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BATALIN-VILKOVISKY ALGEBRA STRUCTURES ON pCoqTor AND
POISSON BIALGEBROIDS

NIELS KOWALZIG

ABSTRACT. In this article, we extend our preceding studies on higher algebraic structures
of (co)homology theories defined by a left bialgebroidpU,Aq. For a braided commutative
Yetter-Drinfel’d algebraN , explicit expressions for the canonical Gerstenhaber algebra
structure onExtU pA,Nq are given. Similarly, ifpU,Aq is a left Hopf algebroid where
A is an anti Yetter-Drinfel’d module overU , it is shown that the cochain complex com-
putingCotorU pA,Nq defines a cyclic operad with multiplication and hence the groups
CotorU pA,Nq form a Batalin-Vilkovisky algebra. In the second part of this article, Pois-
son structures and the Poisson bicomplex for bialgebroids are introduced, which simul-
taneously generalise, for example, classical Poisson as well as cyclic homology. In case
the bialgebroidU is commutative, a Poisson structure onU leads to a Batalin-Vilkovisky
algebra structure onTorU pA,Aq. As an illustration, we show how this generalises the
classical Koszul bracket on differential forms, and conclude by indicating how classical
Lie-Rinehart bialgebras (or, geometrically, Lie bialgebroids) arise from left bialgebroids.
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1. INTRODUCTION

1.1. Gerstenhaber and Batalin-Vilkovisky algebras. It is by now common knowledge
that the cohomology or homology groups of a given mathematical object, although at first
glance only a graded module over some base ring, often carry higher algebraic structures,
such as products, brackets, and differentials. One of the earliest account for such struc-
tures on the cohomology groups of associative algebras is presumably Gerstenhaber’s pi-
oneer article [G], but in the meantime more general (co)homology theories such as for
Lie-Rinehart algebras (Lie algebroids) [Hue2, Hue1, Kos1,X1] or for Hopf algebras
[FaSo, Kad, Me1, Me2, Tai2] as well as Hopf algebroids [KoKr3] have been investi-
gated in this direction. What is more, some of these structures already appear on the
(co)chain level [TaTs], and in an even more abstract spirit,analogous structures (up to ho-
motopy) have been found for the cochain spaces or the cohomology of (certain) operads
[BraLa, GáToVa, GSch, GeJ, GV, MaShnSt, McCSm, Me1].

Definition 1.1. Let k be a commutative ring.

(i ) A Gerstenhaber algebraoverk is a graded commutativek-algebrapV,`q

V “
à

pPN

V p, α ` β “ p´1qpqβ ` α P V p`q, α P V p, β P V q,

with a graded Lie brackett¨, ¨u : V p`1 bk V
q`1 Ñ V p`q`1 on thedesuspension

V r1s :“
à

pPN

V p`1

of V , for which all operatorstγ, ¨u satisfy the graded Leibniz rule

tγ, α ` βu “ tγ, αu ` β ` p´1qpqα ` tγ, βu, γ P V p`1, α P V q.

(ii ) A Batalin-Vilkoviskyalgebra is a Gerstenhaber algebraV with ak-linear differential

B : V n Ñ V n´1, BB “ 0

of degreé 1 such that for allα P V p, β P V

tα, βu “ p´1qp
`
Bpα ` βq ´Bpαq ` β ´ p´1qpα ` Bpβq

˘
.

A Batalin-Vilkovisky algebra is also called anexactGerstenhaber algebra and the
differentialB is said togeneratethe Gerstenhaber bracket.

Since we shall continuously deal with the desuspension mentioned above, it is conve-
nient to introduce the notation

|n| :“ n´ 1, n P Z.

On the other hand, as we will see in§4.5, in some cases Gerstenhaber algebras come
with a differential that, in contrast to the generating operator of a Batalin-Vilkovisky alge-
bra, increases the degree:

Definition 1.2. A differential Gerstenhaber algebrais a Gerstenhaber algebraV with a
k-linear differential

δ : V n Ñ V n`1, δδ “ 0

of degreè 1 such thatδ is a graded derivation of the cup product,i.e., such that

δpα ` βq “ δα ` β ` p´1qpα ` δβ, α P V p, β P V,

holds. It is calledstrong differentialif δ is, additionally, a graded derivation of the Ger-
stenhaber bracket, that is, if

δtα, βu “ tδα, βu ` p´1q|p|tα, δβu, α P V p, β P V,

holds true.
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1.2. Aims and objectives. The principal aim of this paper is to investigate under what
conditions the (co)homology groups

ExtU pA,Mq, CotorU pA,Mq, andTorU pA,Aq

admit a Gerstenhaber resp. Batalin-Vilkovisky algebra structure, whereU is a left bial-
gebroid (aˆA-bialgebra) or a left Hopf algebroid (âA-Hopf algebra) over a possibly
noncommutativek-algebraA. In §2 we indicate the necessary details for this sort of gener-
alisation of ak-bialgebra resp. Hopf algebra to noncommutative base rings. Here, we only
seize the occasion once again to point out that the rings governing most parts of classical
homological algebra can all be described by such a structure. As a consequence, our results
apply to, for example, Hochschild and Lie-Rinehart (in particular Lie algebra, de Rham,
Lie algebroid and Poisson) (co)homology,i.e., give access to both algebra and geometry,
but also to that of any Hopf algebra (which leads to,e.g., group (co)homology) as well as
to (étale) groupoid homology.

1.3. Yetter-Drinfel’d algebras as coefficient modules for Gerstenhaber algebras.The
aim of§3 is to give explicit expressions of the canonical Gerstenhaber algebra structures on
(simplicial) cohomology and (coring) cohomology associated to a left bialgebroidU and
taking values in general coefficient modules: the left bialgebroid structure ofU leads not
only to a monoidal structure on the categoriesU -Mod andU -Comod of left U -modules
resp. leftU -comodules, but also to one onU

U
YD, the category of Yetter-Drinfel’d mod-

ules. Considering monoids in this latter category and with the help of a well-known result
about Gerstenhaber structures in relation to the cohomology of operads with multiplication
[GSch, McCSm, Me1], we can prove:

Theorem 1.3. If N is a braided commutative Yetter-Drinfel’d algebra over a left bialge-
broidU , then

C‚pU,Nq :“ HomAop

`
pUbAop ‚qŽ, N

˘

defines an operad with multiplication. Hence,H‚pU,Nq :“ HpC‚pU,Nq, δq carries the
structure of a Gerstenhaber algebra.

Here,δ : C‚pU,Nq Ñ C‚`1pU,Nq defines the canonical cochain complex that arises
from the bar resolution ofA. We refer to the main text for all details and in particular
all notation used throughout this introductory section. The theorem implies in particular
that if §U is projective as a leftA-module, thenExt‚

U pA,Nq is a Gerstenhaber algebra,
and generalises not only relatively recent results [Tai2, Me2] in bialgebra theory (where
A :“ k is a commutative ring that is central inU ) but also in bialgebroid theory [KoKr3]
by introducing general coefficients.

Another cohomology theory attached to any bialgebroid is obtained by considering the
cobar resolution ofA, i.e., by dealing with the coring cohomology. This leads to a cochain
complex

β : C‚

copU,Nq :“ pŻUŽ qbA‚ bA N Ñ C‚`1
co pU,Nq,

which again admits the same sort of higher algebraic structure. In§3.2 we prove:

Theorem 1.4. LetN be a braided commutative Yetter-Drinfel’d algebra over a left bialge-
broid U . ThenC‚

copU,Nq defines an operad with multiplication. Hence, the cohomology
groupsH‚

copU,Nq :“ HpC‚
copU,Nq, βq carry the structure of a Gerstenhaber algebra.

In particular, ifUŽ is flat as a rightA-module, thenCotor‚

U pA,Nq is a Gerstenhaber
algebra. Also this theorem is an extension of the bialgebra case known before (implicitly
in [GSch] and rediscovered more recently in [Kad], see also [Me1]) to bialgebroids (i.e.,
to noncommutative base rings) and nontrivial coefficients.

For both cochain complexes mentioned above, we will give explicit expressions in§2.4
for the graded commutative product̀and the brackett¨, ¨u that belong to any Gersten-
haber algebra by defining (in the spirit of [G])Gerstenhaber products̋i onC‚pU,Nq resp.
C‚

copU,Nq.
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1.4. The Batalin-Vilkovisky algebra Cotor. If U is not only a left bialgebroid but rather
a left Hopf algebroid (â A-Hopf algebra) and if on top of that the base algebraA carries
a rightU -action (which is both fulfilled ifU is, for example, afull Hopf algebroid), this
equips the cochain spacesC‚

copU,Nq with the structure of acyclic operad with multiplica-
tion. Since by Menichi’s theorem [Me1] any such cyclic operad with multiplication defines
the structure of a Batalin-Vilkovisky algebra on the associated cohomology, we can prove:

Theorem 1.5. LetN be a braided commutative Yetter-Drinfel’d algebra over a left Hopf
algebroidU and assume thatA is an anti Yetter-Drinfel’d module. Then one can define
a right U -action onN such thatN together with its leftU -comodule structure becomes
an anti Yetter-Drinfel’d module as well, and ifN is moreover stable with respect to this
action, thenC‚

copU,Nq defines a cyclic operad with multiplication. Hence, the cohomology
groupsH‚

copU,Nq carry the structure of a Batalin-Vilkovisky algebra.

In particular, if UŽ is flat as a rightA-module, thenCotor‚

U pA,Nq is a Batalin-
Vilkovisky algebra. This, once more, extends a result knownin Hopf algebra theory [Me1]
not only to bialgebroids, but also to nontrivial coefficients. Moreover, we confirm the con-
jecture in [Me2,§10] that in case of a Hopf algebra overk endowed with a modular pair
pδ, σq in involution, one apparentlycannottakeσkδ unless the grouplike elementσ is the
unit element in the Hopf algebra, see§3 for details.

1.5. Poisson structures for bialgebroids.As is shown in§4.2, the definition of aPoisson
structureor (quasi-)triangularr-matrix for a left bialgebroidU , that is, a2-cocycleθ P
C2pU,Aq that fulfills

θ ˝1 θ “ θ ˝2 θ

generalises not only Poisson structures for (noncommutative) associative algebras and tri-
angularr-matrices for Lie bialgebroids (and hence Poisson manifolds as well as skew-
symmetric solutions of the classical Yang-Baxter equationin Lie bialgebra theory [D])
but also the ring structure in an associative algebra or, more general, the notion of operad
multiplication for the operadC‚pU,Aq as given in§3.1.

We then define the differentials

bθ : CnpU,Mq Ñ Cn´1pU,Mq, pm,xq ÞÑ ´Lθpm,xq,

βθ : CnpU,Aq Ñ Cn`1pU,Aq, ϕ ÞÑ tθ, ϕu,

whereLθ is the generalised Lie derivative on left Hopf algebroids in(4.1) that was intro-
duced in [KoKr3]. The triple

`
C‚pU,Mq, bθ, B

˘
can be shown to form a mixed complex,

which allows for the definition ofcyclic Poisson homology. This approach conceptually
unites, for example, Hochschild with Poisson homology (resp. cyclic homology with cyclic
Poisson homology), see§4.3.

1.6. The Batalin-Vilkovisky algebra Tor. In caseU is a commutativeleft Hopf alge-
broid, the shuffle product¨ ˆ ¨ defines the structure of a graded commutative algebra on the
homology groupsH‚pU,Aq. In caseU is Poisson, this structure can be extended to that of
a Batalin-Vilkovisky algebra. In§4.4 we will prove:

Theorem 1.6. Let U be a commutative Poisson left Hopf algebroid with triangular r-
matrixθ. Then there is ak-bilinear map

t., .uθ : CppU,Aq b CqpU,Aq Ñ Cp`q´1pU,Aq, p, q ě 0,

xb y ÞÑ p´1q|p|bθpxˆ yq ` p´1qpbθxˆ y ` xˆ bθy,

which induces a Batalin-Vilkovisky algebra structure onH‚pU,Aq.

Again, if §U is projective as leftA-module, this yields a bracket

t., .uθ : Tor
U
p pA,Aq b TorUq pA,Aq Ñ TorUp`q´1pA,Aq.
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In our examples in§4.4.4, we illustrate how the Batalin-Vilkovisky structureon
Tor‚

U
pA,Aq for a commutative Poisson left Hopf algebroidU generalises the classical

Koszul bracket on forms,i.e., the Batalin-Vilkovisky algebra structure on the exterioral-
gebra

Ź
‚

A
L˚ of the dual of a Lie-Rinehart algebrapA,Lq.

We conclude by dealing with the case of how the idea of Lie-Rinehart bialgebras
(Lie bialgebroids) induced by a Poisson bivector (i.e., a triangularr-matrix) transfers in
complete analogy toExtU andTorU : whereas a triangular Lie bialgebroid (in the sense
of [MacX]) gives rise [Kos1, X1] to a pair of strong differential Gerstenhaber algebras in
duality — one of which is Batalin-Vilkovisky —, in case of a commutative Poisson left
Hopf algebroid bothH‚pU,Aq andH‚pU,Aq are strong differential Gerstenhaber algebras
as well, the latter being again Batalin-Vilkovisky.

Acknowledgements. It is a pleasure to thank Fabio Gavarini and Ulrich Krähmer for
inspiring discussions and helpful comments.

This research was funded by an INdAM-COFUND Marie Curie grant.

2. PRELIMINARIES

In this section we not only recall preliminaries on bialgebroids, Hopf algebroids, (anti)
Yetter-Drinfel’d modules and algebras, and (co)cyclic modules for bialgebroids — mainly
from our papers [KoKr2, KoKr3] —, but simultaneously introduce the notation and con-
ventions used throughout the text. See [B] for more detailedinformation on bialgebroids
and Hopf algebroids, and references to the original sources.

2.1. Bialgebroids. Throughout this paper,A andU are (unital associative)k-algebras,
wherek is a commutative ground ring (sometimes of characteristic zero). As common,
whenever an unadorned tensor product appears, it is meant tobe overk. Furthermore, we
assume that there be a fixedk-algebra map

η : Ae :“ A bk A
op Ñ U.

This induces forgetful functors

U -Mod Ñ Ae-Mod, Uop-Mod Ñ Ae-Mod

that turn leftU -modulesN respectively rightU -modulesM intoA-bimodules with actions

a Ż n Ž b :“ ηpa bk bqn, a §m đ b :“ mηpbbk aq, a, b P A, n P N,m P M. (2.1)

In particular, left and right multiplication inU defineA-bimodule structures of both these
types onU itself.

Generalising the standard result for bialgebras (which is the caseA “ k), Schauenburg
has proven [Sch] that the monoidal structures onU -Mod for which the forgetful functor
toAe-Mod is strictly monoidal (whereAe-Mod is monoidal viabA) correspond to what
is known as(left) bialgebroid(or ˆA-bialgebra) structures onU . We refer,e.g., to our
earlier paper [KoKr1] for a detailed definition (which is dueto Takeuchi [T]). Let us only
recall that a bialgebroid has a coproduct and a counit

∆ : U Ñ UŽ bA ŻU , ε : U Ñ A, (2.2)

which turnU into a coalgebra inAe-Mod. Unlike forA “ k, the counitε is not neces-
sarily a ring homomorphism but only yields a leftU -module structure onA with action of
u P U ona P A given by

ua :“ εpu đ aq. (2.3)

Furthermore,∆ is required to corestrict to a map fromU to the Sweedler-Takeuchi product
U ˆA U , which is theAe-submodule ofU bA U whose elements

ř
i ui bA vi fulfil

ř
i a § ui bA vi “

ř
i ui bA vi đ a, @a P A. (2.4)
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In the sequel, we will freely use Sweedler’s notation∆puq “: up1q bA up2q.
In the same paper [Sch], Schauenburg generalised the notionof a Hopf algebra to the

bialgebroid setting by introducinĝA-Hopf algebras which we usually refer to asleft Hopf
algebroids. The crucial piece of additional structure on top of the bialgebroid one is the
translation map

U Ñ §U bAop UŽ, u ÞÑ u` bAop u´, (2.5)

where the right hand side is to be understood as a Sweedler-type notation,i.e., indicating
a sum. We will make permanent use of the following technical identities that hold for the
map (2.5), see [Sch, Proposition 3.7]:

Proposition 2.1. LetU be a left Hopf algebroid overA. For all u, v P U , a, b P A one has

u` bAop u´ P U ˆAop U, (2.6)

u`p1q bA u`p2qu´ “ ubA 1 P UŽ bA ŻU, (2.7)

up1q` bAop up1q´up2q “ ubAop 1 P §U bAop UŽ, (2.8)

u`p1q bA u`p2q bAop u´ “ up1q bA up2q` bAop up2q´, (2.9)

u` bAop u´p1q bA u´p2q “ u`` bAop u´ bA u`´, (2.10)

puvq` bAop puvq´ “ u`v` bAop v´u´, (2.11)

u`u´ “ spεpuqq, (2.12)

εpu´q § u` “ u, (2.13)

pspaqtpbqq` bAop pspaqtpbqq´ “ spaq bAop spbq, (2.14)

where in(2.8) we mean the Sweedler-Takeuchi product

U ˆAop U :“ t
ř
i ui bAop vi P §U bAop UŽ |

ř
i ui Ž abAop vi “

ř
i ui bAop a § viu ,

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor, and where in (2.12) and (2.14) we use thesourceand targetmaps

s, t : A Ñ U, spaq :“ ηpa bk 1q, tpbq :“ ηp1 bk bq. (2.15)

Beyond the obvious example of a left Hopf algebroid given by aHopf algebraH with
antipodeS, where the translation map is given by

h` b h´ :“ hp1q b Sphp2qq, h P H,

we recall below three (by now) standard examples of left Hopfalgebroids since they will
be used as test cases throughout the text: the first one gives access to the Hochschild theory
of associative algebras, the second two to,e.g., multivector fields and differential forms in
differential geometry:

Example 2.2. Recall from [Sch] thatAe :“ A bk A
op is for anyk-algebraA a left Hopf

algebroid overA with structure maps

spaq :“ abk 1, tpbq :“ 1bk b, ∆pabk bq :“ pabk 1qbA p1bk bq, εpabk bq :“ ab.

