CHAPTER 3
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of Seat Allocation and Political
Districting

Federica Ricca, Andrea Scozzari, and Paolo Serafini

3.1 Introduction

This chapter focuses on Seat Allocation and Political Districting, two of the main
topics in the study of electoral systems. Models and algorithms from discrete
mathematics and combinatorial optimization are used to formalize the problems
and find solutions that meet some fairness requirements. The first problem con-
cerns the assignment of seats to parties in political elections. In particular, we
discuss the well-known Biproportional Apportionment Problem (BAP), that is, the
problem of assigning the House seats in those countries that adopt a two-level
proportional system. The problem is difficult also from a mathematical viewpoint,
since it combines a matrix feasibility problem with the requirement of double pro-
portionality. The second topic, Political Districting (PD), is a territorial problem
in which electoral districts must be designed so that each voter is univocally as-
signed to one district. This is a relevant problem, since, given the same vote
outcome of an election, depending on the district shape and size, the final seat
allocation to parties could be drastically different. For this reason, PD procedures
have been proposed to output district maps that meet a set of criteria aimed at
avoiding district manipulation by parties.

Both BAP and PD are extensively studied in the literature, the first one starting
from the seminal paper by Balinski and Demange (1989a,b), the second dating
back to 1960’s when the paper by Hess et al. (1965) formulated for the first time
the problem as an optimization one. The chapter is organized in two parts, the
first related to BAP, the second to PD.

3.2 Biproportional Apportionment Problem

3.2.1 Proportional Apportionments

Before describing the Biproportional Apportionment Problem it is necessary to
briefly introduce the simpler Proportional Apportionment Problem in which the
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fixed number of seats of the House has to be divided among constituencies. A
mathematically equivalent problem consists in dividing the seats of the House
among parties. This second problem presents additional features of candidate
selections which are clearly not present in the first problem. In this section
we limit ourselves to outlining the main features of the first problem. We refer
the reader to the monograph by Balinski and Young (2001) for a comprehensive
review of apportionment problems.

Let H be the number of the seats of the House and let / be the set of con-
stituencies, with m = |I|. Let p; be the population of constituency 7 and let
P = %", p: be the total population. In almost all nations the seats assigned to
each constituency are required to be proportional to the populations, a notable
exception being the European Parliament where the so-called degressive propor-
tionality requirement is called for (see Grimmett (2012), Serafini (2012) and other
papers in the same issue).

Ideally, exact proportionality would be obtained by assigning the number of
seats ¢; := p; H/ P to constituency 4, but ¢; is in general a fractional number that
must be rounded in some way. The question of how to round these numbers
presents several subtle features and no univocal answer exists as the history of
the US House of Representatives has shown (an interesting account can be found
at the site https://www.census.gov/history/wuw/reference/apportionment/).

Perhaps the simplest method of rounding ¢; is the Largest Remainder Rule,
also known under the names of Hamilton, Vinton, Hare or Hare-Niemayer. First,
to each constituency the number of seats s; := |¢;]| is assigned. Then the remain-
ing seats are assigned to those constituencies that have been most penalized by
the rounding, namely the ones with largest remainders. It can be easily shown
that this method finds the point in R™ with integral coordinates at minimum
distance from the point ¢ € R™, where the distance can be measured with any
norm.

In spite of the simplicity of the method and this important minimum norm
property, the method is questionable for other reasons. First, it considers the
absolute deviation while the relative deviation could be perceived more important.
Second, it is prone to some anomalous behaviors, that are respectively known
as the Alabama Paradox, the Population Paradox and the New State Paradox
(Balinski and Young, 2001). For these reasons the method is avoided in many
countries. In Italy the Largest Remainder Rule is stated in the Constitution.

The paradoxes are avoided by the divisor methods. A ‘modern’ way to present
a divisor method is as follows. First, a signpost function is defined

§:Z—R, with 3(z) € |72+ 1]

that assigns to each integer » a real number between 2 and z + 1. The function
5(z) specifies how to round a real a € [z, 2 + 1). The rounding, denoted as [q«], is

given by
la| ifa<d(z)
{M ifo(z)<a<z+1

a = §(z). Actually, we have a tie since we
4(#). This ambiguity is exploited in the Tie-
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and-Transfer method for BAP as we shall see. In the Proportional Apportionment
Problem the probability that « = §(z) is almost negligible.
Then a multiplier A is looked for such that the seats

si = [Api]

sum up to H. The crucial aspect of a divisor method is the choice of the signpost
function. These are the choices that have been proposed and also implemented
in some cases:

4(z) ==z Adams method

Dean method

-1, 1
z + z+1

3(z) = vz (#+1) Huntington-Hill method

3(z)=24+05 Webster method

3z)=2z+1 Jefferson or D'Hondt method

We just recall that the Adams method favors the small constituencies, while the
opposite happens for the Jefferson method. The Huntington-Hill method is the
one currently employed to apportion the seats of the US House of Representa-
tives.

3.2.2 Biproportional Apportionment Problem: Introduction

A common feature of many parliaments is the presence of a house of represen-
tatives whose seats are not only a priori divided among constituencies but also,
after the election, among the various competing lists. In these systems the vote
assigned to a list is of primary importance and the choice of the actual represen-
tatives is done after having assigned the seats to the lists at national level. In
other systems the seats assigned to a list are a consequence of the seats won by
the candidates.

