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Stationary uphill currents in locally perturbed zero-range processes
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Uphill currents are observed when mass diffuses in the direction of the density gradient. We study this
phenomenon in stationary conditions in the framework of locally perturbed one-dimensional zero range processes
(ZRPs). We show that the onset of currents flowing from the reservoir with smaller density to the one with larger
density can be caused by a local asymmetry in the hopping rates on a single site at the center of the lattice. For
fixed injection rates at the boundaries, we prove that a suitable tuning of the asymmetry in the bulk may induce
uphill diffusion at arbitrarily large, finite volumes. We also deduce heuristically the hydrodynamic behavior of
the model and connect the local asymmetry characterizing the ZRP dynamics to a matching condition relevant
for the macroscopic problem.
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I. INTRODUCTION

Fick’s law of diffusion stands as one of the basic tenets of the
theory of transport phenomena and irreversible thermodynam-
ics, and predicts that mass diffuses against the density gradient
[1,2]. Nonetheless, there is some increasing experimental and
theoretical evidence, in the literature, of diffusive currents
flowing from a reservoir with lower density towards one
with larger density, that are hence said to go uphill [3–6].
Such “anomalous” currents have been observed and studied
in different contexts. Consider, for instance, a system made
of particles of a certain species A, whose diffusive motion
obeys the standard Fick’s law, namely, the current of particles
A includes a term proportional to minus the density gradient of
A itself. Suppose that a second species B is then added, whose
interaction with A affects the diffusive motion of the particles
of the first species. Thus, a second contribution to the current of
particles A arises, related to the density gradient of B, that may
counterbalance the first contribution. As a result, at variance
with the standard Fick’s law prescription [7,8], the species A

undergoes a process of uphill diffusion induced by the external
potential generated by the species B: this is, essentially, the
phenomenon highlighted in the seminal paper by Darken [9],
reporting an experiment of transient diffusion of carbon atoms
subjected to a repulsive interaction with silicon particles in a
welded specimen, where the silicon content is concentrated on
the left of the weld (and negligible on the right).

A second stationary mechanism which is known to produce
uphill currents is related to the presence of a phase transition
in nonequilibrium conditions [10,11]. This phenomenon has
been observed in computer simulations in a model constituted
by a single species undergoing a liquid-vapor phase transition.
This system, with one boundary fixed at the density of the
metastable vapor phase and the other at the density of the
metastable liquid phase, exhibits a stationary state in which
the current flows from the vapor boundary to the liquid one.
In particular, in Ref. [12] the authors prove the existence
of the uphill diffusion phenomenon for a stochastic cellular
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automaton, in which the particles are subjected to an exclusion
rule (preventing the simultaneous presence of two particles
with same velocity on a same site) and to a long-range Kac
potential [13]. As distinct from the Darken experiment, the
mechanism responsible, in this case, for the breaking of the
standard diffusive behavior is the creation of a sharp interface
located near one of the two boundaries, called a bump therein,
separating the vapor and the liquid phases. The density profile
results essentially decreasing almost everywhere along the
one-dimensional (1D) spatial domain, except at the transition
region: in fact, the stationary current proceeds downhill in
most of the space, but it goes uphill right along the interface.

Noticeably, the occurrence of stationary uphill currents
induced by a phase transition was also recently reported in
Ref. [14], for a two-dimensional Ising model in contact with
two infinite reservoirs fixing the values of the density at the
horizontal boundaries.

In this paper we study a different mechanism to produce
uphill currents, based on a local perturbation of a stationary
state. The model discussed allows us to recover some of the
important features of the physical examples of uphill diffusion
mentioned above. In fact, despite being simple enough to
permit an analytical solution, it gives rise to a stationary uphill
diffusion which is not induced by a phase transition as in
Refs. [11,12,14], but is triggered by a local asymmetry in the
hopping rates that rule the microscopic dynamics in the bulk.
The asymmetry at the center of the lattice stands as a caricature
of the external potential exerted by the silicon particles on the
carbon atoms, as described in the Darken experiment [9]; cf.
also the setup discussed in Sec. III of Ref. [15].

The effect of local perturbations of stationary states is a
fascinating problem which received much attention in the
recent physics and mathematical literature; see, e.g., the review
[16]. A classical question in this field is the so-called blockage
problem, posed in Ref. [17] for the totally asymmetric simple
exclusion process on a ring. The question is whether slowing
down a single bond on the lattice can ultimately affect the
value of the stationary current in the infinite volume limit; see
also Refs. [18–20] for related results for different models.

Differently from the blockage problem, the question ad-
dressed in this paper concerns the effect of a local asymmetry
in a globally symmetric model. Consider the stationary state
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of a 1D system with symmetric dynamics and suppose that a
nonvanishing current exists due to the coupling of the system
with two particle reservoirs at the boundaries. What happens
if the dynamics is perturbed and made asymmetric just on a
single site of the lattice? Is such a local asymmetry effective
enough to reverse the natural current flowing direction?

More precisely, the model we shall consider is a 1D channel
with open boundaries at its extremities [hereafter called a zero
range process–open boundary (ZRP-OB)], in contact with two
reservoirs. The reservoirs are equipped with assigned particle
densities, which also fix the injection rates at the boundaries.
The dynamics in the channel is symmetric, therefore in the
steady state a particle current exists which moves from the
reservoir with larger density to the one with smaller density,
as prescribed by the Fick’s law. Then, on a single site at
the center of the lattice, the dynamics is modified in such
a way that particles locally hop with a higher rate towards the
reservoir with larger density. More general inhomogeneous
random ZRPs have been considered in the recent literature
[21,22]. We prove that such a bias may give rise to stationary
uphill currents in the channel. In particular, we prove that
for any fixed difference between the two injection rates it
is always possible to tune the local asymmetry in order to
observe an uphill current for arbitrarily large finite volumes.
The mechanism is the following: for sufficiently large volumes
the density at the boundaries of the channel depends only
on the injection rates and not on the local bias; moreover,
if the bias is large enough the current changes sign so that
the particles move uphill. The model we shall use is a 1D
ZRP. More detailed results will be derived by establishing an
appropriate form for the intensity function, namely the rate
at which a site is updated, and eventually this will be chosen
proportional to the number of particles occupying the site.
In this case, we shall also develop a heuristic argument to
derive the hydrodynamics equations. These will be endowed
with two matching conditions—one concerning the density
function and another its first space derivative—at the center of
the slab, stemming from the local asymmetry in the hopping
rates characterizing the microscopic dynamics. We will then
solve the problem via a Fourier series expansion, and we shall
finally compare, finding a perfect match, the solution of the
hydrodynamic problem with the evolution of the original ZRP.
We also mention that uphill currents are observed in queuing
network models.

