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Abstract

One of the main characteristics in many real-world big data scenarios is their distributed nature.
In a machine learning context, distributed data, together with the requirements of preserving
privacy and scaling up to large networks, brings the challenge of designing fully decentralized
training protocols. In this paper, we explore the problem of distributed learning when the
features of every pattern are available throughout multiple agents (as is happening, for example,
in a distributed database scenario). We propose an algorithm for a particular class of neural
networks, known as Random Vector Functional-Link (RVFL), which is based on the Alternating
Direction Method of Multipliers optimization algorithm. The proposed algorithm allows to learn
an RVFL network from multiple distributed data sources, while restricting communication to
the unique operation of computing a distributed average. Our experimental simulations show
that the algorithm is able to achieve a generalization accuracy comparable to a fully centralized
solution, while at the same time being extremely efficient.

Keywords: Distributed learning, Random Vector Functional-Link, Multiple data sources, Alternating

Direction Method of Multipliers

1 Introduction

In the machine learning community, big data is generally associated to the problem of process-
ing large amounts of data, possibly arriving in a continuous fashion [1] and considering real
computing constraints [2]. However, real-world big data applications may require to handle
data sources that are distributed over a network of agents, such as computers in a peer-to-peer
(P2P) network [3], automatic trading agents [4], or sensors in a Wireless Sensor Network (WSN)
[5]. If the nodes have access to a fusion center (FC), they may trivially transmit all their data
to the FC, resulting in a standard centralized learning problem. More in general, however, this
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Figure 1: Schematic description of the proposed algorithm. Each node has access to a subset
of the global pattern. This local feature vector is projected to a local expansion block, and the
overall output is computed by a linear combination of the local expansions, through a suitable
communication layer.

solution may not be technologically feasible [6]. Additionally, data may be too large to be ef-
ficiently transmitted, privacy concerns may be present, and/or communication may be allowed
only over local neighborhoods of each node (as in ad-hoc WSNs [5]). Due to this, there is a
growing need of fully decentralized strategies for solving the overall learning problem.

In a supervised scenario, data can be distributed in two orthogonal ways. In the case of
‘horizontal partitioning’ (HP) (also known as ‘data-distributed’ [7]) each agent in a network
possesses a local set of patterns. For example, in distributed music classification over P2P
networks [8], each peer has access to its own database of songs. Learning in an HP setting has
obtained a large amount of attention recently, including distributed versions of support vector
machines [9], neural networks [7], and boosting [10]. Conversely, in the ‘vertical partitioning’
(VP) scenario the features of each pattern are partitioned over the nodes. A prototypical exam-
ple of this is found in the field of distributed databases [10], where several organizations possess
only a partial view on the overall dataset (e.g., global health records distributed over multiple
medical databases). In the centralized case, this is also known as the problem of learning from
heterogeneous sources, and it is typically solved with the use of ensemble procedures [11]. How-
ever, as we show in our experimental results, in the VP setting naive ensembles over a network
tend to achieve highly sub-optimal results, with respect to a fully centralized solution.

In a previous work [7], we presented two distributed protocols for training a specific class
of neural networks, known as Random Vector Functional-Link (RVFL), in the HP setting.
RVFL networks are composed of a fixed layer of non-linearities (known as the expansion block),
whose parameters are randomly assigned at the beginning of the learning process, followed
by a trainable linear layer [12]. Since the overall optimization problem can be formulated as
a standard linear regression, in [7] it was shown that learning an RVFL network in an HP
distributed scenario results in an extremely efficient algorithm, while at the same time keeping
the universal approximation capabilities of the centralized case. The aim of this paper is to
extend the previous work to the VP scenario. The proposed algorithm, which is summarized in
Fig. 1, is made of two components. First, each node computes a local expansion block based
on its subset of features. Secondly, the weights of the second layer are learned in a distributed
fashion with the use of a standard decentralized optimization routine, known as Alternating
Direction Method of Multipliers (ADMM) [13]. Communications between nodes are restricted
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Figure 2: Schematic depiction of an RVFL architecture with two inputs, three hidden nodes,
and one output. Fixed connections are shown as dashed lines, whilst trainable connections as
fixed lines.

to the computation of averages, which is a standard primitive in any network technology. As
an example, in this paper we employ the average consensus (AC) mechanism [14], which is
routinely employed in WSNs. Our experimental results will show that this strategy, apart from
being efficient, can perform comparably to a centralized solution, and strongly outperforms
distributed ensemble techniques.

The rest of the paper is organized as follows. In Section 2 we details the basic mathematical
formulation of RVFL networks. Then, in Section 3 we introduce our distributed training pro-
tocol in the VP scenario. Section 4 presents a wide set of experimental results, while Section 5
concludes the paper.