In this chapter we deal with the problem in which the seats allotted to each
constituency are fixed, typically before the elections, the seats allotted to the lists
are preliminarily computed on the basis of the votes received in the whole nation,
and we have to compute the seats to assign to each list in each constituency.
Clearly, we have to respect the previous seat assignments and try to have seats
as much as possible proportional to the votes.

Formally, let m be the number of constituencies, H the total number of seats
in the house, and R; the seats allotted to constituency 7 (obviously >, R; = H).
Let » be the number of lists. Let v;; be the votes obtained by list j in constituency
i. Let V; := >, v;; be the votes obtained by list j at national level andlet V := 3", V;
be the total number of votes. Let P; be the total number of seats in the house
assigned to list j (obviously >, P; = H). The computation of the numbers R;
(before the election) and the numbers P; (after the election) is done by one of the
methods seen in the previous section. Then we have to compute the seats s;; to
assign to list j in constituency 7 subject to:

1. >0 sy = Pj, for every list j;
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2. 3% sij = Iy, for every constituency i;
3. If v;; = 0 for some list j in some constituency 4, then s;; = 0;
4. The seats s;; have to be “as proportional as possible” to the votes v;;.

This is the so-called Biproportional Apportionment Problem. The first three
requirements are clear. The crucial issue is the last requirement. Exact propor-
tionality of the seats to both the lists and the constituencies cannot be achieved in
general if we must satisfy requirements 1, 2 and 3. Therefore, we have to clearly
define the goal we want to pursue. In addition we require integrality of the final
outcome. The BAP is not a simple problem and one needs ad hoc mathematical
tools to solve it.

Let us first note that the constraints 1, 2 and 3 are linear programming con-
straints whose underlying matrix is totally unimodular. Therefore, the feasible
set of (where £ = {(i,j) € I x J:v;; > 0})

Z ZE”:Rl rel

7:(4,4)ER
Yo owy =P jelJ (3.1)
i:(4,5)EE
245 20 (i,7) e F

is a polyhedron whose vertices have integral coordinates and therefore a seat
apportionment can be found among its vertices. This is a fundamental property
that allows to solve the BAP problem as a tractable linear programming problem.
The property holds also if we bound each z;; within an interval with integral
extremes, i.e.,

liy < w5 < ugy (3.2)
where /;; and u;; are integral. Hence the existence of a feasible fractional solu-
tion to (3.1) and (3.2) implies the existence of an integral solution to the same
constraints.

Let us call quotas real numbers ¢;; that would represent an ‘ideal’ seat ap-
portionment if we were allowed to relax the integrality requirement and maybe
also requirements 1 and 2. The definition of ideal is up to the lawmakers. For
instance we might define as quotas the numbers v;; H/V that fully satisfy the pro-
portionality requirement to both lists and constituencies, but they do not satisfy
requirements 1 and 2.

In some nations (e.g., Italy and Belgium) the following quotas, called regional
quotas, are used ;

_ 7
qu Zk Uik Rz
These quotas guarantee exact proportionality among lists within each constitu-
ency. By definition we have >, ¢;; = 1;, but in general }, ¢;; = F; does not hold
and there is no proportionality among constituencies within each list.

It is possible to define quotas such that both requirements 1 and 2 are sat-

isfied at the expense of losing exact proportionality. Such quotas are called fair
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share quotas and are defined in the next section. Let us note that a slight shift of
votes in one constituency has the effect of propagating to the overall set of quotas
if both sums must be satisfied. This may be not desirable if we want to preserve
some form of autonomy among constituencies. For this reason the regional quo-
tas, that are independent of each constituency, may be preferred. However, fair
share quotas exhibit important mathematical properties and this is considered
an important factor in favor of using the fair share quotas.

If the seats of an apportionment are obtained from the quotas by rounding
each quota either up or down, we say that the apportionment stays within the
quotas.

By and large there are two approaches to the BAP. In the first approach a set of
axioms that every reasonable apportionment should satisfy is designed and then
a method aimed at satisfying the axioms is looked for. Typically such a method
is unique. This is the approach proposed by Balinski and Demange (1989a,b).
The other approach consists in defining fractional ideal quotas and then finding
a seat apportionment that minimizes some measure of deviation with respect to
the ideal quotas (Ricca et al., 2012). A detailed comparison of the two approaches
is discussed by Ricca et al. (2012) and we refer the reader to this paper for a more
comprehensive understanding of the various issues.

3.2.3 Divisor Methods: Axioms

An apportionment method can be seen as a function S that maps the problem
data, i.e., the vote matrix v;; and the values H, I; and P;, into an integral non-
negative matrix. It is convenient to denote the data as a pair (v,w) where v
is the vote matrix and w is the set of numbers H, R; and P;. Then S(v,w) is the
particular matrix output by the apportionment method defined by the function S.

We may also relax the integrality requirement and consider fractional appor-
tionments. In this case a fractional apportionment method can be seen as a
function @ that maps (v, w) into a fractional non-negative matrix Q(v,w).

Let us consider the following axioms that a fractional apportionment method
Q) for BAP should satisfy (Balinski and Demange, 1989b). Here g = Q(v, w).

1. Exactness: if the v;; satisfy H >, v;; = R,V and H 37, v; = P;V, then ¢ =
Ho/V.

2. Uniformity: let / be a subset of constituencies and J a subset of lists, and let
vry and qr; be the matrix restrictions to / x J of v and ¢, respectively. Moreover,

let
RLIZZ%‘? i €1, P 112%‘7 JEJ ﬁ:ZZQij
jeJ icl icl jed
These values define the data w;;. Then ¢;; must be an admissible apportionment
output by Q if directly applied to the data (v;;,wrs).