Moreover, we will introduce a periodic version of the
inhomogeneous ZRP, in which the channel is coupled at
its extremities with two slow sites, mimicking two finite
particle reservoirs, which can also exchange particle between
themselves: the whole system thus constitutes a closed circuit
(hereafter called a ZRP-CC). One of the open questions
posed in Ref. [12], in the context of stochastic particle
systems, was the conjectured existence of stationary states
with nonvanishing self-sustained currents running in circuits,
this phenomenon also being called “time crystals” in the
literature [23,24]. We shall not tackle rigorously the existence
of those fascinating rotating states here; rather, we aim to give
theoretical and numerical evidence that the local asymmetry
introduced in the ZRP-CC may lead to a stationary state in
which the densities of the finite reservoirs are different and
the current flows, in the channel, from the reservoir with

lower density to the one with larger density (as was also the
case for the ZRP-OB). Steady states for ZRPs with periodic
boundary conditions and spatially varying hopping rates were
also discussed in Refs. [25,26].

The paper is organized as follows. In Sec. II we introduce
the two ZRP models, the ZRP-OB and the ZRP-CC, and we
define the stationary current and recall some useful properties.
In Sec. III we prove the existence of uphill currents for the
ZRP-OB model. Section IV is devoted to the study of uphill
currents for the ZRP-CC. In Sec. V we discuss heuristically the
hydrodynamic limit of the ZRP-OB and compare the solution
of the hydrodynamic equation to the profile evolving according
to the stochastic ZRP dynamics. Finally, Sec. VI is devoted to
our brief conclusions.

II. THE MODEL

We define the two ZRP models to be studied in the following
sections; see also Refs. [27–29] for a survey on ZRP models.

A. The ZRP-OB

We consider a positive integer R and define a ZRP on
the finite lattice � = {1, . . . ,2R + 1} ⊂ Z. We consider the
finite state or configuration space �R = N�. Given n =
(n1, . . . ,n2R+1) ∈ �R the non-negative integer nx is called
number of particles at the site x ∈ � in the state or config-
uration n. We let u : N → R+, a positive and nondecreasing
function such that u(0) = 0, be the intensity. Given n ∈ �R

such that nx > 0 for some x = 1, . . . ,2R + 1, we let nx,x±1

be the configuration obtained by moving a particle from the
site x to the site x ± 1; in particular, we understand n1,0 and
n2R+1,2R+2 to be the configurations obtained by removing a
particle from the site, respectively, 1, and 2R + 1. Similarly,
we denote by n0,1 and n2R+2,2R+1 the configurations obtained
by adding a particle to the site 1 and 2R + 1, respectively.

Given p,q,p̄,q̄,α,β,γ,δ > 0 we set q1 = γ , qx = q for
x = 2, . . . ,R and x = R + 2, . . . ,2R + 1, qR+1 = q̄, px = p

for x = 1, . . . ,R and x = R + 2, . . . ,2R, pR+1 = p̄, and
p2R+1 = β.

We then consider the ZRP-OB model, defined as the
continuous time Markov jump process n(t) ∈ �R , t � 0, with
rates

r(n,n0,1) = α and r(n,n2R+2,2R+1) = δ (1)

for particles injection at the boundaries, and with rates

r(n,nx,x−1) = qxu(nx) for x = 1, . . . ,2R + 1 (2)

for bulk leftwards displacements, and

r(n,nx,x+1) = pxu(nx) for x = 1, . . . ,2R + 1 (3)

for bulk rightwards displacements (see Fig. 1). Note that
Eqs. (2) and (3) for x = 1 and x = 2R + 1, respectively,
account for the particles’ removal at the boundaries. The
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FIG. 1. Schematic representation of the ZRP-OB model (left panel) and the ZRP-CC model (right panel). Rates associated with the black
sites are pu towards the left and qu towards the right.

generator of the dynamics can be written as

(LRf )(n) = α[f (n0,1) − f (n)]

+
2R+1∑
x=1

{qxu(nx)[f (nx,x−1) − f (n)]

+pxu(nx)[f (nx,x+1) − f (n)]}
+δ[f (n2R+2,2R+1) − f (n)] (4)

for any real function f on �R .
This means that particles hop almost everywhere on the

lattice to the neighboring sites with rates qu(nx) and pu(nx).
At the center of the lattice, instead, different rates are assumed,
namely, q̄u(nx) and p̄u(nx). The system is “open” in the
sense that a particle hopping from the sites 1 or 2R + 1 can
leave the channel via, respectively, a left or a right move, with
rates γ u(n1) and βu(n2R+1). Finally, particles are injected
in the channel at the left and right boundaries with rates,
respectively, α and δ.

No further characterization of the (infinite) reservoirs is
required for the ZRP-OB, as the action of the reservoirs is
suitably described in terms of the injection rates α and δ. Never-
theless, it may be useful to think of each injection rate as being
proportional to the (fixed, for the ZRP-OB model) particle
density of the corresponding reservoir, as proposed in Ref. [14]
for a continuous-time dynamics; see also Refs. [11,12] in the
case of a cellular automaton. Hence, a larger injection rate
corresponds to a larger density of the reservoir.

