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Introduction

The main objective of the present thesis is to define and study a pseudo-metric

on Teichmüller spaces of semi-translation surfaces which is similar to the one William

Thurston defined on Teichmüller spaces of Riemann surfaces in [Th]. The idea be-

hind this work is that, since the Thurston’s metric L is defined as the infimum of

Lipschitz constants of diffeomorphisms between surfaces with hyperbolic metrics, it

would be interesting to study what happens when one considers the singular flat met-

rics induced by quadratic differentials. W.A. Veech already did something similar in

[V e2], claiming that he obtained a complete, complex-valued distance map on spaces

of quadratic differentials: the proof of this fact should be contained in unpublished

preprints [V e3].

We defined a pseudo-metric LF which is slightly different from the real part of Veech’s

distance function and has some nice properties: for example it is symmetric, complete

and greater than or equal to the Teichmüller metric between conformal structures un-

derlying the holomorphic differentials.

One of the main properties of the Thurston’s metric L is that it is equal to another

metric K defined as the supremum of ratios of lengths of simple closed curves on

hyperbolic surfaces (theorem 8.5 of [Th]). Motivated by this fact, we defined another

symmetric pseudo-metric KF as the supremum of ratios of lengths of saddle connec-

tions, but we were not able to adapt Thurston’s method to prove the equality of the

two metrics.

Instead, we found another approach which consists in the adaptation of a proof by

F.A. Valentine of Kirszbraun’s theorem in the real plane ([V a]). We used this method

to prove that the equality of two asymmetric analogues LaF and Ka
F to LF and KF

depends on two statements about 1-Lipschitz maps between planar polygons.

Finally, in the last chapter of this thesis, we proved that a known hermitian metric

of signature (2g, 0) on the moduli space of Abelian differentials with one zero on Rie-

mann surfaces of genus g ≥ 2 is not Kähler.

The first three chapters are devoted to the exposition of the main objects used in

this thesis: Teichmüller spaces, the Thurston’s metric and semi-translation surfaces.

In chapter 1 we defined the Teichmüller space T ng of an oriented surfaces Sng of genus

g ≥ 2 and n punctures as the space of hyperbolic metrics on Sng up to isotopy. Equiva-

lently, it can be defined as the space of equivalence classes of marked Riemann surfaces

X = [(X,φ)], where X is a Riemann surface, φ : Sng → X is a marking and X ∼ X ′

if and only if there is an isometry between X and X ′ homotopic to the change of

marking.
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The Teichmüller space T ng is homeomorphic to R6g−6+2n: theorem 1.1.4 for example

shows the bijection provided by Fenchel-Nielsen coordinates. Beltrami differentials

of maps between Riemann surfaces also endow T ng with the structure of a complex

manifold: this is explained in section 1.2.1.

Given any two marked surfaces X ,X ′ ∈ T ng , their distance with respect to the Te-

ichmüller metric dT is defined as

dT (X ,X ′) = inf
ϕ≈φ′◦φ−1

1

2
log(K(ϕ)),

where K(ϕ) is the complex dilatation of the diffeomorphisms ϕ.

The infimum of the definition of dT (X ,X ′) is always realized by the complex dilatation

of a particular map h : X → X ′, called Teichmüller map: this result, along with the

fact that (T ng , dT ) is a complete and geodesic space, is explained in section 1.3.

As we anticipated, given two hyperbolic surfaces X,X ′ ∈ T ng , their distance with

respect to the Thurston’s metric is defined as

L(X,X ′) = inf
ϕ∈Diff+

0 (Sng )
log(Lip(ϕ)X

′

X ),

where Diff+
0 (Sng ) is the group of diffeomorphisms of Sng homotopic to the identity

and Lip(ϕ)X
′

X is the Lipschitz constant of ϕ computed with respect to the hyperbolic

metrics of X and X ′.

In [Th] Thurston proved that for every X,X ′ ∈ T ng it results

L(X,X ′) = K(X,X ′), (1)

where K is another asymmetric metric on T ng defined as

K(X,X ′) = sup
α∈S

log

(
l̂X′(α)

l̂X(α)

)

with S being the set of homotopy classes of simple closed curves on Sng and l̂X(α)

being the length of the geodesic representative for X of the homotopy class of α.

The equality (1) has been proved by Thurston using the properties of measured lami-

nations on Sng : a brief explanation is given in section 2.2. Roughly, one could say that

the idea of the proof is to triangulate the surface with hyperbolic triangles and then

use the result of proposition 2.2.2: for any K > 1 there is a K-Lipschitz homeomor-

phism of a filled hyperbolic triangle to itself which maps each side to itself, multiplying

arc length on the side by K.

The Teichmüller space endowed with the Thurston’s metric is a geodesic space;

A.Papadopoulos and G.Théret proved that it is also a complete asymmetric space

([PT ]).
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A. Belkhirat, A. Papadopoulos and M. Troyanov defined and studied in [BPT ] two

asymmetric pseudo-metrics λ and κ on the Teichmüller space T1 of the torus, which

are similar to L and K. They showed the equality λ = κ: this result holds basically

because, given two tori C/Λ and C/Λ′, the minimal Lipschitz constant with respect

to the metrics of the flat tori is realized by the affine map between marked lattices.

Chapter 3 is devoted to the explanation of the properties of semi-translation surfaces:

they are closed surfaces Sg endowed with a semi-translation structure, that is:

(i) a finite set of points Σ ⊂ Sg and an atlas of charts on Sg \ Σ to C such that

transition maps are of the form z 7→ ±z + c, with c ∈ C,

(ii) a flat singular metric on Sg such that for each p ∈ Σ there is a homeomorphism

of a neighborhood of p with a neighborhood of a cone angle of π(k+2) for some

k > 0, which is an isometry away from p (we call such point a singular point

of order k). Furthermore, charts of the atlas of (i) are isometries for the flat

singular metric.

In particular, semi-translation surfaces are equivalent to the datum of a Riemann

surfaces X and a holomorphic quadratic differential q: a singularity of order k of q

corresponds to a cone angle of π(k+ 2). When the quadratic differential is the square

of an Abelian differential (and consequently the holonomy is trivial), the surface is

denoted as a translation surface.

Given g,m ∈ N, g ≥ 2, m ≥ 1 and any m-ple k ∈ Nm such that
∑m
i=1 ki = 2g− 2, we

fix a finite set of points Σ = {p1, . . . , pm} ⊂ Sg and denote by Ωg(k,Σ) the space of

translation surfaces of genus g and with singularity on points of Σ prescribed by k.

The Teichmüller and moduli space (denoted respectively T Hg(k) andHg(k)) of trans-

lation surfaces with singularities prescribed by k on points of Σ are defined as

T Hg(k) := Ωg(k,Σ)/Diff+
0 (Sg,Σ), Hg(k) := Ωg(k,Σ)/Diff+(Sg,Σ)

where Diff+
0 (Sg,Σ) (resp. Diff+(Sg,Σ)) is the subgroup of Diff+

0 (Sg) (resp.

Diff+(Sg)) consisting of diffeomorphisms which fix points of Σ.

Theorem 3.0.1 ensues that T Hg(k) is a complex manifold of dimension 2g + m − 1,

while Hg(k) is a complex orbifold of the same dimension.

We define in the same way Teichmüller and moduli spaces of semi-translation surfaces

and denote them respectively as T Qg(k, ε) and Qg(k, ε). The only two differences are

that k must be such that
∑m
i=1 ki = 4g−4 and there is an additional constant ε ∈ {±1}

which indicates if the surfaces have trivial holonomy or not. Theorem 3.0.2 ensues

that T Qg(k, 1) and T Qg(k,−1) respectively have the structure of complex manifold

of dimension 2g +m− 1 and 2g +m− 2.
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Chapters 4, 5 and 6 contain the original results of this thesis.

We defined the pseudo-metric LF on T Qg(k, ε) which is the symmetric analogue to

the Thurston’s metric.

LF (q1, q2) := inf
ϕ∈Diff+

0 (Sg,Σ)
Lq2q1(ϕ),

Lq2q1(ϕ) := sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

|log(||dϕpv||q2)|

)
.

A first, notable, inequality regarding LF is given by proposition 4.1.2: it results

LF (q1, q2) ≥ dT (X1,X2),

where X1,X2 are the points in Tg corresponding to the conformal structures underlying

the quadratic differentials.

The metric LF endows T Qg(k, ε) with the structure of proper and complete space

(propositions 4.2.3 and 4.2.5) and the standard topology of T Qg(k, ε) (which is the one

induced by its structure of complex manifold) is finer than the topology induced by LF

(proposition 4.2.1). Furthermore, there is a metric PLF on PT Qg(k, ε) induced by LF ,

and the topology it induces is equal to the standard topology of the projectification

of T Qg(k, ε).
Motivated by Thurston’s work, we defined another metric KF on T Qg(k, ε) through

ratios of lengths of saddle connections:

KF (q1, q2) := max{Ka
F (q1, q2),Ka

F (q2, q1)},

Ka
F (q1, q2) := sup

γ∈SC(q1)

log

(
l̂q2(γ)

l̂q1(γ)

)
,

where SC(q1) is the set of saddle connections of q1 (geodesics for the flat metric meet-

ing singular points only at their extremities), and l̂qi(γ) is the length of the geodesic

representative for the metric |qi| of the homotopy class of γ with fixed endpoints.

While it is possible to prove LF (q1, q2) = KF (q1, q2) if q1 and q2 are on the same orbit

of the action of GL(2,R)+ (proposition 4.3.2), in the general case we were not able

to adapt Thurston’s proof of L = K. This is mainly because, as it is explained in the

end of chapter 4, we believe it is not possible to find a flat analogue to the large class

of geodesics of L which Thurston uses in the proof of L = K.

In chapter 5 we introduced an asymmetric analogue LaF to LF on T Q(1)
g (k, ε)

(which is the subset of T Qg(k, ε) corresponding to surfaces of unitary area) defined

as

LaF (q1, q2) := inf
ϕ∈D

log(Lip(ϕ)q2q1),
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Lip(ϕ)q2q1 = sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

||dφpv||q2

)
,

with D being the set of functions ϕ : Sg → Sg which are homotopic to the identity,

differentiable almost everywhere and which fix the points of Σ.

We are able to reduce the proof of the equality of LaF and Ka
F on T Q(1)

g (k, ε) to

the proof of two statements (corresponding to following theorem 0.0.1 and conjec-

ture 0.1) about 1-Lischitz maps between planar polygons. In order to give the reader

an idea of the reasonings involved, we briefly state them in a slightly simplified version.

Consider two planar polygons ∆ and ∆′ such that there is an injective function

ι : V ertices(∆)→ V ertices(∆′)

which to every vertex v of ∆ associates a unique vertex ι(v) = v′. Suppose both

∆ and ∆′ have exactly three vertices with strictly convex internal angle, which we

denote xi and x′i, i = 1, 2, 3 respectively.

Suppose furthermore that for every x, y ∈ V ertices(∆) it results

d∆(x, y) ≥ d∆′(x
′, y′),

where d∆ (resp. d∆′) is the intrinsic Euclidean metric inside ∆ (resp. ∆′): d∆(x, y)

(resp. d∆′(x
′, y′)) is defined as the infimum of the lengths, computed with respect to

the Euclidean metric, of all paths from x to y (resp. from x′ to y′) entirely contained

in ∆ (resp. in ∆′).

We say that vertices of ∆ and of ι(V ertices(∆)) are disposed in the same order if it

is possible to choose two parametrizations γ : [0, 1] → ∂∆ and γ1 : [0, 1] → ∂∆′ such

that γ(0) = x1, γ1(0) = x′1 and γ, γ1 meet respectively vertices of ∆ and of ∆′ in the

same order.

Theorem 0.0.1. If V ertices(∆) and ι(V ertices(∆)) are disposed in the same order,

then there is a 1-Lipschitz map f : ∆ → ∆′ (with respect to the intrinsic Euclidean

metrics of the polygons) which sends vertices to corresponding vertices.

Conjecture 0.1. If V ertices(∆) and ι(V ertices(∆)) are not disposed in the same

order, then for every point p ∈ ∆ there is a point p′ ∈ ∆′ such that

d∆(p, xi) ≥ d∆′(p
′, x′i), i = 1, 2, 3.

We were able to prove theorem 0.0.1, which corresponds to theorem 5.3.3, but

not conjecture 0.1, which corresponds to conjecture 5.1: we will still explain why we

believe it must be true.

We proved the following theorem, which is the main result of this thesis.
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Theorem 0.0.2. If conjecture 0.1 is true, then for every q1, q2 ∈ T Q(1)
g (k, ε), it

results

LaF (q1, q2) = Ka
F (q1, q2).

We proved theorem 0.0.2 adapting the idea of F.A.Valentine’s proof ([V a]) of

Kirszbraun’s theorem for R2.

Theorem 0.0.3. Let S ⊂ R2 be any subset and f : S → R2 a 1-Lipschitz map.

Given any set T which contains S, it is possible to extend f to a 1-Lipschitz map

f̂ : T → R2 such that f̂(T ) is contained in the convex hull of f(S).

In the last chapter of the thesis we present a result which is not related to

Thurston’s metric, but even so has some significance on the theory of moduli spaces

of translation surfaces.

There is a particular hermitian form h on Hg(2g−2), which restricts on every tangent

space TϕHg(2g − 2) ' H1(X,C) to the hermitian product hϕ of signature (2g, 0):

hϕ(ϕ̇, ψ̇) :=
1

2

∫
Xϕ

ϕ̇ ∧ (∗ψ̇) =
i

2

(∫
Xϕ

ϕ̇1,0 ∧ ψ̇1,0 −
∫
Xϕ

ϕ̇0,1 ∧ ψ̇0,1

)

for every φ̇, ψ̇ ∈ TϕHg(2g − 2). In the preceding expression of hϕ, we denoted by Xϕ

the complex structure underlying ϕ and by ∗ the Hodge operator of Xϕ.

We proved that h is not Kähler, showing that the corresponding alternating form ω

is not closed. In order to do so we used some formulas obtained by Royden ([Ro])

concerning the Hodge operator of Riemann surfaces obtained from the deformation

given by a Beltrami differential.
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Chapter 1

Teichmüller and moduli

spaces

In this first chapter we define Teichmüller and moduli spaces of Riemann surfaces

and review some known facts about them.

1.1 Teichmüller spaces

1.1.1 Uniformization theorem

The first fundamental result we state is the Uniformization theorem, originally

due to Klein, Poincaré and Koebe (a proof can be found for example in [Ah]):

Theorem 1.1.1. (Uniformization)

The Riemann sphere Ĉ is the universal cover only of itself.

The complex plane C is the universal cover of itself, of the punctured plane and of all

compact Riemann surfaces homeomorphic to a torus.

The universal cover of all other Riemann surfaces is isomorphic to H.

Riemann surfaces such that their universal cover is isomorphic to H are referred

to as hyperbolic.

From this result one can deduce that every hyperbolic Riemann surface is biholomor-

phic to a quotient H/Λ where Λ is a group of holomorphic automorphisms of H acting

freely and properly discontinuously. Such a group can be identified with a discrete

subgroup of PSL(2,R) and is referred to as a Fuchsian group.
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1.1 Teichmüller spaces 1. Teichmüller and moduli spaces

Since the hyperbolic plane is endowed with the Poincaré metric

ds2
H =

|dz|2

(Im(z))2

and PSL(2,R) is the isometry group of H, it follows that every hyperbolic Riemann

surface is endowed with a unique complete Riemannian metric.

On the other hand, every Riemannian metric h on an oriented surface S provides a

unique complex structure. This is a consequence of Gauss’ theorem on the existence

of isothermal coordinates: S admits a unique complex structure such that in local

complex coordinates it results

h = f(z)|dz|2,

where f is a smooth and positive local function.

For this reason, specifying a complex structure on the topological surface underlying

a hyperbolic Riemann surface is equivalent to specifying a hyperbolic metric: we will

use this fact in the definition of Teichmüller spaces.

1.1.2 Teichmüller space of the torus

The Teichmüller space of the torus is particularly simple and instructive: for these

reasons we will treat it separately.

We indicate by F1(T ) the set of flat metrics on the torus T and by Diff0(T ) the

set of diffeomorphisms of the torus T which are isotopic to the identity: the group

Diff0(T ) acts on F1(T ) by pullback.

The group R>0 acts on F1(T ) rescaling the metrics: the quotient of F1(T ) by the

action of R>0 is denoted by P(T ).

Definition 1.1. The Teichmüller space T1 of the torus T is defined as the quotient

T1 := P(T )/Diff0(T ).

There is another equivalent definition of T1 which involves the use of markings: a

marking of the torus T is a choice of a group isomorphism φ : Z2 → π1(T ).

Definition 1.2. The Teichmüller space T1 of the torus T is defined as the space of

equivalence classes [(σ, φ)], where σ is a flat metric on T and φ is a marking. The

couples (σ, φ) and (σ′, φ′) are equivalent if there is a diffeomorphism f of the torus

and a constant c > 0 such that f∗σ′ = cσ and f∗φ = φ′.

If the equivalence between the two definitions is not clear we refer the reader to

the explanation of the equivalence of the two definitions of the Teichmüller space in

the following section.

The Teichmüller space T1 can be explicitly described using marked lattices.
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1. Teichmüller and moduli spaces

Definition 1.3. A marked lattice of C is a lattice Λ of C (i.e. discrete subgroup

Λ < C such that C/Λ is compact) together with an ordered set of generators.

We denote by L the set of marked lattices of C up to the equivalence relation

where two marked lattices are equivalent if they differ by an Euclidean isometry or a

homothety. An element of L can thus be represented by an ordered pair [(u1, u2)] of

generators, where u1 and u2 are linearly independent and form a matrix with deter-

minant equal to one.

Using the second definition of T1 one can show that there is a bijective correspon-

dence

Ψ : L → T1

defined as follows.

Given [(u1, u2)] ∈ L, we denote by Λ the lattice they generate and set

Ψ([u1, u2]) = [(σ, φ)],

where σ is the canonical flat metric of C/Λ and φ is the isomorphism which sends

(1, 0) and (0, 1) respectively to u1 and u2.

Conversely, to any element [(σ, φ)] ∈ T1 one associates the lattice corresponding to

the group of deck transformations and the marking given by (φ(1, 0), φ(0, 1)).

It is a standard fact that the space L in fact corresponds to the hyperbolic plane H:

combining these two results one obtains the following proposition.

Proposition 1.1.2. There is a bijective correspondence

ΦH : H→ T1, ΦH(ξ) = [(σξ, φξ)],

where σξ is the canonical flat metric of C/(Z + ξZ) and φξ sends (1, 0) to itself and

(0, 1) to ξ.

In section 1.4 we will see that the bijective correspondence ΦH is in fact an isom-

etry between H and T1 endowed with a metric called Teichmüller metric.

Finally, notice that T1 can also be identified with the space SL(2,R)/SO(2), since

if u1, u2 generate a lattice Λ such that Area(C/Λ)=1 (and this is always the case, up

to rescaling), then they also define an element of SL(2,R).

1.1.3 Teichmüller space T n
g

Denote by Sg a closed and oriented surface of genus g ≥ 2 and by Sng a surface

obtained from Sg removing n points (referred to as punctures).
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1.1 Teichmüller spaces 1. Teichmüller and moduli spaces

We say that a Riemann surface X of genus g ≥ 2 is of finite type if it corresponds

to a conformal structure on Sng , that is, if every puncture has an open neighborhood

Ui ⊂ X such that X \ (U1 ∪ · · · ∪Un) is compact and for every i = 1, . . . , n there is a

homeomorphism zi to the punctured disk

zi : Ui → D := {z ∈ C | 0 < |z| < 1}

which is holomorphically compatible with the complex structure of X.

Riemann surfaces of finite type are often referred to as punctured Riemann surfaces:

these are the only types of Riemann surfaces we will consider in the present thesis

(compact Riemann surfaces are just punctured Riemann surfaces with zero punc-

tures).

Denote by Diff+
0 (Sng ) the group of diffeomorphisms of Sng which are homotopic to

the identity and which fix the punctures. The set Hyp(Sng ) is composed of complete,

finite-area hyperbolic metrics on Sng with cusps in the punctures.

Definition 1.4. The Teichmüller space T ng of Sng is defined as the set of isotopy

classes of hyperbolic metrics on Sng :

T ng := Hyp(Sng )/Diff+
0 (Sng ).

In case the reference surface has no punctures, we will write Tg instead of T 0
g .

Notice that, due to the correspondence of section 1.1.1, this definition could be

restated in terms of conformal structures.

Since there is no possible ambiguity, we will denote by X both the Riemann surface

and the correspondent hyperbolic surface, which is the datum of a hyperbolic metric

on Sng .

There is also an alternative definition of T ng which involves the use of marked

surfaces: a marking of X is a diffeomorphism φ : Sng → X.