3. Monotonicity: if ' and v are two vote matrices that are different only for one
pair (h, k) where v}, > v, and ¢’ = Q(v’,w) then we must have q;, > gis.

4. Homogeneity: if two rows h and k of the vote matrix are proportional, i.e.,
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vp; = Awvyy; for all j, and R, = R;, then the apportionment on the two rows must
be the same, i.e., g5; = qi; for all j. The same principle must hold for the columns.

We report here the axioms in a restricted framework with respect to Balinski
and Demange (1989b), who consider R and P variable numbers within speci-
fied bounds. Another axiom (Relevance) is introduced by Balinski and Demange
(1989b), that becomes void when R and P are fixed data.

It can be shown that Homogeneity and Uniformity imply together uniqueness
of the apportionment. Uniqueness is clearly a necessary requirement for every
apportionment method. We may invoke the same axioms also for an integral
apportionment method. In addition a new axiom is introduced that calls for a
‘continuity’ property. To state this axiom we need to assume that the votes v
are real numbers. Then we require:

5. Completeness: let v be a sequence such that v* — ¢ and let s = S(v*,w) for
all k. Then s = S(7,w).

This axiom may be too restrictive if we allow zero votes for some pair (,j). In
this case it might happen that ¢}, > 0, v}, — 0 and s;; = 1. Since S(v,w) must
output s;; = 0, the axiom cannot be fulfilled. We may take the point of view
that zero votes happen only because a certain list is not present in a particular
constituency. In this case vfj = 0 for any k.

The fundamental result by Balinski and Demange is that the unique fractional
apportionment that satisfies the axioms 1-4 is a matrix /' denoted fair share that
can be expressed as

Fiy = Aiwvig g, iel, jed

where A; > 0 and x; > 0 are multipliers chosen to satisfy the constraints

N Fy=R, iel, Y Fy;=P;, jel

jed iel

The existence of the fair share matrix is always granted if the vote matrix is
strictly positive. If the vote matrix contains some zeros the fair share matrix
might not exist as it happens in this simple example

() () e

Since v;; = 0 implies F;; = 0 the only matrix satisfying the sum constraint is the
identity matrix. However, there are no positive multipliers such that A; v13 g2 = 0.

An existence result even with some zero elements is provided by the following
theorem (Bachem and Korte, 1979; Rothblum and Schneider, 1989; Kalantari
et al., 2008).

Theorem 3.1. A fair share matrix exists if and only if there exists a_feasible solu-
tion to the constraints

1
Y wy-Roiel, Y wy-Pied wyzgm Gel 83
J:(4,J)EE i:(i,5)EE
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The feasibility of (3.3) can be checked in polynomial time by standard network
flow techniques. However, it is simpler to use the so-called RAS algorithm to
compute /. This algorithm alternately scales rows and columns in order to sat-
isfy in turn either row or column sum. Formally the following computation has
to be carried out starting from the initial solution F'° = v, A] =1 and pj = 1:

R;

T S AL — oy AE) FY =aiFy  j=1,...m i=1..m,
Jj g
P; k+1 k k+1 ik . .
53‘3:2%7 uj+ = Bj 1y, Fij+ =B Iy it=1,....,m, j7=1,...n
i1

One important property of the fair share matrix is that there always exists an
apportionment obtained by rounding each matrix entry either down or up, i.e., it
stays within the quotas. We have already observed that the existence of a feasible
fractional solution to (3.1) and (3.2) implies the existence of an integral solution
to the same constraints and F is feasible for (3.1) and (3.2) with /;; = |F;;| and
wig = [Fi].

3.2.4 Divisor Methods: TT and DAS Methods

Like in the Proportional Apportionment Problem, once a signpost function 4(z) is
defined, we have to find multipliers A; and x; such that the seats obtained by

sij = [N vig g5l

satisfy row and column sums. If we round the fair share matrix, it is unlikely
that the sums are respected. Hence we have to find out other multipliers.

The Tie-and-Transfer method (TT) by Balinski and Demange (1989a) cleverly
exploits the idea that if A\ v;;p; = 6([A\svi; py]) then the matrix entry can be
rounded either up or down because there is a tie. Hence the multipliers must
be continuously updated in order to have a series of ties that allow a simultane-
ous transfer of seats in order to satisfy the sum constraints. Explaining in detail
the TT method is beyond the scope of this short survey due to its many technical
details. The reader is directed to the literature. The remarkable fact about the
method is that it is polynomial and satisfies the axioms.

The Discrete Alternating Scaling Algorithm (DAS) by Pukelsheim (2004) is sim-
ilar in the sense that it aims at finding multipliers A; and x; such that the round-
ing is consistent with the sum constraints. However, it differs in the way the
multipliers are computed. Furthermore, the algorithm may stall, although with
very low probability. However, its simplicity is an important pro toward a possible
adoption and indeed it has been adopted in the Cantons of Zurich, Schaffhausen
and Aargau (Switzerland) (Pukelsheim and Schuhmacher, 2004).

The DAS method works as the RAS algorithm for the computation of the fair
share matrix. The only difference is that the sum constraint is enforced by using
a divisor method applied to either the rows or to the columns in an alternate way.