B. The ZRP-CC

The definition of the model is similar to the ZRP-OB. We
consider the positive integers R,N and define a ZRP on the
finite torus � = {0,1, . . . ,2R + 2} ⊂ Z. We consider the finite
configuration space �R,N = {n ∈ {0, . . . ,N}�,

∑
x∈� nx =

N}. Given n = (n0, . . . ,n2R+2) ∈ �R,N the non-negative in-
teger nx is called number of particles at the site x ∈ �

in the configuration n. We let u : N → R+, a positive and
nondecreasing function such that u(0) = 0, be the intensity.
Given n ∈ �R such that nx > 0 for some x = 0, . . . ,2R + 2,
we let nx,x±1 be the configuration obtained by moving a particle
from the site x to the site x ± 1, where we denote by n0,−1 the
configuration obtained by moving a particle from the site 0 to

the site 2R + 2, and by n2R+2,2R+3 the configuration obtained
by moving a particle from the site 2R + 2 to the site 0.

Given p,q,p̄,q̄,λ > 0 we set qx = q for x = 1, . . . ,R and
x = R + 2, . . . ,2R + 1, qR+1 = q̄, px = p for x = 1, . . . ,R

and x = R + 2, . . . ,2R + 1, and pR+1 = p̄. We consider the
periodic ZRP defined as the continuous time Markov jump
process n(t) ∈ �R , t � 0, with rates

r(n,n0,±1) = λu(n0) (5)

and

r(n,n2R+2,2R+2±1) = λu(n2R+2) (6)

for the boundary conditions, and with rates

r(n,nx,x−1) = qxu(nx) for x = 1, . . . ,2R + 1 (7)

for bulk leftwards displacements, and

r(n,nx,x+1) = pxu(nx) for x = 1, . . . ,2R + 1 (8)

for bulk rightwards displacements (see Fig. 1). The generator
of the dynamics can be written as

(LR,Nf )(n) = λu(n0)[f (n0,−1) − f (n)]

+ λu(n0)[f (n0,1) − f (n)]

+
2R+1∑
x=1

{qxu(nx)[f (nx,x−1) − f (n)]

+pxu(nx)[f (nx,x+1) − f (n)]}
+ λu(n2R+2)[f (n2R+2,2R+1) − f (n)]

+ λu(n2R+2)[f (n2R+2,2R+3) − f (n)] (9)

for any real function f on �R .
The ZRP-CC model differs from the ZRP-OB for the

boundary conditions: particles can neither exit nor enter the
system. Furthermore, the sites 0 and 2R + 2 are updated with
rates proportional to λ. The interesting case, from the modeling
perspective, is that in which λ is much smaller than one:
namely, the boundary sites are slowed down and mimic the
action of large particle reservoirs.

III. UPHILL CURRENTS IN THE ZRP-OB

In this section we shall prove that the ZRP-OB can exhibit
stationary uphill currents. More precisely, we shall consider
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the process described by the generator given in (4) and show
that, for a particular choice of the parameters, the steady state
is characterized by a current flowing from the reservoir with
smaller density to the one with larger density.

A. Stationary measure for the ZRP-OB

Consider the ZRP-OB defined in Sec. II A. A probability
measure μR on �R is stationary for the ZRP if and only if∑

n∈�R

μR(n)(LRf )(n) = 0 (10)

for any function f . A sufficient condition is provided by the
balance equation∑

m�=n

μR(m)r(m,n) = μR(n)
∑
m�=n

r(n,m) (11)

for any n ∈ �R .
Consider the positive reals s1, . . . ,s2R+1, called fugacities,

and the product measure on the space �R defined as

νR(n) =
2R+1∏
x=1

νx(nx) with νx(nx) = 1

Zx

snx
x

ux(nx)!
, (12)

where ux(k)! = 1 if k = 0 and ux(k)! = ux(1) · · · ux(k) if k �
1 and

Zx =
∞∑

k=0

sk
x

ux(k)!
. (13)

By exploiting Eq. (11), or by applying (10) to the functions
f (n) = nx for any x, it can be proven that ν is stationary for the
ZRP-OB provided the reals sx satisfy the following equations:

(γ + p)s1 = α + qs2,

(q + p)sx = psx−1 + qsx+1 for x = 2, . . . ,R − 1,

(q + p)sR = psR−1 + q̄sR+1,

(q̄ + p̄)sR+1 = psR + qsR+2,

(q + p)sR+2 = p̄sR+1 + qsR+3,

(q + p)sx = psx−1 + qsx+1 for x = R + 3, . . . ,2R,

(q + β)s2R+1 = ps2R + δ. (14)

After some simple algebra we get the equations

psR − q̄sR+1 = psR−1 − qsR,

p̄sR+1 − qsR+2 = psR − q̄sR+1,

ps2R − qs2R+1 = βs2R+1 − δ,

psx − qsx+1 = α − γ s1 (15)

for x = 1, . . . ,R − 1 and x = R + 2, . . . ,2R, which reduce
to Eq. (30) in Ref. [30] in the case (q̄,p̄) = (q,p). These
equations admits a unique solution to be discussed in detail
in the sequel for a particular choice of the parameters
p,q,p̄,q̄,α,β,γ , and δ.

B. Stationary current and density profile for the ZRP-OB

The main quantities of interest, in our study, are the
stationary density or occupation number profiles

ρx = νx[nx] = 1

Zx

∞∑
k=1

k
sk
x

u(k)!
= sx

∂

∂sx

log Zx (16)

(see Ref. [31] for the details) and the stationary current

JR,x = νR[u(nx)px − u(nx+1)qx+1]

= pxνx[u(nx)] − qx+1νx+1[u(nx+1)]

= pxsx − qx+1sx+1 (17)

for x = 1, . . . ,2R, where we omitted the last straightforward
computation. The stationary current represents the difference
between the average number of particles crossing a bond
between two adjacent sites on the lattice from the left to
the right and the corresponding number in the opposite
direction. Equations (15) shows that the stationary current
does not depend on the site x, therefore we shall simply write
JR ≡ JR,x .

