is a braided
commutative Yetter-Drinfel'd algebra ovéf, see[[Lu, Thm. 5.1] o [BrzMi, Thm. 4.1].
In this case, botfitxty (k, V) andExty 4 (V, V) are Gerstenhaber algebrasiéass au-
tomatically a braided commutative Yetter-Drinfel'd algaloverV #H, see the comment
below Definitio2.8. For example, i is a finite dimensional Hopf algebra over a field
with bijective antipode and/* its k-linear dual, then the Heisenberg doubléH*) is a
braided commutative Yetter-Drinfel'd algebra over theribei'd doubleD(H), see [Sg];
hence Exty g+ )up ) (H(H*), H(H*)) andExtp ) (k, H(H*)) are Gerstenhaber al-
gebras. On the other hand, the Yetter-Drinfel'd algebracstire on?{(H*) over D(H)
arises (seedp. cit] again) from the construction 6{(H*) as a braided product & * ..,
andH, which both are braided commutative Yetter-Drinfel'd digges oveD(H) as well.

In particular, bothExtp g (k, H) and Extp ) (k, H*co0p) carry Gerstenhaber algebra
structures, which can be transferred to certain GerstarHathack cohomology groups
Hgs(., .): for two Hopf bimodules (otetramodules M, N, one has an isomorphism[Tail]

EXt’.D(H) (Mcoinv,Ncoinv) ~ HGS(M; N)

Applying this to our situation above mealistp g (k, H* coop) =~ Has(H, HQH* coop),
and therefore yields a Gerstenhaber algebra structure on

HGS(H7H®H*coop) =~ HGS(H, Endk(H))

Observe here that the Gerstenhaber algebra structui®, o/, H) obtained in[[FaSo] by
similar arguments is trivial, as shown [n [Tai2].
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We leave all details of this example paragraph to a futureresibn, also in the hope of
discovering genuinely new examples which do not resembigeaeralise classical Ger-
stenhaber algebra structures.

3.2. C¢, (U, N) as a cyclic operad with multiplication. Let againN be a leftU-module
(with action denoted by juxtaposition) which is simultaosly a left U-comodule with
coactionAy : n — n_1) ®4 n(g) such that the underlying induced left*-module
structures coincide. As before, we assume that with respéuis left A°-module structure
N is an A-ring with multiplication denoted byn,n’) — n -y n’. Observe once more that
by these requirements in particular Hgq. (2.28) holds. Wa tiedine, as a generalisation of

[GSch, p. 65],
07 : CL (U, N) @k C&,(U, N) — CEX(U,N), i=1,...,p,
by
(ut,...,uP,n)o; (v!,...,v%,n)
= (u',. .., ui_l,uz('l)vl, e ufq)vq, (u2q+1)n’)(_p+i)ui+1, (3.10)
- (ufqﬂ)n/)(_l)up, (ufqﬂ)n/)(o) N7,

which is well-defined byl[(2.24)[(2.4).(2123), aid (2.28pr Eero cochains, that is, el-
ementsn € N, we definen o; (v!,...,v9,n') = 0 for all i and all (v!,... ,v9,n’) €
C4 (U, N), whereas

(ut, ..., uP,n)o;n
= (ut, T (W) Cprn T L () P, (u'n) o) v n) € CFy H(U,N).

The distinguished elemerite., the operad multiplicatiod (2.41) is here

ji= (Lo, 1, 1y) € C2, (U, N), (3.11)
and also set
1:=(1y,15) € CL(U,N) alongwith e:=1,¢e C? (U, N). (3.12)
With (3.10) and[(3.1]1), the cup produkct(2.43) explicithcbmes
(u, ..., uP,m) ~ (v',.. . vl n) = (u,... ,up,m(,q)vl, coomenvl,my ).

Observe that the differentid[ (2.137) formed by the coface@i34) can be expressed as

6(z,n) = {u, (z,n)},
where the right hand side is again defined as[in {2.42) and wd tiee abbreviation

(z,n) := (ul,...,uP,n).

Theorem 3.7. Let N be a braided commutative Yetter-Drinfel’d algebra over & Igal-
gebroidU. ThenC:, (U, N) with the structure given i@ 10—312 yields an operad with
multiplication.

Proof. The proof relies on straightforward computations analsgouthose in the proof
of Theoreni_3.1, which is why it is omitted. O

By Theoreni 2.4 one deduces at once:

Corollary 3.8. With the assumptions of Theordm13.7 dh the cohomology groups
H:, (U, N) carry the structure of a Gerstenhaber algebra. In partisul& U, is flat as
a right A-module, therCotorj; (A4, N) is a Gerstenhaber algebra.
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Remark 3.9. Taking for N the base algebrd, the conditions mentioned in the preced-
ing proposition can, as said before, always be fulfilled fog tanonical/-action and
U-coaction[[2.B) respl_(2.25) (and the formulae notably §ifsnpthe cup product, for ex-
ample, just becomes the tensor product). However, thistisheocase if one twists the
coactiona — s(a)o on A by a grouplike element € U (for the underlyingA-coring of

U): unlesss = 1, the base algebra is already not a comodule algebra any more, not even
for a bialgebra (wherél = k). This seems to correspond to Menichi’s conjecturéin [Me2,
§10] thatC: (H,“ks), whereH is a Hopf algebra over a commutative rihgnd(4, o) is

a modular pair in involution, doe®otgive an operad with multiplication unless= 1.

3.3. Batalin-Vilkovisky algebra structures on Cotor. In this section, we want to inves-
tigate how the operad with multiplication from TheorEml 3an de given the structure of
a cyclic operad with multiplication; or, equivalently, uerdvhich conditions the Gersten-
haber algebra in Corollafy 3.8 becomes a Batalin-Vilkoyiskebra. In particular, as seen
in Propositiod 2711 and EJ_(2135), respectively, whenaveyclic operation needs to be
defined, the left/-comoduleN has to be given the structure ofright U-action. This
can be obtained it/ is not merely a left bialgebroid but rather a left Hopf alggtrand if
moreover the base algeh#ais itself a rightU-module. One can then show:

Theorem 3.10. Let N € YYD be a braided commutative Yetter-Drinfel'd algebra over
a left Hopf algebroidJ/. Assume thatl carries an @°-balanced) rightlU/-action A ® 4
Us — A, a®4e u— a<u, and define the correspondimight character

0:U—A, oJu:=1,~u, foralluel. (3.13)

If A with this right action and the canonical coactiq@d.29 fulfills 232, i.e., is anti
Yetter-Drinfel'd, then the left/-comoduleN equipped with the right/-action

N®U —> N, n®u— nu:=(u_n)<dus (3.14)

is also ananti Yetter-Drinfel’d module. IfV is moreover stable with respect 8.1 and
its given leftU-comodule structure, the@'s (U, N) with the structure given i8I0
(.12 and the cocyclic operator if2.32) yields a cyclic operad with multiplication.

Remark 3.11. The fact that the YD modul&V equipped with the right/-action [3.1%)
becomes an aYD ifi itself is aYD is due to the more general fact that the tensodpct
(overA) of an aYD module with a YD module yields an aYD module agairother words,
YaYD, forms a module category ovEiY D). Let us also remark that a straightforward
check proves that if the base algebraf a left Hopf algebroid/ is aYD, then(U, A, A°P)
defines afull Hopf algebroid with involutive antipode in the sense of Bézlachanyi
(seee.qg, [B] for the precise definition), the antipode (and its irs&rgiven by

Su :=u_< duy, Vuel.