Definition 1.5. The Teichmüller space T ng can be defined as the set of equivalence

classes X = [(X,φ)] of marked surfaces. Two marked surfaces (X,φ) and (X ′, φ′) are

said to be equivalent if there is an isometry f : X → X ′ which is homotopic to φ′ ◦ φ−1.

The equivalence of the two definitions can be easily understood. Indeed, suppose

that (X,φ) and (X ′, φ′) are such that φ = φ′ = Id, then it is trivial that φ′ ◦ φ−1 is

homotopic to an isometry if and only if there is an isometry f : X → X ′ homotopic

to the identity. On the other hand, note that every marking φ : Sng → X is equivalent

to another one Id : Sng → φ∗X with the identity function between the topological

surfaces.
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1. Teichmüller and moduli spaces

Given any simple closed curve α in Sng and X ∈ T ng , we denote by l̂X (α) the length

of the geodesic representative in the homotopy class of φ(α) for the hyperbolic metric

of X.

1.1.4 Topology of T n
g

There are many ways to endow T ng with a topology: one of them consists in

identifying T ng with a quotient of a space of representations.

Denote by Rep(π1(Sng ), PSL(2,R)) the space of discrete and faithful representations

ρ : π1(Sng ) → PSL(2,R) and notice that the group PGL(2,R) acts on the space

Rep(π1(Sng ), PSL(2,R)) by conjugation:

(g · ρ)(γ) := gρ(γ)g−1

for every ρ ∈ Rep(π1(Sng ), PSL(2,R)), g ∈ PGL(2,R) and γ ∈ π1(Sg).

It is thus possible to define a function

Θ : T ng → Rep(π1(Sng ), PSL(2,R))/PGL(2,R)

which associates to [(X,φ)] ∈ T ng the representation Θ([(X,φ)]) obtained fixing a

metric universal cover X̃ of X, the monodromy representation

ρ̂X : π1(X)→ Isom+(X̃)

and considering the isomorphisms

φ∗ : π1(Sng ) ' π1(X), τ : H ' X̃, Isom+(H) ' PSL(2,R).

In other words, for every γ ∈ π1(Sng ), we set

Θ([(X,φ)])(γ) := τ∗(ρX(φ∗(γ))).

In this definition of Θ we made several choices: the choice of (X,φ) in its equivalence

class, the choice of τ and the choice of ρ̂X . The function Θ il well-defined since a

change in any of these choices produces a conjugation of Θ([(X,φ)]) by an element of

PGL(2,R).

Since the function Θ is a bijection onto its image (see for example [FM ]), it

follows that the Teichmüller space inherits the compact-open topology of the space

Rep(π1(Sng ), PSL(2,R)).

There is another notable characterization of T ng , which in fact produces a bijection

T ng ' R6g−6+2n: it is given by Fenchel-Nielsen coordinates. We will briefly explain
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how these coordinates are obtained, for proofs and a deeper explanation one could

refer to [FM ] section 10.6.2 or [Hu] section 7.6.

First one needs to consider the Teichmüller space T (P ) of a pair of pants P , which

is defined as the set of hyperbolic metrics with geodesic border on P up to isotopies.

Denote by γ1, γ2, γ3 the curves which make up the boundary components of P , then

one gets the following result.

Lemma 1.1.3. The map which associates to each X ∈ T (P ) the triple

(l̂X (γ1), l̂X (γ2), l̂X (γ3)) ∈ R3
+ is a bijection.

The idea behind Fenchel-Nielsen coordinates is to decompose the surface Sng into

pairs of pants by cutting it along a set of 3g−3+n simple closed curves γi (the lengths

of which determine the hyperbolic structure on each pair of pants, as the previous

lemma states) and then use 3g−3+n twisting parameters to determine how the pairs

of pants are glued together.

The twisting parameters depend on the choice of another set of curves σj such that

the intersection of their union with each pair of pants P of the decomposition gives

three arcs connecting each pair of boundary components of P . Since Fenchel-Nielsen

coordinates depend on the choice of the two sets of curves γi and σj , the union of

such sets is called a coordinate system of curves on Sng .

The twisting parameter of the curve γi and X = [(X,φ)], denoted by θi(X ), is defined

as

θi(X ) := 2π
d1 − d2

l̂X (γi)
,

where d1, d2 are two displacement parameters computed as we now explain.

Choose one curve φ(σj) which crosses φ(γi) and consider the two pairs of pants

P1, P2 which have φ(γi) as a boundary component: the intersection of φ(σj) with

P1 (resp. P2) is an arc, denoted φ(σj)
1 (resp. φ(σj)

2), which connects φ(γi) with

φ(γl) (resp. φ(γm)). Let Vi, Vl, Vm be regular metric neighborhoods respectively of

φ(γi), φ(γl), φ(γm) and α1 (resp. α2) be the unique shortest arc connecting φ(γi) and

φ(γl) (resp.φ(γm)). Denote by φ̂(τj)
1 (resp. φ̂(τj)

2) the arc obtained modifying φ(τj)
1

(resp. φ(τj)
2) by an isotopy which leaves the endpoints fixed in such a way that it

coincides with α1 (resp. α2) outside Vi ∪ Vl (resp. Vi ∪ Vm). Then d1 (resp. d2) is

defined as the signed horizontal displacement of the endpoints of φ̂(τj)
1 ∩ ∂Vi (resp.

φ̂(τj)
2 ∩ ∂Vi).

One then can prove that considering the other curve φ(σt) of the collection which

crosses φ(γi) it is possible to obtain the same twisting parameter.

Theorem 1.1.4. Fenchel-Nielsen coordinates relative to any coordinate system of

curves on Sng give a bijection

FN : T ng → R3g−3+n
+ × R3g−3+n

16
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defined by

FN(X ) = (l̂X (γ1), . . . , l̂X (γ3g−3+n), θ1(X ), . . . , θ3g−3+n(X )).

The two identifications of T ng we just presented induce the same topology.

In fact, more is true: this topology is also equivalent to the one induced by the Te-

ichmüller metric which we will introduce in section 1.4 (this fact is proved for example

in [Abi]).

Lastly, we mention the characterization of the Teichmüller space T ng as a subset

of RS , the set of real valued functions on the set S of isotopy classes of simple closed

curves on Sng .

If RS is endowed with the pointwise convergence, it is possible to show (see [Lei])

that the map

l∗ : T ng → RS , l∗(X )(α) := l̂X (α)

is a proper embedding.

Furthermore, if n = 0 then there are 9g − 9 simple closed curves such that l∗ :

Tg → R9g−9 is a proper embedding.

1.2 Complex structure of T ng
The Teichmüller space can be endowed with the structure of complex manifold

using Beltrami differentials: we thus introduce them and state their properties.

1.2.1 Beltrami differentials

Definition 1.6. Let U, V be two open subsets of C and f : U → V an orientation-

preserving homeomorphism which is smooth outside of a finite number of points. Let

p ∈ U be a point at which f is differentiable.

The complex dilatation µf (p) of f at p is defined as

µf (p) :=

(
∂f

∂z
(p)

)/(
∂f

∂z
(p)

)
.

The dilation Kf (p) of f at p is defined as

Kf (p) :=
|fz(p)|+ |fz(p)|
|fz(p)| − |fz(p)|

=
1 + |µf (p)|
1− |µf (p)|

.

The complex dilatation gives an important information about f , since the direction

of the maximal stretching of dfp is given by 1
2 arg(µf (p)). Furthermore it results
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1.2 Complex structure of T ng 1. Teichmüller and moduli spaces

||µf ||∞ < 1 if and only if f is orientation preserving.

There is also a very clear geometric interpretation of Kf (p). The differential dfp maps

the unit circle of TpU to an ellipse E ⊂ TpV with major and minor axis of length

respectively M and m. Then it results

Kf (p) =
M

m
.

The proof of this fact is straightforward: first observe that the ellipse E can be

parametrized as E(t) = fz(p)e
it + fz(p)e

−it for t ∈ [0, 2π]. Then note that

|E(t)| = |fz(p)||1 + µf (p)e−2it|

and

1− |µf (p)| ≤ |1 + µf (p)e−2it| ≤ 1 + |µf (p)|.

We can define the global dilatation Kf of the function f to be

Kf := sup
p∈Û

Kf (p),

where Û ⊂ U is the subset where f is differentiable. Clearly 1 ≤ Kf ≤ ∞.

An orientation-preserving homeomorphism f : U → V which is smooth outside of

a finite number of points and such that Kf <∞ is said to be Kf -quasiconformal or

simply quasiconformal.

Quasiconformal homeomorphisms have some nice properties which we now list.

Lemma 1.2.1. Let f, g : U → V be two quasiconformal homeomorphisms, then the

following facts are true.

(i) The function f is 1-quasiconformal if and only if it is holomorphic.

(ii) The composition f ◦ g is quasiconformal and

Kf◦g ≤ KfKg.

(iii) The inverse f−1 is quasiconformal and

Kf−1 = Kf .

(iv) If g is holomorphic then

Kf◦g = Kg◦f = Kf .

18



1. Teichmüller and moduli spaces

In particular property (iv) allows us to consider quasiconformal maps between

Riemann surfaces.

It is useful to consider orientation preserving homeomorphisms f which are not nec-

essarily differentiable, but which satisfy the Beltrami equation fz = µfz in some

sense. For this reason we extend the definition of quasi-conformal maps to oriented

homeomorphisms f : U → V such that:

• the distributional partial derivatives of f with respect to z and z can be repre-

sented by locally integrable functions,

• the function µf := fz/fz is such that ||µ||∞ ∈ [0, 1].

Properties of lemma 1.2.1 remain valid and in particular, due to the following lemma

by Weil, it is still true µf = 0 if and only if f is holomorphic.

Lemma 1.2.2. (Weil)

Let U be an open subset of C and f : U → C, f ∈ L1
loc(U). If fz ≡ 0, then f is

holomorphic.

The complex dilatation of a map f : X → X ′ between Riemann surfaces can

be actually regarded as a form in A0,1
C (X,T 1,0

X ). Indeed, denote by µzf the complex

dilatation of f computed in the local coordinate z of X. Notice that if z and w are

two overlapping local coordinates of X then

µwf = µzfϕzw, ϕzw =

(
dz

dw

)/(
dz

dw

)
that is, µf changes under variation of coordinates as forms in A0,1

C (X,T 1,0
X ) do. What

is more, |ϕzw| = 1.

The form µf associated to f is called a Beltrami differential.

We denote by B(X) the space of Beltrami differentials on X: it is a Banach space

with the L∞-norm.

One could wonder wether it is also possible to establish the inverse association.

Specifically, given any µ ∈ L∞(C) is there always a quasi-conformal homeomorphism

f : C→ C such that it satisfies the Beltrami equation

µ
∂f

∂z
=
∂f

∂z

almost everywhere?

The following theorem (proved by Ahlfors-Bers in [AB]) gives a positive answer to

this question and establishes also an analytic dependence of the solution to µ.
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Theorem 1.2.3. (Measurable Riemann mapping theorem) For every µ ∈ L∞(C) such

that ||µ||∞ < 1 there is a unique quasi-conformal homeomorphism fµ : Ĉ→ Ĉ which

fixes 0, 1,∞ and satisfies almost everywhere the Beltrami equation

µ ·
(
∂fµ

∂z

)
=
∂fµ

∂z
.

The function fµ is smooth wherever µ is and fµ varies complex analytically with

respect to µ.

We see that the uniqueness statement of this theorem implies that if µ(z) = µ(z),

then fµ restricts to a self map of H and if µ is Λ-equivariant then also fµ is Λ-equivariant.

Consequently one obtains the following corollary.

Corollary 1.2.4. Given any Riemann surface X of finite type and genus g ≥ 2, for

any µ ∈ B(X)1, there is a Riemann surface Xµ and an homeomorphism fµ : X → Xµ

such that µfµ = µ. If there is another couple (Y, f) with the same properties then

fµ ◦ f−1 is an isomorphism.

1.2.2 Quadratic differentials

Definition 1.7. A holomorphic quadratic differential on a compact Riemann surface

X is a holomorphic section of the symmetric square of the holomorphic cotangent

bundle of X.

We denote by Q(X) the space of holomorphic quadratic differentials on X. Any

holomorphic quadratic differential q ∈ Q(X) can be written locally in any holomorphic

chart (U, z) as

q = f(z)dz2,

where f : U → C is a holomorphic function with a finite set of zeroes and if g(w)dw2

is the expression of q on another chart (V,w) of X, then the function f and g are

such that

g(w)

(
dw

dz

)2

= f(z).

We say that p ∈ X is a zero of q if f(p) = 0, from the previous equality it follows

that this definition does not depend from the chosen chart.

A holomorphic quadratic differential on a punctured Riemann surfaces is defined as

a meromorphic quadratic differential on X with at most simple poles on the points

corresponding to punctures. The space of holomorphic quadratic differentials on a

punctured Riemann surface X is denoted by Q(X).

Sometimes it will be useful to consider punctured Riemann surface as Riemann sur-

faces with marked points (which should not be confused with marked Riemann sur-

faces, as defined in section 1.1.3), i.e. closed Riemann surfaces X together with a finite
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set of points P ⊂ X which correspond to the punctures. Given a marked Riemann

surface (X,P ), we denote by Q(X,P ) the space of meromorphic quadratic differen-

tials on X having at most simple poles in the points of P .

Each holomorphic quadratic differential has a fixed finite number of zeroes: this

number, counting multiplicities, minus the number of the poles, is equal to 4g − 4.

Proposition 1.2.5. Let X be a closed Riemann surface and q a meromorphic quadratic

differential on X with at most simple poles.

There exist local coordinates η on X, called natural coordinates, such that:

• at any point where q has a zero or a pole of order k ≥ −1, the local expression

of q is q = ηkdη2,

• at any other point the local expression of q is dη2.

Proof. Pick any point p ∈ X and a local coordinate z on X such that {p} = {z = 0}.
Suppose that q vanishes to order k ≥ 0 at p, then we can write q = f(z)dz2 with

f(z) = zkg(z), where g(z) is a holomorphic function with g(0) 6= 0.

Locally near p the function g admits a single valued branch of the square root, and

we can consider the function

Φ(z) :=

∫ z

0

wk/2
√
g(w)dw

which vanishes at order k+2
2 at p and admits a k+2

2 -st root. We define the local

coordinate η(z) by
2

k + 2
η(z)

k+2
2 = Φ(z)

and after an easy computation it follows ηkdη2 = q as desired.

The space Q(X) has complex dimension 1 in case of g = 1 and 3g−3+n otherwise

(it follows from Riemann-Roch theorem). Furthermore, Q(X) can be made into a

normed space with the L1-norm:

||q||1 :=

∫
X

|q|

and with the topology induced by this norm Q(X) is homeomorphic to R6g−6+2n.

1.2.3 Complex structure

We now endow Tg with a complex structure which relies on Beltrami differentials.

Using the result of corollary 1.2.4 it is possible to define a map

ΨX : B(X)→ Tg, ΨX(µ) := [(Xµ, fµ)].
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Denote by B(X)ban ⊂ B(X) the subset consisting of the Beltrami differentials

which are mapped to X = [(X, Id)] by the function ΨX . Indicate by B0 the tangent

space T0B(X)ban, we claim that the quotient space B(X)/B0 has dimension 3g − 3.

Indeed, B(X)/B0 can be interpreted as the Dolbeault cohomology spaceH0,1

∂
(X,T 1,0

X ),

since B(X) can be identified with the space of ∂-closed forms Z0,1(X,T 1,0
X ) and B0

with the space of ∂-exact forms ∂A0,0(X,T 1,0
X ) = B0,1(X,T 1,0

X ).

Since X is smooth, compact and connected, we can use Serre duality theorem to

state that there is a bilinear, non degenerate pairing of B(X)/B0 with the space of

holomorphic quadratic differentials Q(X) on X, which has complex dimension 3g−3.

It follows that there exists a linear space ZX of dimension 3g − 3 such that

T0ZX ⊕ B0 = T0B(X) = B(X).

We state that there exists a neighborhood UX of 0 ∈ B(X)1 (the unit ball with respect

to the L∞-norm) such that the map

ΨX : U ∩ Z → Tg (1.1)

is injective on an open subset. The map (1.1) will be the local chart around X of the

complex structure. Indeed, repeating the previous procedure around another point

X ′ = [(X ′, f)] ∈ Tg, we see that the change of chart ΨX′ ◦ ΨX is holomorphic, since

(ΨX′ ◦ΨX)(µ0) = µ(fµ0 ◦ f) = µ(z)dzdz with

µ(z) =
µf (z) + µ0(f(z))

(
∂f
∂z (z)/∂f∂z (z)

)
1 + µf (z)

(
∂f
∂z (z)/∂f∂z (z)

)
µ0(f(z))

and so depends holomorphically from µ0.

This construction explains why Beltrami differentials are often interpreted as tangent

vectors on Tg and holomorphic quadratic differentials as cotangent vectors.

We will now briefly explain another construction, firstly due to Bers ([Be2]), which

endows the Teichmüller space with a complex structure.

A key role in this construction will be played by the Schwarzian derivative: the

Schwarzian derivative S(f) of any locally injective holomorphic function f : U → C
is defined by the following formula

S(f) :=
f
′′′

f ′
− 3

2

(
f
′′

f ′

)2

.

The intuition behind the Schwarzian derivative of f is that it measures the distortion

of the cross-ratio of four points done by f : the Schwarzian derivative of a Möbius

map is indeed zero (details about these facts can be found for example in [GL]).
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Fix any Fuchsian group Λ, then we will construct an injective map ΩΛ from T ng to a

subset of the set of holomorphic maps on the lower half-plane L.

To any [(X,φ)] ∈ T ng associate the normalized lifting φ̃ : H → H which fixes 0, 1,∞
and denote by µ̃φ its Beltrami differential. The differential µ̃φ is such that ||µ̃φ||∞ < 1

and

µ̃φ(z)γ′(z) = µ̃φ(γ(z))γ′(z) (1.2)

for every z ∈ H and γ ∈ Λ.

Denote by L∞Λ (H)1 the unit ball with respect to the L∞-norm in the Banach space

of measurable essentially bounded functions µ on H which satisfy condition (1.2).

Each function µ̃ ∈ L∞Λ (H)1 can be extended to a function µ̂ on Ĉ which satisfies

condition (1.2) for every z ∈ Ĉ by imposing µ̂(z) = µ̃(z) for z ∈ H and µ̂(z) = 0 for

z ∈ L. The Riemann mapping theorem then grants the existence of a quasi-conformal

map f µ̂ : Ĉ→ Ĉ, unique up to a composition with a Möbius map, whose Beltrami

coefficient is µ̂.

We denote by BL(Λ) the Banach space of holomorphic maps h : L→ C which satisfy

the following conditions

(S(h) ◦ γ)(z)(γ′(z))2 = S(h)(z), ∀z ∈ L, γ ∈ Γ

sup
z∈L
|S(h)(z)ρ−2

L | <∞,

where ρL is the Poincaré metric on L and ||h|| := sup
z∈L
|S(h)(z)ρ−2

L | is the norm which

gives the structure of Banach space.

The Schwartzian derivative then induces a map

S : L∞Λ (H)1 → BL(Λ), S(µ̃) := S(f µ̂|L)

which finally gives the announced map

ΩΓ : T ng → BL(Λ), ΩΛ([(X,φ)]) := S(µ̃φ).

The following theorem unites the Bers embedding and the Ahlfors-Weil section and

defines a structure of Banach complex manifold on the Teichmuller space. A proof

can be found in [GL] or [Be].

Theorem 1.2.6. The map ΩΛ is an homeomorphism onto its image and defines a

global holomorphic chart.

Furthermore, for every S(µ̃) ∈ ΩΛ(T ng ) there is a neighborhood U of S(µ̃) in BL(Λ)

and a holomorphic map s : U → L∞Λ (H)1 such that S ◦ s = Id and s ◦ S(µ̃) = µ̃.
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1.3 Teichmüller’s metric

1.3.1 Grötzsch and Teichmüller extremal problem

The following problem is known as Grötzsch’s extremal problem.

Problem 1.3.1. Fix any two rectangles R,R′ ⊂ R2 and consider the set QC(R,R′)

of quasi-conformal homeomorphisms between R and R′ which send horizontal sides of

R to horizontal sides of R′ and vertical sides of R to vertical sides of R′.

Define the set K of global dilatations Kf of functions f ∈ QC(R,R′).

Does the set K have a minimum? If so, is it obtained for a unique function?

The answer to the previous problem was given by Grötzsch in 1928 ([Gr]) by the

following theorem.

For simplicity, fix the rectangles R,R′ to be R = [0, a]× [0, b], R′ = [0, a′]× [0, b′] and

define m(R) = a
b ,m(R′) = a′

b′ .