In more detail let AF and M? be the multipliers obtained at the k-th step and

let ¢ = AF vy 4. Starting with A) = 1 and pf = 1 we iterate as
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1. Let Af such that s;; = [\l ¢f; '] and }, s;; = R,. Compute ¢f; = \F gf; "
If >, s;5 = P; stop, otherwise k :=k + 1 and go to 2.

2. Let pu} such that s;; = [[¢f; " pf] and 37, si; = P;. Compute qf; = ¢/ pb.
If 37, si; = R; stop, otherwise k := k+ 1 and go to 1.

The final multipliers are given by

)\1:H)‘f7 Mj:HM;?'
k k

3.2.5 Minimum Deviation Methods

Given ideal quotas the seats can be computed by finding those that minimize
an appropriate measure of deviation from the quotas. Since there can be many
different ways of measuring the deviation we may consequently define different
apportionment methods. Which one to choose in practice is a decision of the
lawmakers.

The important framework common to all methods is that the constraint matrix
is (3.1) with the possible addition of (3.2) and therefore a linear objective function
will always produce a seat apportionment. In particular, these problems can be
cast as network flow problems for which fast and reliable algorithms are available.

One natural way of measuring the deviation of the computed seats s;; from
the ideal quotas ¢;; considers an L,-norm, so that the objective function is

min > lsig — ail’
i

The typical values for p are p = 1, p = 2 or p = oo (that corresponds to
min, max;; |s;; — ¢;;| and we speak of minimax solutions). In addition we may
also require that the seats stay within the quotas. Other ways of measuring the
deviation not directly linked to a norm may be also defined. For instance we may
consider ‘fair’ a rounding of the quotas to the closest integer and ‘unfair’ to the
second closest integer. If we want to find an apportionment within the quotas
we necessarily round each entry in the table either fairly or unfairly. A possi-
ble objective could be the minimization of the number of unfair roundings. The
apportionment found this way might be called a Best Rounding apportionment.

Since we want to model the problems as linear programming problems on the
constraint set (3.1) with the possible addition of (3.2), the only modeling issue
that remains to be solved is how to express the various minimizations as linear
functions. For the L;-norm we note that the function f;;(z) = | — ¢;;| is convex
and piece-wise linear. The function

Qij — T if 2 < |qi)
gij(x) = { (1 =2 {giy)) (= = |aiz]) +{aiy) i [q55] < 2 < Tayy] (3.4)
T — g if 2 > [qi].

(where (a) = a — | a| is the fractional part of ) is also convex and piece-wise linear
with integral breakpoints. Furthermore, g;;(x) = fi;(«) on the breakpoints of g.
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Hence, if we minimize >, g;;(z;;) we obtain integral values for z. The function
(3.4) can be turned into linear programming by expressing each z;; as a sum of
three additional variables
wiy = &+ & &
subject to 0 < ¢ < [gi], 0 < & <1, 0 < ¢ and having the following objective
function
min > gy =&+ (1= 2{qi;) &5+ (ai) + €5+ 1= (a3y)
(if)e B

that is equivalent up to a constant shift to

min Z 2{qiz)) i2j Jrgz‘gj

(ij)ek

The objective function coefficients are such that ¢, > 0 only if ¢}, = |4;] and
3 >0onlyif & = 1.

The same trick of substituting a piece-wise linear function with another one
which has integral breakpoints and is equal to the first function on these break-
points can work with any convex objective function. There is however a subtle
theoretical issue that should not be neglected. For each breakpoint we have to
introduce a new variable. Hence we should know if the number of breakpoints
is polynomial. A trivial bound, based on the values R; or P; is only pseudo-
polynomial.

Although in practice a naive implementation of this technique works well,
because the vast majority of instances have optimal apportionments within the
bounds |g¢;;| — 1 and [¢;;] + 1, and therefore we do not need in practice more than
five additional variables, yet we wonder whether exists a polynomial algorithm to
solve the problem. The answer is affirmative thanks to a scaling procedure due
to Minoux (1984).

For the L, norm we substitute the function f;;(z) = (= — ¢;;)* with the function

i (@) = (2] —qi;)” + (&) 1 +2(lz] — g55))

which can be linearized by introducing additional variables subject to
xlj:zgfﬁ O<£U— kio?"'7min{Pj7Ri}7 (Z7J)EE
k

with objective function

ZZI+2 — 4ij )5

Optimal apportionments for either norm L, or L, do not necessarily stay
within the quotas. Counterexamples can be given (see, for instance, Ricca et al.,
2012). If we want an apportionment within the quotas we simply add to (3.1) the
constraints |¢;;] < z;; < [¢;]. In this case we can solve for any L,-norm (p < =)
by simply using the objective function (see Cox and Ernst, 1982)

min Z (1= {gij))” — {aiz) *) 45
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The norms L, and L, tend to produce the same optimal apportionment. Indeed
it is possible to prove the following result:

Theorem 3.2. [f an optimal apportionment with respect to the L1-norm stays within
the quotas, then the same apportionment is optimal with respect to the Lo-norm.

If we have in mind a Best Rounding apportionment, we can count the unfair
rounding and minimize this count by defining the sets

B = {(i,5) € B lgy) <05}, B = {(i,) € E: () > 0.5},

and using the objective function

z = min E L5 — E Lij

(ij)e B+ (ij)e E—

The actual count of unfair roundings is given by = —3>_ - g+ [9i5] + 2 e p- [0
It is interesting to note that the TT and DAS methods obtain a posteriori quotas
i v;; iy and an apportionment [[A; v;; p;]] that is necessarily a Best Rounding with
respect to these quotas.