One could also be tempted to think that starting directhyhveYD modules simplifies
matters; however, since there is no corresponding monaitagory, there is no such
thing as a monoid in that category, which in turn would be seagy for the Gerstenhaber
algebra structure.

Proof of Theoreri:3:10The first claim thatV € YYD equipped with the actioi (3.114)
becomes aYD is proven as follows: 4f is aYD w.r.t. the mentioned right action and the
left U-coactionA , from (2.25), then one has

sla<u)®als=Ax(a~<u)=u_s(@)urn) @i (1a <uy)),
hence

s(0u) = (u—up (1)) < Oup(a).
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Therefore,

Ay(nu) = (u-n)-1) < dus @4 (u-n)()

(Ougq2) > (u—n)(1))ut—tyy ) ®a (u-n)()
)

II_i I

U4 (1)NY(—1) U U~ Uy (1) ®a (U g (2)7(0)) @ QUy 4 (2)

5
=

)
DU (1) ()P 1)U (1)U (2) (1) B (U (1) 4 (2)7(0)) < Oty (2)

IE] ||§ IS

U—)-)U+1) B4 (U—2)70)) < Tu12)

0]
U1 (1) ®a (s () < Oty (2)

U=TY=1) Ut (1) B (Ut (2)-12(0)) < Ot (2) 4,

and the last line is precisely the aYD conditibn (2.32) far tlght U-action [3.I#) on the
left U-comoduleN.

To prove thatC: (U, N) forms a cyclic operad with multiplication, we have to vetife
conditions [[2.414) and (Z.#5): we only prove the first idgntite rest being either similar
or obvious. One computes fprq > 1:

T((u17"'7up7n) o1 (vl,...,vq,n'))
5. 10)
b T(uél)vl,...,u%q)vq,(u%q+1)n')(_p+1)u2,...,(u%qul)n')(_l)up,(u%qul)n')(o) ‘N 7)
1 1 1.2 1 1 1 1 1 1 2
= (oL yuty—yuln® v ety -1V v g uh) (@) (Wl 1y ™ ) -prnt,

w0 gl 1) 8~ (gt pl—1) (W™ ) (1) ¥
VL Gatp 80— (ap (g yn)©) 5 1) 1y (Wgr1yn)o) - 1) gy v} )
ZEEI SR RP L P AT
vi(q)”%m—(q)“%q+1)+<1>"’(—p>“3q+1>—(1)”27
0L gl 1) 81— (gt ol 1) Hat 1)+ (o )M =2) Mg+ 1)~ (p-1) &
VL (g4 p) D)~ (gt o) Hlat 1)+ () (1) Ha+ 1) () U=1)>

1 1 1
(g4 1)+ (pt1)™0) N ”<0>)“<1>+”+)
1 1 1 2 1 1 1
= (”—(1)“+(1)—<1>“+<2>” sV (1) U (1)~ (= 1) Yt () VT
1 1 1 / 1 2
V(@) ¥+ (1)~ (@) Y+ (g+ ) H(=p) U= (1)U
1 1 1 ’ 1 P
o V(g =) ¥+ (D) = (lg+p =D Y+ (lg+p) H(=2) Y= (p—1) ¥

1 1 1 1 1 1 1
0L (gt (1= () B (o) 1) ) P15 (W (g 1y o) & T0)) ) (1910} )

1 2 1 1 ’ 1 2 1 ’ 1
= (”—(1)” 1oV (g VT U ()T p) Y (1)U - 5 Vo (gl —1) (= 2) Y (p—1) U
1 1 1 1 1
UL (g tp) (1) UL () (1) (W (2) (o) N "<0>)“+(1)”+)
BID, 226 4 2 1 1 / 1 2 1 / 1
= (”—(1)” v Vo (g V VL () U p) U (1)U - -V (gp - 1) (= 2) Y (p—1) ¥

1 1 1 1 1 1 1
UL (g p) =) UL () (1) (U (1)~ (1)U (2)0) N (8 (1)~ (2) P (0)) @ ‘3“+(1)+)”+)

Z10.23 ( 1
v

2 1 1 1 2 1 1
LV sV ey UL () Ty UL (1)U VL (g p| 1)~ 2) U (p—1) U

O g py 1y 8 -1y (oy o () (o)) < dul )0l )

ETLE

1 2 1 1 / 1 2 1 ’ 1
Vo)V U (g ) VT Vo () P pm ) U (1) - 5 U (Jgp - 1) (—2) U= (p— 1) ¥

0L gaph e U -1y (R (1 (n(yuh) v migy)) < vl )
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1 1 1 2 1 1
SV U (g 1y UL () U (1) VL (g gl )~ 2) U (p 1y s
0L (gt -1 (L (g (1) (n(0)u}) - ) < v )
T (5

1 1 1 2 1 1
LYV (e )V UL () U e ) US ()W V(g pl— 1)~ 2) U (p-1) U

O a8 (1) (O (g (o)) N (0 g ayle) < 00 )

Zn.a (”lfu)”Q’--~Wl—(q—l)”qv”1—<q>”'<—p—1>“1—(1)“27~--v”1—<\q+p|—1>”'<—2>ul—(p—n“p’
UL gaph P 1) (O gy iy (o)) v gy} )
= Wlv? vl ot vl (o oy vh)
oq (ul gy, ul ) pyuP el gy ngoyul)
221 (Wt .. 09, m) og T(ul, ... uP, n),
which concludes the proof of the theorem. O

By Theoreni 2.16 one then immediately has:

Corollary 3.12. With the assumptions of Theorém 3.10 &nhand A, the cohomology
groupsH;, (U, N) carry the structure of a Batalin-Vilkovisky algebra. In paular, if U.
is flat as a rightA-module, therCotory; (A, N) is a Batalin-Vilkovisky algebra.

3.4. Maps of Gerstenhaber and Batalin-Vilkovisky algebras. In this section, we dis-
cuss how the Batalin-Vilkovisky algebi@otory; (A, As) over the universal enveloping
algebraVL of a Lie-Rinehart algebréA, L) as in Exampl€2]3 is related to the classical
Batalin-Vilkovisky algebra structure on the exterior dige/\*, L as discussed i [Hue2].

3.4.1. The generalised Schouten brackEbr an arbitrary Gerstenhaber algebfa, the

pair (V°, V1) of its degree zero and degree one part forms a Lie-Rinelgebed [GSch,

p. 67]. The forgetful functoi’* — (V°, V1) from Gerstenhaber algebras to Lie-Rinehart

algebras has as a left adjoint (see [GSch, Thm. 5]) givendyrtap(VC, V1) — Al V1,

where the exterior algebrA ;. V! of V! overV? is equipped with the Schouten bracket:
[X1 A AXp, Y1 A A Y]

- o ~ N (3.15)
= Z Z(fl)HJHqu‘[Xi,Yj]/\Xl/\---/\Xi/\---/\Xp/\Yl/\---/\Yj/\---/\Yq.
i=1j=1

Here the symbol denotes omission, as usual. Correspondingly, for evergt€&enaber
algebra(V*, —) there is a universal map of Gerstenhaber algebras,

ALVEo Ve Xia A Xy Xy v v X, (3.16)

3.4.2. Batalin-Vilkovisky algebra structures and Lie-Rinehalgebras. Assume for the
rest of this section th&td, L) is a Lie-Rinehart algebra in which is projective as am-
module. By a direct computation or by applying [KoPo, Thni3}to cocommutative left
bialgebroids, one has

Cotory,; (A,A) = A,
Cotory, (A,A) = P(VL) =L,

whereP(VL) denotes the set of primitive elementsial, and where the last equation in
the second line is a consequence of the Milnor-Moore thedoerocommutative bialge-
broids (seege.g, [MoeMr]). SinceCotor}, (A, A) is a Gerstenhaber algebra as seen in
Corollary[3.12, one consequently has a canonical morpiigpi, — Cotory (A4, A) of
Gerstenhaber algebras as generally given by the univeega(8al6).