Theorem 1.3.2. Every function f ∈ K is such that

Kf ≥ max
{m(R)

m(R′)
,
m(R′)

m(R)

}
and the equality is realized only for the affine function.

Proof. For every y0 ∈ [0, b] denote by γy0
the arc

γy0
: [0, a]→ R2, γy0

(t) = (t, y0).

Then the following inequalities are satisfied:

a′ ≤ l(f(γy0
)) =

∫ a

0

∣∣∣∣∂f∂z (x, y)

∣∣∣∣ |1 + µf (x, y)| dx,

a′b ≤
∫
R

∣∣∣∣∂f∂z (x, y)

∣∣∣∣ |1 + µf (x, y)| dx ∧ dy,

(a′b)2 ≤

(∫
R

∣∣∣∣∂f∂z (x, y)

∣∣∣∣2 (1− |µf (x, y)|2)dx ∧ dy

)
·
(∫

R

|1 + µf (x, y)|2

1− |µf (x, y)|2
dx ∧ dy

)
and thus

m(R′)

m(R)
≤ 1

ab

∫
R

Kf (x, y)dx ∧ dy ≤ Kf .

The other inequality is obtained considering f−1.

Finally, one can see that if the equality holds, then µf (x, y) must be constant and

consequently f is affine.

Grötzsch extremal problem was then generalized by Teichmüller to the case of

Riemann surfaces.
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Problem 1.3.3. Let f : X → Y be a homeomorphism between Riemann surfaces of

finite type and consider the set of dilatations of quasi-conformal maps between X and

Y in the homotopy class of f .

Does this set have a minimum? If so, is it obtained for a unique function?

Teichmüller proved that both these questions have a positive answer: this is a

consequence of two theorems we will review in section 1.3.3.

This extremal problem on Riemann surfaces is also closely related to a metric dT

on T ng , called Teichmüller metric.

For any X = [(X,φ)],X ′ = [(X ′, φ′)] ∈ T ng , the Teichmüller metric dT (X ,X ′) is

defined as

dT (X ,X ′) := inf
f≈(φ′◦φ−1)

1

2
log(Kf ).

All axioms of metrics are satisfied and dT defines a metric also on T1, which is referred

to as Teichmüller metric.

From Teichmüller theorems it will follow that there always is a quasi-conformal

map h : X → X ′ such that

Kh = inf
f≈(φ′◦φ−1)

Kf

and consequently

dT (X ,X ′) =
1

2
log(Kh).

The quasi-conformal map h : X → Y is called a Teichmüller map: its definition will

be given in section 1.3.3 and relies on quadratic differentials and measured foliations.

1.3.2 Measured foliations

We now define measured foliations, which are closely related to holomorphic quadratic

differentials.

A singular foliation F on Sng is a decomposition of Sng into leaves and a finite set

of singular points of F , in such a way that the following conditions are satisfied.

(i) For any non-singular point p ∈ Sng , there is a smooth chart from a neighborhood

of p to R2 which maps leaves of F to horizontal line segments. The transition

maps between charts take horizontal lines to horizontal lines.

(ii) For any singular point p ∈ Sng , there is a smooth chart from a neighborhood of

p to R2 which maps leaves of F to the level sets of a k−pronged singular point,

k ≥ 3.
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1.3 Teichmüller’s metric 1. Teichmüller and moduli spaces

(iii) At the punctures of Sng the foliation extends to a foliation of the unpunctured

surface Sg in such a way that each puncture becomes a k-pronged singular point,

k ≥ 1.

Figure 1.1: Examples of k-pronged singularities, with k = 3, 4, 5.

Any foliation F can be equipped with a transverse measure µ, which is a length

function on arcs transverse to the foliation such that:

(i) it assigns a non negative real number to each arc,

(ii) it assigns 0 to an arc if and only if it lies inside a leaf of the foliation,

(iii) it is invariant for homotopies of arcs which keep arcs transverse and move the

endpoints inside the same leaf.

Definition 1.8. A measured foliation (F , µ) on Sng is a singular foliation F equipped

with a transverse measure µ.

In sections 2.1 and 2.2 we will denote a measured foliation simply by F in order to

lighten the notation and write cF , c ∈ R>0 to indicate the measured foliation with

the measure multiplied by the constant c.

There is an equivalence relation on the space of measured foliations called Whitehead-

equivalence: it is generated by isotopies and Whitehead moves (which consist in col-

lapsing to a point an arc which connects two singular points, see [FLP ] for details).

We denote byMF (omitting to specify the genus and the number of punctures, since

there will be no ambiguity on the topological type of the surface) the space of equiv-

alence classes of measured foliations of Sng .

Each q ∈ Q(X) induces two foliations on X, called respectively horizontal and

vertical foliation and denoted by F+
q and F−q .

Both foliations have singular set coinciding with the set of zeroes of q, while the leaves

of F+
q (respectively F−q ) are the smooth paths in X whose tangent vectors at each
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point evaluate to positive (respectively negative) real numbers under q.

If, in a given chart, the local expression of q is f(z)dz2, then the expressions of the

measures µ+
q and µ−q respectively of F+

q and F−q are

µ+
q (γ) :=

∫
γ

|=(
√
fdz)|, µ−q (γ) :=

∫
γ

|<(
√
fdz)|.

For any Riemann surface X of finite type it is thus possible to define a map

ΦX : Q(X)→MF

which associates to each quadratic differential q its horizontal foliation F+
q .

Hubbard and Masur proved in 1979 that this map is in fact a bijection ([HM ]).

1.3.3 Teichmüller’s theorems

We now define what a Teichmüller map is.

Definition 1.9. Given two Riemann surfaces with marked points (X,P ) and (X ′, P ′),

a homeomorphism h : (X,P )→ (X ′, P ′) is a Teichmüller map if there are meromor-

phic quadratic differentials qX ∈ Q(X,P ), qX′ ∈ Q(X ′, P ′) and a real number K > 0

such that:

• the homeomorphism h takes zeroes and poles of qX respectively to zeroes and

poles of qX′ ,

• if p is not a zero or a pole of q, then the expression of h with respect to natural

coordinates of qX and qX′ based at p and h(p) is

h(x+ iy) =
√
Kx+ i

1√
K
y

or equivalently

h(z) =
1

2

((
K + 1√
K

)
z +

(
K − 1√
K

)
z

)
.

In other words the Teichmüller map h stretches the horizontal foliation of qX by

a factor of
√
K and the vertical foliation of qX′ by a factor of 1√

K
.

From the expression of h we get that its dilatation Kh is equal to K if K ≥ 1 and to

1/K otherwise.

There is also a quite intuitive way of constructing a Teichmüller map from the initial

data of a Riemann surface X, a holomorphic quadratic differential qX on X and a

constant K > 0: this is done by ”stretching” the holomorphic charts of X by a factor

of
√
K. To be more precise, consider X̂ the complement in X of the zeroes and poles
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of qX and compose every chart of the natural coordinates for qX on X̂ with the affine

function

h(x+ iy) =
√
Kx+ i

1√
K
y.

This new set of charts defines a Riemann surface Ŷ , which can be made into a closed

Riemann surface Y .

We thus obtain an induced Teichmüller map (the one which is the previous affine

map in every chart), a Riemann surface Y and an induced quadratic differential qY

on Y . Notice that, identifying X with Sng , we could consider the map h : X → Y

as a marking and thus as a point in the Teichmüller space: in this way, varying the

constant K in R, we could obtain a one-parameter family in T ng . Since the differential

qX specifies a unique ray in T ng , it is possible to see again how the differential qX can

be thought of as a tangent direction in Tg.

Going back to Teichmüller extremal problem, its answer is made of two parts, one

dealing with existence of Teichmüller maps and one with uniqueness. We present the

latter first.

Theorem 1.3.4. (Uniqueness) Let h : (X,P ) → (X ′, P ′) be a Teichmüller map

between two Riemann surfaces with marked points. If f : (X,P )→ (X ′, P ′) is another

homeomorphism homotopic to h rel P, P ′, then it results

Kf ≥ Kh

and equality holds if and only if f ◦ h−1 is conformal.

For the proof of the theorem in case of punctured surfaces we refer the reader for

example to [Abi] or [Hu].

We will instead briefly discuss the case of closed surfaces, since the proof has many

similarities with the one of Grötzsch’s theorem: the affine map is replaced with the

Teichmüller map and the horizontal and vertical directions are replaced with the

directions of F+
q and F−q .

Let h be a Teichmüller map with initial differential q on X and final differential q′ on

X ′. The natural coordinates are z = x+ iy for q and z′ = x′ + iy′ for q′, x′ =
√
Kx,

y′ = y√
K

. We denote by dAq the area form induced by q: it clearly results dAq = dAq′ .

We will use the following lemma (see [FM ], lemma 11.11).

Lemma 1.3.5. Let q be a holomorphic quadratic differential on a Riemann surface

X and ϕ : X → X a homeomorphism homotopic to the identity.

There exist a constant C ≥ 0 depending only on ϕ such that, for every arc γ : [0, 1]→ X

embedded in a leaf of the horizontal foliation of q, it results

lq(ϕ(γ)) ≥ lq(γ)− C.
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1. Teichmüller and moduli spaces

We specify that lq(γ) denotes the length of the curve γ with respect to the metric

|q|, and not the length of the geodesic representative of the homotopy class of γ.

Denote by γLp the horizontal arc for F+
q centered at p ∈ X and of q-length 2L.

Since h takes γLp to an arc of q′-length 2L
√
K, from the lemma it follows

lq′(f(γLp )) ≥ 2L
√
K − C

and consequently ∫
X

lq′X (f(γLp ))dAq ≥ (2L
√
K −M)Area(q).

Applying Fubini’s theorem one gets the equalities∫
X

lq′(f(γLp ))dAq =

∫
X

(∫ L

−L

∣∣∣∣∂f∂x
∣∣∣∣
q′
dx

)
dAq = 2L

∫
X

∣∣∣∣∂f∂x
∣∣∣∣
q′
dAq

and combining them with the last inequality and dividing by 2L it results∫
X

∣∣∣∣∂f∂x
∣∣∣∣
q′
dAq ≥

(√
K − M

2L

)
Area(q)

which gives the following inequality allowing L to tend to infinity

√
K ·Area(q) ≤

∫
X

∣∣∣∣∂f∂x
∣∣∣∣
q′
dAq.

Finally, one obtains

K ·Area(q)2 ≤

(∫
X

∣∣∣∣∂f∂x
∣∣∣∣
q′
dAq

)2

≤
(∫

X

√
Kf ·

√
JfdAq)

)2

≤ Kf ·Area(q)2,

where Jf is the Jacobian of f computed in the natural coordinates of q and q′.

If all the inequalities are equalities, then it follows that f must be an affine function

in the natural coordinates of q and q′.

Here we present the answer to the existence part of Teichmüller’s problem.

Theorem 1.3.6. (Existence) Given any homeomorphism f : X → X ′ between Rie-

mann surfaces of finite type, there exist a Teichmüller map h homotopic to f .

Let Q(X)1 be the unit ball in Q(X) with respect to the L1-norm. For each

q ∈ Q(X)1 define

K(q) :=
1 + ||q||1
1− ||q||1

.

We have seen in the preceding section how it is possible to obtain a Teichmüller map

h : X → Y starting only with X, an initial differential q on X and a horizontal stretch
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1.3 Teichmüller’s metric 1. Teichmüller and moduli spaces

factor
√
K(q): identifying X with Sg this in fact gives a point [(Y, h)] ∈ T ng .

In this way we can define a function

Ω : Q(X)1 → T ng ,

where Ω(q) is said point [(Y, h)]: note that Teichmüller’s uniqueness theorem implies

the injectivity of Ω, while the surjectivity of Ω would imply the claim of Teichmüller

existence theorem.

The proof of the surjectivity of Ω can be reduced to the proof of its continuity and

properness since any proper injective continuous map between real spaces of the same

dimension is a homeomorphism.

It is possible to factor Ω as a composition of two continuous functions

ΦX : Q(X)1 → B(X)1, ΨX : B(X)1 → T ng ,

where B(X)1 is the unit ball with respect to the L∞-norm in B(X) and T ng is endowed

with the Teichmüller metric.

The function ΦX is defined imposing, for each q ∈ Q(X)1,

Ω1(q) := ||q||1
q

|q|
.

Instead the function ΨX associates, to each µ ∈ B(X)1, the point [(fµ, Xµ)] ∈ T ng
whose existence is granted by the corollary 1.2.4. The continiuty of ΨX descends

directly from the fact that the dependence of fµ from µ is analytic.

The properness of Ω can be deduced from the fact that, given any diverging

sequence {qn}n∈N ⊂ Q(X)1 (which means that the L1-norm of qn tends to 1), then,

from the equalities

dT (X ,Ω(qn)) =
1

2
log(K(qn)), K(qn) =

1 + ||q||1
1− ||q||1

it follows

lim
n→∞

dT (X ,Ω(qn)) =∞.

From Teichmüller’s theorems one can easily deduce some important properties of

Teichmüller metric.

Theorem 1.3.7. The Teichmüller metric defines a complete and uniquely geodesic

metric on T ng . Every geodesic segment is a subset of some Teichmüller line.

Proof. As we explained before, Teichmüller lines are geodesics for dT , the fact that

they account for all geodesics for dT descends from Teichmüller’s uniqueness theorem.

Since T ng is geodesic and hence intrinsic, it suffices to prove that closed balls for T ng
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are compact. This follows from the fact that Ω is a homeomorphism and the preimage

through Ω of closed balls of dT are closed balls of Q(X)1.

Turning back to the case of the torus, we can finally see why the bijection ΦH : H→ T1

of section 1.2 is in fact an isometry in case H is endowed with the hyperbolic metric

and T1 is endowed with the Teichmüller metric.

Indeed, given ξ, ξ′ ∈ H, their distance with respect to the hyperbolic metric is

dH(ξ, ξ′) =
1

2
log

(
|ξ − ξ′|+ |ξ − ξ′|
|ξ − ξ′| − |ξ − ξ′|

)

which is equal to the halved complex dilatation of the affine map which sends the

marked lattice Z + ξZ to the marked lattice Z + ξ′Z.

1.4 Moduli spaces

Given any Riemann surface S with boundary ∂S, we define the Mapping class

group Γ(S) as the discrete group obtained from the quotient

Γ(S) := Diff+(S, ∂S)/Diff+
0 (S, ∂S),

where Diff+(S, ∂S) is the set of diffeomorphisms of S which fix the boundary point-

wise. In order to maintain a coherent notation we denote by Γng the mapping class

group of Sng .

In the simple case of the torus, one should notice that there is an isomorphism

ΘT : Γ1 → SL(2,Z)

given by the action on H1(T,Z) ' Z2 (see for example [FM ], theorem 2.5).

There is a natural action of Γng on T ng : for each [ψ] ∈ Γng and [(X,φ)] ∈ T ng we set

[ψ] · [(X,φ)] := [(X,φ ◦ ψ−1)].

The moduli space Mn
g of Sng is a central object in many branches of geometry and

can be defined as the quotient

Mn
g := T ng /Γng .

It is clear from the definition of the action of the mapping class group that Mn
g

can be interpreted as the set of hyperbolic metrics on Sng up to isometry or the set

of conformal structures on Sng up to isomorphism. Since intuitively the action of the

mapping class group consists in removing the marking, we denote by [X] the elements
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1.4 Moduli spaces 1. Teichmüller and moduli spaces

of Mn
g .

Again, the case of the torus is particularly enlightening: the moduli spaceM1 of flat

tori is the quotient H/SL(2,Z), where the action of SL(2,Z) on H is thus defined:(
a b

c d

)
· ξ =

aξ + b

cξ + d
.

Indeed notice that any biholomorphism ϕ : C/(Z + ξZ) → C/(Z + ξ′Z) between

flat tori can be lifted to an automorphism ϕ̃ of C such that there exist α, β, γ, δ ∈ Z
with the property

ϕ̃(z + 1)− ϕ̃(z) = δ + γξ,

ϕ̃(z + ξ′)− ϕ̃(z) = β + αξ

which imply

ξ′ =
αξ + β

γξ + δ
, αδ − βγ = ±1.

The fundamental domain of the action of Γ1 on T1 is represented in figure 1.2.

Figure 1.2: The fundamental domain of the action of Γ1 on T1 is drawn in grey.

The moduli spaceMn
g is a complex orbifold finitely covered by a complex manifold:

it follows from the fact that the action of Γng is properly discontinuous and that points

of T ng have finite stabilizers.

The original proof of the proper discontinuity of the action of Γng is often attributed

to Fricke, but it also descends from the general fact that the action of Diff+(Sng )

on the space of smooth Riemannian metrics on Sng is properly discontinuous (see for

example [Eb]). Instead, the fact that points have finite stabilizers is a consequence of

the finiteness of isometry groups of hyperbolic metrics on Riemann surfaces.
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It can be easily seen that the mapping class group acts on T ng by isometries of dT :

this fact, together with the proper discontinuity of the action of Γng , implies that the

Teichmüller metric descends to a metric d̂T on Mn
g :

d̂T ([X1], [X2]) = inf
[X1,φ1],[X2,φ2]∈T ng

dT ([(X1, φ1)], [(X2, φ2)]).

The metric d̂T can be used to prove thatMn
g is not compact: this fact is obvious for

M1 and can be proved for Mn
g showing that the diameter of Mn

g with respect to d̂T

is not finite.

For any [X] ∈Mn
g denote by l(X) the length of the shortest essential closed geodesic

inX (notice that this definition is independent from the chosen representative), choose

a lifting X of [X] in T ng and suppose l(X) = l̂X (γ). Then for each t ≥ 1 it is possible

to find a marked surface Xt such that l(Xt) ≤ l̂Xt(γ) = l(X)/t, for example by varying

the length of γ in a Fenchel-Nielsen coordinate system which contains γ.

A theorem by Wolpert ([Wo]) states that, given any K-quasi-conformal homeomor-

phism ϕ : X → X ′ between hyperbolic surfaces and any homotopy class of a simple

closed curve γ, it results

lX(γ)

K
≤ lX′(ϕ(γ)) ≤ KlX(γ).

From these inequalities one concludes

lim
t→∞

d̂T (X,Xt) =∞.

Pinching a simple closed curve is indeed the only way a sequence in Mn
g can leave

any compact set: this follows from Mumford’s compactness criterion ([Mu]) for g ≥ 2

and from a theorem of Mahler about lattices ([Mah]) for g = 1.

In particular, every compact set of Mn
g is contained in one set Mε:

Mε := {[X] ∈Mn
g such that l(X) ≥ ε}

for a given ε > 0. The intuition behind this fact is that lifting any sequence ofMn
g to

T ng , up to changing the marking it is always possible to find an upper (but not lower)

bound for the length of the closed curves of a Fenchel-Nielsen coordinate system.
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Chapter 2

Thurston’s metric

In the present chapter we summarize the properties of the metric which inspired

the work of this thesis: the Thurston’s metric on Teichmüller space. In order to do

so, we first introduce and study measured laminations.

2.1 Measured laminations

Definition 2.1. Let X be an hyperbolic surface and π : H→ X its metric universal

cover. A geodesic lamination on X is a closed subset of X which is the union of

disjoint images by π of bi-infinite geodesics γ of H such that either π(γ) is a simple

closed geodesic (referred to as closed leaves) or the restriction of π to γ is injective

(referred to as bi-infinite leaves).

We say that a geodesic lamination λ is complete if there is no other geodesic lam-

ination which strictly contains it, or equivalently if every connected component of

X \ λ is isometric to the interior of a hyperbolic triangle.

Geodesic laminations are a central object in hyperbolic geometry, their importance

will be underlined throughout this section.

Although being defined fixing an hyperbolic metric, geodesic laminations are in fact a

topological object: indeed, there is a bijective correspondence between geodesic lami-

nations associated to two hyperbolic metrics on surfaces of the same topological type

(see for example [Le]) and correspondent laminations are in fact isotopic as topolog-

ical objects, by a global isotopy of the surface which fixes the punctures ([Th2]).

We define the stump of a geodesic lamination λ as the support of any maximal (with

respect to inclusion) geodesic sublamination of λ with compact support. The space of

geodesic laminations L of a surface clearly contains the space of multicurves M and
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2.1 Measured laminations 2. Thurston’s metric

can be endowed with the Hausforff metric on closed sets: each element of the closure of

M in L with respect to the Hausdorff metric is said to be a chain-recurrent lamination.

As for measured foliations, it is possible to define measured geodesic laminations,

which are geodesic laminations equipped with a nonnegative Radon measure on trans-

verse arcs. The measure must be invariant under homotopies of the arc respecting

the lamination and the support of the measure must be equal to the intersection of

the arc with the support of the lamination (which is the union of the leaves).