2 Random Vector Functional-Link Networks

Given a d-dimensional input vector x ∈ R
d, the output of a one-dimensional RVFL network is

given by:

f(x) =

B∑
m=1

βmhm(x) = βTh(x) , (1)

where each hm(·) is a fixed non-linear function known as base or functional link [15]. This is
shown schematically in Fig. 2. In an RVFL network, the internal parameters of the bases are
generally assigned randomly, from a fixed probability distribution. Eq. (1) can be extended
trivially to the case of a multidimensional output [7]. A classical example of base, which is
employed in this work, is the sigmoidal squashing function:

h(x) =
1

1 + exp {−aTx+ b} , (2)

where the parameters a and b in Eq. (2) are assigned randomly at the beginning of the learning
process. Eq. (1) can also be extended with the use of input-to-output weights, as in the original
formulation [12], and was popularized recently under the name Extreme Learning Machine
(ELM) [16]. Given a set of N samples of the desired function, called the training set, that is
S =

{
x(i), y(i)

}
, i = 1 . . . N , we want to learn a set of weights β such that the error over unseen

samples is lowest. Defining the hidden matrix H =
[
h(x(1)) . . .h(x(N))

]T
and the output vector

y =
[
y(1) . . . y(N)

]T
, we can formulate the learning problem as a standard regularized linear

regression:

β∗ = argmin
β∈RB

1

2
‖Hβ − y‖22 +

λ

2
‖β‖22 , (3)
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whose solution can be computed in closed form as:

β∗ =
(
HTH+ λI

)−1
HTY . (4)

3 Distributed RVFL Networks

3.1 Training phase

In the distributed scenario, we suppose that the training data is not available on a single
processor, but it is distributed throughout a network of L ∈ N interconnected nodes. The
connectivity between the nodes can be fully described by a real-valued L×L matrix C ∈ R

L×L,
such that Cij > 0 if nodes i and j are connected, 0 otherwise. In particular, in the VP scenario
we suppose that the k-th agent has access to a subset xk of features, such that:

x = [x1 . . . xL]

The main problem for the distributed training of an RVFL network in this setting is that the
computation of any functional link in Eq. (1) requires knowledge of the full sample. However,
as we stated in Section 1, we would like to avoid exchange of data patterns, due to both size
and privacy concerns. To this end, we approximate model (1) by considering local expansion
blocks:

f(x) =
L∑

k=1

(βk)
T
hk(xk) . (5)

In this way, each term hk(xk) can be computed locally. Input vectors and expansion blocks
may have different lengths at every node, depending on the application and on the local com-
putational requirements. This is shown pictorially in Fig. 1. The overall optimization problem
becomes:

argmin
β

1

2

∥∥∥∥∥
L∑

k=1

Hkβk − y

∥∥∥∥∥
2

2

+
λ

2

L∑
k=1

‖βk‖22 , (6)

where Hk denotes the hidden matrix computed at the k-th node, such that H = [H1 . . .HL].
We solve this problem in a decentralized fashion using the ADMM optimization procedure [13].
To this end, we consider the equivalent optimization problem:

minimize
β

1

2

∥∥∥∥∥
L∑

k=1

zi − y

∥∥∥∥∥
2

2

+
λ

2

L∑
k=1

‖βk‖22

subject to Hkβk − zk = 0, k = 1 . . . L .

(7)

where we introduced local variables zk = Hkβk. The augmented Lagrangian of this problem is
given by:

L(βk, zk, tk) =
1

2

∥∥∥∥∥
L∑

k=1

zk − y

∥∥∥∥∥
2

2

+
λ

2

L∑
k=1

‖βk‖22 +

+
L∑

k=1

tTk (Hkβk − zi) +
ρ

2

L∑
k=1

‖Hkβk − zi‖22 , (8)
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where tk are the Lagrange multipliers, ρ ∈ R
+ is a regularization factor, and the last term

is added to ensure convergence. The solution to problem (6) can computed by iterating the
following updates [13]:

βk[n+ 1] = argmin
βk

L(βk, zk[n], tk[n]) , (9)

zk[n+ 1] = argmin
zk

L(βk[n+ 1], zk, tk[n]) , (10)

tk[n+ 1] = tk[n] + ρ (Hkβk[n+ 1]− zk[n+ 1]) . (11)

Following the derivation in [13, Section 8.3], and computing the gradient terms (which we omit
for lack of space), the final updates can be expressed as:

βk[n+ 1] =

(
λ

ρ
I+HT

kHk

)−1

HT
k

(
Hkβk[n] + z[n]−Hβ[n]− t[n]

)
, (12)

z[n+ 1] =
1

L+ ρ

(
y +Hβ[n+ 1] + t[n]

)
, (13)

t[n+ 1] = t[n] +Hβ[n+ 1]− z[n+ 1] , (14)

where we defined the averages Hβ[n] = 1
L

∑L
k=1 Hkβk[n], and z[n] =

∑L
k=1 zk[n]. Additionally,

the variables tk can be shown to be equal between every node [13], so we removed the subscript.
Convergence of the algorithm can be tracked locally by computing the residual:

rk[n] = HT
k βk[n]− zk[n] . (15)

It can be shown that, for the iterations defined by Eqs. (12)-(14), ‖rk[n]‖2 → 0 as n → +∞,
with the solution converging asymptotically to the solution of problem (6).