Note that it was possible to express the current in terms of
the fugacities without relying on any specific choice for the
intensity function u. Yet an explicit form for u is needed in the
computation of the density profile. In general it can be proven
(see Ref. [31]) that

∂ρx

∂sx

= 1

sx

{
νx

[
n2

x

] − (νx[nx])2
}

> 0, (18)

hence, at each site, the stationary mean occupation number is
an increasing function of the local fugacity.

Particularly relevant cases are the so-called independent
particle and the simple exclusion-like ZRP models, in which
the intensity function is respectively given by u(k) = k and
u(k) = 1 for k � 1 [recall that u(0) = 0]. In these two cases it
is easy to prove that Z

ip
x = exp{sx} and Zse

x = 1/(1 − sx) for
sx < 1, respectively. Hence, by (16), one has

ρ ip
x = sx and ρse

x = sx

1 − sx

for sx < 1 (19)

for the independent particle and the simple exclusion-like
models, respectively.

C. The almost everywhere symmetric ZRP-OB

We shall fix q = p = γ = β = 1/2, q̄ = 1/2 − ε, and p̄ =
1/2 + ε for some ε ∈ [0,1/2). In this case, the solution of
Eqs. (15) is linear in x and can be written as

sx =

⎧⎪⎨
⎪⎩

σx + 2α for x = 1, . . . ,R

α + δ for x = R + 1

σx + 2α + 4ε(α + δ) for x = R + 2, . . . ,2R + 1

(20)

with slope

σ = 1

R + 1
[δ − α − 2ε(α + δ)]. (21)
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FIG. 2. Fugacity profile, for R large, in the case α > δ (left panel) and α = δ (right panel).

To draw the fugacity profiles sx for x = 1, . . . ,2R + 1, shown
in Figs. 2 and 3, it is useful to compute

s1 = σ + 2α,

sR = −σ + (α + δ)(1 − 2ε),

sR+2 = σ + (α + δ)(1 + 2ε),

s2R+1 = −σ + 2δ. (22)

In the case α > δ, recalling that ε ∈ [0,1/2), we have that
σ < 0, 2α > α + δ > 2δ, 0 < (α + δ)(1 − 2ε) � α + δ, and
α + δ � (α + δ)(1 + 2ε) < 2(α + δ). This explains the graph
shown in the left panel of Fig. 2, portraying the fugacity profiles
for R large, in which case the terms ±σ in (22) are small.

In the case α = δ, recalling that ε ∈ [0,1/2), we have
that σ = −4εα/(R + 1) < 0 and 0 < 2α(1 − 2ε) � 2α �
2α(1 + 2ε). This case is shown in the right panel of Fig. 2,
where the terms ±σ are still assumed to be small.

The discussion of the the case α < δ is more delicate, since
the sign of σ depends on the value of the difference δ − α.
More precisely, it holds

σ � 0 if and only if ε � 1

2

δ − α

α + δ
≡ εc, (23)

where we have introduced the critical bias εc. Thus, we have
to distinguish three cases.

For 0 � ε < εc we have that σ > 0, 2α < (α + δ)(1 −
2ε) � α + δ, and α + δ � (α + δ)(1 + 2ε) < 2δ. For ε = εc

we have that σ = 0, (α + δ)(1 − 2εc) = 2α, and (α + δ)(1 +
2εc) = 2δ. For εc < ε < 1/2 we have that σ < 0, 2α >

(α + δ)(1 − 2ε) > 0, and 2(α + δ) > (α + δ)(1 + 2ε) > 2δ.

The graphs in Fig. 3 represent the fugacity profiles for R

large, in the three cases.
Remarkably, the presence of a critical value for the bias,

marking the transition from a regime of standard (downhill)
diffusion to another regimes of uphill diffusion, was also
reported in Ref. [15]; cf. Figure 4 therein. In that work, much
in the same spirit of the ZRP-OB model, the diffusion of
particles in the channel results from the balance between the
standard diffusive behavior induced by the reservoirs and the
uphill motion triggered by the Kac potential in the bulk (whose
effect is only visible in a neighborhood around the central site
of the lattice).

As already mentioned in Sec. III B, the stationary current
can be computed from the knowledge of the fugacity profile
without specifying the intensity function. Applying (17) and
(20) we find

JR = −1

2
σ = − 1

2(R + 1)
[δ − α − 2ε(α + δ)]. (24)

On the other hand, to compute the density profile it is necessary
to consider a particular form for the intensity function; see
(19) for the independent particle and the simple exclusion-like
cases.

For the independent particle model, the fugacity profiles
shown in Figs. 2 and 3 correspond to the density profiles.
In particular, by summing up the density profile ρx for x =
1, . . . ,2R + 1, we find the average total number of particles in
the channel in the steady state:

N ip = (α + δ)(2R + 1). (25)

x

sx

1 R R+2 2R+1
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(α+δ)(1−2 )
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(α+δ)(1+2 )

2δ
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2δ
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FIG. 3. Fugacity profile, for R large, in the case α < δ for ε < εc (left panel), ε = εc (central panel), and εc < ε (right panel).
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FIG. 4. Monte Carlo results for the almost everywhere symmetric ZRP-OB with R = 50, ε = 0.4, α = 0.2, δ = 0.3. The initial datum
used in the simulations is a uniform configuration with two particles per site. Squares and circles refer, respectively, to the independent particle
and the simple exclusion-like models. The dashed lines represent the exact solution. Left panel: the total number of particles in the system is
measured vs time. The open symbols are the instantaneous values, and the solid symbols are the time-averaged values. Time is measured from
the beginning of the dynamics. The inset in the upper right corner is a magnification of the larger figure at short times and shows the rapid
relaxation of the time-averaged total number of particles in the independent particle case to the theoretical value given in (25). Right panel:
particle currents measured at the boundaries vs time. Open and solid symbols refer, respectively, to the left and the right boundary. Time is
counted starting from the “thermalization” time 2 × 106, taken as the origin of the horizontal axis.

Moreover, in the case α > δ, σ < 0 implies that JR > 0. The
current goes downhill, i.e., it flows from the reservoir with
larger density (characterized by the injection rate α) towards
the reservoir with smaller density (with injection rate δ).