The approach for the L..-norm is different because it is not based on the direct
solution of a linear programming minimization problem, rather on the solution
of a sequence of feasibility problems. A thorough investigation of this approach
can be found in Serafini and Simeone (2012a). Let us fix a deviation 7 from the
quotas. An apportionment that is also feasible for the constraints

Qij =T < S5 S Qi + 7

has maximum deviation not greater than r. Since an apportionment must be
integral, these constraints are equivalent to

[qi; — 7] < 85 < | a5 + 7] (3.5)

that, moreover, guarantee integrality of a feasible apportionment. Finding a fea-
sible apportionment, or determining that the problem is infeasible, with respect
to (3.1), (3.2) and (3.5) can be done via a Max Flow problem. We have to find the
minimum value 7* such that a feasible apportionment exists. This search can be
done in a binary search fashion. The details of three different implementations
can be found in Serafini and Simeone (2012a). We recall here that an optimal
apportionment can be found in strongly polynomial time.

3.2.6 Other Issues

Non-uniqueness of the optimal apportionment is a serious issue and any method
must be robust enough to prevent such circumstance. Uniqueness cannot be
always guaranteed. One can construct examples in which the votes are so sym-
metrically distributed that there may be many equivalent apportionments. How-
ever, these circumstances may be considered extremely unlikely in a real election.
There are other causes of non-uniqueness that some methods can exhibit that
are inherent to the method itself and one has to find a way to fix them.
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The L..-norm minimization has many equivalent optimal solutions because
minimax solutions are insensitive to deviations for some pairs (¢,7) which are
less than the maximum deviation. A stronger form of L.,-norm optimality to
refine the choice among the optima is as follows: for a given apportionment z* let
7ok = |lane — 2}, | be the deviation for the pair (h, k). Let

L(h, k) == {(i,5) = (h, k) : 75 < T } Ulh, k) = {(i,5) : 75 > Tii }-

L({h, k) is the set of pairs with deviation not larger than 7/, and U(h,k) is the
complement set, excluding (k, k) itself. Then we say that the apportionment z*
is strongly optimal if, for any pair (hk, k), there is no apportionment with deviation
Thie < Thps Tig < Tpyp, for (4, 7) € L(h, k) and 7;; < 775 for (4,5) € U(h, k).

Strongly optimal solutions are unique and a refinement of the previously
stated binary search can be given that produces a strongly optimal solution (Ser-
afini and Simeone, 2012a).

Lo-norm optimal solutions are robust in terms of uniqueness while L;-norm
optimal solutions can exhibit many equivalent solutions. It is shown in Ricca
et al. (2012) that this undesirable circumstance is likely to happen if the appor-
tionment does not stay within the quotas (compare with Theorem 3.2) and this
in turn is a rare circumstance if fair share quotas are used.

We quote from Serafini and Simeone (2012b): “Electoral systems are usually
quite complex and they are assembled out of many interacting components, ... it
may happen that only mathematically sophisticated algorithms are available for
solving a certain design problem. Are they “writable” as an actual law? Citizens
rightly demand simple, easy to understand, voting systems. ... Which is better?
To have simple, but unsound electoral laws, or sound, but complex ones?”

The way out from this dilemma is to “leave to a mathematically sophisticated
algorithm the task of PRODUCING a sound solution, but attach to it a certifi-
cate of guarantee, that is, describe a simple procedure whereby ANYBODY CAN
CHECK, through some elementary operations, that the solution output by the
algorithm indeed satisfies all the requirements sought for.”

Since the minimization methods described are linear programming problems,
strong duality holds for all of them and the certificate is indeed based on duality
properties. Checking the claim that a solution is indeed optimal does not however
require knowledge of mathematical programming theory. Only some elementary
mathematical notions are needed. Describing the certificates in detail is out of the
scope of this chapter and the reader is referred to Serafini and Simeone (2012b)
and Serafini (2015).

3.3 Political Districting

Political Districting (PD) is particularly important in plurality systems with single-
member districts. When only one seat is at stake in each district, the size and
the shape of the districts may influence the outcome of the election, since even a
single vote can produce the majority for one of the candidates. Gerrymandering
is the name of the malpractice of designing biased electoral districts for favoring
one preferred political party or candidate. But, even if gerrymandering is banned,
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the design of the districts remains a crucial technical issue in the definition of an
electoral law, and it needs to be solved by using appropriate models and proce-
dures. For this reason, many papers in the Operations Research (OR) literature
studied this problem since the 1960’s, providing different models and solution
techniques (Grilli di Cortona et al., 1999, Ricca and Simeone, 1997 and Ricca
et al., 2013).

3.3.1 Problem Definition

PD is a territorial partition problem which requires the discretization of the terri-
tory and imposes criteria related to spatial contiguity and population size. Here
we assume that the territory is composed of a set of » elementary units, each
identified by its geographical center and its population (population units).

Let k£ < n be the total number of districts. We denote by p; the size of the
population of unit 4, i = 1,...,n, and by P = Y " | p; the total population of the
territory. The average district population is given by P = P/k. A distance measure
between units 7 and j is denoted by d;;. The PD problem can be formulated as
finding a partition of the n units into k districts according to a specific set of criteria.
The main PD criteria are:

1. Integrity: each territorial unit cannot be split between two or more districts.

2. Contiguity: the units of each district should be geographically contiguous,
that is, one can walk from any point in the district to any other without ever
leaving the district.