On the other hand, in[Hu&?] it is shown that there is a bijeatbrrespondence between
right VL-module structures oA and operators of square zero that generate the Schouten
bracket[[3.1b): ifla,u) — a < u forall w € VL anda € A is a rightVL-action onA and
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0: VL — A, ou:= 1, <uits associated generalised right character analogo{isi8)(3
the maph, : AL — A" 'L defined by

bL(Xl A A Xn) = Z(—l)iJrla(Xi))ﬁ A AXino AKX,

i=1
+Z(—1)i+j[Xi,Xj] AXIA AKX A NP, C W EEEID. ¢
i<j
generates the Schouten brackef(B.15) and has the propesty), see[[Hue2, Thm. 1].

The following theorem is a generalisation of [Me2, Prop. 65T&m. 66] from Lie
algebras to Lie-Rinehart algebras (or Lie algebroids):

Theorem 3.13.LetQ < k and (A, L) be a Lie-Rinehart algebra witth projective as an

A-module. Then the universal magR’, L — Cotory,; (A, A) of Gerstenhaber algebras
arising from (318 is an isomorphism. IfA is moreover a rightl/L-module, then this
morphism is a map of Batalin-Vilkovisky algebras.

Proof. This follows at once by using(2.B88) along with applyihg [KhF'hm. 3.13]: there
it is proven that the antisymmetrisation map

1 o
Xl A A Xn — ﬁ Z (71) (Xo'(l); e ;XU(n)) (317)

T oeS,

defines a morphism of mixed complexes
Alt : (A5 L,0,br) — (C:(VL), 8, B) ,

where the right hand side refers to the complex defined byd{2&)ether with the dif-
ferential [2.3V) and the analogue &f(2.39) for cocyclic mled. On cohomology, this
morphism induces a natural isomorphism betwgehZ and Cotory,; (A, A). Since the
universal map[(3.16) of Gerstenhaber algebras coincidesnwlescending to cohomol-
ogy, with the antisymmetrisation mdp (3/17) as the cup pco@i43) becomes simply the
tensor product fotV. = A, the first claim follows. The second statement follows by the
first along with the equatioAlt o by, = B o Alt mentioned just above. O

4. POISSONBIALGEBROIDS AND THEIR (CO)HOMOLOGY

Definition[4.4 below connects the idea of a Poisson strudtuteat of a distinguished
element,i.e., can be understood as a generalised operad multiplicatiothé operad
C*(U, A) as given ing3.1. The examples in this section will show that this apphozam-
ceptually unites, for example, Hochschild with Poisson blmgy (resp. cyclic homology
with cyclic Poisson homology).

4.1. The noncommutative calculus structure on left Hopf algebrads. For later use,
we need to recall froni [KoK13;4] the Hopf algebroid generalisation of tkap product
andLie derivativealong with its properties; sedof. cit] for all details and proofs in
this subsection. These operators together with the cyifierential B from (2.39) form

anoncommutative differential calculiis the sense of Nest-Tsygan (see [NTs4],also

[TaTs]), which was the main point in [KoKF3].

Definition 4.1 ([KoKr3]). Let U be a left Hopf algebroid and/ a right U-module left
U-comodule such that the induced leftactions on\/ coincide, and lep € C?(U, A) be
ap-cochain.

(i) Thecap product,, := ¢ ~ - of p with (m, z) € C,,(U, M) is defined by
,(p(u"*‘pl, coou) ruTP),

where as in Propositidn 2111 the abbreviation =) := (m,u!,...,u") is used.

© ~ (m,x):= (mut,.. u" P!
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(i) Thelie derivative
‘C‘P : (jn(U7 M) - C'n_‘p|(U7 M)
alongy in degreen with p < n + 1 is defined to be
n—|p| . _ _ P - _
L= Y (=)0 el=i prgite 4 N (—1)& Pl Dl (4.1)
1=1 =1
where the signs are given " := |p|(n — |i|) and&"" := nli| + |p|. In case
p=mn+1,set
Ly, = (—1)“”‘% B,
and forp > n + 1, we definel,, := 0.

To simplify future reference, we call the first sum [n_{4.1¢ tmtwisted partand the
second sum thavisted partof £,. As a shorthand, we will write
Ly =L+ LY. (4.2)

We list a few useful facts about the triple of operat@s, .., B); for simplicity, let M/
be an SaYD module in the following theorem and|let] denote the graded commutator
in all what follows.

Theorem 4.2([KoKr3]). Let M be an SaYD module. Then the trigte, (U, M), b, ~) is
a left DG module ove(C* (U, A), 4, ), i.e, for any cochainp € C*(U, A)

Lo by = Loy ANA b, L] = L5 (4.3)
holds, where- is given by(Z43. On the other hand, the Lie derivativedefines a DG

Lie algebra representation diC* (U, M)[1],{.,.}): for another cochainy € C*(U, A),
we have, as operators dti, (U, M),

(Lo, Ly = Lip oy (4.4)
where the bracket on the right hand side is the Gerstenhatzeket(Z.42). Moreover,
[b,L,] + Ls, = 0. (4.5)

If furthermorep € CP(U, A), ¢ € C?(U, A) are any two caycles the induced maps
L, H(UM)— H, ,(UM) and uy: H,(U,M)— H,_(U M)
are well-defined operators that turi, (U, M) into a module over the Gerstenhaber alge-
bra H*(U, A), that is, they satisfy
[ty, Lo] = L{pp}-

Finally, for a cocyclep € C?(U, A) the Cartan-Rinehart homotopy formula

L, = [Bv%]
holds onH, (U, M).
~ With the help of the homotopy formula, we can easily prove thaany cochainy €
C* (U, A) one has on the normalised complex U, M)

[L,, B] = 0. (4.6)
Remark 4.3. One can also obtain a homotopy formula more generally onliaaaesp.
cochain level. In this case, one has to apply a “cyclic cdivet to the cap product,
by an operatosS,, : C,, (U, M) — C,_,+2(U, M) to take the full cyclic bicomplex into
account; see [KoKi13] for all details (of [Ri, Ge, NTs2] foretexample of associative
algebras). Setting, := ¢, + .S, for the “cyclic cap product” on the cyclic bicomplex and
B := B + b for its differential, the Cartan-Rinehart homotopy formdibr any cochain

¢ e CP(U, M) then reads
Ly = [Balw] — Lsp.
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All the preceding statements can be moreover relaxed todake wherel/ is merely a
right U-module leftU-comodule with compatible lefd-actions instead of being an SaYD
module. Since we shall not deal with this situation, we réddiKoKr3, §4] for the details
of this more general construction.