When α = δ, σ < 0 implies that JR > 0. The diffusion is
now uphill: indeed, in spite of the equality of the injection
rates, the current goes from the boundary site 1, with lower
density, to the site 2R + 1, with higher density. The effect,
though, is barely visible because s2R+1 − s1 = 8εα/(R + 1)
vanishes for R large. It is also interesting to note that, for R

sufficiently large, the density profile corresponding to the case
α = δ recovers, qualitatively, the plot portrayed in Fig. 2 of
Ref. [15], referring to a scenario similar to the one considered
here for the ZRP-OB model, where the injection rates at the
boundaries coincide.

In the case α < δ, finally, for ε < εc the diffusion is
downhill, for ε = εc the current vanishes, and for εc < ε the
diffusion is uphill.

We cannot write a general formula for the density profile
for any choice of the intensity function u. But, using (16), we
have that ρx+1 > ρx if and only if sx+1 > sx . This implies that
the results we deduced for the independent particle model are,
indeed, completely general.

Let us now compare our exact results with the Monte Carlo
simulations. The model has been simulated as follows: call
n the configuration at time t , then (i) a number τ is picked
up at random with exponential distribution of parameter U =
α + δ + ∑2R+1

x=1 ux(nx) and time is updated to t + τ ; (ii) an
integer y in 0,1, . . . ,2R + 2 is chosen at random on the lattice
with probability πy = uy(ny)/U for y = 1, . . . ,2R + 1, π0 =
α/U , and π2R+2 = δ/U (note that, for simplicity, we skipped
the time dependence in the notation); (iii) if y �= 0,2R + 2
a particle is moved from the site y to the site y + 1 with

probability py/(qy + py) (in the case y = 2R + 1 the particle
is removed) or to the site y − 1 with probability qy/(qy + py)
(in the case y = 1 the particle is removed), if y = 0 a particle
is added to the site 1, if y = 2R + 2 a particle is added to the
site 2R + 1.

In Fig. 4 we report the Monte Carlo measure of the total
number of particles in the channel and of the boundary currents
as functions of time, for the independent particle and the simple
exclusion-like models. The values of the parameters used in the
simulations are indicated in the caption. Both panels of Fig. 4
show that when time is large enough the time-averaged values
of the total number of particles and of the currents tend to
the analytical results (24) and (25) (dashed lines). Concerning
the theoretical value of the total number of particles, note
that the analytic expression (25) applies only to the inde-
pendent particle case; in the simple exclusion-like model we
summed up numerically, for x = 1, . . . ,2R + 1, the values of
ρx given by (19), with sx in (20).

The data in Fig. 4 (left panel) also give an insight into
the magnitude of the “thermalization” time, namely, the time
interval in which the time-averaged total number of particles
converges to the corresponding theoretical stationary value.
As visible in the inset of Fig. 4 (left panel), the thermalization
time in the independent particle case is considerably smaller
than that observed in the simple exclusion-like model, which
is of the order of 2 × 106 (for the given initial datum used
in the simulations). It should also be noted that the steady
state fluctuations of the instantaneous total number of particles
around the time-averaged value are larger in the simple
exclusion-like model. To numerically check the convergence
of the current to its theoretical value [see Fig. 4 (right panel)],
we thus skipped the initial transient dynamics and measured
the current starting from the time 2 × 106.
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FIG. 5. Monte Carlo results for the density profile of the almost everywhere symmetric ZRP-OB with R = 50, ε = 0.4, α = 0.2, and
δ = 0.3. Squares and circles refer, respectively, to the independent particle (left panel) and the simple exclusion-like (right panel) models. The
dashed lines represent the exact solution given in (19). The stationary density profiles have been computed by averaging, after the thermalization
time is reached, over a set of 106 instantaneous particle configurations.

The same procedure was also adopted for the measure of
the stationary density profiles, reported in Fig. 5. The match
between the Monte Carlo numerical measure and the exact
results is striking. As expected [see (19)], the density profile in
the simple exclusion-like model is not linear. Note also that in
the simple exclusion-like model no symmetry between the left
and the right halves of the lattice exists. Moreover, though the
values of the boundary rates α and δ used in the simulations are
the same in the two considered models, completely different
values of the density at the boundary sites are obtained. This
suggests, hence, that the dynamics in the bulk significantly
affects the value of the density at the boundaries.

IV. UPHILL CURRENTS IN THE ZRP-CC

In this section we shall also prove that the ZRP-CC can
exhibit anomalous uphill currents. More precisely, we shall
consider the process described by the generator given in (9)
and discuss the effect produced, in the steady state, by the local
asymmetry in the bulk and by the two slow boundary sites.

A. Stationary measure for the ZRP-CC

For the periodic ZRP introduced in Sec. II B, the invariant
measure μR,N satisfies

∑
n∈�R,N

μR,N (n)(LR,Nf )(n) = 0. (26)

With arguments similar to those developed in Sec. III [see also
Eq. (15) in Ref. [29]], it can be proven that the invariant or
stationary measure of the ZRP-CC process attains the form

νR,N (n) = 1

ZR,N

2R+2∏
x=0

snx
x

u(nx)!
(27)

for any n ∈ �R,N , where the partition functionZR,N is the
normalization constant

ZR,N =
∑

n∈�R,N

2R+2∏
x=0

snx
x

u(nx)!
(28)

and s0, . . . ,s2R+2 are not negative real numbers satisfying the
following equations:

2λs0 = qs1 + λs2R+2,

(q + p)s1 = λs0 + qs2,

(q + p)sx = psx−1 + qsx+1 for x = 2, . . . ,R − 1,

(q + p)sR = psR−1 + q̄sR+1,

(q̄ + p̄)sR+1 = psR + qsR+2,

(q + p)sR+2 = p̄sR+1 + qsR+3,

(q + p)sx = psx−1 + qsx+1 for x = R + 3, . . . ,2R,

(q + p)s2R+1 = ps2R + λs2R+2. (29)