The translation map is given by

pa bk bq` bAop pabk bq´ :“ pa bk 1q bAop pb bk 1q.

Example 2.3. Let pA,Lq be a Lie-Rinehart algebra (geometrically, a Lie algebroid)over
a commutativek-algebraA andVL be its universal enveloping algebra (see [Ri]). The left
Hopf algebroid structure ofVL has been given in [KoKr1]; as therein, we denote by the
same symbols elementsa P A andX P L and the corresponding generators inVL. The
mapss “ t are equal to the canonical injectionA Ñ VL. On generators, the coproduct
and the counit are given by

∆pXq :“ X bA 1 ` 1 bA X, εpXq :“ 0,

∆paq :“ a bA 1, εpaq :“ a,
(2.16)
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whereas the translation map is defined by

X` bAop X´ :“ X bAop 1 ´ 1 bAop X, a` bAop a´ :“ abA 1. (2.17)

By universality, these maps defined on generators can be extended toVL. If pA,Lq “
pC8pMq,Γ8pEqq arises from a Lie algebroidE Ñ M over a smooth manifoldM,
one can considerVL as the space ofE-differential operators onM (see, for example,
[CanWe]).

Example 2.4. The third example (see [KoPo, NTs1, CaVdB]) is in some sense dual to
the preceding one: let againpA,Lq be a Lie-Rinehart algebra and define theA-linear dual
JL :“ HomApVL,Aq, the jet spaceof pA,Lq. By duality,JL carries a commutativeAe-
algebra structure with product

pfgqpuq “ fpup1qqgpup2qq, f, g P JL, u P VL, (2.18)

the unit given by the counitε of VL, and source and target maps given by

spaqpuq :“ aεpuq “ εpauq, tpaqpuq :“ εpuaq, a P A, u P VL. (2.19)

TheAe-ring JL is complete with respect to the (topology defined by the) decreasing fil-
tration whose degreep part consists of those functionals that vanish on theA-linear span
pVLqďp ĎVL of all monomials in up top elements ofL. In caseL is finitely generated
projective overA, Rinehart’s generalised PBW theorem [Ri, Thm. 3.1] identifiesJL with
the completed symmetric algebra of theA-moduleL˚ :“ HomApL,Aq. Moreover, the
filtration of JL induces one ofJL bA JL; if we denote byJLb̂AJL the completion, the
product ofVL yields, as in [KoPo, Lem. 3.16], a coproduct∆ : JL Ñ JLb̂AJL by

fpuvq “: ∆pfqpubAop vq “ fp1qpufp2qpvqq. (2.20)

Along with this coproduct comes the counit ofJL given by evaluation on the unit element,
that is,f ÞÑ fp1VLq. These maps are part of acomplete (left) Hopf algebroidstructure on
JL, see [Q, Appendix A] for complete Hopf algebras, its Hopf algebroid generalisation be-
ing straightforward. Finally, extending theGrothendieck connectionfromL to VL defines
a map

pSfqpuq :“ εpu`fpu´qq, u P VL, f P JL. (2.21)

With this map that may be called, as the notation suggests, theantipodeof JL, the jet space
is not only a left but afull complete Hopf algebroid in the sense of Böhm and Szlachányi
[B]. A short computation yields that the antipode is an involution, S2 “ id, and the
translation map (2.5) results as

f`b̂Aopf´ :“ fp1qb̂AopSpfp2qq, (2.22)

formally similar to the case of Hopf algebras. Again, ifpA,Lq “ pC8pMq,Γ8pEqq
arises from a Lie algebroidE Ñ M over a smooth manifoldM, the jet spaceJL can be
considered as the space ofE-differential forms on the manifoldM.

2.2. Comodules, (co)module algebras, and (anti) Yetter-Drinfel’d modules.

2.2.1. Comodules over left bialgebroids.Recall,e.g., from [B] that a left comodule for a
left bialgebroidU is a left comodule of the coring underlyingU , i.e., a leftA-moduleM
and a leftA-module map

∆M :M Ñ UŽ bA §M, m ÞÑ mp´1q bA mp0q,

satisfying the usual coassociativity and counitality axioms. We denote the category of
left U -comodules byU -Comod. On anyM P U -Comod there is an inducedright
A-action given byma :“ εpa § mp´1qqmp0q, and∆M is then anAe-module morphism
M Ñ UŽ ˆA §M, whereUŽ ˆA §M is theAe-submodule ofUŽ bA §M whose elementsř
i ui bA mi fulfil

ř
i a § ui bA mi “

ř
i ui bA mia, @a P A. (2.23)
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In particular, theAe-linearity reads

∆Mpambq “ a Żmp´1q đ bbA mp0q, @m P M, a, b P A. (2.24)

For later use, let us mention that the base algebraA itself is a leftU -comodule with
canonical coaction

∆A : A Ñ U bA A » U, a ÞÑ spaq, (2.25)

wheres is the source map from (2.15).

2.2.2. (Co)module algebras.In order to introduce coefficients for the subsequent Gersten-
haber algebras, we will additionally need the subsequent concepts. Similarly as for bialge-
bras, there exist the notions of monoid in the categoriesU -Mod resp.U -Comod of left
modules resp. left comodules over a left bialgebroidU , with some particular attention to
be paid to the underlyingA-bimodule structures:

Definition 2.5 ([KaSz]). A left U -module algebraM is a monoid inU -Mod. That is,
M P U -Mod carries a canonicalA-ring structure withA-balanced multiplicationm bA

m1 ÞÑ m ¨M m1 for m,m1 P M , and unit mapA Ñ M, a ÞÑ a Ż 1M “ 1M Ž a such that
for u P U, m,m1 P M

upm ¨M m1q “ pup1qmq ¨M pup2qm
1q and u1M “ εpuq Ż 1M “ 1M Ž εpuq (2.26)

holds.

For example, the base algebraA is a leftU -module algebra withU -action given via the
counit as in (2.3), butU itself usually is not. We remark that in caseU “ Ae anAe-module
algebra is also called anA-ring or anA-algebra.

Observe in particular that with the inducedAe-module structure onM given as in (2.1)
and theAe-linearity of the coproduct, one has

a Ż pm ¨M m1q “ pa Żmq ¨M m1,

pm ¨M m1q Ž a “ m ¨M pm1
Ž aq,

(2.27)

and moreover
m ¨M pa Żm1q “ pm Ž aq ¨M m1. (2.28)

Dually, we shall need the notion of a monoid inU -Comod, see,e.g., [BŞ]:

Definition 2.6. A left U -comodule algebraN is a monoid inU -Comod. That is,N P
U -Comod with coaction∆N : n ÞÑ np´1q bA np0q moreover carries a canonicalA-ring
structure withA-balanced multiplicationnbA n

1 ÞÑ n ¨N n
1 for n, n1 P N such that

∆Np1Nq “ 1U bA 1N , ∆Npn ¨N n
1q “ np´1qn

1
p´1q bA np0q ¨N n

1
p0q. (2.29)

For example, both the base algebraA with left U -coactiona ÞÑ spaq as well as the
ring U itself by means of the coproduct∆ areU -comodule algebras. Observe that for a
left U -comodule algebra relations with respect to the underlyingleft Ae-module structure
identical to those in (2.27) follow from (2.24).

Of course, one can also define comonoids inU -Mod andU -Comod, respectively, but
they are not needed in the sequel.

2.2.3. (Anti) Yetter-Drinfel’d modules and Yetter-Drinfel’d algebras. For a left bialgebroid
U there exists the notion of Yetter-Drinfel’d module (orcrossed bimodule), i.e., a module
which is simultaneously a left comodule with a certain compatibility between action and
coaction. For bialgebras, this concept goes back to [Y], whereas the bialgebroid version is
due to [Sch]:

Definition 2.7. A left U -moduleN which is simultaneously a left comodule over a left
bialgebroidU is called aYetter-Drinfel’d module (YD)if the full Ae-module structureŻNŽ

of the module coincides with that underlying the comodule, and if one has

pup1qnqp´1qup2q bA pup1qnqp0q “ up1qnp´1q bA up2qnp0q. (2.30)
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The categoryU
U
YD of Yetter-Drinfel’d modules is monoidal with respect to thetensor

product in (2.2), equipped with the diagonal module and the codiagonal comodule struc-
ture. We only mention as a side remark [Sch, Prop. 4.4] thatU

U
YD is equivalent to the

weak centre of the categoryU -Mod with (pre)braiding

σN,N1 : NŽ bA ŻN
1 Ñ N 1

Ž bA ŻN , nbA n
1 ÞÑ np´1qn

1 bA np0q.

The importance of the existence of this braiding for our later constructions of Gerstenhaber
algebras is provided by the following notion (see, for example, [BrzMi]):

Definition 2.8. A Yetter-Drinfel’d algebrais a monoid inU

U
YD, i.e., anA-ringN which

is both a leftU -module algebra and a leftU -comodule algebra plus the compatibility con-
dition (2.30) between action and coaction. A Yetter-Drinfel’d algebra is said to bebraided
commutativeif the multiplication inN is commutative with respect toσN,N , that is,

n ¨N n
1 “ pnp´1qn

1q ¨N np0q, for all n, n1 P N. (2.31)

Observe that (2.31) is well defined by (2.28) as well as (2.24). Needless to say that the
notion of braided commutativity is entirely independent ofwhetherN itself as an algebra
is commutative: for example, the base algebraA of any bialgebroidU is always a braided
commutative Yetter-Drinfel’d algebra by means of the canonical left U -action (2.3) and
left U -coaction (2.25).

If U happens to be aleft Hopf algebroid, one can give a sort of opposite notion of anti
Yetter-Drinfel’d modules. The following particular classof right modules which are also
left comodules was introduced in [HKhRS, JŞ] for Hopf algebras and in [BŞ] for left Hopf
algebroids:

Definition 2.9. A right U -module leftU -comoduleM over a left Hopf algebroidU is
calledanti Yetter-Drinfel’d module (aYD)if the full Ae-module structure§Mđ of the mod-
ule coincides with that underlying the comodule, and if one has

pmuqp´1q bA pmuqp0q “ u´mp´1qu`p1q bA mp0qu`p2q (2.32)

for all m P M,u P U . Such a right module left comoduleM is calledstable (SaYD)if one
has

mp0qmp´1q “ m.

Observe that the categoryUaYDU of anti Yetter-Drinfel’d modules over a left Hopf
algebroid isnotmonoidal, not even in the Hopf algebra case,i.e., forA “ k.

Remark 2.10. Note that for a left Hopf algebroidU and a Yetter-Drinfel’d moduleN , the
compatibility condition (2.30) can be expressed as

punqp´1q bA punqp0q “ u`p1qnp´1qu´ bA u`p2qnp0q, (2.33)

showing more structural symmetry with respect to the anti Yetter-Drinfel’d case. How-
ever, this formulation obscures the fact that Yetter-Drinfel’d modules already exist on the
bialgebroid level.

2.3. The para-(co)cyclick-modulesC‚pU,Mq and C‚
copU,Nq. The Gerstenhaber and

Batalin-Vilkovisky algebras that we are going to study in this paper are obtained as the
(co)simplicial (co)homology of para-(co)cyclick-modules of the following form [KoKr2]:

Proposition 2.11. (1) For everyM P Uop-Mod over a left bialgebroidU there is a
well-defined simplicialk-module structure on

C‚pU,Mq :“ M bAop p§UŽqbAop ‚
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whose face maps in degreen ě 1 are given by

dipm,xq “

$
&
%

pm,u1, . . . , εpunq § un´1q,
pm, . . . , un´iun´i`1, . . . , unq
pmu1, u2, . . . , unq

if i“0,

if 1ď iďn´ 1,

if i“n,

and vanish forn “ 0, that is, for elements inM . The degeneracies forn ě 0 read:

sjpm,xq “

$
&
%

pm,u1, . . . , un, 1q
pm, . . . , un´j, 1, un´j`1, . . . , unq
pm, 1, u1, . . . , unq

if j“0,

if 1ďjďn´ 1,

if j“n.

Here and in what follows, we denote elementary tensors inC‚pU,Mq by

pm,xq :“ pm,u1, . . . , unq, m P M,u1, . . . , un P U.

For a right U -module leftU -comoduleM over a leftHopf algebroidU , the k-module
C‚pU,Mq becomes a para-cyclick-module via

tpm,xq “ pmp0qu
1
`, u

2
`, . . . , u

n
`, u

n
´ ¨ ¨ ¨u1´mp´1qq.

This para-cyclick-module is cyclic ifM is a stable anti Yetter-Drinfel’d module.
(2) On the other hand, forM 1 P U -Comod for a left bialgebroidU , there is a well-

defined cosimplicialk-module structure on

C‚

copU,M 1q :“ pŻUŽ qbA‚ bA M
1,

with cofaces in degreen ě 1 given by

δipz,m
1q “

$
&
%

p1, u1, . . . , un,m1q
pu1, . . . ,∆puiq, . . . , un,m1q
pu1, . . . , un,m1

p´1q,m
1
p0qq

if i “ 0,

if 1 ď i ď n,

if i “ n ` 1,

and forn “ 0, that is, onM 1 by

δjpm
1q “

"
p1,m1q
pm1

p´1q,m
1
p0qq

if j “ 0,

if j “ 1.

The codegeneracies forn ě 1 read, on the other hand,

σipz,m
1q “ pu1, . . . , εpui`1q, . . . , un,m1q 0 ď i ď n´ 1,

(2.34)

and vanish onM 1. Similarly as above, here and in what follows, we denote elementary
tensors inC‚

copU,M 1q by

pz,m1q :“ pu1, . . . , un,m1q, m1 P M 1, u1, . . . , un P U,

if no confusion with the homology case can arise. Again, for aright U -module leftU -
comoduleM 1 over a leftHopf algebroidU , thek-moduleC‚

copU,M 1q becomes a para-
cocyclick-module by means of

τpz,m1q “ pu1´p1qu
2, . . . , u1´pn´1qu

n, u1´pnqm
1
p´1q,m

1
p0qu

1
`q, (2.35)

which is cocyclic ifM 1 is a stable anti Yetter-Drinfel’d module.

Recall that in the first case this means that the operatorspdi, sj , tnq satisfy all the defin-
ing relations of a cyclick-module in the sense of Connes (see,e.g., [Co2, Lo]), except for
the one that requires thattn`1 “ id onCnpU,Mq, which, as mentioned, is only satisfied
whenM is an SaYD module; analogous comments apply to the cohomology situation. The
relation between the cyclic and the cocyclic module above as(a sort of)cyclic duals(as
introduced by Connes [Co1] as well) is explained in [KoKr2].Although we shall need the
full structure of the (co)cyclic modules, we are not going tostudy the cyclic (co)homology
of these objects, but rather their (co)simplicial (co)homology:
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Definition 2.12. For any bialgebroidU and anyM P Uop-Mod, we denote the simplicial
homology ofC‚pU,Mq, that is, the homology with respect to the boundary map

b :“
nÿ

i“0

p´1qidi (2.36)

byH‚pU,Mq and call it the(Hochschild) homology ofU with coefficients inM . Likewise,
if M 1 P U -Comod is a leftU -comodule, we denote the cosimplicial cohomology of
C‚

copU,M 1q, i.e., the cohomology with respect to the coboundary map

β :“
n`1ÿ

i“0

p´1qiδi (2.37)

byH‚
copU,M 1q and call it the(coringor co-Hochschild) cohomology ofU with coefficients

in M 1.