Special casedlVe conclude this section by listing explicit expressionglie Lie derivative
in two special situations: in cas¥ is SaYD, the Lie derivative along € C?(U, A) can
be written onC,, (U, M) explicitly as

n—|pl|
n,p . .
Ly(m,x) = 2 (—1)9i (m,ul,...,D(p(u’,...,u”lpl),...,un)
i=1

|p|
n,p . i1 o .
+ 2 (DS (mgyul o) - g ul TP
=0

n7|p|+i).

o( 7...,ui,uﬁ~-~u17m(_1),u_1'_(1)7...,ui_(l))Pu+

In §4.4 we will deal with acommutativdeft Hopf algebroidU. Unlike for general left
Hopf algebroids, we have in this case canonical coefficidrgre, the base algebid:= A
is automatically an SaYD module using the canonical lefoad2.3) as right action, along
with the canonical left coactiof (Z.25). In this case, the di€rivative simplifies to:

n—|p|+i+1
Uy

n—|p|
Lo(z) = Z (71)9i"p(u1,...,Dv(ui,...,u“'lpl),...,u”)
i=1

|p| " (4.7)
2P . _ : .
+ 2(71)5#1 (ufjl,...,ui pi
i=0
ap(ui_lp|+i+l,...,u1,uﬁ---ul_,u}*_, 7uf*_) »u"_|p|+i).

4.2. Poisson Bialgebroids.Having recalled the technical machinery above, we are in a
position to introduce the Poisson theory for bialgebroids:

Definition 4.4. A (quasi-)triangularr-matrix or Poisson structuréor a left bialgebroid/
is a2-cocycled € C?(U, A) that fulfills

9019 = 902 0. (48)

A left bialgebroidU is called Poisson bialgebroidf there is a triangular-matrix 0 €
C?(U, A).

Note that (ifk has characteristic different from two) Ef._(4.8) is equevelto
030 = 0 = {60, 6}, (4.9)

as follows from the grading of the Gerstenhaber bracket. t€minology “triangularr-
matrix” will be motivated in§4.3. One could, of course, also define Poisson structures for
right bialgebroids but for shortage in terminology, we shall alsvanean left ones when
speaking about Poisson structures. At times, we denotesa@tobialgebroid by/? if we
want to underline the dependence of a certain constructistracture from the triangular
r-matrix 0. Observe that every bialgebroid allows for at least one su@hgularr-matrix
given by the operad multiplicationge., the distinguished elementin (3.4) (for M := A),
which we will refer to as thérivial one.

4.3. The Poisson bicomplex.Let U be a Poisson bialgebroid with triangulamatrix ¢
andM an SaYD module. Define the operators
v (U M) — Co (U M), (m,z) — —Lo(m,z), (4.10)
B0 CMUA) - CMTHULA), e~ {00} (4.11)

These operators could be, of course, defined for2aogchain but the crucial property
here is:
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Lemma 4.5. If 4 is a triangularr-matrix, one has
b =0 aswellas p%3% = 0.

Proof. The first equation is immediately seen with {4.9) and the eryp{4.4) of the Lie
derivative. The second equation follows again fréml(4.9) e graded Jacobi identity
for the Gerstenhaber bracket. O

Hence(C. (U, M),b?) and (C*(U, A), 8%) are chain resp. cochain complexes, and we
can define:

Definition 4.6. The homology of(C. (U, M), b?) will be calledPoisson homologyf the
bialgebroidU with values inM and denoted byi? (U, M). In a similar way, thePois-
son cohomology?; (U, A) with coefficients in the base algebrais the cohomology of
(C*(U, A),B%).

Remark 4.7. In view of Theoreni_3]1, one could, for any braided commugaietter-
Drinfel'd algebra/V, also introducéV-valued Poisson structurem bialgebroids and con-
sequently also consider the Poisson cohomolégyU, N') with coefficients in such a
braided commutative Yetter-Drinfel'd algebMa. Also, as already stated in Rem&rkl4.3,
one could relax the assumptions &f as to be a right/-module leftU/-comodule with
compatible leftd-action and proceed in the spirit 6f [KoKr3]. To keep the esifion sim-
ple we shall refrain from pursuing both these generaligatiand leave them to a future
project.

As follows from [4.6), one has for every triangulamatrix § the identity
B+ B =0 (4.12)
on the normalised compleX, (U, M), and therefore:
Proposition 4.8. The triple (C. (U, M), b, B) forms a mixed complex.
This enables us to define:

Definition 4.9. We call the cyclic homology of the mixed complé&. (U, M), b, B), i.e.,
the homology of its total complex, thegyclic Poisson homologyf the Poisson bialgebroid
U? and denote it by7 C? (U, M).

Example 4.10. (Hochschild and cyclic homology for left Hopf algebroids asdociative
algebrag Let§ := p be the distinguished elemehi(B.4%,, the trivial triangular-matrix.
Then, as shown in [KoKi3, Eq. (3.11) & Lemma 4.18], one has
b = —-L, = b,
/BM = {Ma } = ﬂv
whereb and 8 are as in[(2.36) and_(2.87). Hence, one reproduces the sialpfie.,
Hochschild) homology (with coefficients ibf') resp. cohomology (with coefficients i)
for the left bialgebroid/, and the mixed complex related of Propositionl 4.8 is the one
arising from the cyclic module in the first part of Proposif@.11.
In particular, for the casd/ = A°, this leads to the well-known Hochschild
(co)homology of an associative algeb#a and the relation to the operatadrs and 5#
for this case were already noticed &g, [TS,[GSch]. In both caseke., for generall or
in the exampld/ = A°, the cyclic Poisson homology is then simply the cyclic hoogy!
of U resp. the classical cyclic homology for associative algslfcf. [Co2[ FTs]).

(4.13)

Example 4.11. (Poisson (co)homology for associative algehrasthe casé/ = A for a
not necessarily commutative associativalgebrad, a triangular-matrixw € C?(A¢, A)
can, as mentioned before, be seen as a conventional Holchgatdcycler by means of
the isomorphisnC*(A4¢, A) — C*(A, A) in 38). Such a Hochschilg-cocycler with
the property{w, 7}, = 0 was namedconcommutative Poisson structure[X2], where
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we write {., .} for the classical Gerstenhaber structure on Hochschilo®matogy as
mentioned in Example3.4. Using (B.6) again, one obtains

B7(f) = B7(f), VfeCr(A,A),

where™ := {7, .}, is the differential introduced ifi [X2] that define®ncommutative
Poisson cohomology

The differentialb™, in turn, leads in this context to theoncommutative Poisson homol-
ogydefined in[NePfPoTar§4.1]: similar to [3.6), there is an isomorphism

C.(A°, A) ~ C.(A, A),

where the right hand side is the standard Hochschild chaimpéex, and using this along
with (3.8), one obtains analogously to the consideratinfEoKr3} §7.1] the operator

n—1
b (a0 @ -+ @ an) = 2 (=1)"ag Qp - - - ®k T(a; Qk Ai1) Ok -+ Ok an
i=0
+7(an ®k ao) @k a1 @k -+ - k An-1,

which is the noncommutative Poisson boundary in [NePfPpTan

In both cases, for a Poisson manifdfland the commutative algebrd := CX(P)
of compactly supported smooth functions #, these two definitions lead to the dif-
ferential geometric notions of Poisson cohomology respmdiogy, as introduced by
Lichnerowicz [[I] resp. Koszul[IK] and Brylinski([Br]. The srilting mixed complex
(C*(A, A),b™,d), whered is the de Rham differential for forms, was introduced.inl [Br,
§1.3.4], and the corresponding cyclic homology of Poissonifoltls was further discussed

in, e.g, [FerlbDell [P, VdB].