We denote by ML the set of measured geodesic laminations on Sng and by ML0 the

subset corresponding to measured geodesic laminations with compact support. An

element of ML will be indicated simply by λ, without specifying the measure.

As for geodesic lamination, the stump of a measured geodesic lamination λ is the sup-

port of any maximal (with respect to inclusion) measured geodesic sublamination of

λ with compact support. Notice that if the surface has punctures then any measured

geodesic lamination with compact support can not be complete, since otherwise it

would have leaves converging to punctures. Moreover, the stump of a geodesic lam-

ination λ is empty if and only if each end of every leaf of λ converges towards a

puncture.

The set S of simple closed curves on Sng is naturally embedded inML: each element

α ∈ S is naturally a measured lamination, once it is provided of the Dirac measure of

mass 1.

It is also possible to extend the length function

lS : T ng × S → R, l(X , α) := l̂X (α),

where l̂X (α) is the length of the geodesic representative for the hyperbolic metric of

X of the homotopy class of φ(α), continuously to

lML0 : T ng ×ML0 → R.

For a proof of this face see [PT2].

There is an obvious action of R>0 onML0 andML which is realized multiplying

the measure by a constant: the quotients of this action are respectively PML0 and

PML and are referred to as projective measured geodesic laminations.

We recall the embedding l∗ : T ng → RS of section 1.1, since it is possible to define

another two similar embeddings

ιF :MF → RS , ιL :ML→ RS
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which play a central role in a compactification of T ng first proposed by Thurston: we

refer the reader to [FLP ] for details of the following discussion.

The map ιF sends a measured foliation F to the element of RS which associates to

α ∈ S the quantity i(F , α), defined as the infimum of the total mass of simple closed

curves in the homotopy class of α with respect to the measure of F . This map is

well-defined since, by a result of Thurston, two measured foliations are White-head-

equivalent if and only if they have the same image in RS .

The map ιL is defined in the same way.

The two subsets ιF (MF) and ιL(ML) of RS actually coincide and are homeomorphic

to R6g−6+2n\{0}: this fact can be used to establish a bijective correspondence between

MF and ML. What is more, the set S × R>0 is a dense subset of ML.

Finally, through these embeddings the space PML can be seen as the boundary of

T ng , showing that the closure of the Teichmüller space is homeomorphic to a closed

ball of dimension 6g − 6 + 2n.

2.2 Thurston’s metric on T ng
W. Thurston in [Th] introduced a metric L on T ng defined computing the infimum

of Lipschitz constants of maps. The main result of [Th] is that this metric L is in

fact equal to another metric K on T ng whose value equals the supremum of the ratio

of lengths of simple closed curves.

Coherently with the notation of the preceding chapter, we denote by Diff+
0 (Sng )

the set of diffeomorphisms of Sng which are homotopic to the identity.

In order to be as close as possible to Thurston’s original approach, we will now

represent points of T ng as equivalence classes of hyperbolic surfaces for the action of

Diff+
0 (Sng ) and not as marked surfaces. As before, we will denote by X a Riemann

surface and the corresponding hyperbolic surface. Points of T ng will be simply denoted

by X: one should keep in mind that X represents an equivalence class.

For every ϕ ∈ Diff+
0 (Sng ), define the Lipschitz constant Lip(ϕ)X2

X1
of ϕ with respect

to any pair X1, X2 ∈ T ng as

Lip(ϕ)X2

X1
:= sup

x 6=y∈Sng

dX2
(ϕ(x), ϕ(y))

dX1
(x, y)

,

where dX1
(resp. dX2

) is the metric on Sng induced by the hyperbolic metric of X1

(resp. X2).

It is possible to define a map L : T ng × T ng → R as

L(X1, X2) := inf
ϕ∈Diff+

0 (Sng )
log(Lip(ϕ)X2

X1
).
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Proposition 2.1 of [Th] states that L is in fact an asymmetric metric.

In the same paper Thurston introduced another asymmetric metric K on T ng defined

as follows

K(X1, X2) := sup
α∈S

log(rX1,X2(α)), rX1,X2(α) :=
l̂X2(α)

l̂X1
(α)

,

where as before S is the set of simple closed curves of Sng and l̂X(α) is the length of

the geodesic representative for the hyperbolic metric of X of the homotopy class of α.

The fact K(h1, h2) > 0 for X1 6= X2 is not at all trivial and is proved through the

results of lemma 3.2, 3.3 and 3.4 of [Th].

Notice that using the extension of the hyperbolic length function toML0, the supre-

mum of the definition of K can be equivalently taken over ML0 and thus on the

compact space PML0: this means that there is a measured lamination which maxi-

mizes the ratio of lengths.

As we announced, the main result of [Th] is the equality of the following theorem.

Theorem 2.2.1. For every X1, X2 ∈ T ng it results

L(X1, X2) = K(X1, X2).

Notice that the inequality L ≥ K can be easily proved, since for every ϕ ∈ Diff+
0 (Sng )

and every curve γ on Sng it results

lX2
(ϕ(γ)) ≤ Lip(ϕ)X2

X1
lX1

(γ).

Conversely, the other inequality L ≤ K is not at all trivial.

Thurston proved theorem 2.2.1 first showing that each couple of pointsX1, X2 ∈ T ng
can be connected by a geodesic for L, which can be constructed as a concatenation

of a finite number of stretch lines, along which the equality L = K is realized.

Given the geometric importance of stretch lines, we consider necessary to give a brief

explanation of their construction, which is based on horocyclic measured foliations.

The horocyclic measured foliation of the hyperbolic ideal triangle is a partial folia-

tion obtained foliating the triangle by horocycles starting from the vertices. The leafs

are perpendicular to the sides and the unfoliated central region is a triangle bounded

by three horocycles (see figure 2.1). The transverse measure is such that it assigns

to any arc contained in an edge of the triangle the Lebesgue measure induced by the

hyperbolic metric.
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Figure 2.1: Horocyclic of the ideal triangle in the hyperbolic disk.

Using the horocyclic foliation of the ideal triangle one can prove the following

proposition, which corresponds to proposition 2.2 of [Th] and states a fundamental

property about hyperbolic triangles.

Proposition 2.2.2. For any K > 1 there is a K-Lipschitz homeomorphism of a filled

hyperbolic triangle to itself which maps each side to itself, multiplying arc length on

the side by K.

The K-Lipschitz homeomorphism can indeed be obtained fixing the central region

and mapping horocycles at distance t from the central region to horocycles at distance

Kt.

Given any complete geodesic lamination λ on a Riemann surface of finite type X,

one can endow every connected component of X \ λ (since it is an ideal hyperbolic

triangle) with the horocyclic measured foliation obtained from the hyperbolic metric

of X. The foliations of each triangle fit together smoothly and thus define a partial

measured foliation of Sng : collapsing each non-foliated region into a tripod one obtains

a measured foliation FX(λ) which we define as the horocyclic measured foliation of

X associated to λ.

Notice that from the fact that each hyperbolic metric of T ng is complete and of finite

area, it follows that FX(λ) is trivial around the punctures in the sense of definition

3.6 of [PT2]: each puncture has a neighborhood on which the induced foliation is

a cylinder foliated by homotopic closed leaves and any segment transverse the the

foliation and converging to a puncture has infinite total mass with respect to the

transverse measure.

Given any complete geodesic lamination λ of X, we denote by MF(λ) ⊂ MF
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the subset corresponding to measured foliation classes which can be represented by

measured foliations transverse to λ and trivial around the punctures.

Using horocyclic foliations Thurston defined a new type of coordinates on T ng , called

cataclysm coordinates, provided by the map Φλ of the following theorem (see sections

4 and 9 of [Th] or theorem 3.10 of [PT2])

Theorem 2.2.3. The map

Φλ : T ng →MF(λ), Φλ(X) = FX(λ)

is a homeomorphism.

Finally we can define what a stretch line is. Given any F ∈ MF(λ), the stretch

line directed by the complete geodesic lamination λ and starting at Φ−1
λ (F) is the

map from R to T ng defined by t 7→ Φ−1
λ (etF).

Notice that if λ is an ideal triangulation (which means that both ends of each leaf of

λ converge to a cusp) then the stretch line directed by λ is constant: for this reason

from now on we will consider complete laminations whose stump is not empty.

Denote by λ0 ⊂ λ the stump of λ, along the stretch line directed by λ it results

rΦ−1
λ (F),Φ−1

λ (etF)(λ0) = et.

Since the Lipschitz constant of the identity map Id of Sng with respect to Φ−1
λ (F) and

Φ−1
λ (etF) is also equal to et, from the inequality L ≥ K it follows the equality

L(Φ−1
λ (F),Φ−1

λ (etF)) = K(Φ−1
λ (F),Φ−1

λ (etF)) = t.

One can also deduce that the stretch line directed by λ is a geodesic for Thurston’s

asymmetric metric L:

L(Φ−1
λ (et0F),Φ−1

λ (et1F)) = t1 − t0.

In order to prove theorem 2.2.1 Thurston showed the existence, for any couple

of points X1, X2 ∈ T ng , of a maximally stretched chain-recurrent geodesic lamination

from X1 to X2. The union of all maximally stretched geodesic laminations from X1

to X2 is a geodesic lamination which is denoted by λ(X1, X2).

The claim of theorem 2.2.1 is then proved showing that it is always possible to join X1

to X2 in T ng with a geodesic for L which is a finite concatenation of pieces of stretch

lines along complete geodesic laminations λ1, . . . , λk containing λ(X1, X2), where the

number k depends only on the topological type of the surface.

The geodesic lamination λ1 is arbitrarily chosen and there exists a t0 > 0 minimum

such that λ̂1 := λ(Φ−1
λ1

(et0FX1(λ1)), X2) 6= λ(X1, X2). Notice that it necessarily fol-

lows λ(X1, X2) ⊂ λ̂1. Choosing λ2 arbitrarily between the set of complete geodesic
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laminations which contain λ̂1 and continuing in the same manner it is possible to

reach X2 after a finite number of steps, since there is a bound on the length of a

strictly increasing sequence of geodesic laminations.

In particular it follows that T ng , endowed with the metric L, is a geodesic space.

A.Papadopoulos and G.Théret proved that it is a complete asymmetric space ([PT ]),

showing that left closed balls for L are compact and then using a generalization of

the Hodf-Rinow theorem to asymmetric metric spaces ([Bu], theorem 8).

2.3 Thurston’s metric on T1

A. Belkhirat, A. Papadopoulos and M. Troyanov studied in [BPT ] two asymmet-

ric pseudometrics on T1 which are similar to the ones defined by Thurston on T ng .

In order to maintain coherence of notation with [BPT ] we denote them by λ and

κ. Throughout this section we will define them and give a quick summary of their

properties.

The correspondent of the Thurston metric L given in [BPT ] for the torus is the

map λ,

λ : T1 × T1 → R,

λ([(σ1, φ1)], [(σ2, φ2)]) := inf
ϕ∈Diff+(T ),ϕ∗=φ2◦φ−1

1

(
log
(
Lip(ϕ)

[(σ2,φ2)]
[(σ1,φ1)]

))
,

Lip(ϕ)
[(σ2,φ2)]
[(σ1,φ1)] := sup

x 6=y

((
dσ2

(ϕ(x), ϕ(y))

dσ1(x, y))

)(
l̂σ1

(φ1(1, 0))

l̂σ2(φ2(1, 0))

))
,

where as before l̂σ(φ(1, 0)) is the length of the geodesic representative of the homotopy

class of φ(1, 0) for the metric σ.

The correspondent of the Thurston metric K for the torus is the map κ:

κ : T1 × T1 → R,

κ([(σ1, φ1)], [(σ2, φ2)]) := sup
(m,n)∈Z2

log

((
l̂σ2(φ2(m,n))

l̂σ1
(φ1(m,n))

)(
l̂σ1

(φ1(1, 0))

l̂σ2
(φ2(1, 0))

))
.

The main result of [BPT ] is the following theorem, which establishes an equality

similar to the one of [Th].

Theorem 2.3.1. The functions κ, λ are asymmetric pseudo-metrics and coincide on T1.
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2.3 Thurston’s metric on T1 2. Thurston’s metric

First notice that the inequality κ ≤ λ is easily proved, since for every curve

γ : [0, 1]→ T and every homeomorphism ϕ ∈ Diff+(T ) one gets

lσ2
(ϕ(γ)) ≤ Lip(ϕ)σ2

σ1
lσ1

(γ).

In order to prove the other inequality the authors introduced an asymmetric

pseudo-metric δ on H,

δ(ξ, ξ′) := logM(ξ, ξ′), M(ξ, ξ′) := sup
x∈R

∣∣∣∣ξ′ − xξ − x

∣∣∣∣
which could be equivalently defined as

δ(ξ, ξ′) = log

(
|ξ′ − ξ|+ |ξ′ − ξ|

|ξ − ξ|

)
and proved that the map ΦH of section 1.2 is in fact an isometry between H endowed

with the pseudo-metric δ and T1 endowed with κ. In particular it results

δ(ξ, ξ′) = κ([(σξ, φξ)], [(σξ′ , φξ′)]).

The isotopy class of the curve φξ(m,n) is given in C/(Z + Zξ) by an arbitrary path

connecting 0 to m+ nξ.

Using such identification, the following equalities are clear:

l̂σξ(φξ(m,n)) = |m+ nξ|, l̂σξ(φξ(1, 0)) = 1

and consequently one gets

κ([(σξ, φξ)], [(σξ′ , φξ′)]) = log sup
m,n∈Z

(
m+ nξ′

m+ nξ

)
= log sup

q∈Q

(
q + ξ′

q + ξ

)
= δ(ξ, ξ′).

Finally the inequality κ ≥ λ can be proved finding a map f ∈ Diff+
0 (T ), f∗ = φ2◦φ−1

1 ,

such that

Lip(f)
[(σξ′ ,φξ′ )]

[(σξ,φξ)]
≤ δ(ξ, ξ′).

Indeed, the affine map f which fixes (1, 0) and sends ξ to ξ′ has this property, since

it results

Lip(f)
[(σξ′ ,φξ′ )]

[(σξ,φξ)]
=
|ξ′ − ξ|+ |ξ′ − ξ|

|ξ − ξ|
.

As a final observation, notice that since the symmetrization Sδ of δ,

Sδ(ξ, ξ′) :=
1

2
(δ(ξ, ξ′) + δ(ξ′, ξ))

coincides with the Poincaré metric on H, it is also true that the symmetrizations of

λ and κ coincide with the Teichmüller metric on T1. The affine map f defined above

is extremal for both λ and the Teichmüller metric.
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Chapter 3

Semi-translation surfaces

In the present chapter we define translation and semi-translation surfaces, under-

lining some of their fundamental properties.

Definition 3.1. A semi-translation surface is a closed topological surface Sg endowed

with a semi-translation structure, that is:

(i) a finite set of points Σ ⊂ Sg and an atlas of charts on Sg \ Σ to C such that

transition maps are of the form z 7→ ±z + c with c ∈ C,

(ii) a flat singular metric on Sg such that for each point p ∈ Σ there is a homeomor-

phism of a neighborhood of p with a neighborhood of a cone angle of π(k+2) for

some k > 0, which is an isometry away from p (we call such point a singular

point of order k). Furthermore, charts of the atlas of (i) are isometries for the

flat singular metric.

Equivalently, a semi-translation surface can be defined as a closed Riemann sur-

face X endowed with a non-vanishing holomorphic quadratic differential q. Indeed,

it follows directly from the proof of proposition 1.2.5 that natural coordinates for q

and the metric |q| endow Sg with a semi-translation structure. Conversely, given a

semi-translation structure one can obtain a quadratic differential by setting q = dz2

on Sg \Σ (where z is a coordinate of the charts of the semi-translation structure) and

q = zkdz2 in a neighborhood of a singular point. It is clear then that the sum of the

orders of singular points is 4g − 4.

A semi-translation surface is naturally endowed with a locally Cat(0) metric. Actu-

ally, one can extend the definition to allow the quadratic differentials to have at most

simple poles (and consequently cone angles of π), but then the resulting metric will

not be locally Cat(0) anymore.
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3. Semi-translation surfaces

In a similar way one can define translation surfaces: the only differences are that

transition maps must be translations and that the cone angles should be of 2π(k+ 1).

The definition of natural coordinates for holomorphic quadratic differentials we gave

in proposition 1.2.5 can be adapted to Abelian differentials ω on X: indeed they are

local coordinates z on X such that ω = dz near a point which is not a zero of ω and

ω = zkdz near a point which is a zero of ω of order k ≥ 1.

It follows that translation surfaces can be equivalently defined as closed Riemann

surfaces X equipped with Abelian differentials ω: the natural coordinates of ω and

the metric |ω|2 indeed give this correspondence and one should notice that a zero of

ω corresponds to a cone angle of 2π(k + 1). The sum of orders of singular points is

then equal to 2g − 2.

While translation surfaces are naturally semi-translation surface, the inverse is not

true: this is because the holonomy of (X,ω) is trivial, while the holonomy of (X, q)

could be ±Id.

Notice that the surfaces (X, q) and (X, eiθq) induce the same metric: this reflects

the fact that semi-translation surfaces have a fixed north direction, which is forgotten

when considering only the metric structure.

The flat singular metric |q| can be nicely characterized (see [St]) stating that its

local geodesics are continuous maps γ : R→ Sg such that for every t ∈ R:

• if γ(t) /∈ Σ, then there is a neighborhood U of t in R such that γ|U is an

Euclidean segment,

• if γ(t) ∈ Σ, then there is a small neighborhood V of γ(t) in Sg and an ε > 0

small enough such that the angles defined by γ([t, t + ε)) and γ((t − ε, t]) in V

are both at least π.

We say that a saddle connection on (X, q) is a geodesic for the flat metric going from

a singularity to a singularity, without any singularities in the interior of the segment.

Since the metric |q| is locally Cat(0), for any arc γ with endpoints in Σ there always

is a unique geodesic representative in the homotopy class of γ with fixed endpoints.

This geodesic representative is a concatenation of saddle connections.

Finally, we define the systole of a semi-translation surface (X, q), and denote it with

sys(q), to be the length of the shortest saddle connection.

A first remarkable fact about semi-translation surfaces is that they always admit

a triangulation by saddle connections (see [Tr]). Using this property we can state

another equivalent definition of semi-translation surfaces.
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3. Semi-translation surfaces

Definition 3.2. A semi-translation surface is an equivalence class of a finite union

of planar polygons with edge identifications: each edge must be paired with exactly one

other edge, which is parallel and of the same length. Two such collections of polygons

are the same semi-translation surface if one can be cut into pieces along straight lines

and these pieces can be re-glued identifying sides by semi-translations to form the

other collection of polygons.

The alternative definition of translation surfaces is the same, but with sides iden-

tified by translations.

Notice that, since every semi-translation surface can be triangulated, the collection of

polygons can be obtained cutting along the saddle connections of the triangulation.

On the other side, given a collection of polygons, the paired edges can be identified

and in the interior of each edge and polygon a natural coordinate z ∈ C can be used.

Some vertices will become singular points of the flat metric, since the total angle

around these singularities will always be an integer multiple of π.

Figure 3.1: An example of translation surface with one singular point of cone angle 6π.

We now introduce the Teichmüller and moduli spaces of translation surfaces.

Given any g ≥ 2 and m ≥ 1, fix a finite set of points Σ = {p1, . . . , pm} ⊂ Sg and

an m-ple k = (k1, k2, . . . , km) ∈ Nm such that
∑m
l=1 kl = 2g − 2.

We denote by Ωg(k,Σ) the set of translation surfaces on Sg which have singularities

prescribed by k on the points of Σ (i.e. it has a zero of order ki on pi, i = 1, . . . ,m).

Consider the subgroups Diff+
0 (Sg,Σ) and Diff+(Sg,Σ) respectively of Diff+

0 (Sg)

and Diff+(Sg) and which consist of diffeomorphisms which fix the points of Σ.

We define the Teichmüller space of translation surfaces with singularities prescribed

by k on the points of Σ as the quotient

T Hg(k,Σ) := Ωg(k,Σ)/Diff+
0 (Sg,Σ)

and the moduli space of translation surfaces with singularities prescribed by k on the

points of Σ as the quotient

Hg(k,Σ) := Ωg(k,Σ)/Diff+(Sg,Σ).
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3. Semi-translation surfaces

In order to lighten the notation, from now on we will denote these spaces simply as

Ωg(k), T Hg(k),Hg(k): one should keep in mind that in the definition is implicit the

choice of Σ.

We will denote simply by ω an element of T Hg(k) and Hg(k): the fact that it is an

equivalence class will be clear from the context.

The space T Hg(k) can be endowed with a topology using developing maps. For a

given ω ∈ T Hg(k) fix p ∈ Σ, a universal cover π : S̃g → Sg and a point p̃ ∈ S̃g over p.