Recall from [KoPo, Thm. 2.13] that if§U is projective as a leftA-module, then

H‚pU,Mq » TorU
‚

pM,Aq,

and ifUŽ is flat as a rightA-module, we have

H‚

copU,M 1q » Cotor‚

U pA,M 1q. (2.38)

Mostly, we will work on the normalised complex̄C‚pU,Mq of C‚pU,Mq, meaning the
quotient by the subcomplex spanned by the images of the degeneracy maps of this simpli-
cialk-module,i.e., given by the cokernel of the degeneracy maps. Likewise, thenormalised
complexC̄‚

copU,M 1q of the cochain complexC‚
copU,M 1q is obtained by dealing with the

kernel of the codegeneracy maps. We shall usually denote operators that descend from the
original complexes to these quotients by the same symbols ifno confusion can arise.

On every para-cyclick-module, one furthermore defines thenorm operator, theextra
degeneracy, and thecyclic differential

N :“
nÿ

i“0

p´1qinti, s´1 :“ t sn, B “ pid ´ tq s´1 N , (2.39)

respectively. Remember thatB coincides on the normalised complex̄C‚pU,Mq with the
map (induced by)s´1 N , so we take the liberty to denote the latter byB as well, as we, in
fact, will only consider the induced map on the normalised complex.

2.4. Gerstenhaber algebras, operads with multiplication, and cyclic operads. In this
section, we finally gather some well-known material about Gerstenhaber algebras and their
relation to operads, as well as Batalin-Vilkovisky algebras and their relation to cyclic op-
erads. We refer the interested reader to, for example, [GSch, LoVa, MaShnSt, Me1] for
more details on operad theory; here, we only need the basic definition in the formula-
tion of Gerstenhaber-Schack [GSch] (termed “strict unitalcomp algebra” therein) plus one
important consequence:

Definition 2.13. A (non-Σ) operadin the category ofk-modules is a sequencetOpnquně0

of k-modules with an identity element1 P Op1q together withk-bilinear operations̋ i :
Oppq bOpqq Ñ Opp ` q ´ 1q such that

ϕ ˝i ψ “ 0 if p ă i or p “ 0,

pϕ ˝i ψq ˝j χ “

$
’&
’%

pϕ ˝j χq ˝i`r´1 ψ if j ă i,

ϕ ˝i pψ ˝j´i`1 χq if i ď j ă q ` i,

pϕ ˝j´q`1 χq ˝i ψ if j ě q ` i,

(2.40)

ϕ ˝i 1 “ 1 ˝i ϕ “ ϕ for i ď p,
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is fulfilled for anyϕ P Oppq, ψ P Opqq, andχ P Oprq. The operad is called anoperad with
multiplicationif there exists adistinguished elementoroperad multiplicationµ P Op2q and
an elemente P Op0q such that additionally

µ ˝1 µ “ µ ˝2 µ,

µ ˝1 e “ µ ˝2 e “ 1
(2.41)

holds.

In the rest of this article, the term “operad” will always refer to a non-Σ operad in the
category ofk-modules in the above sense.

Gerstenhaber algebra structures can be constructed, for example, by means of the notion
of an operad with multiplication, as the following theorem shows:

Theorem 2.14([G, GSch, McCSm]). Each operad with multiplication gives rise to a
cosimplicialk-module the cohomology of which is a Gerstenhaber algebra.

For later use, we give the necessary structure maps that constitute the proof of this
theorem: for any two cochainsϕ P Oppq, ψ P Opqq, define

ϕ¯̋ψ :“ p´1q|p||q|
pÿ

i“1

p´1q|q||i|ϕ ˝i ψ P Opp ` q ´ 1q, |n| :“ n´ 1,

and theirGerstenhaber bracketby

tϕ, ψu :“ ϕ¯̋ψ ´ p´1q|p||q|ψ¯̋ϕ, (2.42)

whereas the graded commutative product, thecup product, is given as

ϕ ` ψ “ pµ ˝1 ϕq ˝p`1 ψ “ pµ ˝2 ψq ˝1 ϕ P Opp ` qq. (2.43)

Finally, the cohomology mentioned in Theorem 2.14 is definedwith respect to the differ-
ential

δϕ “ tµ, ϕu.

We will frequently use Theorem 2.14 in the next section. A sharpened version of this
result is an analogous relation between Batalin-Vilkovisky algebras andcyclic operads
established in [Me1], as we will recall below. The notion of cyclic operad goes back to
[GeKa], see also [MaShnSt, p. 247–248]; the version we use here is due to [Me1]:

Definition 2.15. A cyclic operad is a (non-Σ) operadO equipped withk-linear mapsτn :

Opnq Ñ Opnq subject to

τ|p`q|pϕ ˝1 ψq “ τqψ ˝q τpϕ, if 1 ď p, q,

τ|p`q|pϕ ˝i ψq “ τpϕ ˝i´1 ψ, if 0 ď q and2 ď i ď p,

τn`1
n “ idOpnq,

τ11 “ 1

(2.44)

for everyϕ P Oppq andψ P Opqq. A cyclic operad with multiplicationis simultaneously a
cyclic operad and an operad with multiplicationµ such that

τ2µ “ µ. (2.45)

A crucial observation is now that Batalin-Vilkovisky algebras arise, for example, from
cyclic operads with multiplication:

Theorem 2.16([Me1]). Each cyclic operad with multiplication gives rise to a cocyclic
module of which the associated cyclic differentialB yields a generator for the Gersten-
haber bracket on the cohomology of the underlying cosimplicial k-module, turning it there-
fore into a Batalin-Vilkovisky algebra.
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3. GERSTENHABER ANDBATALIN -V ILKOVISKY ALGEBRA STRUCTURES FOR

BIALGEBROIDS

In this section, we will construct two operad structures with multiplication on two dif-
ferent cosimplicial modules attached to a left bialgebroidU that compute, under suitable
projectivity assumptions, the derived functorsExtU andCotorU , see below. The first one
is theAop-linear dual toC‚pU,Nq from Proposition 2.11, whereas the second one is its
cyclic dual,i.e., the cosimplicial moduleC‚

copU,Nq introduced in the second part of the
same proposition.

3.1. C‚pU,Nq as an operad with multiplication. As for the first one mentioned, define

CppU,Nq :“ HomAoppUbAopp
Ž

, Nq, N P Aop-Mod,

which is, by duality, a cosimplicial module. The differential δ : C‚pU,Nq Ñ C‚`1pU,Nq
is given by

δϕpu1
, . . . , u

p`1q :“ u
1
ϕpu2

, . . . , u
p`1q `

pÿ

i“1

p´1qiϕpu1
, . . . , u

i
u
i`1

, . . . , u
p`1q

` p´1qp`1
ϕpu1

, . . . , εpup`1q § u
pq.

(3.1)

We denote the cohomology ofC‚pU,Nq by H‚pU,Nq and call this the(Hochschild)
cohomology ofU with coefficients inN . If UŽ is anAop-projective left bialgebroid, then
H‚pU,Nq » Ext‚

U pA,Nq, but in general we use the symbolH‚pU,Nq for the cohomol-
ogy of the explicit cochain complex

`
C‚pU,Nq, δ

˘
. Thenormalised complex̄C‚pU,Nq is

given by the intersection of the kernels of the codegeneracies in the cosimplicialk-module
C‚pU,Nq.

The Gerstenhaber structure onH‚pU,Nq for the caseN :“ A was already discussed
in [KoKr3, §§3.5–3.6], we insert here general coefficients: letN be a leftU -module (with
action denoted by juxtaposition) which is simultaneously aleft U -comodule with coaction
∆N : n ÞÑ np´1q bA np0q such that the underlying induced leftAe-module structures
coincide. Furthermore, assume that with respect to this left Ae-module structureN is an
A-ring, i.e., a monoid inAe-Mod with multiplication denoted bypn, n1q ÞÑ n ¨N n1 in
what follows. Observe that by these requirements in particular Eq. (2.28) holds. We then
associate to anyp-cochainϕ P CppU,Nq the operator

DN

ϕ : UbAopp Ñ U bA N,

pu1, . . . , upq ÞÑ ϕpu1p1q, . . . , u
p

p1qqp´1qu
1
p2q ¨ ¨ ¨upp2q bA ϕpu1p1q, . . . , u

p

p1qqp0q,
(3.2)

and this map is well-defined by (2.24) along with (2.4). For zero cochains,i.e., elements
in N , this map is given by the coaction∆N of N . We introduce the notation

Dϕpu1, . . . , upqp´1q bA Dϕpu1, . . . , upqp0q :“ DN

ϕ pu1, . . . , upq.

This enables us to define

˝i : C
ppU,Nq b CqpU,Nq Ñ C |p`q|pU,Nq, i “ 1, . . . , p,

by

pϕ ˝i ψqpu1, . . . , u|p`q|q

:“ ϕpu1p1q, . . . , u
i´1
p1q , Dψpui, . . . , ui`q´1qp´1q, u

i`q, . . . , u|p`q|q

¨N
`
u1p2q ¨ ¨ ¨ui´1

p2q Dψpui, . . . , ui`q´1qp0q

˘
,

(3.3)

which again is well-defined by (2.4), (2.24), but also (2.28). For zero cochainsn P N , we
definen ˝i ψ “ 0 for all i and allψ, whereas

ϕ ˝i n :“ ϕpu1p1q, . . . , u
i´1
p1q , np´1q, u

i, . . . , up´1q ¨N pu1p2q ¨ ¨ ¨ui´1
p2q np0qq P Cp´1pU,Nq.



14 NIELS KOWALZIG

The distinguished element,i.e., the operad multiplication (2.41) is here given by

µ :“ pεmUp¨, ¨qq Ż 1N P C2pU,Nq, (3.4)

wheremU is the multiplication map ofU . Furthermore, define

1 :“ εp¨q Ż 1N P C1pU,Nq and e :“ 1N P C0pU,Nq. (3.5)

The cup product (2.43) can then be expressed as

pϕ ` ψqpu1, . . . , up`qq “ ϕpu1p1q, . . . , u
p

p1qq ¨N
`
u1p2q ¨ ¨ ¨upp2qψpup`1, . . . , up`qq

˘
,

whereϕ P CppU,Nq, ψ P CqpU,Nq, as a short computation reveals by means of (3.3)
and (3.4) with the help of (2.26), (2.4), and (2.24).

Theorem 3.1. If N is a braided commutative Yetter-Drinfel’d algebra over a left bial-
gebroidU , thenC‚pU,Nq with the structure given in(3.3)–(3.5) defines an operad with
multiplication.

Remark 3.2. As already mentioned, one can in particular takeN :“ A, the base algebra
of the left bialgebroid itself, and in this case the operators (3.1)–(3.5) coincide, by means
of the canonical left action (2.3) resp. coaction (2.25), with the operators given in [KoKr3,
§3.5]. On the other hand, observe that even for general coefficientsN one has for the
differential (3.1) the usual expression

δϕ “ tµ, ϕu,

where the right hand side is defined as in (2.42). This followsfrom (2.4) and (2.24).

Proof of Theorem 3.1.Verifying the conditions in Definition 2.13 is essentially adirect
computation, but we want to show at least two of the identities in (2.40) in detail to illustrate
where the various assumptions onN in Definition 2.8 of a braided commutative Yetter-
Drinfel’d algebra appear; apart from that, the identities (2.41) are easy to check considering
that for the distinguished element (3.4)

DN

µ pu, vq “ uv bA 1N , for all u, v P U,

holds in caseN is a comodule algebra. Somewhat less obvious is to check thatthe identities
(2.40) are fulfilled: letϕ P CppU,Nq, ψ P CqpU,Nq, andχ P CrpU,Nq, along with
i ď j ă q ` i. Then

ppϕ ˝i ψq ˝j χqpu1, . . . , u||p`q|`r|q

“
`
pϕ ˝i ψqpu1p1q , . . . , u

j´1

p1q , Dχpuj , . . . , uj`r´1qp´1q, u
j`r, . . . , u||p`q|`r|q

˘

¨N
`
u1p2q ¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘

“ ϕ
´
u1p1q, . . . , u

i´1

p1q
,Dψpuip1q, . . . , u

j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q, u

j`r ,

. . . , ui`q`r´2qp´1q, u
i`q`r´1, . . . , u||p`q|`r|

¯

¨N
´
u1p2q ¨ ¨ ¨ui´1

p2q
Dψpuip1q, . . . , u

j´1

p1q
, Dχpuj , . . . , uj`r´1qp´1q, u

j`r, . . . , ui`q`r´2qp0q

¯

¨N
´
u1p3q ¨ ¨ ¨ui´1

p3q
uip2q ¨ ¨ ¨ uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

¯

p2.26q
“ ϕ

´
u1p1q, . . . , u

i´1

p1q
,Dψpuip1q, . . . , u

j´1

p1q
, Dχpuj , . . . , uj`r´1qp´1q, u

j`r, . . . , ui`q`r´2qp´1q,

ui`q`r´1, . . . , u||p`q|`r|
¯

¨N
´
u1p2q ¨ ¨ ¨ ui´1

p2q

“
Dψpuip1q, . . . , u

j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q,

uj`r, . . . , ui`q`r´2qp0q ¨N
`
uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘‰¯

p3.2q
“ ϕ

´
u1p1q, . . . , u

i´1

p1q
, ψpuip1q, . . . , u

j´1

p1q
,Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´2q, u

j`r
p1q

, . . . , u
i`q`r´2

p1q
qp´1q

uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´1qu

j

p2q
¨ ¨ ¨ui`q`r´2

p2q
,

ui`q`r´1, . . . , u||p`q|`r|
¯

¨N
´
u1p2q ¨ ¨ ¨ ui´1

p2q

“
ψpuip1q , . . . , u

j´1

p1q
,Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´2q,

u
j`r
p1q

, . . . , u
i`q`r´2

p1q
qp0q ¨N

`
uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp0q

˘‰¯
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p2.33q,p2.8q
“ ϕ

´
u1p1q, . . . , u

i´1

p1q , ψpuip1q , . . . , u
j´1

p1q ,Dχpujp1q, . . . , u
j`r´1

p1q qp´1q, u
j`r
p1q , . . . , u

i`q`r´2

p1q qp´1q

`
uip2q ¨ ¨ ¨uj´1

p2q Dχpujp1q, . . . , u
j`r´1

p1q qp0q

˘
p´1q

uip3q ¨ ¨ ¨ uj´1

p3q u
j

p2q ¨ ¨ ¨ui`q`r´2

p2q ,

ui`q`r´1, . . . , u||p`q|`r|
¯

¨N
´
u1p2q ¨ ¨ ¨ui´1

p2q

“
ψpuip1q, . . . , u

j´1

p1q
, Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´1q,

u
j`r
p1q

, . . . , u
i`q`r´2

p1q
qp0q ¨N

`
uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp0q

˘
p0q

‰¯

p2.29q
“ ϕ

´
u1p1q, . . . , u

i´1

p1q
,
”
ψpuip1q, . . . , u

j´1

p1q
, Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´1q, u

j`r
p1q

, . . . , u
i`q`r´2

p1q
q

¨N
`
uip2q ¨ ¨ ¨ uj´1

p2q
Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp0q

˘ı
p´1q

uip3q ¨ ¨ ¨uj´1

p3q
u
j

p2q
¨ ¨ ¨ ui`q`r´2

p2q
,

ui`q`r´1, . . . , u||p`q|`r|
¯

¨N
´
u1p2q ¨ ¨ ¨ui´1

p2q

”
ψpuip1q , . . . , u

j´1

p1q
,Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp´1q,

u
j`r
p1q

, . . . , u
i`q`r´2

p1q
q ¨N

`
uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj

p1q
, . . . , u

j`r´1

p1q
qp0q

˘ı
p0q

¯

“ ϕ
`
u1p1q, . . . , u

i´1

p1q
, pψ ˝j´i`1 χqpuip1q, . . . , u

i`r`q´2

p1q
qp´1qu

i
p2q ¨ ¨ ¨ui`r`q´2

p2q
,

ui`r`q´1, . . . , u||p`q|`r|
˘

¨N
`
u1p2q ¨ ¨ ¨ui´1

p2q
pψ ˝j´i`1 χqpuip1q, . . . , u

i`r`q´2

p1q
qp0q

“ ϕ
`
u1p1q, . . . , u

i´1

p1q
,Dψ˝j´i`1χpui, . . . , ui`r`q´2qp´1q, u

i`r`q´1, . . . , u||p`q|`r|q

¨N
`
u1p2q ¨ ¨ ¨ ui´1

p2q
Dψ˝j´i`1χpui, . . . , ui`r`q´2qp0q

˘

“ pϕ ˝i pψ ˝j´i`1 χqqpu1, . . . , u||p`q|`r|q

holds. The condition (2.31) appears,e.g., when computing forj ě q ` i that

ppϕ ˝i ψq ˝j χqpu1, . . . , u||p`q|`r|q

“
`
pϕ ˝i ψqpu1p1q, . . . , u

j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q, u

j`r , . . . , u||p`q|`r|q
˘

¨N
`
u1p2q ¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘

“ ϕ
`
u1p1q, . . . , u

i´1

p1q
,Dψpuip1q, . . . , u

i`q´1

p1q
qp´1q, u

i`q
p1q

, . . . , u
j´1

p1q
, Dχpuj , . . . , uj`r´1qp´1q,

uj`r , . . . , u||p`q|`r|
˘

¨N
`
u1p2q ¨ ¨ ¨ ui´1

p2q
Dψpuip1q, . . . , u

i`q´1

p1q
qp0q

˘

¨N
`
u1p3q ¨ ¨ ¨ui´1

p3q
uip2q ¨ ¨ ¨ uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘

p2.26q
“ ϕ

`
u1p1q, . . . , u

i´1

p1q
,Dψpuip1q, . . . , u

i`q´1

p1q
qp´1q, u

i`q
p1q

, . . . , u
j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q,

uj`r , . . . , u||p`q|`r|
˘

¨N
´
u1p2q ¨ ¨ ¨ui´1

p2q

´
Dψpuip1q, . . . , u

i`q´1

p1q
qp0q

¨N
`
uip2q ¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘¯¯

p2.31q
“ ϕ

`
u1p1q, . . . , u

i´1

p1q
,Dψpui, . . . , ui`q´1qp´2q, u

i`q
p1q

, . . . , u
j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q,

uj`r , . . . , u||p`q|`r|
˘

¨N
`
u1p2q ¨ ¨ ¨ ui´1

p2q

`
Dψpui, . . . , ui`q´1qp´1q

`
u
i`q
p2q

¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘
¨N Dψpui, . . . , ui`q´1qp0q