Example 4.12.1n [Hue3], Poisson homology for a commutative Poisson atgdhwas in-
troduced somewhat differently: {f, .} is a Poisson structure on a commutative algebra
then the paif 4, Qiﬂk), Whereﬂiﬂk denotes the Kahler differentials over can be given
the structure of a Lie-Rinehart algebra dependind.or}. Its Lie-Rinehart homology is
then the Poisson homology df. In view of [KoPd,[KoKr2], this amounts to considering
the cyclic (co)homology of the lefti-bialgebroid given by the universal enveloping alge-
braV(Q}L“k), which, in turn, depends on the right, Q}W)-module structure (seg [Hue3]
for the definition) given by: ® bdu — {ab, u} for a,b,u € A. Hence, Poisson homology
can be introduced in (at least) two ways arising from twoedtéht left bialgebroid&A, A¢)
and(4, V(Q}W)), respectively; however, the latter approach, in contmBExiamplé 4711,
does not include the case of noncommutative Poisson algéhsahere is no notion of a
Lie-Rinehart algebra over a noncommutative base algebra).

Example 4.13. Another way of arriving at the differential geometric natiof Poisson
cohomology is by considering the bialgebroid given by thejace/L for a Lie-Rinehart
algebra(A, L) as in Examplé 214, taking fok the sections of the tangent bundle of a
Poisson manifold. This situation will be discussed at larigt§4.4.4 andj4.5 below.

4.4, Batalin-Vilkovisky algebra structures on commutative Posson bialgebroids.In

this section, we assume thidtbe acommutativé?oisson left Hopf algebroid and for the
sake of simplicity thaf\/ := A. In this case, one can prove that beyond the canonical Ger-
stenhaber algebra structure Bn(U, A), there is also one oA, (U, A), which is moreover

a Batalin-Vilkovisky algebra. This essentially follows by application to the bialgebroid
case of Koszul's classical result inl[K]. In there, Koszuhswered a graded commutative
algebraS = @,>05” (over a field the characteristic of which is different fromofwwvith
unit 1 € S°. Moreover, let there be a differential operafore End(S) of at most second
order and odd degree which vanishes on scalarsg, D(1) = 0), and the square of
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which is supposed to be again of at most second order. In ssithadion, the bracket
{., }p:S?®89— gpratr,
2@y~ (~1)"D(zy) + (~1)"'D(z)y — (~1)"*' D(y)x

generated by yields a Gerstenhaber algebra structuré§@nd, by the very construction,
even that of a Batalin-Vilkovisky algebra (seep[ cit]); for a recent contribution with
respect to formality issues of such a bracket seg, [FiMa], or [BraLd] for issues related
to higher Koszul brackets and homotopy Batalin-Vilkovisiguctures.

The necessary ingredients to apply this general fact to eheotogy group, (U, A)
of a commutative Poisson left Hopf algebroid are the shufibelpct and the Lie derivative

in (Z1).

4.4.1. The shuffle product for commutative bialgebroiffecall from,e.g, [Lal §4.2] that
the shuffle product on Hochschild chains leads tararer shuffle product map provided
that the algebra in question is commutative. We give herersiore slightly adapted to
the case of the simplicial modul€, (U, A). Generally, the shuffle product map could
be defined on any left bialgebrold provided the base algebrais central inU (which
happens, for example, if is a bialgebra oveA or if U is a commutative left bialgebroid).

Hence, letU be a commutative left bialgebroid ovdrfor the rest of this section. Al-
though this means fod to be commutative as well and therefote= A°P, we stick to the
notationl ® 4o» U := ,U ® 400 U, t0 distinguish the various tensor products. pay > 1,
define

5 = shyg : Cp(U, A) ® Cy(U, A) — Cyrg(U, A),

(uh, ... uP) x (uPt, . Pt = Z (—1)7 (e D,y era)  (4.15)
oeSh(p,q)

(4.14)

where, as usual,

Sh(p,q) :={0 € Spiq | (1) <...<a(p)iolp+1)<...<o(p+q)}

is the set of(p, ¢)-shuffles in the symmetric grouf,;,. Additionally, setshgg := m.,,
the multiplication in4, and

shpo : Cp(U, A) @ A — C,(U,4), (u',...,uP)®@a— (u' <a,... uP),
1

shog : A® Cy(U, A) — Co(U, A), a® (ul,...,u?) — (u',...,a»ul), (4.16)

but note that the second line is actually redundei,sh,,, = shg, sinceU is commuta-
tive. If we let

shi= Y shyy: (Cp(U, A) @ Cy(U, A)), — Cu(U, A)

p,q=0
p+q=n

be the sum of the shuffle products for ¢ = n, a straightforward computation proves,
analogous to the Hochschild case for associative algebease(g, [MacLl, p. 312]), that
the Hochschild boundary is a graded derivation of the shpfleluct and thath is a map
of complexes:

Lemma4.14.Forz € C,(U, A), y € C.(U, A), one has
bx x y) =bx x y+ (—1)Px x by. (4.17)

The mapsh therefore is a map of complexes of degége.e., [b,sh] = 0. Hence, the
induced map
-x - Hy(U,A) @ Hy(U,A) - H,4(U, A)

establishes the structure of a graded commutative algebrH#dU, A).
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4.4.2. The Tor¥ (A, A) groups as Batalin-Vilkovisky algebrdn order to obtain a Ger-

stenhaber algebra structure @nr? (4, A), we will add to the shuffle product from the
preceding subsection a bracket that is generated by theetiative using a Poisson struc-
ture: to be able to do this, the left bialgebroid needs toyctire additional structure of a
left Hopf algebroid:

Theorem 4.15. Let U be a commutative Poisson left Hopf algebroid with triangula
matrix f. Then there is &-bilinear map

{'7 '}9 : Cp(Uv A) ®Cq(U7 A) - C‘P-ﬁ-q\(Uv A)a p,q = Oa

_1)lely Y 0 (4.18)
r@y— (=1)"P%(z x y) + (=1)Pb"z x y + = x by,

whereC, (U, A) is seen as graded commutative algebra by means of the shiatieqgh
(4.19), which induces a Batalin-Vilkovisky algebra structure

{.,.}0: Hy(U,A)@ Hy(U,A) - Hp1q-1(U, A) (4.19)
on homology.
Remark 4.16. If ,U is projective as lefd-module, this yields a bracket
{.,.}o : Torl (A, A) @ Tor (4, A) — Torl), (A, A).

Proof of Theorerhi 415This will be proven basically by applying Koszul's resulttivi
respect to the Lie derivativé (4.7) and the shuffle productg§® From what was said
around Eq.[(4.34), it is clear that it suffices to show that which is of odd degree if
0 e C="(U, A), and which vanishes ofi, (U, A) = A by definition, is a differential op-
erator of degre@ on the graded commutative aIget(rH.(U, A), x). Following Koszul
[K] §1] we call, as in the case of an ungraded algebra, a diffedestieratorD € End(S)
acting on a graded commutative (unital) algeSraf second ordeif
ms(D ®id)(dz dy dz) = 0. (4.20)

Here,mg is the multiplication inS anddz are the Kahler differentials im}g‘k, i.e, we
setdr == 2 ®1—-1®xasamapd : S — [/I? ~ Q}g‘k (with the isomorphism
suppressed), whereis the ideal inS ® S defined as the kernel @f s, andS ® S becomes
a commutative graded algebra by factorwise multiplicatiBmplicitly, Eq. (4.20) means
foranyz € SP,y € S4, andz € S”

D(zyz) = D(ay)z + (~1)P ) D(yz)z + (=1)" P ID(z2)y 4.21)
—D(@)yz + (—1)PCID(y) 2 + (=) PHIID(2) 2y + D(1)2yz,

which we will verify now for the Lie derivative alon@:

Lemma 4.17. For a commutative Poisson left Hopf algebraid, the Lie derivativeCy is
a second-order differential operator df, (U, A).