With simple algebra we get the equations

2λs0 = qs1 + λs2R+2,

psR − q̄sR+1 = psR−1 − qsR,

p̄sR+1 − qsR+2 = psR − q̄sR+1,

ps2R+1 − λs2R+2 = ps2R − qs2R+1,

psx − qsx+1 = λs0 − qs1 (30)

for x = 1, . . . ,R − 1 and x = R + 2, . . . ,2R. These equa-
tions admits a class of ∞1 solutions that will be discussed
in detail in the sequel for a particular choice of the parameters
p,q,p̄,q̄, and λ defining the rates.
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FIG. 6. Results for the almost everywhere symmetric ZRP-BB model with R = 50, N = 206, λ = 0.25, ε = 0.05 (circles), 0.2 (diamonds),
0.4 (squares). Left panel: stationary density profiles, obtained as discussed in Fig. 5. Open symbols denote the Monte Carlo measures and the
dashed lines the exact solution in (37) and (38). Note that the average occupation numbers of the finite reservoirs in x = 0 and in x = 2R + 2
have been multiplied by the factor λ to fit within the figure. Right panel: particle currents measured on the bonds (2R + 1)−(2R + 2) (open
symbols) and (2R + 2)−(0) (solid symbols). The dashed lines represent the theoretical prediction in (41). Time, on the horizontal axis, is
counted from the “thermalization” time 2 × 106, as in Fig. 4.

B. Stationary current and density profile for the ZRP-CC

We shall focus, again, on the stationary density profile

ρR,N,x = νR,N [nx] = 1

ZR,N

∑
n∈�R,N

nx

2R+2∏
y=0

s
ny

x

u(ny)!
(31)

and the stationary current

JR,N,x = νR,N [u(nx)px − u(nx+1)qx+1] (32)

for x = 1, . . . ,2R. With the same arguments used to prove
Eq. (11) in Ref. [29] we get

νR,N [u(nx)] = ZR,N−1

ZR,N

sx, (33)

hence

JR,N,x = ZR,N−1

ZR,N

(pxsx − qx+1sx+1) (34)

for x = 1, . . . ,2R, where the last equality follows from
Eq. (11) in Ref. [29]. Equations (30) prove that the current
does not depend on the site x, hence we shall simply write
JR,N ≡ JR,N,x .

In this periodic case it is not possible to push forward the
discussion without embracing a specific form for the intensity
function. Thus, from now onwards in this section, we shall
restrict our description to the independent particle case u(k) =
k and add the superscript “ip” to the notation. We first compute
the partition function

Z
ip
R,N =

∑
n∈�R,N

2R+2∏
x=0

snx
x

nx!
= 1

N !

[
2R+2∑
x=0

sx

]N

, (35)

where we used the convention 0! = 1 and applied the multi-
nomial theorem [Eq. (3.35) in Ref. [32]]. From (34) (and from

the notational remark below it) we then get

J
ip
R,N = N

[
2R+2∑
x=0

sx

]−1

(pxsx − qx+1sx+1). (36)

Moreover, since u(nx) = nx , Eq. (33) can be also used to
compute the density profile:

ρ ip
x = ν

ip
R,N [nx] = ν

ip
R,N [u(nx)] = N

[
2R+2∑
x=0

sx

]−1

sx, (37)

where in the last step we used (33) and (35). Note that ρ
ip
0

and ρ
ip
2R+2 correspond to the average total number of particles

allocated, respectively, in the left and in the right reservoirs.
Retaining the interpretation discussed at the end of Sec. II A,
from the expression of the injection rates given in (5) and (6) we
find that the average particle densities in the two reservoirs take
the values, respectively, λρ ip

0 and λρ
ip
2R+2. Thus, in the ZRP-CC

model, the two slow sites act as finite particle reservoirs, each
constituted by λ−1 sites. In Fig. 6 (right panel) are shown,
hence, the density profile in the bulk, i.e., for x = 1, . . . ,2R +
1, and at the slow sites in x = 0 and in x = 2R + 2.

C. The almost everywhere symmetric ZRP-CC

Let us fix q = p = γ = β = 1/2, q̄ = 1/2 − ε, and p̄ =
1/2 + ε for some ε ∈ [0,1/2). In this case the solution of
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Eqs. (30) is linear in x and can be written as

sx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σx + 2λs0 for x = 1, . . . ,R

2λ(3 + 2R)s0/(3 + 2R − 2ε) for x = R + 1

σx + 2λ[1 + 4ε + 8ε2/(3 + 2R − 2ε)]s0 for x = R + 2, . . . ,2R + 1

[1 + 4ε/(3 + 2R − 2ε)]s0 for x = 2R + 2

(38)

with slope

σ = − 8λεs0

3 + 2R − 2ε
(39)

and s0 arbitrary. Moreover, we have that

2R+2∑
x=0

sx = 2(3 + 2R)[1 + λ(2R + 1)]

3 + 2R − 2ε
s0. (40)

Hence, (36) and (37) yield

J
ip
R,N = −1

2
σN

[
2R+2∑
x=0

sx

]−1

= 2λεN

(3 + 2R)[1 + λ(2R + 1)]
,

(41)

ρ
ip
0 = N (3 + 2R − 2ε)

2(3 + 2R)[1 + λ(2R + 1)]
,

and

ρ
ip
2R+2 = N (3 + 2R + 2ε)

2(3 + 2R)[1 + λ(2R + 1)]
.

In conclusion,

ρ
ip
2R+2 − ρ

ip
0 = 2εN

(3 + 2R)[1 + λ(2R + 1)]
> 0

and J
ip
R,N > 0, which proves that the channel is crossed by an

uphill current flowing from the reservoir with lower particle
density (in x = 0) to the one with higher particle density (in
x = 2R + 2).

We have numerically simulated the almost everywhere
symmetric ZRP-CC model following a scheme similar to that
outlined in Sec. III C. We find, also in this case, an optimal
match between the exact density profiles obtained from (37)
and (38) and the numerical data; see Fig. 6.

V. THE HYDRODYNAMIC LIMIT

We discuss on heuristic grounds the hydrodynamic limit
[28,33] of the almost everywhere symmetric ZRP-OB model
introduced in Sec. III C, with the intensity function correspond-
ing to the independent particle case, namely, u(k) = k.