˘˘

p2.26q
“ ϕ

`
u1p1q, . . . , u

i´1

p1q
,Dψpui, . . . , ui`q´1qp´2q, u

i`q
p1q

, . . . , u
j´1

p1q
,Dχpuj , . . . , uj`r´1qp´1q,

uj`r , . . . , u||p`q|`r|
˘

¨N
`
u1p2q ¨ ¨ ¨ ui´1

p2q
Dψpui, . . . , ui`q´1qp´1q

u
i`q
p2q

¨ ¨ ¨uj´1

p2q
Dχpuj , . . . , uj`r´1qp0q

˘
¨N

`
u1p3q ¨ ¨ ¨ui´1

p3q
Dψpui, . . . , ui`q´1qp0q

˘

“
`
pϕ ˝j´q`1 χqpu1p1q, . . . , u

i´1

p1q
, Dψpui, . . . , ui`q´1qp´1q, u

i`q, . . . , u||p`q|`r|q
˘

¨N
`
u1p2q ¨ ¨ ¨ui´1

p2q
Dψpui, . . . , ui`q´1qp0q

˘

“ ppϕ ˝j´q`1 χq ˝i ψqpu1, . . . , u||p`q|`r|q

is true. To check the remaining identities in (2.40) is left to the reader. �

By Theorem 2.14 one deduces at once:

Corollary 3.3. If N is a braided commutative Yetter-Drinfel’d algebra, the cohomology
groupsH‚pU,Nq carry the structure of a Gerstenhaber algebra. In particular, if §U is
projective as a leftA-module, thenExt‚

U pA,Nq is a Gerstenhaber algebra.
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Example 3.4. For U “ Ae with the bialgebroid structure given as in Example 2.2 and
in caseN :“ A, the Gerstenhaber algebra structure onExtAepA,Aq is (for A projective
overk) the classical one given in [G], as already mentioned in [KoKr3, §7]: one has an
isomorphism

C‚pAe, Aq Ñ C‚pA,Aq :“ HomkpAb‚, Aq, ϕ ÞÑ ϕ̃, (3.6)

where the right hand side refers to the standard Hochschild cochain complex and̃ϕ is
defined by

ϕ̃pa1 bk ¨ ¨ ¨ bk anq :“ ϕ
`
pa1 bk 1q, . . . , pan bk 1q

˘

so that
ϕ
`
pa1 bk b1q, . . . , pan bk bnq

˘
“ ϕ̃pa1 bk ¨ ¨ ¨ bk anqbn ¨ ¨ ¨ b1.

It is easy to see that the respective induced isomorphism on cohomology is moreover one
of Gerstenhaber algebras, and in particular one has

Čφ ˝i ψ “ φ̃ ˝G

i ψ̃, i “ 1, . . . , p,

for all ϕ P CppAe, Aq, ψ P CqpAe, Aq, where the right hand side

pϕ̃ ˝G

i ψ̃qpa1, . . . , a|p`q|q :“ ϕ̃
`
a1, . . . , ai´1, ψ̃pai, . . . , ai`|q|q, ai`q, . . . , a|p`q|

˘
(3.7)

are the classical insertion operations found by Gerstenhaber [G].
However, we want to underline that already in [loc. cit., p. 287], coefficients were in-

troduced by considering (what turns out to be) anA-ring N with anA-bimodule map
φ : N Ñ A such that

φpnqn1 “ n ¨N n
1 “ nφpn1q. (3.8)

We now show how these coefficients are examples of our generalconstruction: anA-ring
N is, as said before, by definition anAe-module ring and ifN is also a comodule, the
Yetter-Drinfel’d condition (2.30) is automatically fulfilled by (2.24) and theAe-linearity
of the coproduct onAe. Hence, everyA-ring which also is anAe-comodule algebra is
automatically a Yetter-Drinfel’d algebra. If a morphismφ P HomAepN,Aq now fulfills
(3.8), it is clear thatn ÞÑ pφpnq bk 1Aq bA 1N defines anAe-coaction which givesN the
structure of a braided commutative Yetter-Drinfel’d algebra.

Example 3.5. Another classical example fits in this theory as follows: letH be a Hopf
algebra over a fieldk with antipodeS, and denote the Hochschild cohomology ofH as an
algebra with values inH itself byH‚

alg
pH,Hq :“ Ext‚

HepH,Hq, which, as mentioned in
the preceding Example 3.4, classically carries a Gerstenhaber algebra structure [G]. Now,
as follows from [CE, Thm. VIII.3.1], one has a vector space isomorphism

Ext‚

HepH,Hq » Ext‚

H
pk, adpHqq. (3.9)

Here,adpHq isH as vector space but with leftH-action on it given by the adjoint action
adphqh1 :“ hp1qh

1Sphp2qq for all h, h1 P H . It is a straightforward check thatadpHq
equipped with this action, the leftH-coaction given by the coproduct inH , and the ring
structure given by the multiplication inH forms a braided commutative Yetter-Drinfel’d
algebra, henceExt‚

H
pk, adpHqq is also a Gerstenhaber algebra by Corollary 3.3.

We correspondingly want to show that (3.9) is also an isomorphism of Gerstenhaber
algebras: recall from,e.g., [FeTs, Kr] thatExt‚

H
pk, adpHqq can be computed by means

of the standard Hochschild cochain complexC‚pH,Hq :“ HomkpHb‚, Hq, but with
coboundary

dϕph1, . . . , hn`1q :“ adph1qϕph2, . . . , hn`1q `
nÿ

i“1

p´1qiϕph1, . . . , hihi`1, . . . , hn`1q

` p´1qn`1ϕph1, . . . , hnqεphn`1q.

Now, by means of thek-linear isomorphism

ξ : C‚pH,Hq Ñ C‚pH,Hq, pξpϕqqph1, . . . , hnq :“ ϕph1p1q, . . . , h
n
p1qqh1p2q ¨ ¨ ¨hnp2q
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with inverse

pξ´1pψqqpv1, . . . , vnq :“ ψpv1p1q, . . . , v
n
p1qqSpv1p2q, . . . , v

n
p2qq,

one proves [Kr,§2.4] thatδξ “ ξd with respect to the Hochschild coboundaryδ from
(3.1) (adapted to this example,i.e., forA :“ k andN :“ H) and hence

`
C‚pH,Hq, δ

˘
»`

C‚pH,Hq, d
˘

as cochain complexes. Moreover, one has with respect to Gerstenhaber’s
insertion operations (3.7) for allϕ P CppH,Hq, ψ P CqpH,Hq, andi “ 1, . . . , p, by
means of the properties of a Hopf algebra and sincek is central inH

pξ´1pξϕ ˝G
i ξψqqph1, . . . , h|p`q|q

“
`
pξϕ ˝G

i ξψqqph1p1q, . . . , h
|p`q|
p1q

q
˘
Sph1p2q ¨ ¨ ¨ h

|p`q|
p2q

q

p3.7q
“

`
ξϕ

˘`
h1p1q, . . . , h

i´1

p1q
, pξψqphip1q, . . . , h

i`|q|
p1q

q, hi`q
p1q

, . . . , h
|p`q|
p1q

˘
Sph1p2q ¨ ¨ ¨ h

|p`q|
p2q

q

“ ϕ
`
h1p1q, . . . , h

i´1

p1q
, ψphip1q, . . . , h

i`|q|
p1q

qp1qh
i
p2q ¨ ¨ ¨ h

i`|q|
p2q

, h
i`q
p1q

, . . . , h
|p`q|
p1q

˘
h1p2q ¨ ¨ ¨ hi´1

p2q

ψphip1q, . . . , h
i`|q|
p1q

qp2qh
i
p3q ¨ ¨ ¨ h

i`|q|
p3q

h
i`q
p2q

¨ ¨ ¨h
|p`q|
p2q

Sph1p3q ¨ ¨ ¨hi´1

p3q
hip4q ¨ ¨ ¨h

i`|q|
p4q

h
i`q
p3q

¨ ¨ ¨ h
|p`q|
p3q

q

“ ϕ
`
h1p1q, . . . , h

i´1

p1q
, ψphip1q, . . . , h

i`|q|
p1q

qp1qh
i
p2q ¨ ¨ ¨ h

i`|q|
p2q

, hi`q, . . . , h|p`q|
˘

¨H h1p2q ¨ ¨ ¨ hi´1

p2q
ψphip1q, . . . , h

i`|q|
p1q

qp2qSph1p3q ¨ ¨ ¨ hi´1

p3q
q

“ ϕ
`
h1p1q, . . . , h

i´1

p1q
, ψphip1q, . . . , h

i`|q|
p1q

qp1qh
i
p2q ¨ ¨ ¨ h

i`|q|
p2q

, hi`q, . . . , h|p`q|
˘

¨H
`
adph1p2q ¨ ¨ ¨ hi´1

p2q
qψphip1q, . . . , h

i`|q|
p1q

qp2q

˘

p3.2q
“ ϕ

`
h1p1q, . . . , h

i´1

p1q
,Dψphi, . . . , hi`|q|qp1q, h

i`q, . . . , h|p`q|
˘

¨H
`
adph1p2q ¨ ¨ ¨ hi´1

p2q
qDψphi, . . . , hi`|q|qp2q

˘

p3.3q
“ pϕ ˝i ψqph1, . . . , h|p`q|q,

where, at certain places, we denoted the multiplication inH by ¨H to better illustrate the
analogy to (3.3). Hence, as claimed, the vector space isomorphismξ induces an isomor-
phism of Gerstenhaber algebras on cohomology.

Example 3.6. If H is a k-bialgebra andV simultaneously anH-module algebra and a
left H-comodule, thenV#H is a left bialgebroid overV if and only if V is a braided
commutative Yetter-Drinfel’d algebra overH , see [Lu, Thm. 5.1] or [BrzMi, Thm. 4.1].
In this case, bothExtHpk, V q andExtV#HpV, V q are Gerstenhaber algebras asV is au-
tomatically a braided commutative Yetter-Drinfel’d algebra overV#H , see the comment
below Definition 2.8. For example, ifH is a finite dimensional Hopf algebra over a field
with bijective antipode andH˚ its k-linear dual, then the Heisenberg doubleHpH˚q is a
braided commutative Yetter-Drinfel’d algebra over the Drinfel’d doubleDpHq, see [Se];
hence,ExtHpH˚q#DpHqpHpH˚q,HpH˚qq andExtDpHqpk,HpH˚qq are Gerstenhaber al-
gebras. On the other hand, the Yetter-Drinfel’d algebra structure onHpH˚q overDpHq
arises (see [op. cit.] again) from the construction ofHpH˚q as a braided product ofH˚

coop

andH , which both are braided commutative Yetter-Drinfel’d algebras overDpHq as well.
In particular, bothExtDpHqpk,Hq andExtDpHqpk,H˚

coopq carry Gerstenhaber algebra
structures, which can be transferred to certain Gerstenhaber-Schack cohomology groups
HGSp., .q: for two Hopf bimodules (ortetramodules)M,N , one has an isomorphism [Tai1]

Ext‚

DpHqpM coinv, N coinvq » HGSpM,Nq.

Applying this to our situation above meansExtDpHqpk,H˚
coopq » HGSpH,HbH˚

coopq,
and therefore yields a Gerstenhaber algebra structure on

HGSpH,H bH˚
coopq » HGSpH,EndkpHqq.

Observe here that the Gerstenhaber algebra structure onHGSpH,Hq obtained in [FaSo] by
similar arguments is trivial, as shown in [Tai2].
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We leave all details of this example paragraph to a future extension, also in the hope of
discovering genuinely new examples which do not resemble orgeneralise classical Ger-
stenhaber algebra structures.

3.2. C‚
copU,Nq as a cyclic operad with multiplication. Let againN be a leftU -module

(with action denoted by juxtaposition) which is simultaneously a leftU -comodule with
coaction∆N : n ÞÑ np´1q bA np0q such that the underlying induced leftAe-module
structures coincide. As before, we assume that with respectto this leftAe-module structure
N is anA-ring with multiplication denoted bypn, n1q ÞÑ n ¨N n

1. Observe once more that
by these requirements in particular Eq. (2.28) holds. We then define, as a generalisation of
[GSch, p. 65],

˝i : C
p
copU,Nq bk C

q
copU,Nq Ñ C |p`q|

co pU,Nq, i “ 1, . . . , p,

by

pu1, . . . , up, nq ˝i pv1, . . . , vq, n1q

:“ pu1, . . . , ui´1, uip1qv
1, . . . , uipqqv

q, puipq`1qn
1qp´p`iqu

i`1,

. . . , puipq`1qn
1qp´1qu

p, puipq`1qn
1qp0q ¨N nq,

(3.10)

which is well-defined by (2.24), (2.4), (2.23), and (2.28). For zero cochains, that is, el-
ementsn P N , we definen ˝i pv1, . . . , vq, n1q “ 0 for all i and all pv1, . . . , vq, n1q P
CqcopU,Nq, whereas

pu1, . . . , up, nq ˝i n
1

:“ pu1, . . . , ui´1, puin1qp´p`iqu
i`1, . . . , puin1qp´1qu

p, puin1qp0q ¨N nq P Cp´1
co pU,Nq.

The distinguished element,i.e., the operad multiplication (2.41) is here

µ :“ p1U , 1U , 1Nq P C2
copU,Nq, (3.11)

and also set

1 :“ p1U , 1Nq P C1
copU,Nq along with e :“ 1N P C0

copU,Nq. (3.12)

With (3.10) and (3.11), the cup product (2.43) explicitly becomes

pu1, . . . , up,mq ` pv1, . . . , vq, nq “ pu1, . . . , up,mp´qqv
1, . . . ,mp´1qv

q,mp0q ¨N nq.

Observe that the differential (2.37) formed by the cofaces in (2.34) can be expressed as

δpz, nq “ tµ, pz, nqu,

where the right hand side is again defined as in (2.42) and we used the abbreviation
pz, nq :“ pu1, . . . , up, nq.

Theorem 3.7. LetN be a braided commutative Yetter-Drinfel’d algebra over a left bial-
gebroidU . ThenC‚

copU,Nq with the structure given in(3.10)–(3.12) yields an operad with
multiplication.