Proof. First, observe that the unit for the shuffle prodlict(#.18)ven as in[(4.T6).e., by
elementsirCy (U, A) = A, and thatCy vanishes o by definition, henc&s (1, 4)) =

0. Second, using the terminology 6f (%.2), it is immediatenfrine explicit form ofLZ, in
(@.7) that the first summangi;*~ independently fulfils[(4.21). Hence, to prove the lemma
it is enough to show the same property independently fonitied partCy”, that is, that
forz e C,(U, A),y € Cy(U, A), andz € C,.(U, A), when passing to homology,

Loz xyxz)=LY(xxy)xz+ (=1)PUTILE(y x 2) x x
+ (—1)rPFTOLE (2 x ) x y — L5 (x) X y X 2 (4.22)
+ (—D)PE@IILe (y) x 2 x @+ (~1)IFCTDILe () x 2 x y
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holds. This consists in a direct (but sufficiently tedious)ification, we only indicate the

main steps. To start with, we list a few properties that aexled: for any2-cocyclef one
has, for a commutative left bialgebroid, froln (3.1) the itityn

e(u)f(v,w) — O(uv, w) + O(u, vw) — e(w)f(u,v) =0 (4.23)

foranyu, v, w € U. Furthermore, dealing with the induced maps descendingomlogy,
one deduces froni (4.3) that for a cocyéle

blp = 1pb =10 (4.24)

is fulfilled on homology. Apart from that, for anfu!, ..., u") € C,(U, A) we can give
the following expression for the Hochschild different{@l38) followed by the extra de-

generacy[(2.39):

s_ab(ut, ... u™) = (ui, .. ,ui_l, u:iur_luz_l b))
nil . . .
+ (—1)l(u}r,...,uﬁﬂuf_ﬂﬂ,...,ui,uﬁ---ui) (4.25)
1=1
+ (=D)"(u3, .. ut uhul e ),

as follows from[2.111) [[2.12)[ {2.114), add (2.36); in peutar, the entire expressidn (4125)

equals zero when descending to homology. Considering théHat
Ly = —19s_1 + (71)"+1L9571t (4.26)

on elements of length in this situation, we will use Eq4.{4.P3)=(4125) to rewtfte terms
in £y (z x y x z): denoter := (u',... uP),y = (v!,... ,v7), z := (w',...,w"), and
introduce the notation

(T[41,2(2)) 1= s51(2) = (ul, . ul Pl

Consider now one of the terms in the shuffle produgty x z; for example, without loss of
generality, the elemertu!, vt ... 0% u?, .. wP wh, .o w") = (ub,y,u?, . uP, 2).
By commutativity ofU, we can then compute, observing that a = a » u in this case,

tos_1t(ut,y,u?, ... uP, z) = (y[+],ui, .. .,ui,zH] < G(y[_JZ[_]ul, . u’i,uﬂr))
@23 213 (y[ﬂ,ui, cout zy e G(y[,]Z[,],u},_ul_ ceul))
—(1)
+(y,ui,...,ui,zd9(u1,~--u’l,u1+)) (4.27)
=(2)
f(s(u}*_) »y[ﬂ,ui, o ,uz_;_,z[ﬂ 4 G(y[,]Z[,],ul_ ceu)).

=:(3)

Note that(2) is already one of the terms efL}"(z) x y x z in (4.22), the correct sign
turning out if one takes the sign of the shuffle for the elenfahty, u?, ..., u?, z) into
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account. By[(4.24), one furthermore has, using (2.13) again

(3) = _(U}FU}H""U(IJHU?F""7u€r’z[+] < G(Ul_ "-UgZ[_],ul_ uz:))
—:(a)
lq| ) o
+ Z(—l)l_l(uﬂr,vi,...,Uivfl,...Ui,ui,...,uﬂ,z[_‘_] 4 9(vl--~UgZ[_],u£--~u€))
i=1
—(5)
—1
+ (—1)‘q‘(u}*_,v_1*_,.. .,Ui ,Uiui,ui,.. .,ui,zH] af(vt - ~-UgZ[_],u1 uz:))
—(0)
& j 1 2 i+l 1
+ 2 DTy w2 < 0y 2 ul e ul)
j=2
—:(7)
—1
+ (71)p+q(u}*_,y[+],ui, . ,uﬁ_ ,uﬁ_w_l'_,wi, cowla G(y[,]wl_ coew” L ul u’i))
—(®)
|
+ Z (71)k+p+q(u£_,y[+],ui, . ,uﬁ_,w_l'_, .. ,w’j_wffl, o wlha G(y[,]wl_ cew”ul P
k=1
—:(9)
+(_1)r+p+q(u3—7y[+]7u3—7"'7uﬁ>7w-1f—7"'7w:_1qe(y[—]w:wi w_,u ull))
—:(10)
+ (71)‘r+p+Q|(u}*_,y[+],ui, . ,uﬁ_,w_l'_, .. ,w:__l a G(wz_,y[,]wl_ cewul e b))
—:(11)
+ (*1)T+p+q(u1,y[+],u2, .. ,up,w}r7 o ,w_rfl < G(w:,y[,]wl, cew”)).
—.(12)
(4.28)
We see thatl1) = (—1)"tPratls 4 (ul,y,u?, ..., uP, 2), thatis, rewriting the second

term in [4.26) for each summand in the shuffle produety x z on the left hand side of
(4.22) cancels the first summand[n_(4.26) so that we do nat tteeare about these terms
in the following. Also,(12) is one of the summands {-1)P(4*7) L4 (y x z) x x; again,
the right sign turns out if one takes the sign of the respedtwffle into account.

As for the term(1), we want to use the fact thdt (4]125) equals zero on homolagy: t
this end, compute, as ifi (4]27), the second summand; ¢ of the twisted part of the
Lie derivative for the elemer(t?, ..., v%, z, z,v!) in the shuffle product. The terms that

appear analogous to those(if) above produce the middle sum [n{4.25).

However, the missing first summand [0 (4.25) so that the suatl tfrms equal zero on
homologycannotbe directly produced by rewriting the terms; _; ¢ in the twisted part of
the Lie derivative on any element in the shuffle product, iy dy the following steps:
similarly as in[4.2]7), compute

tos—1t(y,ut, ... uPY z uP)
= (vi,...,vi,u}*_,...,u{fl,zH],uf_ a G(y[,]z[,],v_l*_ul_ u?))
—(18)
+ (y,ui,...,ui,zd9(u1,~-~uzi,vl))
=:(14)
—(a(vi) >v%r,...,vq+,u3r, . ,uﬁ_l,zH],ui < G(y[_]Z[_],ul, ceul)).

—:(15)

Rewrite now the terng15) in the spirit of [4.28): since we are, for the moment, notiinte
ested in the terms that multiply elements outside the arguiofe), i.e., those analogous
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to (4)—(9) in (£28), for the sake of simplicity we only write down thesidhree terms:

(15) =...+ (—1)7"-*—1)_'—(1(y[_'_],u}*_7 ey uiﬁl, Z[+] < G(Uiy[_]Z[_], ul_ ce uz:))

=:(16)

+ (_1)|r+p+q\ (y[+]7 u_l‘_, ‘e ,uﬂil, Z[+] < 9(uﬂ, y[_]Z[_]ul_ o ull))

—(17)
+ (*1)T+p+q(y[+],u1, Ceey upil, Z[4] < G(UP,y[,]Z[,])).