Then the developing map

Devω : (S̃g, p̃)→ (C, 0), p̃1 7→
∫ p̃1

p̃

π∗ω

is such that the association

Θ : Ωg(k)→ C0(S̃g,C), ω 7→ Devω

is injective: endowing C0(S̃g,C) with the compact-open topology one gets naturally

a topology on Ωg(k) and T Hg(k).

Definition 3.3. For every point ω0 ∈ T Hg(k) and a sufficiently small open neigh-

borhood U of ω0 in T Hg(k), it is possible to define the local period map

P : U → H1(Sg,Σ,C)

P(ω) :=

(
γ 7→

∫
γ

ω

)
∈ Hom(H1(Sg,Σ,Z),C) ' H1(Sg,Σ,C).

Notice that by definition the local period map is continuous with respect to the

topology on T Hg(k) induced by the developing map.

Theorem 3.0.1. The local period maps endow T Hg(k) with the structure of a complex

manifold of dimension 2g +m− 1.

The main point of the proof is showing the existence of an isotopy between any two

forms ω0 and ω1 close to each other in T Hg(k), with transverse real and imaginary

parts and such that P(ω0) = P(ω1). This can be done in many ways, for example

using Veech’s zipped rectangles construction (as in [Y o]) or a variant of the so called

Moser’s homotopy trick (as in [FMa]).

Having done that, it is just left to notice that composing the isomorphisms

H1(Sg,Σ,C) ' C2g+m−1

with the period maps, one obtains affine transition maps given by the change of basis

of the relative homology.
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3. Semi-translation surfaces

It is possible to define a natural measure λk on T Hg(k) pulling back the Lebesgue

measure on C2g+m−1 and normalizing in such a way that the integral lattice

H1(Sg,Σ,Z⊕ iZ) has covolume 1.

At this point one could wonder wether the same nice structure of T Hg(k) trans-

fers to Hg(k). The answer is no, because, similarly to the case of the moduli space

of Riemann surfaces, one should be aware of the issues which arise when X has auto-

morphisms preserving ω. For this reason each moduli space Hg(k) is only an orbifold

of dimension 2g +m− 1.

The construction we made on the space of translation surfaces can be adapted

to the space of semi-translation surfaces: one should notice that this time, besides

the m-ple k = (k1, k2, . . . , km) with
∑m
l=1 kl = 4g − 4 indicating the multiplicity of

the zeroes on the points of Σ, one needs an additional index ε, which is set to 1 in

case of trivial holonomy and to −1 otherwise. We denote by SΩ(k, ε,Σ) the set of

semi-translation surfaces indexed by k and ε.

We define the Teichmüller and moduli space of semi-translation surfaces with singu-

larities prescribed by k on Σ and holonomy defined by ε in the following way:

T Q(k, ε,Σ) := SΩ(k, ε,Σ)/Diff+
0 (Sg,Σ), Q(k, ε,Σ) := SΩ(k, ε,Σ)/Diff+(Sg,Σ).

As we already did for translation surfaces, we will denote T Qg(k, ε,Σ) and Qg(k, ε,Σ)

simply as T Qg(k, ε) and Qg(k, ε).

All Teichmüller spaces T Q(k, ε) have the same nice structure of the Teichmüller

spaces of translation surfaces.

Theorem 3.0.2. Each space T Qg(k, 1) has the structure of a complex manifold of

dimension 2g +m− 1, while T Qg(k,−1) has the structure of a complex manifold of

dimension 2g +m− 2.

Proof. If we consider a quadratic differential q in a Teichmülelr space with trivial

holonomy then there is an Abelian differential ω such that q = ω2. In fact the

squaring defines an homeomorphism between a neighborhood of ω in T Hg(k) and a

neighborhood of q in T Qg(k, 1). The claim then follows from theorem 3.0.1.

In case q ∈ T Qg(k,−1), one should consider the fact that there exists a canonical non

trivial ramified double covering π : X̂ → X such that π∗q is the square of an Abelian

differential ω̂ on X̂ (see for example [La]). Let

P : T Hĝ(k̂)→ H1(X̂,Σ(ω̂),C)
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3. Semi-translation surfaces

(where Σ(ω̂) is the set of zeroes of ω̂) be a period coordinate near ω̂: at this point one

should note that the pullback by π and the squaring of Abelian differentials induce an

homeomorphism between a neighborhood of q in T Qg(k,−1) and a neighborhood of

P(ω̂) in the (−1)-eigenspace of the covering involution of π in H1(X̂,Σ(ω̂),C). The

claim then follows from the computation of the dimension of this eigenspace.

Let modd be the number of indexes l such that kl is odd and similarly let meven be

the number of indexes i such that ki is even. Then

dimCH
1(X̂,Σ(ω̂),C) = 2ĝ +modd + 2meven − 1

and using Riemann-Hurwitz formula one can compute

ĝ = 2g +
modd

2
− 1.

Finally the computation of the dimension of the (−1)-eigenspace can be completed

considering that the dimension of the (+1)-eigenspace equals the dimension of

H1(X,Σ(q),C).

For the same reasons explained before, each moduli space Q(k, ε) is an orbifold of

the same dimension of T Q(k, ε).

There is a natural action of GL(2,R)+ on T Qg(k, ε) and Qg(k, ε) (and conse-

quently on T Hg(k) and Hg(k)): for each A ∈ GL(2,R)+ and each quadratic differ-

ential q, the element A · q is the quadratic differential obtained post-composing the

natural charts of q with A. Another way of understanding the action of GL(2,R)+

is considering q as a collection of polygons. Then A · q is obtained applying A on the

polygons.

We denote by T H(1)
g (k) the subset of T Hg(k) corresponding to Abelian differen-

tials whose associated area form has total area equal to 1. Note that, since the area

form Area(ω) of ω can be expressed as

Area(ω) =
i

2

∫
Sg

ω ∧ ω =
i

2

g∑
j=1

(AjBj −AjBj),

where Aj =
∫
αj
ω, Bj =

∫
βj
ω and {αj , βj}gj=1 is a symplectic basis of H1(Sg,R), we

see that T H(1)
g (k) can be considered as a unit hyperboloid.

Note that there is a natural SL(2,R)-action on T H(1)
g (k) for which the Lebesgue

measure λ
(1)
k is SL(2,R)-invariant.

All the previous properties apply also for H(1)
g (k), T Q(1)

g (k, ε),Q(1)
g (k, ε), but the

following result (proved by H.Masur in [Ma] and by W. Veech in [V e]) only applies
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3. Semi-translation surfaces

to H(1)
g (k) and consequently to Q(1)

g (k, ε), using the ramified double cover we referred

to in the proof of theorem 3.0.2.

Theorem 3.0.3. The total mass of λ
(1)
k is finite.
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Chapter 4

Thurston’s metric on T Qg(k, ε)

As it is explained in the previous chapter, every element of T Qg(k, ε) defines a

singular flat metric on Sg: the idea behind the work of the present thesis is to inves-

tigate how the definition of the Thurston’s metrics L and K on T ng could be adapted

to the case of flat singular metrics.

W.A. Veech already did something similar in [V e2] defining a complex-valued

distance map D0 on the Teichmuller space T Qng (k, ε) of semi-translation structures

on Sng (which can be defined in the same way of T Qg(k, ε)).
We copy the definition of D0 maintaining the original notation of Veech:

D0(q1, q2) := inf
ϕ∈Diff+

0 (Sng )
α(ϕ∗q1, q2),

α(ϕ∗q1, q2) := sup
x∈Sng

(
sup

(Ui,fi)∈qi,x∈U1∩U2

(
lim sup
x′→x

Log

((
f1(ϕ(x′))− f1(ϕ(x))

f2(x′)− f2(x)

)2
)))

,

where qi, i = 1, 2 is regarded as a semi-translation structures and fi : Ui → C,

Ui ⊂ Sng , are natural charts of qi. The map Log is a branch of the complex logarithm.

The real part of α(ϕ∗q1, q2) is the Lipschitz constant of ϕ computed with respect to

the metrics |q1| and |q2| and consequently the real part of the distance function D0 is

asymmetric.

Veech claimed that the map D0 is a complete pseudo-metric on T Qng (k, ε) (the proof

should be contained in unpublished preprints [V e3]).

We modified the definition of Veech’s distance map to make it a symmetric pseudo-

metric LF on T Qg(k, ε) (and thus LF is different from the real part of the distance

map defined by Veech), which in fact becomes non degenerate if considered as a func-
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tion on spaces of flat singular metrics: in the present chapter we study its properties.

As a second introductory observation, one should notice that C.T.McMullen in

[Mc] defined a metric on leaves of the absolute period foliation on strata of Hg, the

moduli space of stable forms (see [CDF ] for precise definitions of these objects), which

has some similarities with the metric K defined by Thurston on T ng .

The absolute period foliation A on Hg is defined in such a way that its leaves are the

fibers of the map

Φ : Hg → H1(Sg), Φ(ω) = [ω]

and restricts to a foliation A(k) on each stratum Hg(k), k ∈ Nm.

For any sufficiently small neighborhood U in a leaf of A(k), one can define the relative

period map

P : U → Cm/C · (1, . . . , 1), P(ω) =

(∫ p1

p0

ω, . . . ,

∫ pm

p0

ω

)
defined choosing paths between the zeroes p1, . . . , pm of ω and a point p0 of Sg: the

map P provides each leaf with local coordinates.

The foliation A(k) can be extended to a foliation A(k) on strata Hg(k) of Hg (by

abuse of notation we will still denote its leaves by Φ−1(ϕ)), and the relative period

map can be extended in such a way to provide local coordinates.

On each leaf of A(k) which does not contain any stable form which vanishes identically

on any irreducible component of the underlying stable curve, McMullen defined a

natural path metric coming from the norm || · ||M on Cm/C · (1, . . . , 1):

||(z1, . . . , zm)||M := max
i,j=1,...,m

|zi − zj |

and proved in [Mc] that this metric is complete on each leaf Φ−1(φ) of A(k) corre-

sponding to a form φ such that φ(H1(Sg,Z)) ' Z2g.

In the present chapter we define and study a complete symmetric pseudo-metric

KF on T Qg(k, ε) which is quite similar to the Thurston’s metric K on T ng .

4.1 Definitions and comparison with dT

Fix any genus g ≥ 2 and consider the Teichmüller space of semi-translation surfaces

T Qg(k, ε) with singularities on Σ ⊂ Sg prescribed by the m-ple k = (k1, . . . , km) ∈ Nm

such that
∑m
i=1 ki = 4g − 4 and holonomy determined by ε ∈ {+1,−1}.

We will introduce now all flat analogues to Thurston’s metrics.
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4. Thurston’s metric on T Qg(k,ε)

First we define the following function LF , which is a symmetric analogue to Thurston’s

metric L.

LF : T Qg(k, ε)× T Qg(k, ε)→ R,

LF (q1, q2) := inf
ϕ∈Diff+

0 (Sg,Σ)
Lq2q1(ϕ),

Lq2q1(ϕ) := sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

|log(||dϕpv||q2)|

)
.

The quantity Lq2q1(ϕ) can be rewritten as

Lq2q1(ϕ) = max{log(Lipq2q1(ϕ)),− log(lipq2q1(ϕ))},

with Lipq2q1(ϕ) being the upper Lipschitz constant of ϕ:

Lipq2q1(ϕ) := sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

||dϕpv||q2

)
and lipq2q1(ϕ) being the lower Lipschitz constant of ϕ:

lipq2q1(ϕ) := inf
p∈Sg\Σ

(
inf

w∈TpSg,||w||q1=1
||dϕpw||q2

)
.

We define also an asymmetric analogue to L on T Q(1)
g (k, ε)

LaF : T Q(1)
g (k, ε)× T Q(1)

g (k, ε)→ R

associating to any pair q1, q2 ∈ T Q(1)
g (k, ε) of semi-translation surfaces of unitary area

the quantity

LaF (q1, q2) := inf
ϕ∈D

log(Lip(ϕ)q2q1),

Lip(ϕ)q2q1 = sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

||dϕpv||q2

)
,

where D is the set of functions ϕ : Sg → Sg which are homotopic to the identity,

differentiable almost everywhere and which fix the points of Σ.

Since Diff+
0 (Sg,Σ) ⊂ D, one can immediately deduce LF (q1, q2) ≥ LaF (q1, q2) for

every q1, q2 ∈ T Q(1)
g (k, ε).

We define two flat counterparts to the metric K, which are Ka
F and KF . The first

one is asymmetric and the second one is its symmetrization.

In particular, for every q1, q2 ∈ T Qg(k, ε), we set

Ka
F (q1, q2) := sup

γ∈SC(q1)

log

(
l̂q2(γ)

l̂q1(γ)

)
,
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where SC(q1) is the set of saddle connections of q1, and l̂qi(γ) is the length of the

geodesic representative for |qi| in the homotopy class of γ with fixed endpoints.

Finally the symmetric analogue to K is defined as

KF (q1, q2) := max{Ka
F (q1, q2),Ka

F (q2, q1)}

for every q1, q2 ∈ T Qg(k, ε).

In this chapter we will study the properties of LF and KF and explain the diffi-

culties in trying to prove LF = KF on T Qg(k, ε).
These difficulties can be solved considering LaF instead of LF : the fact that LaF is

asymmetric and the infimum is taken over functions in D will play a crucial role.

Indeed, LaF is defined specifically to get LaF = Ka
F : the next chapter will be completely

devoted to the proof of such equality.

We now begin the study of the properties of LF .

Proposition 4.1.1. The function LF is a symmetric pseudo-metric on T Qg(k, ε).

Proof. It is clear that L(q, q) = | log(Lipqq(Id))| = 0 for all q ∈ T Qg(k, ε).
The equality

lipq2q1(ϕ) =
1

Lipq1q2(ϕ−1)

grants

Lq2q1(ϕ) = Lq1q2(ϕ−1)

and thus the symmetry of LF .

The triangular inequality follows from the inequality

Lq3q1(ϕ ◦ ψ) ≤ Lq3q2(ϕ) + Lq2q1(ψ).

Finally, one could easily note that, given any q1 ∈ T Qg(k, ε), it results LF (q1, q2) = 0

exactly for all q2 ∈ T Qg(k, ε) such that q2 = eiθq1.

Since it results LF (q1, q2) = 0 if and only if q1 and q2 are in the same orbit of

the action of the unitary group U(1) ⊂ C∗, it follows that LF can be considered as

a metric on the space of flat singular metrics with singularities prescribed by k and

holonomy prescribed by ε.

For the same reason, LF descends to a metric PLF on the projectivization PT Qg(k, ε) =

T Qg(k, ε)/C∗ = T Q(1)
g (k, ε)/U(1) by setting

PLF ([q1], [q2]) := LF

(
q1

Area(q1)
,

q2

Area(q2)

)
.
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The first result we present on the pseudo-metric LF is an inequality concerning

the Teichmüller metric dT .

Proposition 4.1.2. For any q1, q2 ∈ T Qg(k, ε), denote by X1,X2 ∈ Tg the points in

the Teichmüller space relative to the corresponding conformal structure. It results:

LF (q1, q2) ≥ dT (X1,X2)

In case there is a Teichmüller map between X1 and X2 with respect to the differentials

q1 and q2 the last inequality is an equality.

Proof. For every ϕ ∈ Diff+
0 (Sg,Σ) and p ∈ Sg \ Σ we define the quantities

Lipq2q1(ϕ)p := sup
v∈TpSg,||v||q1=1

||dϕpv||q2 ,

lipq2q1(ϕ)p := inf
w∈TpSg,||w||q1=1

||dϕpw||q2 .

Then, since the global dilatation K(ϕ) is independent of the holomorphic charts and

thus can be computed in the natural coordinates respectively of q1 and q2, we get the

inequality

K(ϕ) = sup
p∈Sg\Σ

Lipq2q1(ϕ)p

lipq2q1(ϕ)p
≤
Lipq2q1(ϕ)

lipq2q1(ϕ)
.

Since for every ϕ ∈ Diff+
0 (Sg,Σ) it also results

K(h) ≤ K(ϕ),

where K(h) is the global dilatation of a Teichmüller map h such that dT (X1,X2) =
1
2 log(K(h)), combining the last two inequalities we get that it can not be at the same

time

Lipq2q1(ϕ) <
√
K(h) and lipq2q1(ϕ) >

1√
K(h)

and this implies the inequality L(q1, q2) ≥ dT (X1,X2).

Finally, in case h is a Teichmüller map with respect to the quadratic differentials q1

and q2, then, since h can be written in local coordinates as

h(x+ iy) =
√
K(h)x+

i√
K(h)

y

it follows

Lipq2q1(h) =
√
K(h), lipq2q1(h) =

1√
K(h)

and thus the equality of the claim.
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Observation 4.1.3. Notice that in the proof of proposition 4.1.2 the fact that the

metric induced by the quadratic differential is locally Cat(0) is never used. For this

reason, one could allow the quadratic differentials to have simple poles on the marked

points and define LF in the same way.

Then the same inequality LF (q1, q2) ≥ dT (X1,X2) will be true for X1,X2 ∈ T ng .

4.2 Induced topology

We define standard topology on T Qg(k, ε), and denote it by Tstd, the topology

induced by the structure of complex manifold, that is, the topology induced by the

period maps. Given a sequence {qn}n∈N ⊂ T Qg(k, ε), we write qn → q to denote its

convergence to q ∈ T Qg(k, ε) with respect to the standard topology.

Similarly, we denote by TLF the topology on T Qg(k, ε) induced by LF .

Proposition 4.2.1. The topology Tstd is finer than TLF .

We will prove the equivalent claim that for every sequence {qn}n∈N ⊂ T Qg(k, ε)
the convergence qn → q implies lim

n→∞
LF (qn, q) = 0.

To this end, we need to first make an observation concerning Euclidean triangles.

Denote by Ξ the set of non-degenerate Euclidean triangles T ⊂ R2 with one vertex

in the origin of R2: since every triangle T ∈ Ξ can be identified by the coordinates of

its two vertices different from the origin, Ξ can be considered as a subset of R4.

Given any sequence {Tn}n∈N in Ξ, we say that it converges to T ∈ Ξ, and write

Tn → T , if {Tn}n∈N converges to T as a sequence of R4 with respect to the standard

Euclidean metric. For every n ∈ N consider the affine map An which sends Tn to T

and denote by σ1(An), σ2(An) its eigenvalues. It is easy to verify that if Tn → T then

lim
n→∞

σ1(An) = 1, lim
n→∞

σ2(An) = 1.

Proof. In order to prove the proposition, given any sequence {qn}n∈N ⊂ T Qg(k, ε)
such that qn → q, we will find a sequence of maps An ∈ Diff+

0 (Sg,Σ) with the prop-

erty Lqnq (An)→ 0. The claim then will follow from the inequality L(qn, q) ≤ Lqnq (An).

If qn → q then one could find a collection of arcs Γ = {γj}3(m+2g−2)
j=1 with endpoints

in Σ which triangulate Sg and an n0 > 0 such that the geodesic representative of the

homotopy class of every γj for |q| and |qn|, n > n0, is a saddle connection.

The geodesic representatives of the homotopy classes of the arcs in Γ for |q| (resp.

|qn|), provide us of a set of Euclidean triangles Ξq = {Tl}2(k+2g−2)
l=1 (resp Ξqn =

{Tnl }
2(k+2g−2)
l=1 ) which cover Sg. Using period coordinates of T Qg(k, ε) one can in-

deed observe that qn → q implies that every triangle Tnl converges to Tl in the sense

explained in the observation preceding this proof.
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4. Thurston’s metric on T Qg(k,ε)

For every n ∈ N, we define by An ∈ Diff+
0 (Sg,Σ) the map which is piecewise affine

in natural coordinates respectively of qn and q, and which on every triangle Tnl of Ξqn

is the affine map Aln which sends Tnl to the corresponding triangle Tl of Ξq.

As before, we denote by σ1(Aln), σ2(Aln) the eigenvalues of Aln. Since it results

Lipqnq (Aln) = max
l=1,...,2(m+2g−2)

(
max{σ1(Aln), σ2(Aln)}

)
lipqnq (Aln) = min

l=1,...,2(m+2g−2)

(
min{σ1(Aln), σ2(Aln)}

)
the claim of the proposition follows from the preceding observation about Euclidean

triangles.

From proposition 4.2.1, it follows that compact sets of Tstd are also compact sets

of TLF . It is thus useful to characterize them in a way which is similar to the state-

ment of Mumford’s compactness criterion.

Before doing so, let us fix once and for all some notation: for any arc γ in Sg with

endpoints in Σ and any quadratic differential q ∈ T Qg(k, ε), we denote by lq(γ) the

length of γ with respect to the metric |q| and by l̂q(γ) the length of the geodesic

representative for |q| in the homotopy class of γ with fixed endpoints.