3.2 Distributed computation of the average

From the following section, we see that the only communication required by our training pro-
tocol is the computation of the average Hβ[n]. In a real-world application, the specific im-
plementation of this step will depend on the actual details of the communication layer, e.g.,
whether broadcast or point-to-point messaging is available; whether the topology of the network
is fixed or time-varying, and so on. As an example of general purpose protocol to implement the
step, we briefly discuss here the decentralized average consensus (DAG) [14], which is widely
employed over WSNs. Still, we stress that this is only one of the many possible choices (e.g.
the Push-Sum protocol in P2P networks [17]). DAG is an interesting choice, however, since it
requires communication only between neighbors in the network. Additionally, its asymptotic
behavior has been investigated in-depth, with many variants proposed in the literature [14].

Define wk[n, 0] = Hkβk[n, 0], where we introduced a second time index to denote the
internal iteration for computing the average. In a DAG algorithm, this value is iteratively
refined at every node as:

wk[n, j + 1] = Ckkwk[n, j] +
∑
l∈Nk

Cklwl[n, j] , (16)

where Ckl denotes the (k, l)-th entry of the connectivity matrix C. Practically, every node
iteratively computes a weighted average of the value of its neighbors. Under suitable choices
of the connectivity matrix (see [14]), the iteration defined by Eq. (16) converges to the global
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Table 1: General description of the datasets. The values in the last two columns are taken from
[7].

Dataset name Features Instances Desired output Classes Optimal B Optimal λ

Garageband 44 1856 Genre recognition 9 classes 200 2−3

Sylva 216 14394 Forest Type 2 classes 450 2−5

G50C 50 550 Gaussian of origin 2 classes 500 23

average at every node. As an example, in this work we consider the so-called ‘max-degree’
weights given by:

Ckj =

⎧⎪⎨
⎪⎩

1
d+1 if k ∈ Nj

1− dk

d+1 if k = j

0 otherwise

, (17)

where dk is the degree of node k, and d is the degree of the network.

3.3 Prediction phase

After training, every node has access to its own local mapping hk(·), and to its subset of
coefficients βk. Differently from the HP scenario, when the agents require a new prediction,
the overall output defined by Eq. (5) has to be computed in a decentralized fashion. Once
again, this part will depend on the actual communication layer available to the agents. As
an example, it is possible to run the DAG protocol described in the previous section over the
values (βk)

T
hk(xk), such that every node obtain a suitable approximation of 1

Lf(x). For
smaller networks, it is possible to compute an Hamiltonian cycle between the nodes [5]. Once
the cycle is known to the agents, they can compute Eq. (5) by forward-propagating the partial
sums up to the final node of the cycle, and then back-propagating the result. Clearly, many
other choices are possible, depending on the network.

4 Experimental Results

4.1 Experimental setup

In this section, we present an experimental validation of the proposed algorithm on three
classification tasks, which were already employed on previous works on RVFL networks [7, 18].
A schematic description of the three datasets is provided in Table 1. The last two columns in
Table 1 detail the optimal RVFL parameters for the datasets in the centralized case, computed
via an extensive grid search procedure detailed in [7, Table 1]. In our first set of experiments,
we consider networks of 8 agents, whose connectivity is randomly generated such that every
pair of nodes has a 60% probability of being connected, with the only global requirement that
the overall network is connected. The input features are equally partitioned through the nodes,
i.e., every node has access to roughly d/8 features, where d is the dimensionality of the dataset
(fourth column in Table 1). We compare the following algorithms:

Centralized RVFL (C-RVFL): this corresponds to the case where a fusion center is available,
collecting all local datasets and solving directly Eq. (3). Settings for this model are the
optimal ones in Table 1.
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Table 2: Misclassification error and training time for the four algorithms. Results are averaged
over the 8 different nodes of the network. Standard deviation is provided between brackets.

Dataset Algorithm Misclassification error [%] Training time [secs.]