—:(18)

Now (16) above can be further rewritten as

(16) = (=)™ PF (yp g, ul L uB T 2 @ Oy 2oy ul - uP ul)
—:(19)
+ (_1)1”+p+q(y7u_l'—7 s ,uiﬁl,z < e(uﬁ»vul— o ul:))
—:(20)
—(=1)lrtrtd (y[+],u1, o uPTh 2[4] < B(y[_]Z[_],up)).

=:(21)

While (19) is the missing summand that cancels (when respecting th@with (1) and
the terms deriving frontv?, ..., v%, x, z,v') on homology in the sense ¢f{4125), whereas
(20) is another term of- L (z) x y x z, we have to deal witli18) and(21) which are not

of the form of the terms if(4.22). Again by usifig(2.18), @),2and the commutativity of
U, one sees after some straightforward intermediate steps th

(=1)7FPr[(18) + (21)]

-1 —1
= (kw2 0l ypgul - ul) = (ypg ugsoulT 29 Oypgul - ul ul))
—:(22) —:(23)
—1 —1
+(y,u_1*_,...,u7_;_ ,z[+]<«9(uﬁ_,z[7]ug---u1_))7(y,u_l*_,...,ug_ ,z[ﬂq@(Z[,]uIi---ul_,uﬁ_)).
=:(24) =:(25)

Again, while(22) and(24) are terms that appear in the explicit expressiofipf{z x y) x z
and(—1)"P+9) £ (2 x ) x y, respectively, the term@3) and(25) do not appear if(4.22).
One now proceeds recursively with these terms dsin|(4.2hifothe tensor factors in the
order in which they appear in the expression[in_(#.28). Weedirk that this is only
possible if one descends to homology as the rewrifing [488) holds due td(4.24).
Proceeding with the same steps as above with respect tohall tearms in the shuffle
productr x y x z, it is moreover clear by a combinatorial argument that orelpces all
missing terms in[{4.22). For example, one checks in a fashi@miogous to proving the
fact that the Hochschild differential is a graded deriviatidthe product as in Lemnia4]14
that(4), (6), and(8) cancel; we leave these remaining steps to the reader. O

Applying this lemma to Koszul's result in the way mentioneddw the bracke{{4.14)
proves Theorem 4.15. O

We will end this subsection by dealing with the two canoneamples:

4.4.3. The zero bracket on Hochschild homology for associativelaias. Let A be a
commutative associative-algebra, and recall the context of Eks.]4.Z] 3.4, andl4.10 in
whichU' = A°. Then, if A is projective over:, the groupslor’” (4, A) = HH,(A) yield

the classical Hochschild homology df with values in4, and the brackef(4.18) for the
operad multiplication(3]4) by means 6f(4113) reads

{9}, = (=D)Plb(z x y) + (—1)Pb(x) x y + = x b(y).

As mentioned in[(4.17), this equals zero already on the des&l and therefore the Ger-
stenhaber bracket vanishes.
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4.4.4. The Koszul bracket on form®ecall from [MacX] that atriangular r-matrix or
Poisson bivectofor a Lie-Rinehart algebrgA, L) is an elementr € /\iL with the prop-
erty [7, 7] = 0, where[., .] denotes the classical Schouten-Nijenhuis bracket spe:difie
(3I58). If L is finitely generatedi-projective, Koszull[K] proved that the exterior algebra
A5 L* of L* := Hom, (L, A) is a Batalin-Vilkovisky algebra with bracket

{w, e = (=DP (Le(w A 1) = La(w) A= (=1)Fw A Lz (n)), (4.29)

forne AL, we AL, p = 0, and which forl-formsa, 3 € A L* = L* becomes the
customary formula (which, according fo [Kds2], appeareffimMa] for the first time)

[Oé, ﬂ]w = Lﬂ'#(a) (ﬂ) - LTF#(B)(Q) - diﬂ'(a A ﬂ)

Here, byr# we mean the map” : L* — L, 7% (a)(8) := 7(a, 8), along with the clas-
sical operationsL, i, d) of Lie derivative, contraction, and de Rham differentiaivizeen
forms and fieldsdf., for example,[KoKr3,§6.4] for the concrete form of these operators
used here).

In order to connect this Gerstenhaber bracket to our Gdratear bracket froni (4.19),
we need to apply the construction in Theofem#.15 to the catatiwa left Hopf algebroid
given by the jet spacél mentioned in Example2.4. To this end, we briefly recall from
[KoPg, [KoKr3] some facts that allow to apply the precedingufes to complete Hopf
algebroids such a#l: to have the structure maps.g, those that define the cyclic module
structure) well-defined, completed tensor products nedzbtased in the chain complex
C,(JL, M). Similarly, in the definition of an SaYD module the coactitiosld be given by
amapM — JL®,M. Dually,C*(JL, A) needs to be defined &Bm i (JLOar+ | A),
wherecont means that the cochains have to be continugubkding discrete), as only the
operators assigned to these cochains will be well-definedecompleted tensor products.

Now, there is a morphism of chain complexes

F: (C.(JL, A),b) — (Hom,(A',L, A),0), (4.30)
which, in degree > 0, is given by
F(f'Y o fM XA A X = (1) (SF A A S, X,
while itis the identity on4 in degreen = 0. AsC,(JL, A) is defined via completed tensor

products, we have
Cn(JL, A) ~ lim Hom, ((VL®4")<,, A),

where(VL®4™) ., is the degree part of the filtration induced by that 6fL. ThatF is
well-defined on the normalised compl€x(.JL, A) follows since degenerate chains vanish
underF'. WhenL is finitely generated projective ovel, the wedge product of multilinear
forms provides an isomorphisif\°, L* — Hom, (/\",L, A) that we usually suppress in
the sequel. In this case, one defines the map

F'(a' A A a™) = Z (—1)‘7(pr*a‘7(1), . 7pr”‘o/’("))

oeS,
for a!,...,a™ € L*, wherepr : VL — L denotes the projection oh resulting from
Rinehart's PBW theorem [Ri, Thm. 3.1], and proves
FF' =nlidy «. (4.31)

Finally, one has, dual t§_(4.B0), a morphism
F*: (N,L,0) — (C*(JL, A),5)
of cochain complexes explicitly given as

XUAc A X" s {(f ) (D)D) (=) (S XM (S (XM}

oeS,
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With these preparations at hand we can give the relationdssivihe classical Koszul
bracket on forms and the Gerstenhaber bra¢ket}(4.19):

Proposition 4.18.If L is finitely generated projective ovérandr e /\QAL is a triangular
r-matrix, then for anyo € A" L* andn e A% L* the identity

2[p+ q' {w, n}r = F({F'w, F'n} pxr) (4.32)
holds.