The following proposition about compact sets of Tstd is a consequence of proposi-

tion 1, section 3, of [KMS], which establishes the compactness of subsets of quadratic

differentials with lower bound on the area.

Proposition 4.2.2. Fix ε, L > 0 and a collection of arcs Γ = {γi}3(m+2g−2)
i=1 with

endpoints in Σ which triangulates Sg.

Define the subset Kε,L ⊂ T Qg(k, ε) as the set of quadratic differentials q which satisfy

the following two conditions.

(i) sys(q) ≥ ε,

(ii)
3(m+2g−2)∑

i=1

l̂q(γi) ≤ L.

The set Kε,L is a compact set of Tstd.

Using this characterization of compact sets we can prove the following proposition.

Proposition 4.2.3. Each Teichmüller space T Q(k, ε) endowed with the pseudo-

metric LF is a proper topological space.

Proof. We prove that closed balls BRLF (q) of LF ,

BRLF (q) := {q′ ∈ T Qg(k, ε)|LF (q, q′) ≤ R}
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are contained in a compact subset of Tstd: thanks to the result of proposition 4.2.1

they will be contained also in a compact set of TLF .

Let γ be any geodesic arc for |q| with endpoints in Σ, and γn the geodesic represen-

tative of its homotopy class for the metric |qn|. Then it follows

lq(γ)

lqn(γn)
≤ lq(ϕ(γn))

lqn(γn)
≤ sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||qn=1

||dϕpv||q

)
,

lqn(γn)

lq(γ)
≤ lqn(ϕ(γ))

lq(γ)
≤ sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q=1

||dϕpv||qn

)
and from the fact that LF (q, qn) is bounded it follows that it can not happen

lim
n→∞

l̂qn(γ) = 0 or lim
n→∞

l̂qn(γ) =∞.

By abuse of notation we will denote by Tstd and TLF the induced topologies on

PT Qg(k, ε).

Proposition 4.2.4. Tstd and TLF are the same topology on PT Qg(k, ε).

Proof. It will be sufficient to prove that TLF is finer than Tstd and thus that for every

sequence {qn}n∈N ⊂ T Q(1)
g (k, ε) such that lim

n→∞
LF (qn, q) = 0 it follows that there

exists c ∈ U(1) with the property qn → cq.

Since lim
n→∞

LF (qn, q) = 0 it follows that {qn}n∈N is contained in a closed ball of LF

and thus in a compact set. Up to passing to a subsequence we can state that there is

q′ ∈ T Qg(k, ε) such that qn → q′. Since

LF (q, q′) ≤ LF (q, qn) + LF (qn, q
′)

it follows q′ = eiθq.

In the following theorem we establish another similarity between LF and Thurston’s

asymmetric metric L: LF is a complete pseudo-metric.

The notion of completeness makes sense also for pseudo-metrics: a pseudo-metric d

on a topological space X is complete if every Cauchy sequence for d admits at least

one limit point for d. Thus in the proof of the following theorem we will prove that

every Cauchy sequence for LF admits at least one limit point for LF .

Theorem 4.2.5. Every Teichmüller space T Qg(k, ε) and its quotient PT Qg(k, ε), en-

dowed respectively with the metrics LF and PLF , are complete pseudo-metric spaces.
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Proof. We prove that any Cauchy sequence {qn}n∈N for LF on T Qg(k, ε) is contained

in a compact set of Tstd: from proposition 4.2.1 it will follow that {qn}n∈N is contained

in a compact set of TLF and therefore is convergent. We will use the same inequalities

of the proof of proposition 4.2.3.

Consider any Cauchy sequence {qn}n∈N for LF on T Qg(k, ε), given any arc γ on Sg

with endpoints in Σ denote by γn the geodesic representative of the homotopy class

of γ for the metric |qn|. Then for every ϕ ∈ Diff+
0 (Sg,Σ) it results:

lqm(γm)

lqn(γn)
≤ lqm(ϕ(γn))

lqn(γn)
≤ Lipqmqn (ϕ)

and thus the sequence {log(lqn(γn))}n∈N is a Cauchy sequence and consequently

bounded: this means that {qn}n∈N is contained in a set of the form described in

proposition 4.2.2.

The completeness of (PT Qg(k, ε),PLF ) follows from the same reasoning considering

a Cauchy sequence {qn}n∈N ⊂ T Q(1)
g (k, ε).

Finally, it is worth mentioning that the mapping class group Γ(Sg,Σ) acts on

T Qg(k, ε) by isometries of LF : in particular for every q1, q2 ∈ T Qg(k, ε) and ψ ∈ Γ(Sg,Σ)

it results

LF (q1, q2) = LF (ψ · q1, ψ · q2),

where ψ · q is the pullback by ψ−1 of the quadratic differential q. This result follows

from the equality

Lq2q1(ϕ) = Lψ·q2ψ·q1(ψ ◦ ϕ ◦ ψ−1)

for every ϕ ∈ Diff+
0 (Sg,Σ) and the fact that the conjugation of Diff+

0 (Sg,Σ) by

any element of Γ(Sg,Σ) is an isomorphism of Diff+
0 (Sg,Σ).

Since the action of the mapping class group Γ(Sg,Σ) on T Qg(k, ε) is also properly

discontinuous, one gets that the metric LF descends also to a metric L̂F on Q(k, ε),

L̂F (q̂1, q̂2) = inf LF (q1, q2),

where the infimum is taken over all liftings q1, q2 to T Qg(k, ε) of q̂1, q̂2 ∈ Qg(k, ε).

Proposition 4.2.6. The space Qg(k, ε) endowed with the metric L̂F is a complete

pseudo-metric space.

Proof. The proof is identical to the one of proposition 4.2.5.

4.3 Relation with pseudo-metric KF

A first analogy with the metric LF is given by the fact that KF has all the

properties we just proved for LF and in particular it follows:
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Theorem 4.3.1. The function KF is a complete and proper symmetric pseudo-metric

on T Qg(k, ε).

Proof. All the previous proofs for LF adapt to KF (in particular, the fact that qn → q

implies KF (qn, q)→ q is a direct consequence of the definition of period maps), except

for

KF (q1, q2) = 0 if and only if q1 = eiθq2

which can be proved as we now explain.

If q1 = eiθq2 then q1 and q2 induce the same flat metric on Sg and consequently

KF (q1, q2) = 0, so let us prove the other implication.

If KF (q1, q2) = 0, then consider any saddle connection σ of q1 and let τ be the geodesic

representative for |q2| in the homotopy class of σ. The curve τ is a concatenation of

saddle connections τ1, . . . , τk of q2 and since Ka
F (q1, q2) ≤ 0 it results

lq1(σ) ≥ lq2(τ1) + . . . lq2(τk).

For each i = 1, . . . , k let σi be the geodesic representative for the metric |q1| in the

homotopy class of τi. Since Ka
F (q2, q1) ≤ 0 it follows

lq2(τ1) + . . . lq2(τk) ≥ lq1(σ1) + · · ·+ lq1(σk)

and, since the concatenation σ1 ∗ · · · ∗ σk is in the same homotopy class of σ, it also

results

lq1(σ1) + · · ·+ lq1(σk) ≥ lq1(σ).

These inequalities can be realized at the same time only if they are equalities, and

since σ is the only geodesic representative in its homotopy class it follows that τ must

be a saddle connection of q2: we have thus proved that if KF (q1, q2) = 0 then the

geodesic representative for |q2| (resp. for |q1|) of any saddle connection of q1 (resp. of

q2) must be a saddle connection of the same length.

At this point the claim is basically already proved, since q1 and q2 give triangulations

of Sg by saddle connections of the same length.

We can define on PT Qg(k, ε) the metric PKF in the same way we defined PLF
and prove that its induced topology TKF coincides with the standard topology Tstd.

As for the metrics L and K on Tg, the inequality

LF (q1, q2) ≥ KF (q1, q2), ∀q1, q2 ∈ T Qg(k, ε)
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is straightforward, while proving the inverse inequality is a much harder problem,

which could be solved finding a function ϕ ∈ Diff+
0 (Sg,Σ) such that

Lq2q1(ϕ) ≤ KF (q1, q2).

Before studying the general case, let us first state a much simpler fact.

Proposition 4.3.2. Given any q ∈ T Qg(k, ε) and any A ∈ GL(2,R)+, it results

LF (q, A · q) = KF (q,A · q) = log(σ),

where σ := max{σ1(A), σ1(A)−1, σ2(A), σ2(A)−1} and σ1(A), σ2(A) are the two eigen-

values of A.

Proof. Without loss of generality, we can suppose σ1(A) is realized in the horizontal

direction of q and σ2(A) in the vertical direction. Notice furthermore that it results

log(σ) = LA·qq (Id).

If σ = σ1(A) or σ = σ1(A)−1, then a saddle connection in the horizontal direction will

have stretch factor σ: although it is not always possible to suppose the existence of

such geodesic, it is a consequence of theorem 2 of [Ma2] that the directions of saddle

connections of a quadratic differential are dense in S1. Consequently, we can always

consider a sequence {γn}n∈N of saddle connections of q asymptotic in the horizontal

direction: this means that it results lim
n→∞

θ(γn) = 0, where θ(γn) is the difference

between the direction of γn and the horizontal direction.

Then it follows

KF (q,A · q) ≥ lim
n→∞

∣∣∣∣∣log

(
l̂A·q(γn)

l̂q(γn)

)∣∣∣∣∣ = log(σ) ≥ LF (q,A · q)

and from KF (q, A · q) ≤ LF (q, A · q) one gets KF (q, A · q) = LF (q, A · q) = log(σ).

If σ = σ2(A) or σ = σ2(A)−1, one can repeat the same reasoning for the vertical

direction.

Considering the general case, one could be tempted to adapt the ideas behind

Thurston’s proof in [Th] to the case of LF and KF . Specifically, one could try to

build a flat analogue to Thurston’s stretch maps.

We thought the more natural approach to try to do so was to triangulate Sg

by saddle connections: clearly this could work only locally on T Qg(k, ε), since for

quadratic differentials q1, q2 too far apart there will not be any triangulation Γ =

{γi}3(m+2g−2)
i=1 of Sg by arcs and a continuous path t 7→ qt which connects q1 and

q2 and is such that the geodesic representative of the homotopy class of each γi is a
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saddle connection for all qt.

Another possibility concerned the use of a flat counterpart to geodesic laminations,

called flat lamination (for definitions and properties we refer the reader to [Mo]) in

order to obtain a triangulation of Sg.

Unfortunately, both approaches suffered of the same problem: instead of hyperbolic

triangles, singular flat metrics require the use of Euclidean triangles. Indeed, one can

triangulate a semi-translation surface (X, q) with Euclidean triangles and stretch each

side of each Euclidean triangle by the same factor K > 1 as in proposition 2.2.2, but

then the resulting semi-translation surface will simply be K · q.
The point is that in this case the sides of the triangles of the triangulation should be

stretched by different factors. When trying to do so, one should notice that there are

plenty of couples of Euclidean triangles T1, T2 with each side stretched by a factor

lower or equal to c > 1, and such that there could be no homeomorphism f : T1 → T2

which sends sides to corresponding sides and with Lip(f) ≤ c.

Example 4.1. Consider the equilateral triangle T1 with sides of length 1 and the

isosceles triangle T2 with base side of length 1 and height
√

3. Then clearly the maxi-

mal stretching of the sides of T1 and T2 is
√

13
2 , while each homeomorphism f : T1 → T2

which sends sides to corresponding sides must also send the arc parametrizing the

height of T1 to an arc of length at least
√

3. This implies that the Lipschitz constant

of such f must be at least 2 >
√

13
2 .

The fundamental fact enlightened by the previous conter-example is that, if one

tries to obtain a diffeomorphism ϕ ∈ Diff+
0 (Sg,Σ) with Lq2q1(ϕ) = KF (q1, q2) by defin-

ing it first on the Euclidean triangles of a triangulation of Sg, then Lq2q1(ϕ) should be

attained along a curve of the triangulation. As a consequence, when searching for

flat analogues to Thurston’s stretch maps, one should impose strict conditions on the

triangles considered.

As we made clear before, for q1 and q2 sufficiently close in T Qg(k, ε), there is a trian-

gulation Γ = {γi}3(m+2g−2)
i=1 of Sg by arcs with endpoints in Σ such that the geodesic

representative of each γi for |q1| and |q2| is a saddle connection. This procedure

provides us of a collection Ξ1 = {T 1
j }

2(m+2g−2)
j=1 of Euclidean triangles in the natural

coordinates of q1 and a collection Ξ2 = {T 2
j }

2(m+2g−2)
j=1 of Euclidean triangles in the

natural coordinates of q2.

Our problem is now to establish if there is a triangulation Γ of Sg such that it is

possible to obtain a function ϕ ∈ Diff+
0 (Sg,Σ) with Lq2q1(ϕ) = KF (q1, q2) by defining

it first on each couple of corresponding triangles of Ξ1 and Ξ2.

To this end one should consider the following fact:
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Given two Euclidean triangles T1, T2 with sides labeled, consider the set L(T1, T2)

of Lipschitz constants of diffeomorphisms f : T1 → T2 which send sides to correspond-

ing sides in a linear way.

The minimum of L(T1, T2) is the Lipschitz constant of the affine map A which maps

T1 in T2.

Note that we considered functions which are linear on the sides of the triangles

since we want the Lipschitz constant to be equal to ratio of lengths of a side. This

suggests the fact that the function ϕ we are trying to obtain should be affine on each

triangle T 1
j and that its greater eigenvalue should be attained on the most stretched

side of Γ.

Finally, we see that this last condition imposes a very strong constrain on the

collections Ξ1 and Ξ2 and consequently on the triangulation Γ. Since this problem is

related to the nature of Euclidean triangles, it does not seem likely to be solved using

flat laminations.

For the reasons we just explained, we were not able to prove the local equality LF =

KF trying to adapt Thurston’s approach. In the succeeding chapter we will explain

another approach we used to prove that the equality of two asymmetric pseudo-

metrics LaF and Ka
F on T Q(1)

g (k, ε) depends on two statements about 1-Lipschitz

maps between polygons.

4.4 Geodesics of LF

In the previous discussion we explained why we are not able to produce a flat

counterpart to Thurston’s stretch lines, but it is interesting nonetheless to investigate

what do geodesics of LF look like.

We could only find geodesics of LF which are also geodesics of KF : this is because

the only feasible strategy to find geodesics t 7→ qt of LF we could think of was to find

functions ϕt ∈ Diff+
0 (Sg,Σ) such that Lqtq (ϕt) = t = KF (q, qt) and then conclude

from KF (q, qt) ≤ LF (q, qt).

As one can easily notice, these geodesics of LF are very particular: as soon as

some hypothesis are lighten, one can no longer be sure to find functions ϕt such that

Lqtq (ϕt) = t = KF (q, qt).

Let us explain first how to obtain geodesics of LF and KF entirely contained in
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one orbit of GL(2,R)+.

Proposition 4.4.1. Consider any q ∈ T Qg(k, ε), and any pair of continuous func-

tions

θ : [0, 1]→ [0, 2π), f : [0, 1]→ R+

such that for every t0, t1 ∈ [0, 1], t0 < t1 it results

et1/t0 ≥ max
{f(t1)

f(t0)
,
f(t0)

f(t1)

}
.

Using these data one can produce four geodesics for KF and LF starting at q of the

following form

Φj : [0, 1]→ T Qg(k, ε), t 7→ qjt := eiθ(t) · Σjt · q, j = 1, 2, 3, 4,

where Σjt is one of the following four diagonal matrices

Σ1
t :=

(
et 0

0 f(t)

)
Σ2
t :=

(
e−t 0

0 f(t)

)
Σ3
t :=

(
f(t) 0

0 et

)
Σ4
t :=

(
f(t) 0

0 e−t

)
.

Proof. The proof is identical for all four geodesics, so we will just prove it for Φ1.

For any t0, t1 ∈ [0, 1], t0 < t1 it results q1
t1 = A · q1

t0 , where A = eiθ(t1) ·Σ · e−iθ(t0) and

Σ is the following diagonal matrix

Σ :=

(
et1−t0 0

0 f(t1)
f(t0)

)
.

Since Φ1 is contained in a GL(2,R)+-orbit, one can apply previous proposition 4.3.2

and get KF (q1
t0 , q

1
t1) = LF (q1

t0 , q
1
t1) = t1 − t0.

Given any Teichmüller geodesic

Ψ : [0, 1]→ Tg, t 7→ [(Xt, ht)]

with initial differential q on X, we define its lifting on T Qg(k, ε) to be

Ψ̃ : [0, 1]→ T Qg(k, ε), t 7→ qt

where qt is the holomorphic quadratic differential on Xt such that ht : X → Xt is a

Teichmüller map with respect to q and qt and with dilatation e2t.

Proposition 4.4.2. Liftings to T Qg(k, ε) of Teichmüller geodesics are geodesics for

LF and KF .
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Proof. The claim follows immediately from the previous proposition: one just has to

notice that the Teichmüller map ht can be locally written in natural coordinates of q

and qt as

ht(x+ iy) = etx+ ie−ty.

At this point, one could be tempted to try to obtain other geodesics using the re-

sult of proposition 4.3.2. In particular, considering functions θ and f as in proposition

4.4.1, one may wonder if it could be possible to impose for example qt := Σ1
t · eiθ(t) · q.

The answer is no: since the direction where the stretching et is obtained varies, there

is no hope to get LF (qt0 , qt1) = t1 − t0 or KF (qt0 , qt1) = t1 − t0.

It is possible however to obtain other kinds of geodesics modifying only one part

of the semi-translation surface, as we will now explain.

Proposition 4.4.3. Let q ∈ T Qg(k, ε) be a semi-translation surface which contains

a flat cylinder C of height h > 0 such that there is at least one saddle connection

entirely contained in C which realizes the height of the cylinder.

The arc Φ : [0, 1] → T Qg(k, ε), t 7→ qt, where qt is the semi-translation surface

obtained from q changing the height of the flat cylinder to eth, is a geodesic for LF

and KF .

Proof. Denote by γ1, . . . , γ2 the saddle connections entirely contained in C which

realize the height of the cylinder. Clearly, if h is stretched by et then the length of

γ1, . . . , γk is stretched by the same factor.

For any t0, t1 ∈ [0, 1], t0 < t1, the semi-translation surface qt1 is obtained from qt0

stretching the height of the cylinder by the factor et1−t0 . All saddle connections of qt0

different from γ1, . . . , γk are stretched by a factor which is smaller than et1−t0 , and

consequently one can conclude

KF (qt1 , qt0) = log

(
l̂qt1 (γi)

l̂qt0 (γi)

)
= t1 − t0.

Without loss of generality, we can suppose the direction of the saddle connection

γ1, . . . , γk is the vertical one. Consequently there is a function ϕ ∈ Diff+
0 (Sg,Σ)

which, in natural coordinates of qt0 and qt1 , can be written as the affine function(
1 0

0 et1−t0

)
on the cylinder and as the identity on the complement of the cylinder.

From LF (qt0 , qt1) ≤ Lqt1qt0 (ϕ) = t1 − t0 = KF (qt0 , qt1) and LF (qt0 , qt1) ≥ KF (qt0 , qt1)

one gets the last desired equality LF (qt1 , qt0) = t1 − t0.
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4.4 Geodesics of LF 4. Thurston’s metric on T Qg(k,ε)

The idea behind the previous proposition can be applied also to the case of a semi-

translation surface q obtained gluing two semi-translation surfaces q1, q2 along a slit

in the horizontal direction. This means that one cuts two slits of the same length, one

in q1 and one in q2, both in the horizontal direction. Each qi will then have boundary

consisting of two segments: each segment of the boundary of q1 will be glued with a

segment of the boundary of q2 and the resulting surface q will have two singularities

of total angle 4π at the extremities of the slit.

Proposition 4.4.4. Let q ∈ T Qg(k, ε) be a semi-translation surface obtained gluing

two semi-translation surfaces q1, q2 along a slit in the horizontal direction. Further-

more, suppose that q1 is such that it contains a sequence of saddle connections {γn}n∈N
asymptotic in the vertical direction (i.e. the limit of the differences of their directions

with the vertical direction is zero) such that no γn intersects the slit.

Then one obtains the geodesic Φ : [0, 1] → T Qg(k, ε), t 7→ qt, where qt is the semi-

translation surface obtained gluing

(
1 0

0 et

)
· q1 and q2 along the same slit.

Proof. The idea of the proof is very similar to the one of the previous proposition.

First of all notice that qt is a well-defined semi-translation surface since the slit is

horizontal and q1 is stretched only in the vertical direction.

Then, for every t0, t1 ∈ [0, 1], t0 < t1, from the fact that no γn intersects the slit it

follows

KF (qt0 , qt1) = lim
n→∞

log

(
l̂qt1 (γn)

l̂qt0 (γn)

)
= t1 − t0.