3. Population balance: all districts should have the same portion of represen-
tation (one person-one vote principle); therefore single-member districts should
have nearly the same populations.

4. Compactness: cach district should be compact, that, according to the Oxford
Dictionary, is, “closely and neatly packed together” (for example a round-shaped
district).

An additional criterion frequently used in PD is the respect of existing ad-
ministrative subdivisions of the territory. There are other PD criteria which
are seldom used since there is no unanimous consensus on their legitimacy (e.g.,
respect of natural boundaries, representation of ethnic minorities and respect of in-
tegrity of communities). Broad discussions about political districting criteria can
be found in Bozkaya et al. (2003), Grilli di Cortona et al. (1999), Kalcsics et al.
(2005) and Ricca and Simeone (1997).

Traditionally, PD is formulated as an Integer Linear/Nonlinear Program (see,
e.g., Hess et al. (1965), Garfinkel and Nemhauser (1970)), depending on the cri-
terion selected for the objective function. From the seminal paper by Hess et al.
(1965), works published in the 1960’s and 1970’s focused on location/allocation
and transportation models and methods. Later, agglomerative techniques were
mainly developed following Garfinkel and Nemhauser (1970) who proposed a set
partitioning approach (Nygreen, 1988; Mehrotra et al., 1998).

Starting from the 1990’s, local search methods became pervasive for PD (see
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Bozkaya et al. (2003) and Ricca and Simeone (2008)), as well as techniques bor-
rowed from the field of genetic and evolutionary algorithms. More recently, in-
teresting approaches based on computational geometry were proposed (Kalcsics
et al., 2005; Ricca et al., 2008).

In recent years, there was also a wide variety of papers basically describing
the application of some known PD techniques (or slight variants) for the design
of the electoral district map of a specific country. We note that PD can be seen
as a particular case of the more general territory design problem, related to ap-
plications in public services like transportation districts, healthcare and school
zoning, etc. On this topic, there is a rich and lively production of papers where
PD is cited as one possible application, even if it is not the original motivation.

Many authors adopt a graph-theoretic model representing the territory as a
connected n-node graph G = (N, F) (contiguity graph, see Bodin (1973); Simeone
(1978)), where the nodes correspond to the elementary territorial units and an
edge between two nodes exists if and only if the two corresponding units are
neighboring. To each node is assigned a weight representing its population.

In this case, the PD problem is formulated as follows: find a compact partition
of G into k connected components such that the weight of each component (sum of
the weights of its nodes) is as close as possible to P.

It is well-known that the partition of a graph G into k¥ connected components
that minimizes population imbalance measured by an L;-norm objective function
is NP-hard even when k£ = 2 and G is a 2-spider, i.e., a tree with only one node with
degree greater than 2 (De Simone et al., 1990). The problem remains NP-hard on
spiders also for the L,-norm with 2 < p < o0 and & > 2 (Schroeder, 2001).

In the following, we provide a brief overview of the PD mathematical models
and methods of the last fifty years. Two main approaches emerge in our analysis
of the literature, namely the exact approach (Section 3.3.2), and the heuristic
approach (Section 3.3.3). The strength of the exact approach is that the problem
is formulated by an algebraic optimization model. Therefore, in principle, any PD
criterion can be modeled by a set of constraints, or it can be implemented in the
objective function.

The drawback is that indicators adopted to measure the criteria may be highly
non-linear (like for compactness), or even not computable by a formula, as it may
happen for example for the respect of existing administrative subdivisions. In ad-
dition, the constraints in the PD model might be too many, i.e., their number may
grow exponentially with the number of elementary units of the territory. This is
the case of order constraints provided in Apollonio et al. (2008), by which conti-
guity of the districts is guaranteed, but at the cost of introducing an exponential
number of constraints.

The power of the heuristic approach is that feasible solutions are character-
ized in a conceptually simple way so that they can evaluate a huge number of
solutions in few seconds. As a counterpart, a loss in the quality of the solution
must be accepted w.r.t. the exact approach. For both approaches, we discuss
both the papers that are commonly considered milestones in this research field
and also the ones that we deem to be the most representative, since, in our
opinion, they produced innovative ideas or fixed drawbacks of previous works.
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3.3.2 Exact Approach

In this section we review some classical mathematical models and solution tech-
niques presented in the literature starting from the paper by Hess et al. (1965),
which is generally considered the earliest OR paper in political districting. Here
PD is formulated as a discrete location problem and the idea is to identify k£ units
representing the centers of the & districts, so that each territorial unit must be
assigned to exactly one center. The model has the following binary variables:

s — { 1 if unit ¢ is assigned to center j
iy

ii=1,....n
0 otherwise J

and, in particular, z;; = 1 if unit j is chosen as one of the centers and z;; = 0
otherwise. The political districting problem is formulated as follows:

min Z Z dgj Pi ZEij
i=1j=1
dowy =1 i=1,...,n
j=1
> x5 =k (3.6)
j=1

_ n _
aPrj; <Y piwy <bPxy; j=1,...,n
i=1
zi; € {0,1} ij=1,....n

where ¢ and b define the minimum and the maximum allowable district popu-
lation, calculated as a percentage of the average district population P (a < 1,
b > 1). By the first » constraints, each unit must belong to exactly one district.
The next one imposes that the total number of districts is k. The 2n inequalities
impose upper and lower bounds on the population of the districts. This type
of constraint is frequently used to control population balance, since it is easy
to read and understand also by non OR experts and lawmakers. The objective
function measures compactness by the moment of inertia w.r.t. the district cen-
ters. The main drawback of the above integer programming model is that it does
not take into account spatial contiguity of the districts at all. Therefore, an a
posteriori revision may be necessary for assessing contiguity of the solution with
an unavoidable loss in optimality.