Garageband

C-RVFL 41.32 (±1.24) 0.03 (±0.02)

L-RVFL 82.79 (±3.82) 0.01 (±0.01)

ENS-RVFL 61.01 (±1.97) 0.01 (±0.01)

DIST-RVFL 41.34 (±1.34) 2.35 (±0.58)

Sylva

C-RVFL 1.18 (±0.13) 0.44 (±0.06)

L-RVFL 49.80 (±36.35) 0.05 (±0.02)

ENS-RVFL 6.04 (±0.12) 0.06 (±0.02)

DIST-RVFL 1.22 (±0.15) 1.94 (±0.40)

G50C

C-RVFL 5.80 (±1.19) 0.05 (±0.02)

L-RVFL 49.51 (±6.37) 0.01 (±0.01)

ENS-RVFL 10.98 (±2.32) 0.01 (±0.01)

DIST-RVFL 5.80 (±1.37) 0.38 (±0.16)

Local RVFL (L-RVFL): this is a naive implementation, where each node trains a local model
with its own dataset, and no communication is performed. Accuracy of the models is
then averaged throughout the L nodes. As a general settings, we employ the same reg-
ularization coefficient for every node as C-RVFL, and Bk = �B/8� expansions in every
agent.

Ensemble RVFL (ENS-RVFL): this corresponds to the ensemble approach described in Sec-
tion 1. As for L-RVFL, during the training phase every node trains a local model with its
own dataset. In the testing phase, the nodes agree on a single class prediction by taking
a majority vote over their local predictions. Parameters are the same as for L-RVFL.

Distributed RVFL (DIST-RVFL): this is trained using the distributed protocol of Section 3.
Settings are the same as L-RVFL, while for the ADMM we set ρ = 0.1 and a maximum
number of 200 iterations.

To compute the misclassification rate, we perform a 3-fold cross-validation on the overall
dataset, and repeat the procedure 15 times. All algorithms have been implemented in MAT-
LAB 2013a, using the Lynx toolbox.1 Detailed instruction for repeating the simulations are
available on the corresponding author’s website.2

4.2 Results and discussion

Results of the experiments are presented in Table 2. It can be seen that, despite we approximate
the global expansion block of C-RVFL using L distinct local expansions, this has minimal or no
impact on the global solution. In fact, DIST-RVFL is able to achieve performance comparable
to C-RVFL in all three datasets, while the ensemble approach is performing relatively poorly:
it has a 20%, 5% and 5% increase in error respectively in each dataset. This shows that the

1https://github.com/ispamm/Lynx-Toolbox
2http://ispac.diet.uniroma1.it/scardapane/software/lynx/heterogeneous-sources/
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relatively common approach of averaging over the local models may be highly sub-optimal in
practical situations.

As a reference, in Table 2 we also provide the average training time spent at every node.
However, we note that in our experiments the network was simulated in a serial architecture,
removing all communication costs. Clearly, a practical analysis of this point would require
knowledge of the communication layer, which goes beyond the scope of the current paper. Still,
we can see from the fourth column of Table 2 that the proposed algorithm requires an acceptable
computational time for performing the 200 iterations, since the matrix inversions in Eq. (12)
can be pre-computed at the beginning of the training process. Additionally, we add that the
training time of DIST-RVFL can be greatly reduced in practice by the implementation of an
efficient stopping criterion [13, 7].

Finally, we show the evolution of the misclassification error for DIST-RVFL and ENS-RVFL
when varying the size of the network from L = 4 to L = 12. Results of this experiment are given
in Fig. 3 (a)-(c). Settings are kept fixed with respect to the previous experiment, while the
features are equally partitioned as before (hence, for smaller networks each node has access to a
larger subset of features). Performance of C-RVFL is given as a comparison with a dashed black
line. As expected, we see that, although the behavior of ENS-RVFL strongly depends on the
number of nodes in the network, DIST-RVFL is resilient to such change, always approximating
very well the centralized performance. It is also interesting to note that the behavior of ENS-
RVFL is not always monotonically increasing, as is shown in Fig. 3-(c), possibly due to its
ensembling characteristics and to the artificial nature of the G50C dataset.

5 Conclusions

In this paper, we proposed a distributed training algorithm for RFVL networks, in the scenario
when each agent in a network has access to a subset of features of the original pattern. The
algorithm is based on the ADMM optimization procedure, and restricts communications to the
distributed computation of averages. As an example of protocol for achieving this, we described
the DAG routine, which lends itself easily to large, unstructured networks. Our simulation
results show that the proposed algorithm achieves generalization accuracy comparable to that
of a centralized solution, with a small overhead in training time. Future work will include the
test of the algorithm on a realistic distributed scenario, such as a problem of distributed traffic
prediction. Additionally, we plan to extend the basic framework to more general networks,
including networks with time-changing topologies, faulty message passings, and asynchronous
communications.
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