One can then conclude noting LF (qt0 , qt1) ≤ Lqt1qt0 (Id) = t1 − t0.
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Chapter 5

Equality of Thurston’s

metrics

In this chapter we investigate the equality of two asymmetric pseudo-metrics LaF

and Ka
F on each Teichmüller space T Q(1)

g (k, ε) of holomorphic quadratic differentials

of unitary area without simple poles.

In particular, using the method we develop in this chapter, the equality of LaF and

Ka
F on whole T Q(1)

g (k, ε) can be proved if two statements about 1-Lipschitz maps

between planar polygons are true. We are able to prove the first statement, but the

second one remains a conjecture: nonetheless, we explain why we believe it is true.

5.1 Definitions of the metrics

For any g ≥ 2 and any Teichmüller space T Q(1)
g (k, ε) of holomorphic quadratic

differentials of unitary area without simple poles, we define the function

LaF : T Q(1)
g (k, ε)× T Q(1)

g (k, ε)→ R

associating to any pair q1, q2 ∈ T Q(1)
g (k, ε) of semi-translation surfaces of unitary area

the quantity

LaF (q1, q2) := inf
ϕ∈D

log(Lip(ϕ)q2q1),

Lip(ϕ)q2q1 = sup
p∈Sg\Σ

(
sup

v∈TpSg,||v||q1=1

||dϕpv||q2

)
,

where D is the set of functions ϕ : Sg → Sg which are homotopic to the identity,

differentiable almost everywhere and which fix the points of Σ.
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5.1 Definitions of the metrics 5. Equality of Thurston’s metrics

Proposition 5.1.1. The function LaF is an asymmetric pseudo-metric on T Q(1)
g (k, ε).

Proof. It is clear that LaF (q, q) = 0 for every q ∈ T Qg(k, ε) and that LaF is not sym-

metric.

Note that every function ϕ ∈ D must be surjective, since it has degree 1: from this

fact it follows Lip(ϕ)q2q1 ≥ 1 and Lip(ϕ)q2q1 = 1 if and only if q2 = eiθq1.

Finally, LaF satisfies the triangular inequality since for every couple of functions

ϕ, φ ∈ D it follows

Lip(ϕ ◦ φ)q3q1 ≤ Lip(ϕ)q3q2Lip(φ)q2q1 .

The other pseudo-metric we consider in the present chapter is Ka
F : for every

q1, q2 ∈ T Q(1)
g (k, ε), Ka

F (q1, q2) is defined as

Ka
F (q1, q2) := sup

γ∈SC(q1)

log

(
l̂q2(γ)

l̂q1(γ)

)
.

For every q1, q2 ∈ T Q(1)
g (k, ε) it clearly results

LaF (q1, q2) ≥ Ka
F (q1, q2).

With the techniques exposed in the present chapter we are able to reduce the proof

of the equality of LaF and Ka
F on the whole T Q(1)

g (k, ε) to the proof of two statements

about 1-Lischitz maps between planar polygons. Given their importance, we feel it is

necessary to briefly anticipate them now in a slightly simplified version.

Consider two planar polygons ∆ and ∆′ such that there is an injective function

ι : V ertices(∆)→ V ertices(∆′)

which to every vertex v associates a unique vertex ι(v) = v′. Suppose both ∆ and

∆′ have exactly three vertices with strictly convex internal angle, which we denote xi

and x′i, i = 1, 2, 3 respectively.

Suppose furthermore that for every x, y ∈ V ertices(∆) it results

d∆(x, y) ≥ d∆′(x
′, y′),

where d∆ (resp. d∆′) is the intrinsic Euclidean metric inside ∆ (resp. ∆′): d∆(x, y)

(resp. d∆′(x
′, y′)) is defined as the infimum of the lengths, computed with respect to

the Euclidean metric, of all paths from x to y (resp. from x′ to y′) entirely contained

in ∆ (resp. in ∆′).

We say that vertices of ∆ and of ι(V ertices(∆)) are disposed in the same order if it
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5. Equality of Thurston’s metrics

is possible to choose two parametrizations γ : [0, 1] → ∂∆ and γ1 : [0, 1] → ∂∆′ such

that γ(0) = x1, γ1(0) = x′1 and γ, γ1 meet respectively vertices of ∆ and of ∆′ in the

same order.

Statement 5.1. If V ertices(∆) and ι(V ertices(∆)) are disposed in the same order,

then there is a 1-Lipschitz map f : ∆ → ∆′ (with respect to the intrinsic Euclidean

metrics of the polygons) which sends vertices to corresponding vertices.

Statement 5.2. If V ertices(∆) and ι(V ertices(∆)) are not disposed in the same

order, then for every point p ∈ ∆ there is a point p′ ∈ ∆′ such that

d∆(p, xi) ≥ d∆′(p
′, x′i), i = 1, 2, 3.

We were able to prove the first statement, which corresponds to following theorem

5.3.3, but not the second one, which from now on will be referred to as conjecture

5.1: we will still explain why we believe it must be true.

We state the following theorem, which is the main result of this thesis.

Theorem 5.1.2. If conjecture 5.1 is true, then for every q1, q2 ∈ T Q(1)
g (k, ε), it

results

LaF (q1, q2) = Ka
F (q1, q2).

We proved theorem 5.1.2 using an approach similar to a proof by F.A. Valentine

(which can be found in [V a]) of Kirszbraun’s theorem for R2 (firstly proved by M.D.

Kirszbraun in [Ki]).

Theorem 5.1.3. (Kirszbraun)

Let S ⊂ R2 be any subset and f : S → R2 a 1-Lipschitz map.

Given any set T which contains S, it is possible to extend f to a 1-Lipschitz map

f̂ : T → R2 such that f̂(T ) is contained in the convex hull of f(S).

The key ingredients of Valentine’s proof of Kirszbraun theorem are the following

two lemmas.

Lemma 5.1.4. Fix two Euclidean triangles ∆(x1, x2, x3) and ∆(x′1, x
′
2, x
′
3) in R2

such that

|x′i − x′j | ≤ |xi − xj | for every i, j = 1, 2, 3.

Then for any x4 ∈ R4 there is a point x′4 contained in ∆(x′1, x
′
2, x
′
3) such that

|x′4 − x′i| ≤ |x4 − xi| for every i = 1, 2, 3.

The second lemma is often referred to as Helly’s theorem (firstly proved by E.Helly

in [He]).
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5.1 Definitions of the metrics 5. Equality of Thurston’s metrics

Lemma 5.1.5. (Helly)

Let F be any family of compact and convex subsets of Rn. Suppose that for every

C1, . . . , Cn+1 ∈ F it results
n+1⋂
i=1

Ci 6= ∅

then it also results ⋂
C∈F

C 6= ∅.

Together, these two lemmas imply the ensuing proposition, from which one easily

deduces theorem 5.1.3.

Proposition 5.1.6. Given any two collections {Brj (xj)}j∈J and {Brj (x′j)}j∈J of

closed disks in R2 with the same radii and with centers such that

|x′i − x′j | ≤ |xi − xj |.

Then, if ⋂
j∈J

Brj (xj) 6= ∅

it follows ⋂
j∈J

Brj (x
′
j) 6= ∅.

We performed a similar reasoning in order to find a function φ ∈ D such that

Lip(φ)σ2
q1 = 1,

where σ2 is the rescaled differential

σ2 :=
q2

eK
a
F (q1,q2)

.

The existence of such function φ proves the equality

eL
a
F (q1,σ2) = eK

a
F (q1,σ2) = 1 (5.1)

and consequently, since for every c > 0 it follows

ceL
a
F (q1,q2) = eL

a
F (q1,cq2), ceK

a
F (q1,q2) = eK

a
F (q1,cq2)

multiplying both termes of equation (5.1) by eK
a
F (q1,q2) and then composing with the

logarithm, one gets the desired result

LaF (q1, q2) = Ka
F (q1, q2).

It is important to specify that in our proof we used the following version of Helly’s

lemma, which can be found in [Iv].
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5. Equality of Thurston’s metrics

Lemma 5.1.7. Let X be a uniquely geodesic space of compact topological dimension

n < ∞. If {Aj}j∈J is any finite collection of convex sets in X such that every

subcollection of cardinality at most n+ 1 has a nonempty intersection, then⋂
j∈J

Aj 6= ∅.

If q is a holomorphic quadratic differential on a closed Riemann surface of genus

g ≥ 2 one can consider a universal cover π : S̃g → Sg and the pullback q̃ of q on

S̃g. Then |q̃| induces a metric which is Cat(0) and consequently uniquely geodesic.

But if q has poles then |q̃| does not induce an uniquely geodesic metric space: this is

the reason why our proof could not be adapted to the Teichmüller space of quadratic

differentials with poles.

One should notice that the equality LaF = Ka
F could be implied by a version of

Kirszbraun theorem which suits semi-translation surfaces (without simple poles). The

generalization of theorem 5.1.3 which could be considered closer to semi-translation

surfaces was proved by S.Alexander, V.Kapovitch and A.Petrunin in [AKP ] and ap-

plies to the case of functions from complete CBB(k) spaces (spaces with curvature

bounded below by k) to complete Cat(k) spaces (spaces with curvature bounded above

by k). Since semi-translation surfaces are only locally Cat(0) spaces, unfortunately

the theorem of [AKP ] does not apply to our case.

At this point it should be more clear why we decided to prove the equality of the

two pseudo-metrics LaF ,K
a
F instead of the equality of the two pseudo-metrics LF ,KF

studied in the preceding chapter.

Indeed, one reason is that it is more convenient to study asymmetric pseudo-metrics,

since it is more complicated to control both Lipschitz constants (the lower and the

upper one) at once: for an attempt in this direction in the simple case of the unit

square see [DP ].

The other reason is that using this kind of Kirszbraun approach there is no hope to

obtain an injective 1-Lipschitz function. This is the reason why we defined LaF as the

infimum of Lipschitz constants of functions in D.

Finally one should notice that the condition of unitary area of the two semi-translation

surfaces q1 and q2 will never be used in the proof. We could actually prove the equal-

ity of LaF and Ka
F on the whole T Qg(k, ε), where the two pseudo-metrics are much

more degenerate.

The next section is devoted to the explanation of our proof of the construction of

the function φ ∈ D such that Lip(φ)σ2
q1 = 1.
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5.2 Proof of the equality 5. Equality of Thurston’s metrics

5.2 Proof of the equality

Let π : S̃g → Sg be a universal cover. Lifting through π the complex structure

of X1 and the differential q1 one obtains the metric universal cover π : (X̃1, |q̃1|) →
(X1, |q1|) and doing the same thing to X2 and q2 one obtains the metric universal

cover π : (X̃2, |σ̃2|)→ (X2, |σ2|).
Denote by dq̃1 the Cat(0) metric induced by |q̃1| and by dσ̃2

the Cat(0) metric induced

by |σ̃2|. In order to avoid confusion, when we will want to underline that a point of

S̃g is regarded as a point of X̃2, we will denote it with an additional prime symbol:

for example a point x̃ ∈ π−1(Σ) will be denoted as x̃ if regarded as a point of X̃1 and

x̃′ if regarded as a point of X̃2.

For every couple of points x̃, ỹ ∈ X̃1, x̃ỹ is the dq̃1-geodesic from x̃ to ỹ. Since there

will be no ambiguity, we will denote geodesics of dσ̃2
in the same way: for every couple

of points x̃′, ỹ′ ∈ X̃2, x̃′ỹ′ is the dσ̃2
-geodesic from x̃′ to ỹ′.

Fix a point x0 ∈ Σ ⊂ Sg and x̃0 ∈ π−1(x0): as it is well known, the group

π1(Sg, x0) acts on S̃g and for every γ ∈ π1(Sg, x0), x̃ ∈ S̃g it results

γ · x̃ = τ̃(1),

where τ̃ is the lifting of γ∗π(σ̃) (σ̃ is any path in S̃g from x̃0 to x̃) such that τ̃(0) = x̃0.

Fix a fundamental domain P ⊂ (X̃1, dq̃1) for the action of π1(Sg, x0), suppose

x̃0 ∈ P .

We want to build a map φ̂ : Û → (X̃2, dσ̃2
) (where Û is a dense countable subset of P

which includes the zeroes of q̃1 contained in P ), such that for every couple of points

x̃, ỹ ∈ Û (eventually equal) and every γ ∈ π1(Sg, x0), it results

dσ̃2
(φ̂(x̃), γ · φ̂(ỹ)) ≤ dq̃1(x̃, γ · ỹ) (5.2)

and for every zero z̃ of q̃1 contained in P it results φ̂(z̃) = z̃′ (notice that q̃1 and q̃2

have zeroes in the same points, which are the points of π−1(Σ)).

Having done so, we define the dense subset Ũ := π1(Sg, x0) · Û of X̃1 and extend

the function φ̂ by equivariance to a function φ̃U : Ũ → X̃2, imposing

φ̃U (γ · x̃) := γ · φ̂(x̃)

for every γ ∈ π1(X1, x0), x̃ ∈ Û .

Notice that for every γ1 · x̃1, γ2 · x̃2 ∈ Ũ it results:

dσ̃2
(φ̃U (γ1 ·x̃1), φ̃U (γ2 ·x̃2)) = dσ̃2

(γ1 ·φ̂(x̃1), γ2 ·φ̂(x̃2)) = dσ̃2
(φ̂(x̃1), (γ−1

1 ∗γ2)·φ̂(x̃2)) ≤
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5. Equality of Thurston’s metrics

≤ dq̃1(x̃1, (γ
−1
1 ∗ γ2) · x̃2)) = dq̃1(γ1 · x̃1, γ2 · x̃2)

and consequently φ̃U can be extended to a function φ̃ : (X̃1, |q̃1|) → (X̃2, |σ̃2|) which

has Lipschitz constant 1.

In particular, for every point x̃ ∈ X̃ \ Ũ we define φ̃(x̃) as

φ̃(x̃) := lim
n→∞

φ̃U (x̃n),

where {x̃n}n∈N ⊂ Ũ is a sequence such that lim
n→∞

x̃n = x: since φ̃U is 1-Lipschitz

on Ũ , the limit in the definition of φ̃(x̃) exists and does not depend from the chosen

sequence {x̃n}n∈N.

Notice furthermore that φ̃ is equivariant for the action of π1(Sg, x0): for every x̃ ∈
X̃ \ Ũ and γ ∈ π1(Sg, x0) consider a sequence {x̃n}n∈N ⊂ Ũ such that lim

n→∞
x̃n = x̃,

then it results lim
n→∞

γ · x̃n = γ · x̃ and consequently

φ̃(γ · x̃) = lim
n→∞

φ̃U (γ · x̃n) = lim
n→∞

γ · φ̃U (x̃n) = γ · lim
n→∞

φ̃U (x̃n) = γ · φ̃(x̃).

We have proved that φ̃ descends to a function φ : (X1, q1) → (X2, σ2) which is

1−Lipschitz and such that

(φ)∗ = Id : π1(Sg, x0)→ π1(Sg, x0)

which implies that φ is homotopic to the identity.

In the rest of the chapter we will explain how to obtain a function φ̂ which satisfies

previous inequality (5.2).

We have imposed φ̂(z̃) = z̃′ for every zero z̃ of q̃1 which is contained in P , so we

have to verify

dσ̃2
(z̃′1, γ · z̃′2) ≤ dq̃1(z̃1, γ · z̃2)

for every pair of zeroes z̃1, z̃2 of q̃1 contained in P and every γ ∈ π1(Sg, x0).

Notice that it results dσ̃2
(z̃′1, γ · z̃′2) = l̂σ2(τ), where l̂σ2(τ) is the length of the geodesic

representative for |σ2| of the homotopy class (with fixed endpoints) of π(τ̃) and τ̃ is

any arc in X̃2 from z̃′1 to γ · z̃′2. In the same way it results dq1(z̃1, γ · z̃2) = l̂q1(τ).

Let τ q1 be the geodesic representative for |q1| of the homotopy class (with fixed

endpoints) of τ and suppose τ q1 is a concatenation of k ≥ 1 saddle connections

τ q11 , . . . , τ q1k .

From the definition of σ2 it follows

lq1(τ q1i ) ≥ l̂σ2
(τ q1i )

for every i = 1, . . . , k. We thus obtain the following inequalities:

dq1(z̃1, γ · z̃2) = lq1(τ q1) =
∑

i=1,...,k

lq1(τ q1i ) ≥
∑

i=1,...,k

l̂σ2
(τ q1i ) ≥ l̂σ2

(τ) = dσ2
(z̃′1, γ · z̃′2).
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5.2 Proof of the equality 5. Equality of Thurston’s metrics

Now we are going to define the function φ̂ on Û one point at a time.

Let p̃1 ∈ P \ π−1(Σ) be the first point (besides the zeroes of q̃1) on which we want to

define φ̂: we have to find φ̂(p̃1) ∈ X̃2 such that

dσ̃2
(φ̂(p̃1), γ · x̃′) ≤ dq̃1(p̃1, γ · x̃) (5.3)

for every zero x̃ of q̃1 contained in P and for every γ ∈ π1(Sg, x0). The point φ̂(p̃1)

should also satisfy the condition

dσ̃2
(φ̂(p̃1), θ · φ̂(p̃1)) ≤ dq̃1(p̃1, θ · p̃1) (5.4)

for every θ ∈ π1(Sg, x0).

Notice that, in order for equation (5.3) to be always satisfied, it is sufficient to check

only the distances of p̃1 from the zeroes γ ·x̃ such that p̃1(γ · x̃) is smooth and does not

contain other zeroes. Indeed, suppose p̃1(γ · x̃) is the concatenation of the following

segments

p̃1(γ · x̃) = p̃1(γ1 · x̃1) ∗ τ̃ q11 ∗ · · · ∗ τ̃
q1
l ,

where:

• γ1 ∈ π1(Sg, x0),

• x̃1 is a zero of q̃1 contained in P ,

• τ̃ q1i are saddle connections for q̃1,

then from the inequality

dσ̃2
(φ̂(p̃1), γ1 · x̃′1) ≤ dq̃1(p̃1, γ1 · x̃1)

and the definition of σ2 it will follow

dq̃1(p̃1, γ · x̃) = dq̃1(p̃1, γ1 · x̃1) +
∑

i=1,...,l

lq̃1(τ̃ q1i ) ≥

≥ dσ̃2
(φ̂(p̃1), γ1 · x̃′1) +

∑
i=1,...,l

l̂σ̃2
(τ̃ q1i ) ≥ dσ̃2

(φ̂(p̃1), γ · x̃′).

For the same reason it suffices to verify equation (5.4) only for θ ∈ π1(Sg, x0) such

that p̃1(θ · p̃1) is smooth and does not contain zeroes of q̃1.

We define the following two sets:

X (p̃1) := {z̃ ∈ π−1(Σ) such that z̃p̃1 is smooth and does not contain other zeroes of q̃1},

Θ(p̃1) := {γ ∈ π1(Sg, x0) such that p̃1(θ · p̃1) is smooth and does not contain zeroes of q̃1}.

For every θ ∈ Θ(p̃1) we define the set

Vθ := {p̃′ ∈ X̃2 | dσ̃2
(p̃′, θ · p̃′) ≤ dq̃1(p̃1, θ · p̃1)}.
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Lemma 5.2.1. For every θ ∈ Θ(p̃1), the set Vθ is convex in (X̃2, dσ̃2
).

Proof. Consider any two points x̃′, ỹ′ ∈ Vθ. Since σ̃2 is invariant by covering transfor-

mations, it is possible to obtain two parametrizations τ̃ , τ̃θ : [0, 1] → X̃2 respectively

of x̃′ỹ′ and of (θ · x̃′)(θ · ỹ′) such that τ̃θ(s) = θ · τ̃(s).

The space (X̃2, dσ̃2
) is Cat(0) and consequently Busemann-convex: this means that

the function

s 7→ dσ̃2
(τ(s), τθ(s)) = dσ̃2

(τ(s), θ · τ(s))

is convex. From this fact we get τ(s) ∈ Vθ for every s ∈ [0, 1].

For every x̃ ∈ X (p̃1) we define the following closed ball

B2
dq̃1 (x̃,p̃1)(x̃

′) := {p̃′ ∈ X̃2|dσ̃2
(p̃′, x̃′) ≤ dq̃1(x̃, p̃1)}.

Clearly, our goal is to prove that the set Π(p̃1),

Π(p̃1) :=

 ⋂
x̃∈X (p̃1)

B2
dq̃1 (x̃,p̃1)(x̃

′)

⋂ ⋂
θ∈Θ(p̃1)

Vθ


is not empty, in order to being able to choose φ̂(p̃1) ∈ Π(p̃1).