In Garfinkel and Nemhauser (1970) a two-phase procedure based on a set
partitioning approach is proposed. Phase I generates the set ./ of all possible fea-
sible districts w.r.t. contiguity, population balance and compactness. In phase II
the following set partitioning model is formulated that minimizes the overall de-
viation of district populations from P.

min > f;
jeJ
Zaijszl i:17...7n
jcJ (3.7)
Z ZEj = ]f
jed
z; € {0,1} jedJ
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where f; = (|P; — P|)/(aP), and o € [0,1] is the tolerance on the percentage of
deviation from P for the population of a district; a;; = 1 if unit 4 is in district j and
a;; = 0 otherwise; x; — 1 if district j € J is included in the partition and z; = 0
otherwise. The same implicit enumeration strategy is followed to find all the
feasible solutions in phase I and to find an optimal solution for (3.7) in phase II
(for details the interested reader can refer to Geoffrion (1967)).

In this approach compactness is taken into account only in phase I, when dis-
tricts are generated individually. It is measured on each single district separately
with an index based on both the maximum distance between two territorial units
in the district and the district area. A district is deemed compact if its index value
is less than or equal to a fixed threshold. Then, the set partitioning problem in
phase II does not consider any compactness measure for the whole district map,
which, in fact, at the end, may result non-compact under different viewpoints.
Note that, as suggested by Young (1988), there are many measures of compact-
ness, and any good measure must apply both to the district map as a whole and
to each district individually (for a classification of compactness measures see,
e.g., Horn et al. (1993)).

The set partitioning approach in Garfinkel and Nemhauser (1970) was fol-
lowed by other authors (Nygreen, 1988; Mehrotra et al., 1998) who suggested
variants of model (3.7) aimed at improving the performance w.r.t. compactness.
Both papers rely on a graph representation of the territory.

In Nygreen (1988) the innovative idea is that phase I is formulated in terms of
spanning forests of ¢ in which each subtree is rooted at some units playing the
role of a district’s center. Compactness is then controlled by imposing that the
trees of the spanning forest have depth at most equal to two.

In Mehrotra et al. (1998) the problem is formulated as a constrained graph
partitioning problem and a specialized branch-and-price solution methodology is
developed. To take into account compactness properly, a cost function, based on
distances computed between nodes in G, is defined on the set of possible districts,
and the objective function of the set partitioning problem (master problem) is
given by the sum of these costs. At each step, each new-generated district is
priced with the same cost function used in the master problem, and this allows
for controlling compactness of the whole map during the procedure.

The idea of formulating PD in terms of spanning forests is also exploited in
Apollonio et al. (2008) and Lari et al. (2016), where the authors investigate cen-
tered graph partitioning problems, i.e., partitions of ¢ into % of connected compo-
nents, each including exactly one fixed center. They consider a class of objective
functions based on unit-center costs that are independent of the topology of G
(flat costs). For PD, population constraints are relaxed via a Lagrangean objective
function, and flat costs correspond to the coefficients of such objective function.
The problem becomes: finding a spanning forest of G such that each tree in the
Jorest contains exactly one center and the total cost is minimized. The problem is
shown to be NP-hard even on planar bipartite graphs (Apollonio et al., 2008; Lari
et al., 2016), while it is polynomially solvable on trees. For this case, an interest-
ing formulation is proposed where district contiguity is explicitly formulated by a
set of order constraints. Unfortunately, these results cannot be directly exploited
in PD applications, since the tree structure is too poorly connected to represent
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any real territory. In spite of this, the availability of efficient algorithms on trees
leads to the idea of developing effective heuristics for finding a good district map
on G through the (optimal) solution of a sequence of restrictions of the problem to
spanning trees of G. It is worth noticing how contiguity is imposed in the above
models by the use of order constraints. Since the district centers are fixed in
advance, in a tree T' = (N, F) contiguity can be accomplished by imposing that
if unit ¢ is included in the district centered in s, then all units in G lying in the
unique path £; , from i to s must be included in the same district as i. The model
has O(n’k) order constraints in total. This can be further improved to O(nk) if
one imposes order constraints on successive adjacent nodes in P; , and exploits
transitivity. Thus, the constraints of the PD model become:

Sys=1 ielU
ses
Yis S Yjis),s €U, s€8, (4,8) g F (3.8)

yis € {0,1} €U seS

where S C N, is the set of centers, with |S| = k, and U = N\S. The binary
variables y;, are defined as follows:

Yis — { 1 if unit z belongs to the district centered in s icU ses
0 otherwise

Node j(z, s) is the adjacent to i in the unique path from i to s. The feasible polytope
described by (3.8) is integral. This could be exploited when the PD problem on a
graph G is solved by the heuristic sketched above, that at each step can rely on
linear programming for solving the problem on a spanning tree of G.

From the above discussion, two critical aspects emerge in the exact approach:
i) guaranteeing contiguity, that needs to be formulated as a hard constraint;
ii) measuring the other PD criteria, which may be a difficult task if an explicit
analytic expression does not exist for some criteria. In this view, a heuristic ap-
proach may help, since the solution procedure is free from the rigid formulation
of an algebraic model. In addition, the graph-theoretic model for the represen-
tation of the territory, that cannot be always fully exploited in a mathematical
formulation, appears to be particularly fitting in a heuristic framework, as the
papers reviewed in the following section show.