For any i ∈ � set xi = i/(2R + 1) so that xi ∈ [1/(2R +
1),1]. Denote by ni(t) the time-dependent density profile at
time t , i.e., ni(t) is the average number of particles occupying
the site i at time t . The change of the number of particles at a
site in the bulk, i.e., i �= 1,R,R + 1,R + 2,2R + 1, in a small
interval �t , can be estimated as

ni(t + �t) − ni(t)=−ni(t)�t + 1
2ni−1(t)�t + 1

2ni+1(t)�t.

This equality can be rewritten as

ni(t + �t) − ni(t)

�t/(2R + 1)2
= [ni+1(t) − ni(t)] − [ni(t) − ni−1(t)]

2/(2R + 1)2
.

Thus, if time is rescaled as t/(2R + 1)2 → t (diffusive
scaling), in the limit R → ∞ the particle density profile ni(t)
will tend to a function u(x,t) solving the diffusion equation

∂u

∂t
= 1

2

∂2u

∂x2
in (0,1/2) ∪ (1/2,1). (42)

In order to guess the boundary conditions at x = 0,1/2,1
we shall write the balance equation of the currents at the sites
x1, xR , xR+1, xR+2, and x2R+1. More precisely, we consider a
small interval of time �t , and we first write

α�t − n1(t)�t + 1
2n2(t)�t = 0

and

δ�t − n2R+1(t)�t + 1
2n2R(t)�t = 0,

which, in the limit R → ∞, provide the boundary conditions

u(0,t) = 2α and u(1,t) = 2δ. (43)

Note that Eqs. (43) are obtained by assuming that the injection
rates α and δ are independent of R; different boundary
conditions may hold under different scalings of α and δ with
R. Moreover, we have that

1
2nR−1(t)�t − nR(t)�t + (

1
2 − ε

)
nR+1(t)�t = 0,

1
2nR(t)�t − nR+1(t)�t + 1

2nR+2(t)�t = 0,(
1
2 + ε

)
nR+1(t)�t − nR+2(t)�t + 1

2nR+3(t)�t = 0.

The equation in the middle can be rewritten as
1
2 [nR(t) − nR+1(t)] = 1

2 [nR+1(t) − nR+2(t)],

which, divided by 1/(2R + 1), in the limit R → ∞ provides
the condition

lim
x→1/2−

∂

∂x
u(x,t) = lim

x→1/2+

∂

∂x
u(x,t). (44)

Combining the first and the third equation, on the other hand,
we get [

1
2nR−1(t) − nR(t)

](
1
2 + ε

)
+ [

nR+2(t) − 1
2nR+3(t)

](
1
2 − ε

) = 0.

Since in the limit R → ∞ we have that [nR−1(t) − nR(t)]/2
and [nR+2(t) − nR+3(t)]/2 tend to zero, the above equation
can be interpreted as(

1
2 + ε

)
lim

x→1/2−
u(x,t) = (

1
2 − ε

)
lim

x→1/2+
u(x,t). (45)
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In conclusion, we find that the evolution of the model in the
hydrodynamic limit is described by the differential equation
(42) supplemented with the boundary conditions (43), (44),
and (45). In particular, the stationary profile is the solution of
the problem

u′′(x) = 0

u(0) = 2α and u(1) = 2δ
(46)

u′
−(1/2) = u′

+(1/2)

(1/2 + ε)u−(1/2) = (1/2 − ε)u+(1/2),

where the subscripts − and + denote, respectively, the left and
the right limits.

The stationary problem (46) can be easily solved: one can
write u(x) = Ax + B for x ∈ (0,1/2) and u(x) = Cx + D for
x ∈ (1/2,1). The boundary conditions then yield

u(x) = 2[δ − α − 2ε(α + δ)]x + 2α (47)

for 0 � x � 1/2 and

u(x) = 2[δ − α − 2ε(α + δ)]x + 2α + 4ε(α + δ) (48)

for 1/2 � x � 1. The solution of the macroscopic stationary
equation matches perfectly with the stationary density profile
of the microscopic lattice model. Indeed, by performing the
change of variable x/(2R + 1) → x in (20), one finds, for R

large, Eqs. (47) and (48).
It is also possible to solve the time dependent problem

(42)–(45) and write the solution in terms of a Fourier series.
We first introduce the functions

Y1(x,t) = u(x,t) and Y2(x,t) = u(1 − x,t)

for x ∈ [1,1/2] and note that the conditions (43)–(45) imply

Y1(0,t) = 2α,Y2(0,t) = 2δ,
∂Y1

∂x

(
1

2
,t

)
+ ∂Y2

∂x

(
1

2
,t

)
= 0

and (
1
2 + ε

)
Y1(1/2,t) − (

1
2 − ε

)
Y2(1/2,t) = 0.

Moreover, by (42) we have that both Y1 and Y2 solve the
heat equation with diffusion coefficient 1/2. As a second step,
we introduce the functions

W (x,t) = Y1(x,t) + Y2(x,t)

and

U (x,t) = (
1
2 + ε

)
Y1(x,t) − (

1
2 − ε

)
Y2(x,t),

and note that from the boundary conditions on Y1 and Y2 we
get

W (0,t) = 2(α + δ), W (1/2,t) = 2(α + δ)

and

U (0,t) = α − δ + 2ε(α + δ), U (1/2,t) = 0.

Thus, we obtained two PDE problems, one for W and
another for U , which are decoupled and can hence be solved
by the standard method of separation of variables. Denoting
by u0(x) the initial condition for the original Eq. (42), we can
define

Y1,0(x) = u0(x) and Y2,0(x) = u0(1 − x)

for x ∈ [0,1/2]. Moreover, we set

W0(x) = Y1,0(x) + Y2,0(x)

and

U0(x) = (
1
2 + ε

)
Y1,0(x) − (

1
2 − ε

)
Y2,0(x).