Proof. The proof relies on straightforward computations analogous to those in the proof
of Theorem 3.1, which is why it is omitted. �

By Theorem 2.14 one deduces at once:

Corollary 3.8. With the assumptions of Theorem 3.7 onN , the cohomology groups
H‚

copU,Nq carry the structure of a Gerstenhaber algebra. In particular, if UŽ is flat as
a rightA-module, thenCotor‚

U pA,Nq is a Gerstenhaber algebra.
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Remark 3.9. Taking forN the base algebraA, the conditions mentioned in the preced-
ing proposition can, as said before, always be fulfilled for the canonicalU -action and
U -coaction (2.3) resp. (2.25) (and the formulae notably simplify: the cup product, for ex-
ample, just becomes the tensor product). However, this is not the case if one twists the
coactiona ÞÑ spaqσ onA by a grouplike elementσ P U (for the underlyingA-coring of
U ): unlessσ “ 1, the base algebraA is already not a comodule algebra any more, not even
for a bialgebra (whereA “ k). This seems to correspond to Menichi’s conjecture in [Me2,
§10] thatC‚

copH, σkδq, whereH is a Hopf algebra over a commutative ringk andpδ, σq is
a modular pair in involution, doesnotgive an operad with multiplication unlessσ “ 1.

3.3. Batalin-Vilkovisky algebra structures on Cotor. In this section, we want to inves-
tigate how the operad with multiplication from Theorem 3.7 can be given the structure of
a cyclic operad with multiplication; or, equivalently, under which conditions the Gersten-
haber algebra in Corollary 3.8 becomes a Batalin-Vilkovisky algebra. In particular, as seen
in Proposition 2.11 and Eq. (2.35), respectively, whenevera cyclic operation needs to be
defined, the leftU -comoduleN has to be given the structure of aright U -action. This
can be obtained ifU is not merely a left bialgebroid but rather a left Hopf algebroid and if
moreover the base algebraA is itself a rightU -module. One can then show:

Theorem 3.10. LetN P U

U
YD be a braided commutative Yetter-Drinfel’d algebra over

a left Hopf algebroidU . Assume thatA carries an (Ae-balanced) rightU -actionA bAe

ŻUŽ Ñ A, abAe u ÞÑ a � u, and define the correspondingright character

B : U Ñ A, Bu :“ 1A � u, for all u P U. (3.13)

If A with this right action and the canonical coaction(2.25) fulfills (2.32), i.e., is anti
Yetter-Drinfel’d, then the leftU -comoduleN equipped with the rightU -action

N b U Ñ N, nb u ÞÑ nu :“ pu´nq Ž Bu` (3.14)

is also ananti Yetter-Drinfel’d module. IfN is moreover stable with respect to(3.14) and
its given leftU -comodule structure, thenC‚

copU,Nq with the structure given in(3.10)–
(3.12) and the cocyclic operator in(2.34) yields a cyclic operad with multiplication.

Remark 3.11. The fact that the YD moduleN equipped with the rightU -action (3.14)
becomes an aYD ifA itself is aYD is due to the more general fact that the tensor product
(overA) of an aYD module with a YD module yields an aYD module again (in other words,
U
aYDU forms a module category overU

U
YD). Let us also remark that a straightforward

check proves that if the base algebraA of a left Hopf algebroidU is aYD, thenpU,A,Aopq
defines afull Hopf algebroid with involutive antipode in the sense of Böhm-Szlachányi
(see,e.g., [B] for the precise definition), the antipode (and its inverse) given by

Su :“ u´ Ž Bu`, @ u P U.

One could also be tempted to think that starting directly with aYD modules simplifies
matters; however, since there is no corresponding monoidalcategory, there is no such
thing as a monoid in that category, which in turn would be necessary for the Gerstenhaber
algebra structure.

Proof of Theorem 3.10.The first claim thatN P U

U
YD equipped with the action (3.14)

becomes aYD is proven as follows: ifA is aYD w.r.t. the mentioned right action and the
left U -coaction∆A from (2.25), then one has

spa � uq bA 1A “ ∆Apa � uq “ u´spaqu`p1q bA p1A � u`p2qq,

hence

spBuq “ pu´u`p1qq Ž Bu`p2q.
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Therefore,

∆Npnuq “ pu´nqp´1q đ Bu` bA pu´nqp0q

“ pBu``p2q § pu´nqp´1qqu`´u``p1q bA pu´nqp0q

p2.33q
“ u´`p1qnp´1qu´´u`´u``p1q bA pu´`p2qnp0qq Ž Bu``p2q

p2.10q
“ u´p1q`p1qnp´1qu´p1q´u´p2qu`p1q bA pu´p1q`p2qnp0qq Ž Bu`p2q

p2.8q
“ u´p1qnp´1qu`p1q bA pu´p2qnp0qq Ž Bu`p2q

p2.10q
“ u´np´1qu``p1q bA pu`´np0qq Ž Bu``p2q

p2.9q
“ u´np´1qu`p1q bA pu`p2q´np0qq Ž Bu`p2q`,

and the last line is precisely the aYD condition (2.32) for the rightU -action (3.14) on the
left U -comoduleN .

To prove thatC‚
copU,Nq forms a cyclic operad with multiplication, we have to verifythe

conditions (2.44) and (2.45): we only prove the first identity, the rest being either similar
or obvious. One computes forp, q ě 1:

τppu1, . . . , up, nq ˝1 pv1, . . . , vq , n1qq

p3.10q
“ τ

`
u1p1qv

1, . . . , u1pqqv
q , pu1pq`1qn

1qp´p`1qu
2, . . . , pu1pq`1qn

1qp´1qu
p, pu1pq`1qn

1qp0q ¨N n
˘

p2.34q
“

´
v1´p1qu

1

p1q´p1qu
1

p2qv
2, . . . , v1´pq´1qu

1

p1q´pq´1qu
1

pqqv
q , v1´pqqu

1

p1q´pqqpu1pq`1qn
1qp´p`1qu

2,

. . . , v1´p|q`p|´1qu
1

p1q´p|q`p|´1qpu1pq`1qn
1qp´1qu

p,

v1´p|q`p|qu
1

p1q´p|q`p|q

`
pu1pq`1qn

1qp0q ¨N n
˘

p´1q
,
`
pu1pq`1qn

1qp0q ¨N n
˘

p0q
u1p1q`v

1

`

¯

p2.29q,p2.33q
“

´
v1´p1qu

1

p1q´p1qu
1

p2qv
2, . . . , v1´pq´1qu

1

p1q´pq´1qu
1

pqqv
q ,

v1´pqqu
1

p1q´pqqu
1

pq`1q`p1qn
1
p´pqu

1

pq`1q´p1qu
2,

. . . , v1´p|q`p|´1qu
1

p1q´p|q`p|´1qu
1

pq`1q`pp´1qn
1
p´2qu

1

pq`1q´pp´1qu
p,

v1´p|q`p|qu
1

p1q´p|q`p|qu
1

pq`1q`ppqn
1
p´1qu

1

pq`1q´ppqnp´1q,

pu1pq`1q`pp`1qn
1
p0q ¨N np0qqu1p1q`v

1

`

¯

p2.9q
“

´
v1´p1qu

1

`p1q´p1qu
1

`p2qv
2, . . . , v1´pq´1qu

1

`p1q´pq´1qu
1

`pqqv
q ,

v1´pqqu
1

`p1q´pqqu
1

`pq`1qn
1
p´pqu

1

´p1qu
2,

. . . , v1´p|q`p|´1qu
1

`p1q´p|q`p|´1qu
1

`p|q`p|qn
1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qu
1

`p1q´p|q`p|qu
1

`pq`pqn
1
p´1qu

1

´ppqnp´1q, pu
1

`pq`p`1qn
1
p0q ¨N np0qqu1`p1q`v

1

`

¯

p2.8q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´pqu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q, pu
1

`p2qn
1
p0q ¨N np0qqu1`p1qv

1

`

¯

p3.14q,p2.26q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´pqu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q,
`
u1`p1q´p1qu

1

`p2qn
1
p0q ¨N pu1`p1q´p2qnp0qq Ž Bu1`p1q`

˘
v1`

¯

p2.10q,p2.8q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´pqu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q,
`
n1

p0q ¨N pu1`´np0qq Ž Bu1``

˘
v1`

¯

p3.14q,p2.31q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´p´1qu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q,
`
v1`´

`
n1

p´1qpnp0qu
1

`q ¨N n1
p0q

˘˘
Ž Bv1``

¯
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p2.10q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´p´1qu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q,
`
v1´pq`pq

`
n1

p´1qpnp0qu
1

`q ¨N n1
p0q

˘˘
Ž Bv1`

¯

p2.26q,p2.27q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´p´1qu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q, pv
1

´pq`pqn
1
p´1qpnp0qu

1

`qq ¨N pv1´pq`p`1qn
1
p0qq Ž Bv1`

¯

p2.10q,p3.14q
“

´
v1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´p´1qu

1

´p1qu
2, . . . , v1´p|q`p|´1qn

1
p´2qu

1

´pp´1qu
p,

v1´p|q`p|qn
1
p´1qu

1

´ppqnp´1q,
`
v1´pq`pqn

1
p´1qpnp0qu

1

`q
˘

¨N n1
p0qv

1

`

¯

p3.10q
“ pv1´p1qv

2, . . . , v1´pq´1qv
q , v1´pqqn

1
p´1q, n

1
p0qv

1

`q

˝q pu1´p1qu
2, . . . , u1´pp´1qu

p, u1´ppqnp´1q, np0qu
1

`q

p2.34q
“ τpv1, . . . , vq , n1q ˝q τpu1, . . . , up, nq,

which concludes the proof of the theorem. �

By Theorem 2.16 one then immediately has:

Corollary 3.12. With the assumptions of Theorem 3.10 onN andA, the cohomology
groupsH‚

copU,Nq carry the structure of a Batalin-Vilkovisky algebra. In particular, if UŽ

is flat as a rightA-module, thenCotor‚

U pA,Nq is a Batalin-Vilkovisky algebra.

3.4. Maps of Gerstenhaber and Batalin-Vilkovisky algebras. In this section, we dis-
cuss how the Batalin-Vilkovisky algebraCotor‚

VLpA,ABq over the universal enveloping
algebraVL of a Lie-Rinehart algebrapA,Lq as in Example 2.3 is related to the classical
Batalin-Vilkovisky algebra structure on the exterior algebra

Ź
‚

A
L as discussed in [Hue2].

3.4.1. The generalised Schouten bracket.For an arbitrary Gerstenhaber algebraV ‚, the
pair pV 0, V 1q of its degree zero and degree one part forms a Lie-Rinehart algebra [GSch,
p. 67]. The forgetful functorV ‚ Ñ pV 0, V 1q from Gerstenhaber algebras to Lie-Rinehart
algebras has as a left adjoint (see [GSch, Thm. 5]) given by the mappV 0, V 1q Ñ

Ź
‚

V 0V 1,
where the exterior algebra

Ź
‚

V 0V
1 of V 1 overV 0 is equipped with the Schouten bracket:

rX1 ^ ¨ ¨ ¨ ^ Xp, Y1 ^ ¨ ¨ ¨ ^ Yqs

“

pÿ

i“1

qÿ

j“1

p´1qi`j`|p||q|rXi, Yjs ^ X1 ^ ¨ ¨ ¨ ^ pXi ^ ¨ ¨ ¨ ^Xp ^ Y1 ^ ¨ ¨ ¨ ^ pYj ^ ¨ ¨ ¨ ^ Yq .
(3.15)

Here the symbolp denotes omission, as usual. Correspondingly, for every Gerstenhaber
algebrapV ‚,`q there is a universal map of Gerstenhaber algebras,

Ź
‚

V 0V
1 Ñ V ‚, X1 ^ ¨ ¨ ¨ ^Xp ÞÑ X1 ` ¨ ¨ ¨ ` Xp. (3.16)

3.4.2. Batalin-Vilkovisky algebra structures and Lie-Rinehart algebras. Assume for the
rest of this section thatpA,Lq is a Lie-Rinehart algebra in whichL is projective as anA-
module. By a direct computation or by applying [KoPo, Thm. 2.13] to cocommutative left
bialgebroids, one has

Cotor0VLpA,Aq “ A,

Cotor1VLpA,Aq “ P pVLq “ L,

whereP pVLq denotes the set of primitive elements ofVL, and where the last equation in
the second line is a consequence of the Milnor-Moore theoremfor cocommutative bialge-
broids (see,e.g., [MoeMr]). SinceCotor‚

VLpA,Aq is a Gerstenhaber algebra as seen in
Corollary 3.12, one consequently has a canonical morphism

Ź‚

A
L Ñ Cotor‚

VLpA,Aq of
Gerstenhaber algebras as generally given by the universal map (3.16).

On the other hand, in [Hue2] it is shown that there is a bijective correspondence between
right VL-module structures onA and operators of square zero that generate the Schouten
bracket (3.15): ifpa, uq ÞÑ a � u for all u P VL anda P A is a rightVL-action onA and
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B : VL Ñ A, Bu :“ 1A � u its associated generalised right character analogous to (3.13),
the mapbL :

Ź‚

A
L Ñ

Ź‚´1

A
L defined by

bLpX1 ^ ¨ ¨ ¨ ^Xnq :“
nÿ

i“1

p´1qi`1BpXiqX1 ^ ¨ ¨ ¨ ^ X̂i ^ ¨ ¨ ¨ ^Xn

`
ÿ

iăj

p´1qi`jrXi, Xjs ^X1 ^ ¨ ¨ ¨ ^ X̂i ^ ¨ ¨ ¨ ^ X̂j ^ ¨ ¨ ¨ ^Xn

generates the Schouten bracket (3.15) and has the propertyb2L “ 0, see [Hue2, Thm. 1].
The following theorem is a generalisation of [Me2, Prop. 65 &Thm. 66] from Lie

algebras to Lie-Rinehart algebras (or Lie algebroids):

Theorem 3.13. Let Q Ď k andpA,Lq be a Lie-Rinehart algebra withL projective as an
A-module. Then the universal map

Ź‚

A
L Ñ Cotor‚

VLpA,Aq of Gerstenhaber algebras
arising from (3.16) is an isomorphism. IfA is moreover a rightVL-module, then this
morphism is a map of Batalin-Vilkovisky algebras.

Proof. This follows at once by using (2.38) along with applying [KoPo, Thm. 3.13]: there
it is proven that the antisymmetrisation map

X1 ^ ¨ ¨ ¨ ^Xn ÞÑ
1

n!

ÿ

σPSn

p´1qσpXσp1q, . . . , Xσpnqq (3.17)

defines a morphism of mixed complexes

Alt : p
Ź‚

A
L, 0, bLq Ñ pC‚

copVLq, β, Bq ,

where the right hand side refers to the complex defined by (2.34) together with the dif-
ferential (2.37) and the analogue of (2.39) for cocyclic modules. On cohomology, this
morphism induces a natural isomorphism between

Ź‚

A
L andCotor‚

VLpA,Aq. Since the
universal map (3.16) of Gerstenhaber algebras coincides, when descending to cohomol-
ogy, with the antisymmetrisation map (3.17) as the cup product (2.43) becomes simply the
tensor product forN “ A, the first claim follows. The second statement follows by the
first along with the equationAlt ˝ bL “ B ˝ Alt mentioned just above. �

4. POISSONBIALGEBROIDS AND THEIR (CO)HOMOLOGY

Definition 4.4 below connects the idea of a Poisson structureto that of a distinguished
element,i.e., can be understood as a generalised operad multiplication for the operad
C‚pU,Aq as given in§3.1. The examples in this section will show that this approach con-
ceptually unites, for example, Hochschild with Poisson homology (resp. cyclic homology
with cyclic Poisson homology).

4.1. The noncommutative calculus structure on left Hopf algebroids. For later use,
we need to recall from [KoKr3,§4] the Hopf algebroid generalisation of thecap product
andLie derivativealong with its properties; see [loc. cit.] for all details and proofs in
this subsection. These operators together with the cyclic differentialB from (2.39) form
a noncommutative differential calculusin the sense of Nest-Tsygan (see [NTs2],cf. also
[TaTs]), which was the main point in [KoKr3].

Definition 4.1 ([KoKr3]) . Let U be a left Hopf algebroid andM a rightU -module left
U -comodule such that the induced leftA-actions onM coincide, and letϕ P CppU,Aq be
ap-cochain.

(i ) Thecap productιϕ :“ ϕ a ¨ of ϕ with pm,xq P CnpU,Mq is defined by

ϕ a pm,xq :“ pm,u1, . . . , un´p´1, ϕpun´|p|, . . . , unq § un´pq,

where as in Proposition 2.11 the abbreviationpm,xq :“ pm,u1, . . . , unq is used.