Proof. The proof resembles, to some extent, the computationsnpeefbin the proof of
[KoKr3] Prop. 6.5] (but note that irop. cit, Egs. (6.18)—(6.20)] the factofs +1), (n—1),
resp.n should rather reath + 1)!, (n — 1)!, resp.n!): first of all, it follows from [loc. cit]
and [Ca, Thm. 1.4] that ifr is a triangular-matrix for the classical Schouten-Nijenhuis
bracket, ther*r is one with respect to the Gerstenhaber bracket constrirctgdl.
Assume thaty := a! A --- A aP andn := BL A --- A B9 forp,q > 1 (if eitherp or
q is zero, the proof is analogous, but simpler). We then hawv¢hi second summand of
ghe rightlhand side il (4.82) by means .18) and obsemiat’ -« . is an operator of
egree—1:

F(,CF*WF’(al Acenal)x FI(BY A - /\ﬁq))(X1 Acee /\le+q‘)

!
= ‘T—‘i_'qll'F(,CF*ﬂF’(al AcondP)®a F’(Bl AT ﬁq))(Xl N A X|p+q‘)
bl q:
!
B 0t e na) a8t a g (L X,
pl!

where we used{4.31) in the last line. Hence, if we proved®h@t s« . F' (ol A---AaP) =
2|p|'lLz(al A --- A aP),itis clear that we obtain the second summand of the left hiafed s
in (@32), as given in{4.29). Writing the Poisson bivectsrra= 7' A 72 € A’ L, we
therefore cor;npute with (4. 7], (2118)=(2.28), {2.6), arelchmmutativity ofA, along with
St = sandS® = id:

F(Lps, F'(a* A aP)) (X X1 /\~-~/\Xp_1)
|p|

- r( 5 (B o, oo

oeSy i=
*W((a"(')pr)(n (a "“+1)pr)(1)) '>(a”(i)pr)(2)(a”(i+1)pr)(2),(a”(i+2)pr),-~~,(a"(p)pr))
— (@ Dpr)s,.., (@@ 2pr),

F*r (( ()pr)+,(o¢ pr) -(aa(l)pr),) »(of’(pfl)pr)+)
+(71)\p\((a o2 )pr)+7"'7(a o(p- 1)pr)+7
Fa((@7@pr)- - (@ Wpr) -, (@ pr) ;) » (@7 Ppr)4) ) ) (X1 a o n X771
|p|

=2[p|! Y (-1)7 > (-1 [Z( 1) lilgr W (x1y .. o =1 (x i1y

€Sy T€55
E(Xia(wfr(l)(a"(')pr)(1)(7{ )))e(nf )(ao(i+1)pr)(1)(ﬂ_i(2)))
(aa(i)pr)(g)(xi(l)) (a7 @+ D py )(2)()(1(2))) QD) (i1 L qo () (xP 1y
— (X1 (@ Wpr)qy(xL)) (X2 Ha a(p—l)pr)(1)(Xg—l))e(ﬂ(l)(ao(p)pr)(l)(ﬂ:(l)))

((07pr)cs) - (2 Opre) (7).
+ (~)le(x} (a”<2>pr)<1> 1) e (X2 @7 ®pr) oy (X271)
(@ ®pr)a) -+ (a7 Wpr)g)) (x7 )e(ﬂ(”(a““)pr)<1><7r:<”>)]
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|p|

=20pl! Y (~1)7 Y (D)7 X ()" Har®(x1)- a7 D (x0T

o€eSy TESY =1
5<Xia(n1(l)(a"(i)pr )(W:(I)Xi(l))) 6(7r1(2)(a"(i+1)pr)(W:(Q)Xi(g))»
a®(H2) (xit1y L qo (@) (xPp—T

_ E(X_l'_ (ao(l)pr)(Xiﬂ(Tl()Q))) . E(Xifl(aa(rf—l)pr)(Xpiflﬂ(fzfz)l)))
)

(@D (@ @pr) (x" Va7
) e (XE a7 pr) ) (X2 ()

)
+ (~1)Ple(XL (@@ pr) (XL a7 ) (»)

(@D (@ Wpr)(r" D[ P)) |

=2|p|! (L1 gp2(ad Ao aaP)) (X, XPTY),
where the last step is a (long but) straightforward verifteatising [Z.16) and (2.17), the
fact that vector fields act b (a) := £(Xa) as derivations oi, andpr (XY — Y X) =
pr([X,Y]) = [X,Y], along withpr (1, ) = 0. The respective computations for the
remaining summands if.(4]32) are similar and thereforepgdp O

4.5. Lie bialgebroids. In this section, we deal with the situation how the general-co
struction of Gerstenhaber bracketsfort;; (A, A) andTor? (A, A) is related to the notion
of Lie bialgebroids, or Lie-Rinehart bialgebras in its dgac formulation.

Recall from [MacX,Kosll_"Hu€1] that hie-Rinehart bialgebrgor Lie bialgebroid
is a pair(L, K) of finitely generated Lie-Rinehart algebréd, L) and (A, K') over the
same base algebrd, whereK ~ L* := Homu(L, A), such that one (hence both) of the
following equivalent conditions is true:

(i) (AL.[.,.], A, ds) is a strong differential Gerstenhaber algebra;

(i) (ALK, [., ]« ~,d)is one.
Here,[.,.] is the Schouten-Nijenhuis brackgf (3.15) A(, L andd is the generalised de
Rham differential or\", L* ~ /‘ K, whereag., .|, andd, are the respective structures
arising from the Lie-Rinehart algebra structure(df, K); see pp. cit] for further equiv-
alent formulations. As proven if [KoS1, X1], when the LieaRhart structure o™ ~ L*
arises from a triangular-matrix = e /\iL with Gerstenhaber brackét .].. = [.,.]«
given as in[(4.29), the Batalin-Vilkovisky algeb(d\’, L*,[.,.]) is strong differential
with respect to the de Rham differentdand hencé L, L*) is a Lie-Rinehart bialgebra.
Examples include the case of classical Lie bialgebras exdnted by Drinfel'd[[D], hence
the terminology.

Inthe case of a left bialgebroid or left Hopf algebréidthe situation appears, of course,
to be more general. In view of ExampleP.4 &fd4.4 and what was said above, the right
question to ask is whei/*(U, A) and H,(U, A) are (strong) differential Gerstenhaber
algebras, but in contrast to the example coming from LieeRart bialgebras as above,
where(A', L, [.,.], A,ds) and (A’ K, [., .]«, A, d) are simultaneously strong differential
Gerstenhaber algebras, these two structures are not agfesslated. In any case, if a
triangularr-matrix is given, one proves the following:

Proposition 4.19. Let U? be a Poisson bialgebroid with triangular-matrix . Then
H*(U, A) (resp.Exty; (A, A) whenU. is A°P-projective) forms a strong differential Ger-
stenhaber algebra with respect to the differentil. In caseU? is commutative and
carries additionally the structure of a left Hopf algebroithe Batalin-Vilkovisky algebra
(H.(U, A),1%) (resp.(Tor! (A, A),b”) when,U is A-projective) is a strong differential
Gerstenhaber algebra as well with respect to the cycliedifftial B.

Proof. The first statement,e., the fact that3’ = {0, .} fulfils the identities in Definition
[L.2 with respect to the Gerstenhaber bracketiofil/, A) induced by[(31) follows directly
from the Leibniz rule and the graded Jacobi identity of thp puoduct and the bracket
itself.
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The second statement follows from the fact that the oper&tor H,(U,A) —
H,.1(U, A) induced by the cyclic differential (and denoted by the sagrat®l) from
(2.39) is a graded derivation of the shuffle prodiiet, one has

B(x xy) = Bx x y+ (—1)Px x By, xe Hy(U,A), ye H(U,A),

as can be shown, for example, along the lines for the Hoclascase in[[Lo, Cor. 4.3.4].
One then directly verifies the two identities in Definitlo@ for the Gerstenhaber bracket
(419), which is straightforward usinig(4112) re$p.{4f6};convenience of the reader, we
nevertheless show the second one:

Bla,y}e = (~1)PIBb (z x y) + (=1)?Bbz x y
— b9z x By + Bz x by + (—1)Pz x Bty
= (=1)P0?(Bx x y) + (=1)Po? Bz x y + Bz x b%y
+b’(z x By) — b’z x By + (=1)"Plz x ' By
= {Ba,y}o + (-1)"!{z, By}
forz e H,(U, A) andy € H,(U, A), and this concludes the proof. O
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