Then, by a standard computation, we find

W (x,t) = 2(α + δ) +
∞∑

n=0

Ane
−α2

nt/2 sin(αnx) (49)

FIG. 7. Comparison between the exact solution of the hydrodynamic problem (49)–(51) and the Monte Carlo measure of the time-dependent
density profiles, averaged over a set of different realizations of the stochastic process. The parameters of the simulation are α = 0.5, δ = 1,
ε = 0.4, and R = 50. The profiles are plotted at times t = 0.001 (triangles), t = 0.01 (squares), t = 0.1 (diamonds), and t = 0.5 (circles). The
gray and the black solid lines denote, respectively, the initial condition and the exact solution at the corresponding times. The profiles in the
regions [0,1/2] and [1/2,1] are displayed in two separate panels to optimize the resolution of the plots.
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FIG. 8. Comparison between the exact solution of the hydrodynamic problem (49)–(51) and the Monte Carlo measure of the time-dependent
density profiles, with α = δ = 0.5, ε = 0.4, and R = 50. Symbols are the same as those shown in Fig. 7.

with αn = (1 + 2n)π and

An = 4
∫ 1/2

0
[W0(x) − 2(α + δ)] sin(αnx) dx

for n = 0,1, . . . . For the function U we find

U (x,t) = (1 − 2x)[α − δ + 2ε(α + δ)]

+
∞∑

n=0

Bne
−β2

n t/2 sin(βnx) (50)

with βn = 2nπ and

Bn = 4
∫ 1/2

0
[U0(x)−(1−2x)[α−δ+2ε(α+δ)] sin(βnx)] dx

for n = 0,1, . . . . Solving the equations that define W and U

with respect to Y1 and Y2 we find

Y1(x,t) = (
1
2 − ε

)
W (x,t) + U (x,t)

and

Y2(x,t) = (
1
2 + ε

)
W (x,t) − U (x,t).

Finally, we get the solution of the original problem:

u(x,t) =
{
Y1(x,t) for x ∈ [0,1/2]

Y2(1 − x,t) for x ∈ [1/2,1]
. (51)

We now test numerically the solution (49)–(51). We
consider the hydrodynamic problem in the case α = 0.5 and
δ = 1 in Fig. 7 and α = δ = 0.5 in Fig. 8. In both figures
ε = 0.4 and the initial datum is u0(x) = 1 for x ∈ [0,1/2]
and u0(x) = 2 for x ∈ [1/2,1]. The density profile is plotted
at different macroscopic times and is compared with the
numerical estimate.

The numerical solution is constructed as follows: a set
of 5 × 105 independent realizations of the stochastic process
is constructed by running different Monte Carlo simulations
started from the same initial datum (the one also used for the

FIG. 9. Comparison between the exact solution of the hydrodynamic problem (49)–(51) (black solid lines) and the Monte Carlo measure,
with α = 0.5, δ = 1.0, ε = 0.4, at time t = 0.001, for different volume sizes: R = 25 (empty diamonds), R = 50 (black triangles), R = 75
(gray squares), and R = 100 (dark gray circles). The gray solid lines denote the initial condition.
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analytical solution) and by varying the seed of the random
number generator routine. Then the profile corresponding to
a certain fixed macroscopic time is obtained by averaging
over all the different realizations of the process. Finally,
the numerical profile is plotted after rescaling the space
microscopic variable as x/(2R + 1) → x, and the very good
match illustrated in Figs. 7 and 8 is found.

It should be observed that, in both Figs. 7 and 8, the Monte
Carlo results display some (little) discrepancies with respect
to the theoretical behavior indicated by the solid lines. These
are fluctuations stemming from finite size effects.

Indeed, fixed the initial datum, averaging over a (large
enough) set of different realizations of the process corresponds
to considering the expectation Eμt

R
[nx(t)] with respect to a

probability measure μt
R associated with the stochastic process

at time t . We recall, then, that the hydrodynamic behavior
holds in the limit R → ∞. More precisely, one introduces the
empirical density [34]

πt
R(n) = 1

2R + 1

∑
x∈�

nx(t)δx, (52)

where δx is the delta measure. From Eq. (52) one finds that,
for any continuous function f : �R → R, it holds∫

�R

f dπt
R(n) = 1

2R + 1

∑
x∈�

nx(t)f (x).

One says, then, that a sequence of probability measures μt
R

on �R is associated with a density profile u(x,t) if for any
continuous function f and for any ε > 0 it holds

lim
R→+∞

Eμt
R

[
1∣∣∣∫�R

f dπt
R (n)−∫

�R
f (x)u(x,t)dx

∣∣∣�ε

]
= 0 ,

where 1 denotes the characteristic function.
In Fig. 9 we show that the match between the solution of the

hydrodynamic limit equations and the numerical simulation
becomes better and better when the size of the lattice used in the
simulations increases. The same situation as the one portrayed

in Fig. 7 at the macroscopic time 0.001 is considered and
simulations are run for R = 25,50,75,100. Note that the case
with R = 50 (black triangles) is also the case shown in Fig. 7.

VI. CONCLUSIONS

A variety of systems, e.g., two-species models, particle or
spin models undergoing a phase transition, or queuing network
models, are known to exhibit uphill currents. In this paper
we prove that the phenomenon of uphill diffusion can also be
observed in the simplest and, somehow, paradigmatic transport
model, namely, the 1D ZRP.

Indeed, such a model is proven to show uphill currents in
presence of a bias on a single defect site. For an open ZRP
in contact with two particle reservoirs at different densities,
for sufficiently large volumes the density at the boundaries of
the channel depends only on the injection rates and not on
the local bias. If the bias is large enough the current changes
sign, so that particles typically move uphill, from the reservoir
with lower density to the one with higher density. This result is
demonstrated both analytically and numerically, with a striking
match between the exact and the Monte Carlo results.

We have also investigated the hydrodynamic limit of the
model: a heuristic argument yields the structure of the limit
problem and provides the matching conditions mimicking the
presence of the defect site in the microscopic lattice model.
We managed to write the time-dependent solution as a Fourier
series and compared it with the evolution of the original ZRP
process.
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