BATALIN-VILKOVISKY ALGEBRA STRUCTURES ON pCoqTor AND POISSON BIALGEBROIDS 23

(ii ) TheLie derivative

Lϕ : CnpU,Mq Ñ Cn´|p|pU,Mq

alongϕ in degreen with p ă n` 1 is defined to be

Lϕ :“

n´|p|ÿ

i“1

p´1qθ
n,p
i tn´|p|´iD1

ϕ t
i`p `

pÿ

i“1

p´1qξ
n,p
i tn´|p| D1

ϕ t
i, (4.1)

where the signs are given byθn,pi :“ |p|pn ´ |i|q andξn,pi :“ n|i| ` |p|. In case
p “ n` 1, set

Lϕ :“ p´1q|p|ιϕB,

and forp ą n` 1, we defineLϕ :“ 0.

To simplify future reference, we call the first sum in (4.1) the untwisted partand the
second sum thetwisted partof Lϕ. As a shorthand, we will write

Lϕ “ Luntw

ϕ ` Ltw

ϕ . (4.2)

We list a few useful facts about the triple of operatorspLϕ, ιϕ, Bq; for simplicity, letM
be an SaYD module in the following theorem and letr., .s denote the graded commutator
in all what follows.

Theorem 4.2([KoKr3]) . LetM be an SaYD module. Then the triplepC‚pU,Mq, b,aq is
a left DG module overpC‚pU,Aq, δ,`q, i.e., for any cochainϕ P C‚pU,Aq

ιϕ ιψ “ ιϕ`ψ and rb, ιϕs “ ιδϕ (4.3)

holds, wherè is given by(2.43). On the other hand, the Lie derivativeL defines a DG
Lie algebra representation ofpC‚pU,Mqr1s, t., .uq: for another cochainψ P C‚pU,Aq,
we have, as operators onC‚pU,Mq,

rLϕ,Lψs “ Ltϕ,ψu, (4.4)

where the bracket on the right hand side is the Gerstenhaber bracket(2.42). Moreover,

rb,Lϕs ` Lδϕ “ 0. (4.5)

If furthermoreϕ P CppU,Aq, ψ P CqpU,Aq are any two cocycles, the induced maps

Lϕ : H‚pU,Mq Ñ H‚´|p|pU,Mq and ιψ : H‚pU,Mq Ñ H‚´qpU,Mq

are well-defined operators that turnH‚pU,Mq into a module over the Gerstenhaber alge-
braH‚pU,Aq, that is, they satisfy

rιψ,Lϕs “ ιtψ,ϕu.

Finally, for a cocycleϕ P C̄ppU,Aq theCartan-Rinehart homotopy formula

Lϕ “ rB, ιϕs

holds onH‚pU,Mq.

With the help of the homotopy formula, we can easily prove that for any cochainϕ P
C̄‚pU,Aq one has on the normalised complexC̄‚pU,Mq

rLϕ, Bs “ 0. (4.6)

Remark 4.3. One can also obtain a homotopy formula more generally on the chain resp.
cochain level. In this case, one has to apply a “cyclic correction” to the cap productιϕ
by an operatorSϕ : CnpU,Mq Ñ Cn´p`2pU,Mq to take the full cyclic bicomplex into
account; see [KoKr3] for all details (or [Ri, Ge, NTs2] for the example of associative
algebras). SettingIϕ :“ ιϕ ` Sϕ for the “cyclic cap product” on the cyclic bicomplex and
B :“ B ` b for its differential, the Cartan-Rinehart homotopy formula for any cochain
ϕ P C̄ppU,Mq then reads

Lϕ “ rB, Iϕs ´ Iδϕ.
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All the preceding statements can be moreover relaxed to the case whereM is merely a
rightU -module leftU -comodule with compatible leftA-actions instead of being an SaYD
module. Since we shall not deal with this situation, we referto [KoKr3, §4] for the details
of this more general construction.

Special cases.We conclude this section by listing explicit expressions for the Lie derivative
in two special situations: in caseM is SaYD, the Lie derivative alongϕ P CppU,Aq can
be written onCnpU,Mq explicitly as

Lϕpm, xq “

n´|p|ÿ

i“1

p´1qθ
n,p
i

`
m,u1, . . . , Dϕpui, . . . , ui`|p|q, . . . , un

˘

`

|p|ÿ

i“0

p´1q
ξ
n,p
i`1

`
mp0qu

1

`p2q ¨ ¨ ¨ ui`p2q, u
i`1

` , . . . , u
n´p`i
` ,

ϕpu
n´|p|`i`1

` , . . . , un`, u
n
´ ¨ ¨ ¨ u1´mp´1q, u

1

`p1q, . . . , u
i
`p1qq § u

n´|p|`i
`

˘
.

In §4.4 we will deal with acommutativeleft Hopf algebroidU . Unlike for general left
Hopf algebroids, we have in this case canonical coefficients: here, the base algebraM :“A
is automatically an SaYD module using the canonical left action (2.3) as right action, along
with the canonical left coaction (2.25). In this case, the Lie derivative simplifies to:

Lϕpxq “

n´|p|ÿ

i“1

p´1qθ
n,p
i

`
u1, . . . ,Dϕpui, . . . , ui`|p|q, . . . , un

˘

`

|p|ÿ

i“0

p´1q
ξ
n,p
i`1

`
ui`1

` , . . . , u
n´p`i
` ,

ϕpu
n´|p|`i`1

` , . . . , un`, u
n
´ ¨ ¨ ¨ u1´, u

1

`, . . . , u
i
`q § u

n´|p|`i
`

˘
.

(4.7)

4.2. Poisson Bialgebroids.Having recalled the technical machinery above, we are in a
position to introduce the Poisson theory for bialgebroids:

Definition 4.4. A (quasi-)triangularr-matrixor Poisson structurefor a left bialgebroidU
is a2-cocycleθ P C2pU,Aq that fulfills

θ ˝1 θ “ θ ˝2 θ. (4.8)

A left bialgebroidU is calledPoisson bialgebroidif there is a triangularr-matrix θ P
C2pU,Aq.

Note that (ifk has characteristic different from two) Eq. (4.8) is equivalent to

θ¯̋θ “ 0 “ tθ, θu, (4.9)

as follows from the grading of the Gerstenhaber bracket. Theterminology “triangularr-
matrix” will be motivated in§4.5. One could, of course, also define Poisson structures for
right bialgebroids but for shortage in terminology, we shall always mean left ones when
speaking about Poisson structures. At times, we denote a Poisson bialgebroid byUθ if we
want to underline the dependence of a certain construction or structure from the triangular
r-matrixθ. Observe that every bialgebroid allows for at least one suchtriangularr-matrix
given by the operad multiplication,i.e., the distinguished elementµ in (3.4) (forM :“ A),
which we will refer to as thetrivial one.

4.3. The Poisson bicomplex.Let U be a Poisson bialgebroid with triangularr-matrix θ
andM an SaYD module. Define the operators

bθ : CnpU,Mq Ñ Cn´1pU,Mq, pm,xq ÞÑ ´Lθpm,xq, (4.10)

βθ : CnpU,Aq Ñ Cn`1pU,Aq, ϕ ÞÑ tθ, ϕu. (4.11)

These operators could be, of course, defined for any2-cochain but the crucial property
here is:
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Lemma 4.5. If θ is a triangularr-matrix, one has

bθbθ “ 0 as well as βθβθ “ 0.

Proof. The first equation is immediately seen with (4.9) and the property (4.4) of the Lie
derivative. The second equation follows again from (4.9) and the graded Jacobi identity
for the Gerstenhaber bracket. �

Hence
`
C‚pU,Mq, bθ

˘
and

`
C‚pU,Aq, βθ

˘
are chain resp. cochain complexes, and we

can define:

Definition 4.6. The homology of
`
C‚pU,Mq, bθ

˘
will be calledPoisson homologyof the

bialgebroidU with values inM and denoted byHθ
‚ pU,Mq. In a similar way, thePois-

son cohomologyH‚

θpU,Aq with coefficients in the base algebraA is the cohomology of`
C‚pU,Aq, βθ

˘
.

Remark 4.7. In view of Theorem 3.1, one could, for any braided commutative Yetter-
Drinfel’d algebraN , also introduceN -valued Poisson structureson bialgebroids and con-
sequently also consider the Poisson cohomologyH‚

θpU,Nq with coefficients in such a
braided commutative Yetter-Drinfel’d algebraN . Also, as already stated in Remark 4.3,
one could relax the assumptions onM as to be a rightU -module leftU -comodule with
compatible leftA-action and proceed in the spirit of [KoKr3]. To keep the exposition sim-
ple we shall refrain from pursuing both these generalisations, and leave them to a future
project.

As follows from (4.6), one has for every triangularr-matrixθ the identity

bθB `Bbθ “ 0 (4.12)

on the normalised complex̄C‚pU,Mq, and therefore:

Proposition 4.8. The triple
`
C̄‚pU,Mq, bθ, B

˘
forms a mixed complex.

This enables us to define:

Definition 4.9. We call the cyclic homology of the mixed complex
`
C̄‚pU,Mq, bθ, B

˘
, i.e.,

the homology of its total complex, thecyclic Poisson homologyof the Poisson bialgebroid
Uθ and denote it byHCθ

‚
pU,Mq.

Example 4.10. (Hochschild and cyclic homology for left Hopf algebroids andassociative
algebras) Let θ :“ µ be the distinguished element (3.4),i.e., the trivial triangularr-matrix.
Then, as shown in [KoKr3, Eq. (3.11) & Lemma 4.18], one has

bµ “ ´Lµ “ b,

βµ “ tµ, ¨u “ β,
(4.13)

whereb andβ are as in (2.36) and (2.37). Hence, one reproduces the simplicial (i.e.,
Hochschild) homology (with coefficients inM ) resp. cohomology (with coefficients inA)
for the left bialgebroidU , and the mixed complex related of Proposition 4.8 is the one
arising from the cyclic module in the first part of Proposition 2.11.

In particular, for the caseU “ Ae, this leads to the well-known Hochschild
(co)homology of an associative algebraA, and the relation to the operatorsbµ andβµ

for this case were already noticed in,e.g., [Ts, GSch]. In both cases,i.e., for generalU or
in the exampleU “ Ae, the cyclic Poisson homology is then simply the cyclic homology
of U resp. the classical cyclic homology for associative algebras (cf. [Co2, FTs]).

Example 4.11. (Poisson (co)homology for associative algebras) In the caseU “ Ae for a
not necessarily commutative associativek-algebraA, a triangularr-matrixπ P C2pAe, Aq
can, as mentioned before, be seen as a conventional Hochschild 2-cocycleπ̃ by means of
the isomorphismC‚pAe, Aq Ñ C‚pA,Aq in (3.6). Such a Hochschild2-cocycleπ̃ with
the propertytπ̃, π̃uG “ 0 was namednoncommutative Poisson structurein [X2], where
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we write t., .uG for the classical Gerstenhaber structure on Hochschild cohomology as
mentioned in Example 3.4. Using (3.6) again, one obtains

Čβπpfq “ β̃π̃pf̃q, @f P C‚pAe, Aq,

whereβ̃π̃ :“ tπ̃, .uG is the differential introduced in [X2] that definesnoncommutative
Poisson cohomology.

The differentialbπ, in turn, leads in this context to thenoncommutative Poisson homol-
ogydefined in [NePfPoTan,§4.1]: similar to (3.6), there is an isomorphism

C‚pAe, Aq » C‚pA,Aq,

where the right hand side is the standard Hochschild chain complex, and using this along
with (3.6), one obtains analogously to the considerations in [KoKr3, §7.1] the operator

bπ̃pa0 bk ¨ ¨ ¨ bk anq “
n´1ÿ

i“0

p´1qn´ia0 bk ¨ ¨ ¨ bk π̃
`
ai bk ai`1

˘
bk ¨ ¨ ¨ bk an

`π̃pan bk a0q bk a1 bk ¨ ¨ ¨ bk an´1,

which is the noncommutative Poisson boundary in [NePfPoTan].
In both cases, for a Poisson manifoldP and the commutative algebraA :“ C8

c pPq
of compactly supported smooth functions onP , these two definitions lead to the dif-
ferential geometric notions of Poisson cohomology resp. homology, as introduced by
Lichnerowicz [L] resp. Koszul [K] and Brylinski [Br]. The resulting mixed complex`
C‚pA,Aq, bπ̃, d

˘
, whered is the de Rham differential for forms, was introduced in [Br,

§1.3.4], and the corresponding cyclic homology of Poisson manifolds was further discussed
in, e.g., [FerIbDeL, Pa, VdB].

Example 4.12.In [Hue3], Poisson homology for a commutative Poisson algebraAwas in-
troduced somewhat differently: ift., .u is a Poisson structure on a commutative algebraA,
then the pairpA,Ω1

A|kq, whereΩ1
A|k denotes the Kähler differentials overA, can be given

the structure of a Lie-Rinehart algebra depending ont., .u. Its Lie-Rinehart homology is
then the Poisson homology ofA. In view of [KoPo, KoKr2], this amounts to considering
the cyclic (co)homology of the leftA-bialgebroid given by the universal enveloping alge-
braV pΩ1

A|kq, which, in turn, depends on the rightpA,Ω1
A|kq-module structure (see [Hue3]

for the definition) given bya b bdu ÞÑ tab, uu for a, b, u P A. Hence, Poisson homology
can be introduced in (at least) two ways arising from two different left bialgebroidspA,Aeq
and

`
A, V pΩ1

A|kq
˘
, respectively; however, the latter approach, in contrast to Example 4.11,

does not include the case of noncommutative Poisson algebras (as there is no notion of a
Lie-Rinehart algebra over a noncommutative base algebra).

Example 4.13. Another way of arriving at the differential geometric notion of Poisson
cohomology is by considering the bialgebroid given by the jet spaceJL for a Lie-Rinehart
algebrapA,Lq as in Example 2.4, taking forL the sections of the tangent bundle of a
Poisson manifold. This situation will be discussed at length in §4.4.4 and§4.5 below.

4.4. Batalin-Vilkovisky algebra structures on commutative Poisson bialgebroids.In
this section, we assume thatU be acommutativePoisson left Hopf algebroid and for the
sake of simplicity thatM :“ A. In this case, one can prove that beyond the canonical Ger-
stenhaber algebra structure onH‚pU,Aq, there is also one onH‚pU,Aq, which is moreover
a Batalin-Vilkovisky algebra. This essentially follows byan application to the bialgebroid
case of Koszul’s classical result in [K]. In there, Koszul considered a graded commutative
algebraS “ ‘pě0S

p (over a field the characteristic of which is different from two) with
unit 1 P S0. Moreover, let there be a differential operatorD P EndpSq of at most second
order and odd degreer, which vanishes on scalars (i.e., Dp1q “ 0), and the square of



BATALIN-VILKOVISKY ALGEBRA STRUCTURES ON pCoqTor AND POISSON BIALGEBROIDS 27

which is supposed to be again of at most second order. In such asituation, the bracket

t., .uD : Sp b Sq Ñ Sp`q`r ,

xb y ÞÑ p´1qpDpxyq ` p´1q|p|Dpxqy ´ p´1qp|q|Dpyqx
(4.14)

generated byD yields a Gerstenhaber algebra structure onS and, by the very construction,
even that of a Batalin-Vilkovisky algebra (see [op. cit.]); for a recent contribution with
respect to formality issues of such a bracket see,e.g., [FiMa], or [BraLa] for issues related
to higher Koszul brackets and homotopy Batalin-Vilkoviskystructures.

The necessary ingredients to apply this general fact to the homology groupsH‚pU,Aq
of a commutative Poisson left Hopf algebroid are the shuffle product and the Lie derivative
in (4.1).

4.4.1. The shuffle product for commutative bialgebroids.Recall from,e.g., [Lo, §4.2] that
the shuffle product on Hochschild chains leads to aninner shuffle product map provided
that the algebra in question is commutative. We give here a version slightly adapted to
the case of the simplicial moduleC‚pU,Aq. Generally, the shuffle product map could
be defined on any left bialgebroidU provided the base algebraA is central inU (which
happens, for example, ifU is a bialgebra overA or if U is a commutative left bialgebroid).