3.3.3 Heuristic Methods

In the last two decades, the use of heuristic techniques has taken a growing place
in the study of PD problems. The main contributions in the literature are aimed
at the evaluation of the performance of those meta-heuristics, like Tabu Search
(TS), Simulated Annealing (SA), Threshold Algorithms (TA), Genetic Algorithms
(GA), that have already shown to be successful for other difficult combinatorial
optimization problems. Two extensive methodological works are provided in Ricca
and Simeone (2008) and Bozkaya et al. (2003), both testing different versions of
Local Search (LS) algorithms. LS is a powerful general purpose technique with
a special capability of evaluating a huge number of different solutions in short
times. The basic features of LS are: the starting feasible solution; the (local) move;
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the neighborhood of a feasible solution. In PD the initial solution is generally easy
to find since one can always rely on an already available administrative territorial
division, or, in case of redistricting problems, even on the previous electoral dis-
trict map which is going to be updated. A move operates a slight perturbation of
a feasible solution. Given the current solution s, a neighboring solution of s is de-
fined as any solution that can be obtained from s by performing a move. Although
the variety of moves that can be thought of is wide, the principle of simplicity is
in generally recommended, in order to avoid too sophisticated implementations
which might slow down the computation. This principle is followed in both Ricca
and Simeone (2008) and Bozkaya et al. (2003) where a move corresponds to the
migration of one unit from a district to an adjacent one.

In Ricca and Simeone (2008) the aim is to investigate the intrinsic nature
and potential of LS strategies like TS, SA, and TA. Therefore, streamlined ver-
sions of the algorithms are implemented. The authors rely on a graph-theoretic
model to guarantee integrity and contiguity. PD is formulated as a multi-criteria
optimization problem via a weighted objective function combining population bal-
ance, compactness, and conformity to administrative boundaries. In particular,
good district maps are provided by Old Bachelor Acceptance (Hu et al., 1995), a
threshold-based heuristic that is able to avoid premature stops in local optima
by the use of a non-monotonic updating scheme.

In Bozkaya et al. (2003) a territory graph model is adopted and an enhanced
LS procedure based on TS is developed within an adaptive memory search frame-
work. During the procedure several ‘good’ district maps are generated, their dis-
tricts are evaluated singularly by a performance function, and the best ones are
recorded in order to be used again for restarting TS. This is, in fact, a mean for im-
plementing both fitness selection, typical of GA, and a multi-start approach, that
is generally recommended in LS. Beside the basic PD criteria, socio-economic
homogeneity and integrity of communities are considered in a single weighted
objective function.

A relatively new field of research on PD borrows notions and techniques from
the computational geometry area. For the more general territory design problem,
Kalcsics et al. (2005) propose an algorithm based on a continuous spatial model.
The novelty is that discrete elementary territorial units are still considered but
they are represented in the continuous space by the coordinates of their geo-
graphical centers. The algorithm repeatedly partition the territory into two half-
spaces by drawing a straight line (successive dichotomy strategy). At each step,
this generates two new subsets of territorial units. The benefit of the algorithm
is that it is conceptually simple and easy to implement. This approach natu-
rally satisfies contiguity, but which portion of territory must be divided next, and
which straight line must be drawn, remain two substantial issues from which the
performance of the algorithm strongly depends. In spite of this, in our opinion,
the approach is worth to be investigated for further developments.

Ricca et al. (2008) apply to PD a heuristic approach based on Voronoi Regions
(VR). The underlying idea is that VR are inherently compact, so that one may
overcome the problem of choosing a measure of compactness. They refer to the
graph representation of the territory and assign weights to the edges which rep-
resent distances between units. They introduce the notion of weighted discrete
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Voronoi Regions that can be seen as the graph-theoretic counterpart of the ordi-
nary VR in the continuous space. The authors propose algorithms that feature
an iterative updating of the distances (according to different rules) in order to
balance district populations as much as possible. In this model the authors ex-
ploit contiguity conditions formulated in Apollonio et al. (2008). Even if the graph
is not a tree, these conditions can be used in the following way in the heuristic
procedure. At each iteration contiguity of the districts is maintained thanks to
the geodesic consistency property: if unit : belongs to district s and j lies on the
geodesic between ¢ and s, then j also belongs to district s, the geodesic being the
shortest path between two nodes in . By admitting a slight perturbation of the
edge lengths, it can be assumed that there is a unique geodesic between any two
nodes. Under this assumption, the authors prove that geodesic consistency im-
plies contiguity. Actually, geodesic consistency can be seen as a way to formalize
the order constraints in (3.8).

3.3.4 Practical and Application Issues

To conclude, we point out one main issue in the design of the electoral districts,
that is: if and how the above discussed methods can be practically exploited in
a law. It is generally difficult that formal models are accepted by lawmakers.
However, differently from BAP, there is a general awareness that PD is a diffi-
cult problem. This could make computer based procedures more acceptable by
lawmakers. Therefore, besides the study of new and more efficient methods, it is
important to diffuse the already existing tools among the institutions. This would
certainly help the administrative staff who has the (hard) task of executing all the
procedures related to the political elections of a country. We believe that human
contribution must not be excluded in the district definition process, but, when
possible, it is recommended to take advantage from the power of mathematical
modeling and automatic elaboration.
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