Hence, letU be a commutative left bialgebroid overA for the rest of this section. Al-
though this means forA to be commutative as well and thereforeA “ Aop, we stick to the
notationUbAopU :“ §U bAopUŽ to distinguish the various tensor products. Forp, q ě 1,
define

¨ ˆ ¨ “ shpq : CppU,Aq b CqpU,Aq Ñ Cp`qpU,Aq,

pu1, . . . , upq ˆ pup`1, . . . , up`qq :“
ÿ

σPShpp,qq

p´1qσpuσ
´1p1q, . . . , uσ

´1pp`qqq, (4.15)

where, as usual,

Shpp, qq :“ tσ P Sp`q | σp1q ă . . . ă σppq;σpp ` 1q ă . . . ă σpp ` qqu

is the set ofpp, qq-shuffles in the symmetric groupSp`q. Additionally, setsh00 :“ mA,
the multiplication inA, and

shp0 : CppU,Aq bA Ñ CppU,Aq, pu1, . . . , upq b a ÞÑ pu1 Ž a, . . . , upq,
sh0q : A b CqpU,Aq Ñ CqpU,Aq, a b pu1, . . . , uqq ÞÑ pu1, . . . , a § uqq,

(4.16)

but note that the second line is actually redundant,i.e., shp0 “ sh0p sinceU is commuta-
tive. If we let

sh :“
ÿ

p,qě0
p`q“n

shpq :
`
CppU,Aq b CqpU,Aq

˘
n

Ñ CnpU,Aq

be the sum of the shuffle products forp ` q “ n, a straightforward computation proves,
analogous to the Hochschild case for associative algebras (see,e.g., [MacL, p. 312]), that
the Hochschild boundary is a graded derivation of the shuffleproduct and thatsh is a map
of complexes:

Lemma 4.14. For x P CppU,Aq, y P C‚pU,Aq, one has

bpxˆ yq “ bxˆ y ` p´1qpxˆ by. (4.17)

The mapsh therefore is a map of complexes of degree0, i.e., rb, shs “ 0. Hence, the
induced map

¨ ˆ ¨ : HppU,Aq bHqpU,Aq Ñ Hp`qpU,Aq

establishes the structure of a graded commutative algebra onH‚pU,Aq.
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4.4.2. TheTorU‚ pA,Aq groups as Batalin-Vilkovisky algebra.In order to obtain a Ger-
stenhaber algebra structure onTorU‚ pA,Aq, we will add to the shuffle product from the
preceding subsection a bracket that is generated by the Lie derivative using a Poisson struc-
ture: to be able to do this, the left bialgebroid needs to carry the additional structure of a
left Hopf algebroid:

Theorem 4.15. Let U be a commutative Poisson left Hopf algebroid with triangular r-
matrixθ. Then there is ak-bilinear map

t., .uθ : CppU,Aq b CqpU,Aq Ñ C|p`q|pU,Aq, p, q ě 0,

xb y ÞÑ p´1q|p|bθpxˆ yq ` p´1qpbθxˆ y ` xˆ bθy,
(4.18)

whereC‚pU,Aq is seen as graded commutative algebra by means of the shuffle product
(4.15), which induces a Batalin-Vilkovisky algebra structure

t., .uθ : HppU,Aq bHqpU,Aq Ñ Hp`q´1pU,Aq (4.19)

on homology.

Remark 4.16. If §U is projective as leftA-module, this yields a bracket

t., .uθ : Tor
U
p pA,Aq b TorUq pA,Aq Ñ TorUp`q´1pA,Aq.

Proof of Theorem 4.15.This will be proven basically by applying Koszul’s result with
respect to the Lie derivative (4.7) and the shuffle product (4.15). From what was said
around Eq. (4.14), it is clear that it suffices to show thatLθ, which is of odd degree if
θ P CevenpU,Aq, and which vanishes onC0pU,Aq “ A by definition, is a differential op-
erator of degree2 on the graded commutative algebra

`
H‚pU,Aq,ˆq. Following Koszul

[K, §1] we call, as in the case of an ungraded algebra, a differential operatorD P EndpSq
acting on a graded commutative (unital) algebraS of second orderif

mSpD b idq
`
dx dy dz

˘
“ 0. (4.20)

Here,mS is the multiplication inS anddx are the Kähler differentials inΩ1
S|k, i.e., we

set dx :“ x b 1 ´ 1 b x as a mapd : S Ñ I{I2 » Ω1
S|k (with the isomorphism

suppressed), whereI is the ideal inSbS defined as the kernel ofmS, andSbS becomes
a commutative graded algebra by factorwise multiplication. Explicitly, Eq. (4.20) means
for anyx P Sp, y P Sq, andz P Sr

Dpxyzq “ Dpxyqz ` p´1qppq`rqDpyzqx` p´1qrpp`qqDpzxqy

´ Dpxqyz ` p´1q|ppq`rq|Dpyqzx` p´1q|rpp`qq|Dpzqxy ` Dp1qxyz,
(4.21)

which we will verify now for the Lie derivative alongθ:

Lemma 4.17. For a commutative Poisson left Hopf algebroidUθ, the Lie derivativeLθ is
a second-order differential operator onH‚pU,Aq.

Proof. First, observe that the unit for the shuffle product (4.15) isgiven as in (4.16),i.e., by
elements inC0pU,Aq “ A, and thatLθ vanishes onA by definition, henceLθp1C0pU,Aqq “
0. Second, using the terminology of (4.2), it is immediate from the explicit form ofLθ in
(4.7) that the first summandLuntw

θ independently fulfils (4.21). Hence, to prove the lemma
it is enough to show the same property independently for the twisted partLtw

θ , that is, that
for x P CppU,Aq, y P CqpU,Aq, andz P CrpU,Aq, when passing to homology,

Ltw

θ pxˆ y ˆ zq “ Ltw

θ pxˆ yq ˆ z ` p´1qppq`rqLtw

θ py ˆ zq ˆ x

` p´1qrpp`qqLtw

θ pz ˆ xq ˆ y ´ Ltw

θ pxq ˆ y ˆ z

` p´1q|ppq`rq|Ltw

θ pyq ˆ z ˆ x` p´1q|rpp`qq|Ltw

θ pzq ˆ xˆ y

(4.22)
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holds. This consists in a direct (but sufficiently tedious) verification, we only indicate the
main steps. To start with, we list a few properties that are needed: for any2-cocycleθ one
has, for a commutative left bialgebroid, from (3.1) the identity

εpuqθpv, wq ´ θpuv, wq ` θpu, vwq ´ εpwqθpu, vq “ 0 (4.23)

for anyu, v, w P U . Furthermore, dealing with the induced maps descending on homology,
one deduces from (4.3) that for a cocycleθ

bιθ “ ιθb “ 0 (4.24)

is fulfilled on homology. Apart from that, for anypu1, . . . , unq P CnpU,Aq we can give
the following expression for the Hochschild differential (2.36) followed by the extra de-
generacy (2.39):

s´1bpu
1, . . . , unq “ pu1`, . . . , u

n´1
` , un`u

n
´u

n´1
´ ¨ ¨ ¨u1´q

`
n´1ÿ

i“1

p´1qipu1`, . . . , u
n´i
` un´i`1

` , . . . , un`, u
n
´ ¨ ¨ ¨u1´q

` p´1qnpu2`, . . . , u
n
`, u

1
`u

1
´u

2
´ ¨ ¨ ¨un´q,

(4.25)

as follows from (2.11), (2.12), (2.14), and (2.36); in particular, the entire expression (4.25)
equals zero when descending to homology. Considering the fact that

Ltw

θ “ ´ιθs´1 ` p´1qn`1ιθs´1t (4.26)

on elements of lengthn in this situation, we will use Eqs. (4.23)–(4.25) to rewritethe terms
in Ltw

θ px ˆ y ˆ zq: denotex :“ pu1, . . . , upq, y :“ pv1, . . . , vqq, z :“ pw1, . . . , wrq, and
introduce the notation

pxr`s, xr´sq :“ s´1pxq “ pu1`, . . . , u
p
`, u

p
´ ¨ ¨ ¨u1´q.

Consider now one of the terms in the shuffle productxˆyˆz; for example, without loss of
generality, the elementpu1, v1, . . . , vq, u2, . . . , up, w1, . . . , wrq “ pu1, y, u2, . . . , up, zq.
By commutativity ofU , we can then compute, observing thatu Ž a “ a § u in this case,

ιθs´1tpu
1, y, u2, . . . , up, zq “

`
yr`s, u

2

`, . . . , u
p
`, zr`s Ž θpyr´szr´su

1

´ ¨ ¨ ¨up´, u
1

`q
˘

p4.23q,p2.13q
“

`
yr`s, u

2

`, . . . , u
p
`, zr`s Ž θpyr´szr´s, u

1

`u
1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
“:p1q

`
`
y, u2`, . . . , u

p
`, z Ž θpu1´ ¨ ¨ ¨up´, u

1

`q
˘

looooooooooooooooooooooooomooooooooooooooooooooooooon
“:p2q

´
`
εpu1`q § yr`s, u

2

`, . . . , u
p
`, zr`s Ž θpyr´szr´s, u

1

´ ¨ ¨ ¨up´q
˘

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
“:p3q

.

(4.27)

Note thatp2q is already one of the terms of́Ltw

θ pxq ˆ y ˆ z in (4.22), the correct sign
turning out if one takes the sign of the shuffle for the elementpu1, y, u2, . . . , up, zq into
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account. By (4.24), one furthermore has, using (2.13) again,

p3q “ ´
`
u1`v

1

`, . . . , v
q
`, u

2

`, . . . , u
p
`, zr`s Ž θpv1´ ¨ ¨ ¨ vq´zr´s, u

1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon
“:p4q

`

|q|ÿ

i“1

p´1qi´1
`
u1`, v

1

`, . . . , v
i
`v

i`1

` , . . . v
q
`, u

2

`, . . . , u
p
`, zr`s Ž θpv1´ ¨ ¨ ¨ vq´zr´s, u

1

´ ¨ ¨ ¨ up´q
˘

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p5q

` p´1q|q|
`
u1`, v

1

`, . . . , v
q´1

` , v
q
`u

2

`, u
3

`, . . . , u
p
`, zr`s Ž θpv1´ ¨ ¨ ¨ vq´zr´s, u

1

´ ¨ ¨ ¨ up´q
˘

looooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p6q

`

|p|ÿ

j“2

p´1qj`q
`
u1`, yr`s, u

2

`, . . . , u
j
`u

j`1

` , . . . , u
p
`, zr`s Ž θpyr´szr´s, u

1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p7q

` p´1qp`q
`
u1`, yr`s, u

2

`, . . . , u
p´1

` , u
p
`w

1

`, w
2

`, . . . , w
r
` Ž θpyr´sw

1

´ ¨ ¨ ¨wr´, u
1

´ ¨ ¨ ¨up´q
˘

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p8q

`

|r|ÿ

k“1

p´1qk`p`q
`
u1`, yr`s, u

2

`, . . . , u
p
`, w

1

`, . . . , w
k
`w

k`1

` , . . . , wr` Ž θpyr´sw
1

´ ¨ ¨ ¨wr´, u
1

´ ¨ ¨ ¨ up´q
˘

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p9q

` p´1qr`p`q
`
u1`, yr`s, u

2

`, . . . , u
p
`, w

1

`, . . . , w
r´1

` Ž θpyr´sw
r
`w

r
´ ¨ ¨ ¨w1

´, u
1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p10q

` p´1q|r`p`q|
`
u1`, yr`s, u

2

`, . . . , u
p
`, w

1

`, . . . , w
r´1

` Ž θpwr`, yr´sw
1

´ ¨ ¨ ¨wr´u
1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p11q

` p´1qr`p`q
`
u1, yr`s, u

2, . . . , up, w1

`, . . . , w
r´1

` Ž θpwr`, yr´sw
1

´ ¨ ¨ ¨wr´q
˘

looooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooon
“:p12q

.

(4.28)

We see thatp11q “ p´1qr`p`q`1ιθs´1pu1, y, u2, . . . , up, zq, that is, rewriting the second
term in (4.26) for each summand in the shuffle productx ˆ y ˆ z on the left hand side of
(4.22) cancels the first summand in (4.26) so that we do not need to care about these terms
in the following. Also,p12q is one of the summands inp´1qppq`rqLtw

θ py ˆ zq ˆ x; again,
the right sign turns out if one takes the sign of the respective shuffle into account.

As for the termp1q, we want to use the fact that (4.25) equals zero on homology: to
this end, compute, as in (4.27), the second summandιθs´1t of the twisted part of the
Lie derivative for the elementpv2, . . . , vq, x, z, v1q in the shuffle product. The terms that
appear analogous to those inp7q above produce the middle sum in (4.25).

However, the missing first summand in (4.25) so that the sum ofall terms equal zero on
homologycannotbe directly produced by rewriting the termsιθs´1t in the twisted part of
the Lie derivative on any element in the shuffle product, but only by the following steps:
similarly as in (4.27), compute

ιθs´1tpy, u
1, . . . , up´1, z, upq

“
`
v2`, . . . , v

q
`, u

1

`, . . . , u
p´1

` , zr`s, u
p
` Ž θpyr´szr´s, v

1

`u
1

´ ¨ ¨ ¨up´q
˘

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon
“:p13q

`
`
y, u2`, . . . , u

p
`, z Ž θpu1´ ¨ ¨ ¨ up´, v

1q
˘

loooooooooooooooooooooooomoooooooooooooooooooooooon
“:p14q

´
`
εpv1`q § v2`, . . . , v

q
`, u

1

`, . . . , u
p´1

` , zr`s, u
p
` Ž θpyr´szr´s, u

1

´ ¨ ¨ ¨up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon
“:p15q

.

Rewrite now the termp15q in the spirit of (4.28): since we are, for the moment, not inter-
ested in the terms that multiply elements outside the argument of θ, i.e., those analogous
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to p4q–p9q in (4.28), for the sake of simplicity we only write down the last three terms:

p15q “ . . .` p´1qr`p`q
`
yr`s, u

1

`, . . . , u
p´1

` , zr`s Ž θpup`yr´szr´s, u
1

´ ¨ ¨ ¨ up´q
˘

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon
“:p16q

` p´1q|r`p`q|
`
yr`s, u

1

`, . . . , u
p´1

` , zr`s Ž θpup`, yr´szr´su
1

´ ¨ ¨ ¨up´q
˘

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon
“:p17q

` p´1qr`p`q
`
yr`s, u

1, . . . , up´1, zr`s Ž θpup, yr´szr´sq
˘

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
“:p18q

.

Now p16q above can be further rewritten as

p16q “ p´1qr`p`q
`
yr`s, u

1

`, . . . , u
p´1

` , zr`s Ž θpyr´szr´s, u
1

´ ¨ ¨ ¨up´u
p
`q

˘
loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

“:p19q

` p´1qr`p`q
`
y, u1`, . . . , u

p´1

` , z Ž θpup`, u
1

´ ¨ ¨ ¨up´q
˘

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
“:p20q

´p´1q|r`p`q|
`
yr`s, u

1, . . . , up´1, zr`s Ž θpyr´szr´s, u
pq
˘

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
“:p21q

.

While p19q is the missing summand that cancels (when respecting the sign) with p1q and
the terms deriving frompv2, . . . , vq, x, z, v1q on homology in the sense of (4.25), whereas
p20q is another term of́ Ltw

θ pxq ˆ yˆ z, we have to deal withp18q andp21q which are not
of the form of the terms in (4.22). Again by using (2.13), (4.23), and the commutativity of
U , one sees after some straightforward intermediate steps that

p´1qr`p`q
“
p18q ` p21q

‰

“
`
yr`s, u

1

`, . . . , u
p´1

` , z Ž θpup`, yr´su
p
´ ¨ ¨ ¨u1´q

˘
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:p22q

´
`
yr`s, u

1

`, . . . , u
p´1

` , z Ž θpyr´su
p
´ ¨ ¨ ¨u1´, u

p
`q

˘
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:p23q

`
`
y, u1`, . . . , u

p´1

` , zr`s Ž θpup`, zr´su
p
´ ¨ ¨ ¨u1´q

˘
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:p24q

´
`
y, u1`, . . . , u

p´1

` , zr`s Ž θpzr´su
p
´ ¨ ¨ ¨u1´, u

p
`q

˘
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:p25q

.

Again, whilep22q andp24q are terms that appear in the explicit expression ofLtw

θ pxˆyqˆz

andp´1qrpp`qqLtw

θ pzˆxqˆy, respectively, the termsp23q andp25q do not appear in (4.22).
One now proceeds recursively with these terms as in (4.27) toshift the tensor factors in the
order in which they appear in the expression in (4.28). We underline that this is only
possible if one descends to homology as the rewriting (4.28)only holds due to (4.24).

Proceeding with the same steps as above with respect to all other terms in the shuffle
productxˆ y ˆ z, it is moreover clear by a combinatorial argument that one produces all
missing terms in (4.22). For example, one checks in a fashionanalogous to proving the
fact that the Hochschild differential is a graded derivation of the product as in Lemma 4.14
thatp4q, p6q, andp8q cancel; we leave these remaining steps to the reader. �

Applying this lemma to Koszul’s result in the way mentioned below the bracket (4.14)
proves Theorem 4.15. �

We will end this subsection by dealing with the two canonicalexamples:

4.4.3. The zero bracket on Hochschild homology for associative algebras. Let A be a
commutative associativek-algebra, and recall the context of Exs. 2.2, 3.4, and 4.10 in
whichU “ Ae. Then, ifA is projective overk, the groupsTorA

e

‚ pA,Aq “ HH‚pAq yield
the classical Hochschild homology ofA with values inA, and the bracket (4.18) for the
operad multiplication (3.4) by means of (4.13) reads

tx, yuµ “ p´1q|p|bpxˆ yq ` p´1qpbpxq ˆ y ` xˆ bpyq.

As mentioned in (4.17), this equals zero already on the chainlevel and therefore the Ger-
stenhaber bracket vanishes.
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4.4.4. The Koszul bracket on forms.Recall from [MacX] that atriangular r-matrix or
Poisson bivectorfor a Lie-Rinehart algebrapA,Lq is an elementπ P

Ź2

A
L with the prop-

erty rπ, πs “ 0, wherer., .s denotes the classical Schouten-Nijenhuis bracket specified in
(3.15). IfL is finitely generatedA-projective, Koszul [K] proved that the exterior algebraŹ

‚

A
L˚ of L˚ :“ HomApL,Aq is a Batalin-Vilkovisky algebra with bracket

tω, ηuπ “ p´1qp
`
Lπpω ^ ηq ´ Lπpωq ^ η ´ p´1qpω ^ Lπpηq

˘
, (4.29)

for η P
Ź

‚

A
L, ω P

Źp
A
L, p ě 0, and which for1-formsα, β P

Ź1

A
L˚ “ L˚ becomes the

customary formula (which, according to [Kos2], appeared in[AbMa] for the first time)

rα, βsπ “ Lπ#pαqpβq ´ Lπ#pβqpαq ´ diπpα ^ βq.

Here, byπ# we mean the mapπ# : L˚ Ñ L, π#pαqpβq :“ πpα, βq, along with the clas-
sical operationspL, i, dq of Lie derivative, contraction, and de Rham differential between
forms and fields (cf., for example, [KoKr3,§6.4] for the concrete form of these operators
used here).

In order to connect this Gerstenhaber bracket to our Gerstenhaber bracket from (4.19),
we need to apply the construction in Theorem 4.15 to the commutative left Hopf algebroid
given by the jet spaceJL mentioned in Example 2.4. To this end, we briefly recall from
[KoPo, KoKr3] some facts that allow to apply the preceding results to complete Hopf
algebroids such asJL: to have the structure maps (e.g., those that define the cyclic module
structure) well-defined, completed tensor products need tobe used in the chain complex
C‚pJL,Mq. Similarly, in the definition of an SaYD module the coaction should be given by
a mapM Ñ JLb̂AM . Dually,C‚pJL,Aq needs to be defined asHomcont

Aop pJLb̂Aop ‚
Ž, Aq,

wherecont means that the cochains have to be continuous (A being discrete), as only the
operators assigned to these cochains will be well-defined onthe completed tensor products.

Now, there is a morphism of chain complexes

F :
`
C̄‚pJL,Aq, b

˘
Ñ

`
HomAp

Ź
‚

A
L,Aq, 0

˘
, (4.30)

which, in degreen ą 0, is given by

F pf1, . . . , fnqpX1 ^ ¨ ¨ ¨ ^Xnq :“ p´1qn
`
Sf1 ^ ¨ ¨ ¨ ^ Sfn

˘
pX1, . . . , Xnq,

while it is the identity onA in degreen “ 0. AsC‚pJL,Aq is defined via completed tensor
products, we have

CnpJL,Aq » limÐÝHomA

`
pVLbAnqďp, A

˘
,

wherepVLbAnqďp is the degreep part of the filtration induced by that ofVL. ThatF is
well-defined on the normalised complexC̄‚pJL,Aq follows since degenerate chains vanish
underF . WhenL is finitely generated projective overA, the wedge product of multilinear
forms provides an isomorphism

Ź
‚

A
L˚ Ñ HomAp

Ź
‚

A
L,Aq that we usually suppress in

the sequel. In this case, one defines the map

F 1pα1 ^ ¨ ¨ ¨ ^ αnq :“
ÿ

σPSn

p´1qσ
`
pr ˚ασp1q, . . . , pr ˚ασpnq

˘

for α1, . . . , αn P L˚, wherepr : VL Ñ L denotes the projection onL resulting from
Rinehart’s PBW theorem [Ri, Thm. 3.1], and proves

FF 1 “ n! idŹn
AL˚ . (4.31)

Finally, one has, dual to (4.30), a morphism

F˚ :
`Ź‚

A
L, 0

˘
Ñ pC̄‚pJL,Aq, δq

of cochain complexes explicitly given as

X1 ^ ¨ ¨ ¨ ^Xn ÞÑ
 

pf1, . . . , fnq ÞÑ p´1qn
ÿ

σPSn

p´1qσpSf1qpXσp1qq ¨ ¨ ¨ pSfnqpXσpnqq
(
.
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With these preparations at hand we can give the relation between the classical Koszul
bracket on forms and the Gerstenhaber bracket (4.19):

Proposition 4.18. If L is finitely generated projective overA andπ P
Ź2

A
L is a triangular

r-matrix, then for anyω P
Źp

A
L˚ andη P

Źq
A
L˚ the identity

2 |p` q|! tω, ηuπ “ F
`
tF 1ω, F 1ηuF˚π

˘
(4.32)

holds.

Proof. The proof resembles, to some extent, the computations performed in the proof of
[KoKr3, Prop. 6.5] (but note that in [op. cit., Eqs. (6.18)–(6.20)] the factorspn`1q, pn´1q,
resp.n should rather readpn` 1q!, pn´ 1q!, resp.n!): first of all, it follows from [loc. cit.]
and [Ca, Thm. 1.4] that ifπ is a triangularr-matrix for the classical Schouten-Nijenhuis
bracket, thenF˚π is one with respect to the Gerstenhaber bracket constructedin §3.1.

Assume thatω :“ α1 ^ ¨ ¨ ¨ ^ αp andη :“ β1 ^ ¨ ¨ ¨ ^ βq for p, q ě 1 (if either p or
q is zero, the proof is analogous, but simpler). We then have for the second summand of
the right hand side in (4.32) by means of (4.18) and observingthatLF˚π is an operator of
degreé 1:

F
`
LF˚πF

1pα1 ^ ¨ ¨ ¨ ^ αpq ˆ F 1pβ1 ^ ¨ ¨ ¨ ^ βqq
˘`
X1 ^ ¨ ¨ ¨ ^X|p`q|

˘

“
|p` q|!

|p|! q!
F
`
LF˚πF

1pα1 ^ ¨ ¨ ¨ ^ αpq bA F
1pβ1 ^ ¨ ¨ ¨ ^ βqq

˘`
X1 ^ ¨ ¨ ¨ ^ X|p`q|

˘

“
|p` q|!

|p|!

`
FLF˚πF

1pα1 ^ ¨ ¨ ¨ ^ αpq ^ β1 ^ ¨ ¨ ¨ ^ βqq
˘`
X1, . . . , X|p`q|

˘
,

where we used (4.31) in the last line. Hence, if we proved thatFLF˚πF
1pα1^¨ ¨ ¨^αpq “

2 |p|!Lπpα1 ^ ¨ ¨ ¨ ^αpq, it is clear that we obtain the second summand of the left hand side
in (4.32), as given in (4.29). Writing the Poisson bivector as π :“ π1 ^ π2 P

Ź2

A
L, we

therefore compute with (4.7), (2.18)–(2.22), (2.6), and the commutativity ofA, along with
St “ s andS2 “ id:

F
`
LF˚πF

1pα1 ^ ¨ ¨ ¨ ^ αpq
˘`
X1 ^ ¨ ¨ ¨ ^Xp´1

˘

“ F
´ ÿ

σPSp

p´1qσ
´ |p|ÿ

i“1

p´1qn´|i|
`
pασp1qpr q, . . . , pασpi´1qpr q,

F˚π
`
pασpiqpr qp1q, pα

σpi`1qpr qp1q

˘
Ż pασpiqpr qp2qpασpi`1qpr qp2q, pα

σpi`2qpr q, . . . , pασppqpr q
˘

´
`
pασp1qpr q`, . . . , pα

σpp´2qpr q`,

F˚π
`
pασppqpr q`, pα

σppqpr q´ ¨ ¨ ¨ pασp1qpr q´

˘
§ pασpp´1qpr q`

˘

` p´1q|p|
`
pασp2qpr q`, . . . , pα

σpp´1qpr q`,

F˚π
`
pασppqpr q´ ¨ ¨ ¨ pασp1qpr q´, pα

σppqpr q`

˘
§ pασppqpr q`

˘¯¯´
X1 ^ ¨ ¨ ¨ ^ Xp´1

¯

“ 2 |p|!
ÿ

σPSp

p´1qσ
ÿ

τPS2

p´1qτ
” |p|ÿ

i“1

p´1qn´|i|ασp1qpX1q ¨ ¨ ¨ασpi´1qpXi´1q

ε
´
Xi

`ε
`
π
τp1q
` pασpiqpr qp1qpπ

τp1q
´ q

˘
ε
`
π
τp2q
` pασpi`1qpr qp1qpπ

τp2q
´ q

˘

pασpiqpr qp2qpXi
´p1qq pασpi`1qpr qp2qpXi

´p2qq
¯
ασpi`2qpXi`1q ¨ ¨ ¨ασppqpXp´1q

´ ε
`
X1

`pασp1qpr qp1qpX1

´q
˘

¨ ¨ ¨ ε
`
X
p´1

` pασpp´1qpr qp1qpXp´1

´ q
˘
ε
`
π
τp1q
` pασppqpr qp1qpπ

τp1q
´ q

˘
`
pασppqpr qp2q ¨ ¨ ¨ pασp1qpr qp2q

˘
pπτp2qq

` p´1q|p|ε
`
X1

`pασp2qpr qp1qpX1

´q
˘

¨ ¨ ¨ ε
`
X
p´1

` pασppqpr qp1qpXp´1

´ q
˘

`
pασppqpr qp2q ¨ ¨ ¨ pασp1qpr qp2q

˘
pπτp2qq ε

`
π
τp1q
` pασp1qpr qp1qpπ

τp1q
´ q

˘ı
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“ 2 |p|!
ÿ

σPSp

p´1qσ
ÿ

τPS2

p´1qτ
” |p|ÿ

i“1

p´1qn´|i|ασp1qpX1q ¨ ¨ ¨ασpi´1qpXi´1q

ε
´
Xi

`ε
`
π
τp1q
` pασpiqpr qpπ

τp1q
´ Xi

´p1qq
˘
ε
`
π
τp2q
` pασpi`1qpr qpπ

τp2q
´ Xi

´p2qq
˘¯

ασpi`2qpXi`1q ¨ ¨ ¨ασppqpXp´1q

´ ε
`
X1

`pασp1qpr qpX1

´π
τp2q
p1q

q
˘

¨ ¨ ¨ ε
`
X
p´1

` pασpp´1qpr qpXp´1

´ π
τp2q
pp´1q

q
˘

ε
`
π
τp1q
` pασppqpr qpπ

τp1q
´ π

τp2q
ppq

q
˘

` p´1q|p|ε
`
X1

`pασp2qpr qpX1

´π
τp2q
p2q q

˘
¨ ¨ ¨ ε

`
X
p´1

` pασppqpr qp1qpXp´1

´ π
τp2q
ppq q

˘

ε
`
π
τp1q
` pασp1qpr qpπ

τp1q
´ π

τp2q
p1q

q
˘ ı

“ 2 |p|!
`
Lπ1^π2pα1 ^ ¨ ¨ ¨ ^ αpq

˘`
X1, . . . ,Xp´1

˘
,

where the last step is a (long but) straightforward verification using (2.16) and (2.17), the
fact that vector fields act byXpaq :“ εpXaq as derivations onA, andpr pXY ´ Y Xq “
pr prX,Y sq “ rX,Y s, along withpr p1

VL
q “ 0. The respective computations for the

remaining summands in (4.32) are similar and therefore skipped. �

4.5. Lie bialgebroids. In this section, we deal with the situation how the general con-
struction of Gerstenhaber brackets onExt‚

U pA,Aq andTorU
‚

pA,Aq is related to the notion
of Lie bialgebroids, or Lie-Rinehart bialgebras in its algebraic formulation.

Recall from [MacX, Kos1, Hue1] that aLie-Rinehart bialgebra(or Lie bialgebroid)
is a pairpL,Kq of finitely generated Lie-Rinehart algebraspA,Lq and pA,Kq over the
same base algebraA, whereK » L˚ :“ HomApL,Aq, such that one (hence both) of the
following equivalent conditions is true:

(i ) p
Ź

‚

A
L, r., .s,^, d˚q is a strong differential Gerstenhaber algebra;

(ii ) p
Ź

‚

A
K, r., .s˚,^, dq is one.

Here,r., .s is the Schouten-Nijenhuis bracket (3.15) on
Ź

‚

A
L andd is the generalised de

Rham differential on
Ź

‚

A
L˚ »

Ź
‚

A
K, whereasr., .s˚ andd˚ are the respective structures

arising from the Lie-Rinehart algebra structure ofpA,Kq; see [op. cit.] for further equiv-
alent formulations. As proven in [Kos1, X1], when the Lie-Rinehart structure onK » L˚

arises from a triangularr-matrix π P
Ź2

A
L with Gerstenhaber bracketr., .s˚ :“ r., .sπ

given as in (4.29), the Batalin-Vilkovisky algebrap
Ź

‚

A
L˚, r., .sπq is strong differential

with respect to the de Rham differentiald and hencepL,L˚q is a Lie-Rinehart bialgebra.
Examples include the case of classical Lie bialgebras as introduced by Drinfel’d [D], hence
the terminology.

In the case of a left bialgebroid or left Hopf algebroidU , the situation appears, of course,
to be more general. In view of Example 2.4 and§4.4.4 and what was said above, the right
question to ask is whenH‚pU,Aq andH‚pU,Aq are (strong) differential Gerstenhaber
algebras, but in contrast to the example coming from Lie-Rinehart bialgebras as above,
wherep

Ź
‚

A
L, r., .s,^, d˚q andp

Ź
‚

A
K, r., .s˚,^, dq are simultaneously strong differential

Gerstenhaber algebras, these two structures are not necessarily related. In any case, if a
triangularr-matrix is given, one proves the following:

Proposition 4.19. Let Uθ be a Poisson bialgebroid with triangularr-matrix θ. Then
H‚pU,Aq (resp.Ext‚

U pA,Aq whenUŽ isAop-projective) forms a strong differential Ger-
stenhaber algebra with respect to the differentialβθ. In caseUθ is commutative and
carries additionally the structure of a left Hopf algebroid, the Batalin-Vilkovisky algebra`
H‚pU,Aq, bθ

˘
(resp.

`
TorU

‚
pA,Aq, bθ

˘
when§U is A-projective) is a strong differential

Gerstenhaber algebra as well with respect to the cyclic differentialB.

Proof. The first statement,i.e., the fact thatβθ “ tθ, .u fulfils the identities in Definition
1.2 with respect to the Gerstenhaber bracket onH‚pU,Aq induced by (3.3) follows directly
from the Leibniz rule and the graded Jacobi identity of the cup product and the bracket
itself.
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The second statement follows from the fact that the operatorB : H‚pU,Aq Ñ
H‚`1pU,Aq induced by the cyclic differential (and denoted by the same symbol) from
(2.39) is a graded derivation of the shuffle product,i.e., one has

Bpxˆ yq “ Bxˆ y ` p´1qpxˆBy, x P HppU,Aq, y P H‚pU,Aq,

as can be shown, for example, along the lines for the Hochschild case in [Lo, Cor. 4.3.4].
One then directly verifies the two identities in Definition 1.2 for the Gerstenhaber bracket
(4.19), which is straightforward using (4.12) resp. (4.6);for convenience of the reader, we
nevertheless show the second one:

Btx, yuθ “ p´1q|p|Bbθpxˆ yq ` p´1qpBbθxˆ y

´ bθxˆBy `Bxˆ bθy ` p´1qpxˆBbθy

“ p´1qpbθpBx ˆ yq ` p´1q|p|bθBxˆ y `Bxˆ bθy

` bθpxˆByq ´ bθxˆBy ` p´1q|p|xˆ bθBy

“ tBx, yuθ ` p´1q|p|tx,Byu

for x P HppU,Aq andy P H‚pU,Aq, and this concludes the proof. �
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[B] G. Böhm,Hopf algebroids, Handbook of algebra, Vol. 6, North-Holland, Amsterdam, 2009, pp. 173–236.
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