Since the sets B2
dq̃1 (x̃,p̃1)(x̃

′) and Vθ are convex, we can use Helly’s lemma 5.1.7 for

uniquely geodesic spaces to prove Π(p̃1) 6= ∅. There are four cases:

1. B2
dq̃1 (x̃1,p̃1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃1)(x̃
′
2) ∩B2

dq̃1 (x̃3,p̃1)(x̃
′
3) 6= ∅,

2. Vθ1 ∩B2
dq̃1 (x̃1,p̃1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃1)(x̃
′
2) 6= ∅,

3. Vθ1 ∩ Vθ2 ∩B2
dq̃1 (x̃,p̃1)(x̃

′) 6= ∅,

4. Vθ1 ∩ Vθ2 ∩ Vθ3 6= ∅.

The proofs of the four cases will be presented later, since we feel it is now best to

conclude the procedure of the definition of φ̂.

So suppose we have proved each of the four preceding cases and we have chosen

φ̂(p̃1) ∈ Π(p̃1), we now have to find the image of a second point p̃2 ∈ P \ π−1(Σ) in

such a way that it results:

(i)

dσ̃2
(φ̂(p̃2), γ · x̃′) ≤ dq̃1(p̃2, γ · x̃)

for every zero x̃ of q̃1 contained in P and γ ∈ π1(Sg, x0) such that p̃2(γ · x̃) is

smooth and does not contain other zeroes of q̃1,
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(ii)

dσ̃2
(φ̂(p̃2), γ · φ̂(p̃1)) ≤ dq̃1(p̃2, γ · p̃1)

for every γ ∈ π1(Sg, x0) such that p̃2(γ · p̃1) is smooth and does not contain

zeroes of q̃1,

(iii)

dσ̃2
(φ̂(p̃2), θ · φ̂(p̃2)) ≤ dq̃1(p̃2, θ · p̃2)

for every θ ∈ π1(Sg, x0) such that p̃2(θ · p̃2) is smooth and does not contain

zeroes of q̃1.

As we did for p̃1, we now define the sets X (p̃2)Σ,X (p̃2)p̃1
and Θ(p̃2):

X (p̃2)Σ := {x̃ ∈ π−1(Σ) | p̃2x̃ is smooth and does not contain other zeroes of q̃1},

X (p̃2)p̃1
:= {γ·p̃1 | γ ∈ π1(Sg, x0) and p̃2(γ · p̃1) is smooth and does not contain zeroes of q̃1},

Θ(p̃2) := {θ ∈ π1(Sg, x0) | p̃2(θ · p̃2) is smooth and does not contain zeroes of q̃1}.

We define the following intersections:

BΣ :=
⋂

x̃∈X (p̃2)Σ

B2
dq̃1 (x̃,p̃2)(x̃

′),

Bp̃1
:=

⋂
γ·p̃1∈X (p̃2)p̃1

B2
dq̃1 (γ·p̃1,p̃2)(γ · φ̂(p̃1)),

Vp̃2
:=

⋂
θ∈Θ(p̃2)

Vθ.

Again, we want to prove

Π(p̃2) := BΣ ∩Bp̃1
∩ Vp̃2

6= ∅

in order to pick φ̂(p̃2) ∈ Π(p̃2). One can consider the four cases we previously deduced

for Π(p̃1), noting that this time the closed balls can also be centered in points γ ·φ̂(p̃1).

We now proceed in the same way, defining φ̂ on P one point at a time.

Suppose φ̂ is already defined on the points p̃1, . . . , p̃n ∈ P \ π−1(Σ) and that we wish

to determine its value at p̃n+1. In order to do so we define the following sets:

X (p̃n+1)Σ := {x̃ ∈ π−1(Σ) | p̃n+1x̃ is smooth and does not contain any other zero of q̃1},

Θ(p̃n+1) := {θ ∈ π1(Sg, x0) | p̃n+1(θ · p̃n+1) is smooth and does not contain zeroes of q̃1},

X (p̃n+1)p̃i := {γ·p̃i | γ ∈ π1(Sg, x0) and p̃n+1(γ · p̃i) is smooth and does not contain zeroes of q̃1},
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for every i = 1, . . . , n.

Again, we want to prove

Π(p̃n+1) := BΣ ∩

 ⋂
i=1,...,n

Bp̃i

 ∩ Vp̃n+1
6= ∅,

where the sets BΣ, Bp̃i , Vp̃n+1
are defined as follows:

BΣ :=
⋂

x̃∈X (p̃n+1)Σ

B2
dq̃1 (x̃,p̃n+1)(x̃

′),

Bp̃i :=
⋂

γ·p̃i∈X (p̃n+1)p̃i

B2
dq̃1 (γ·p̃i,p̃n+1)(γ · φ̂(p̃i)),

Vp̃n+1
:=

⋂
θ∈Θ(p̃n+1)

Vθ.

Then we will pick φ̂(p̃n+1) ∈ Π(p̃n+1): notice that even in this case there are only

the same four types of intersections we pointed out for p̃1.

Since we have now fully explained our method to define φ̂ on a dense countable

subset of P , we can now concentrate on the four types of intersections which appear

in the sets Π(p̃i) (we will prove it for Π(p̃n+1), the reasoning will be the same for the

other sets Π(p̃i)).

The following procedure will not vary in case closed balls are centered in zeroes of

q̃1 or in points outside π−1(Σ): in order to lighten the notation, given any point

x̃ = γ · p̃i ∈ X (p̃n+1)p̃i , we will denote the corresponding point γ · φ̂(p̃i) simply as x̃′.

From now on we will also denote the set X (p̃n+1)Σ ∪ (∪ni=1X (p̃n+1)p̃i) simply as

X (p̃n+1).

The first case concerns the intersection of three closed balls and is the most im-

portant, since it will imply all other three cases. Its proof is quite long and involves

the two statements about 1-Lipschitz maps between polygons we introduced at the

beginning of this chapter: for these reasons we feel it is best to postpone it and ded-

icate to it the whole next section.

We will thus state the following theorem and take it for granted.

Theorem 5.2.2. If following conjecture 5.1 is true, for every x̃1, x̃2, x̃3 ∈ X (p̃n+1) it

results

B2
dq̃1 (x̃1,p̃n+1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃n+1)(x̃
′
2) ∩B2

dq̃1 (x̃3,p̃n+1)(x̃
′
3) 6= ∅.

It is important to notice that all next results will be implied by theorem 5.2.2:

the reader is advised to keep in mind that they consequently depend on conjecture 5.1.
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We state the following corollary, which is a consequence of theorem 5.2.2, Helly’s

lemma and some observations we already made.

Corollary 5.2.3. Consider any finite number of points ỹ1, . . . , ỹn ∈ X̃1 \π−1(Σ) and

ỹ′1, . . . , ỹ
′
n ∈ X̃2 \ π−1(Σ) such that

dσ̃2
(ỹ′i, ỹ

′
j) ≤ dq̃1(ỹi, ỹj) ∀i, j = 1, . . . , n

and

dσ̃2
(ỹ′i, z̃

′) ≤ dq̃1(ỹi, z̃)

for every z̃ ∈ π−1(Σ) and i = 1, . . . , n.

Then for every finite set of zeroes x̃1, . . . , x̃m ∈ π−1(Σ) and for every p̃ ∈ X̃1 it results ⋂
i=1,...,n

B2
dq̃1 (ỹi,p̃)

(ỹ′i)

⋂ ⋂
i=1,...,m

B2
dq̃1 (x̃i,p̃)

(x̃′i)

 6= ∅.
Proof. Closed balls of dσ̃2

are convex, so one can use Helly’s lemma 5.1.7 and prove

that the intersection of every triple of closed balls is not empty.

As we have already seen, given a point ỹi, if it results

ỹip̃ = p̃z̃ ∗ τ̃ q11 ∗ · · · ∗ τ̃ q1r ∗ w̃ỹi

with w̃, z̃ ∈ π−1(Σ), τ̃ q1i saddle connections and p̃z̃, w̃ỹi smooth, one can replace the

ball B2
dq̃1 (ỹi,p̃)

(ỹ′i) in the intersection with the ball B2
dq̃1 (z̃,p̃)(z̃

′). The same is true for

all points x̃i.

The result then follows directly from theorem 5.2.2.

We now want to focus ourselves on the remaining three cases. In order to do so

we first need to characterize closed geodesics and flat cylinders of a semi-translation

surface (X, q). A proof of the following lemma can be found in [St].

Lemma 5.2.4. Let θ be a simple closed geodesic for |q| on X. Then θ is a cylinder

curve of a flat cylinder C of (X, q). This means that C is foliated by simple closed

geodesics all parallel to θ and of the same length. The border of C is composed by

two components, both consisting of saddle connections of q parallel to θ. The length

of both components equals the length of θ.

Lemma 5.2.5. Consider any θ ∈ Θ(p̃n+1) and let C̃ be the lifting to X̃1 of the flat

cylinder of (X1, q1) corresponding to θ.

Let ỹ be any point of ∂C̃ and z̃1, z̃2 the two zeroes on ∂C̃ such that z̃1z̃2 is a saddle

connection containing ỹ. Then it results

B2
dq̃1 (ỹ,z̃1)(z̃

′
1) ∩B2

dq̃1 (ỹ,z̃2)(z̃
′
2) ⊂ Vθ.
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Proof. Let τ̃ q11 , . . . , τ̃ q1k be the saddle connections such that

ỹ(θ · ỹ) = ỹz̃1 ∗ τ̃ q11 ∗ · · · ∗ τ̃
q1
k ∗ (θ · z̃2)(θ · ỹ).

Then for every point ỹ′ ∈ B2
dq̃1 (ỹ,z̃1)(z̃

′
1) ∩B2

dq̃1 (ỹ,z̃2)(z̃
′
2) it results

dσ̃2
(ỹ′, θ · ỹ′) ≤ dσ̃2

(ỹ′, z̃′1) +
∑

i=1,...,k

l̂σ̃2
(τ qi ) + dσ̃2

(θ · ỹ′, θ · z̃′2) =

= dσ̃2
(ỹ′, z̃′1)+

∑
i=1,...,k

l̂σ̃2
(τ q1i )+dσ̃2

(ỹ′, z̃′2) ≤ dq̃1(ỹ, z̃1)+
∑

i=1,...,k

lq̃1(τ q1i )+dq̃1(ỹ, z̃2) =

= dq̃1(ỹ, z̃1) +
∑

i=1,...,k

lq̃1(τ q1i ) + dq̃1(θ · ỹ, θ · z̃2) = dq̃1(ỹ, θ · ỹ)

and consequently B2
dq̃1 (ỹ,z̃1)(z̃

′
1) ∩B2

dq̃1 (ỹ,z̃2)(z̃
′
2) ⊂ Vθ.

We are now ready to prove the case of the second type of intersections.

Proposition 5.2.6. For every θ ∈ Θ(p̃n+1) and x̃1, x̃2 ∈ X (p̃n+1) it results

Vθ ∩B2
dq̃1 (x̃1,p̃n+1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃n+1)(x̃
′
2) 6= ∅.

Proof. Let C̃ be the lifting to X̃1 of the flat cylinder corresponding to θ.

We will first consider the case x̃1 6∈ C̃ and x̃2 6∈ C̃, since it is the more complicated

one.

We define the following points z̃1, z̃2 ∈ X̃1:

z̃1 := p̃n+1x̃1 ∩ ∂C̃, z̃2 := p̃n+1x̃2 ∩ ∂C̃.

Consider the following two cases:

• x̃1x̃2 does not traverse C̃.

Figure 5.1: The case x̃1x̃2 does not traverse C̃

There is a point z̃ ∈ z̃1z̃2 (eventually equal to z̃1 or z̃2) such that z̃ ∈ ∂C̃ and

dq̃1(z̃, z̃i) ≤ dq̃1(z̃i, p̃n+1), i = 1, 2
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and consequently

dq̃1(z̃, x̃i) ≤ dq̃1(x̃i, p̃n+1).

Let ṽ1 and w̃1 be the two zeroes on ∂C̃ such that ṽ1w̃1 is a saddle connection

containing z̃.

From corollary 5.2.3 it follows

Λ := B2
dq̃1 (ṽ1,z̃)

(ṽ′1) ∩B2
dq̃1 (w̃1,z̃)

(w̃′1) ∩B2
dq̃1 (x̃1,z̃)

(x̃′1) ∩B2
dq̃1 (x̃2,z̃)

(x̃′2) 6= ∅.

The inequality dq̃1(z̃, x̃i) ≤ dq̃1(x̃i, p̃n+1) grants

Λ ⊂ B2
dq̃1 (ṽ1,z̃)

(ṽ′1) ∩B2
dq̃1 (w̃1,z̃)

(w̃′1) ∩B2
dq̃1 (x̃1,p̃n+1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃n+1)(x̃
′
2)

and applying the preceding lemma we can finally get

Λ ⊂ Vθ ∩B2
dq̃1 (x̃1,p̃n+1)(x̃

′
1) ∩B2

dq̃1 (x̃2,p̃n+1)(x̃
′
2).

• x̃1x̃2 traverses C̃.

Figure 5.2: The case x̃1x̃2 traverses C̃.

There is a point z̃ ∈ z̃1z̃2 such that dq̃1(z̃, z̃i) ≤ dq̃1(p̃n+1, z̃i), i = 1, 2.

For i = 1, 2, let ṽi and w̃i the two zeroes on ∂C̃ such that ṽiw̃i is a saddle

connection and z̃i ∈ ṽiw̃i.
Denote by X (z̃1) the set of the zeroes of q̃1 joined to z̃1 by a smooth geodesic

of |q̃1|: clearly ṽ1, w̃1 ∈ X (z̃1).

Corollary 5.2.3 and the previous lemma grant the existence of the following

points z̃′i ∈ X̃2:

z̃′1 ∈

 ⋂
x̃∈X (z̃1)

B2
dq̃1 (z̃1,x̃)(x̃

′)

 ∩B2
dq̃1 (z̃1,x̃1)(x̃

′
1) ∩B2

dq̃1 (z̃1,x̃2)(x̃
′
2) ⊂
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⊂ B2
dq̃1 (z̃1,x̃1)(x̃

′
1) ∩B2

dq̃1 (z̃1,x̃2)(x̃
′
2) ∩ Vθ,

z̃′2 ∈ B2
dq̃1 (z̃2,ṽ2)(ṽ

′
2) ∩B2

dq̃1 (z̃2,w̃2)(w̃
′
2) ∩B2

dq̃1 (z̃2,z̃1)(z
′
1) ∩B2

dq̃1 (z̃2,x̃2)(x̃
′
2) ⊂

⊂ B2
dq̃1 (z̃2,z̃1)(z̃

′
1) ∩B2

dq̃1 (z̃2,x̃2)(x̃
′
2) ∩ Vθ.

The set Vθ is convex, so it follows z̃′1z̃
′
2 ⊂ Vθ and since dσ̃2

(z̃′1, z̃
′
2) ≤ dq̃1(z̃1, z̃2),

we can choose z̃′ ∈ z̃′1z̃′2 such that dσ̃2
(z̃′, z̃′i) ≤ dq̃1(z̃, z̃i), i = 1, 2.

In this way one finally gets the following inequalities:

dσ̃2
(z̃′, x̃′i) ≤ dσ̃2

(z̃′, z̃′i) + dσ̃2
(z̃′i, x̃

′
i) ≤

≤ dq̃1(z̃, z̃i) + dq̃1(z̃i, x̃i) ≤ dq̃1(p̃n+1, z̃i) + dq̃1(z̃i, x̃i) = dq̃1(p̃n+1, x̃i).

The case x̃1 ∈ C̃ and x̃2 6∈ C̃ can be solved in the same way. Define as before

z̃2 := p̃n+1x̃2 ∩ ∂C̃, then one just has to notice that there always is a point z̃ ∈ z̃2x̃1

such that dq̃1(z̃, x̃1) ≤ dq̃1(p̃n+1, x̃1) and dq̃1(z̃, z̃2) ≤ dq̃1(p̃n+1, z̃2).

Finally, if x̃1 ∈ C̃ and x̃2 ∈ C̃ one could notice that it results x̃′1x̃
′
2 ⊂ Vθ. Since

dσ̃2
(x̃′1, x̃

′
2) ≤ dq̃1(x̃1, x̃2), there is a point p̃′n+1 ∈ x̃′1x̃′2 such that

dσ̃2
(p̃′n+1, x̃

′
i) ≤ dq̃1(p̃n+1, x̃i), i = 1, 2.

Corollary 5.2.7. For every θ ∈ Θ(p̃n+1) and x̃i ∈ X (p̃n+1), i = 1, . . . , n, it results:

Vθ ∩
⋂

i=1,...,n

B2
dq̃1 (x̃i,p̃n+1)(x̃

′
i) 6= ∅.

Proof. It is a consequence of previous results and Helly’s lemma for uniquely geodesic

spaces.

Finally, we can prove that the intersection is not empty also in the last two cases.

Proposition 5.2.8. For every θ1, θ2 ∈ Θ(p̃n+1) and x̃ ∈ X (p̃n+1), it follows

Vθ1 ∩ Vθ2 ∩B2
dq̃1 (x̃,p̃n+1)(x̃

′) 6= ∅.

Proof. Let C̃i be the lifting to X̃1 of the flat cylinder corresponding to θi, i = 1, 2.

We first consider the case x̃ 6∈ C̃1 ∪ C̃2, since it is the more complicated one.

We choose the point z̃:

z̃ := x̃p̃n+1 ∩ ∂(C̃1 ∩ C̃2).

Notice that it results dq̃1(p̃n+1, x̃) ≥ dq̃1(z̃, x̃) and suppose z̃ ∈ ∂C̃1.

Let ṽ1 and w̃1 be the two zeroes of q̃1 such that ṽ1w̃1 is the saddle connection of ∂C̃1
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containing z̃.

Then one gets the following inclusion of sets:

B2
dq̃1 (z̃,ṽ1)(ṽ

′
1) ∩B2

dq̃1 (z̃,w̃1)(w̃
′
1) ∩B2

dq̃1 (x̃,z̃)(x̃
′) ∩ Vθ2 ⊂ Vθ1 ∩B2

dq̃1 (x̃,p̃n+1)(x̃
′) ∩ Vθ2

and we can conclude applying corollary 5.2.7.

The case x̃ ∈ C̃1 and x̃ 6∈ C̃2 can be solved in the same way, choosing

z̃ := x̃p̃n+1 ∩ ∂C̃1.

Finally, the case x̃ ∈ C̃1 ∩ C̃2 is trivial since x̃′ ∈ Vθ1 ∩ Vθ2 .

Proposition 5.2.9. For every θ1, θ2, θ3 ∈ Θ(p̃n+1) it follows

Vθ1 ∩ Vθ2 ∩ Vθ3 6= ∅.

Proof. As before, denote by C̃i the lifting to X̃1 of the flat cylinder corresponding

to θi, i = 1, 2, 3. Up to renumbering the indexes, we can suppose there is a point

z̃ ∈ ∂(C̃1 ∩ C̃2) ∩ C̃3.

Then, for i = 1, 2 let ṽi, w̃i be the zeroes of q̃1 on the border of C̃i such that ṽiw̃i is a

saddle connection and z̃ ∈ ṽiw̃i.
Using lemma 5.2.5 we just have to prove

B2
dq̃1 (z̃,ṽ1)(ṽ

′
1) ∩B2

dq̃1 (z̃,w̃1)(w̃
′
1) ∩B2

dq̃1 (z̃,ṽ2)(ṽ
′
2) ∩B2

dq̃1 (z̃,w̃2)(w̃
′
2) ∩ Ṽθ3 6= ∅

which is granted by corollary 5.2.7.

This ends the proof of the existence of the desired function φ: if conjecture 5.1 is

true, we have described how to obtain the equality LaF (q1, q2) = Ka
F (q1, q2).

5.3 Proof of theorem 5.2.2

The first step towards the proof of theorem 5.2.2 consists in the characterization

of geodesic triangles in (X̃, dq̃) (where as before (X, q) is a semi-translation surface

and π : (X̃, |q̃|) → (X, |q|) is a metric universal cover). We will use the following

lemma, the proof of which can be found in [St], theorem 16.1.

Lemma 5.3.1. Let γ̃ : [0, 1]→ X̃ be a locally minimizing geodesic for dq̃. It follows

dq̃(γ̃(0), γ̃(1)) = lq̃(γ̃)

that is, γ̃ is also globally minimizing. Furthermore, γ̃ is the unique geodesic with these

properties.
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Given any triple of points x̃1, x̃2, x̃3 ∈ X̃ denote by T the corresponding geodesic

triangle for dq̃, which is the subset of X̃ composed by the three geodesics x̃ix̃j .

Since X̃ ' H, it makes sense to define the internal part
◦
∆ of T : we call filled geodesic

triangle the set T ∪
◦
∆ and we denote it by ∆.

Given any planar polygon P , we denote by dP its intrinsic Euclidean metric: for

every x1, x2 ∈ P , we define dP (x1, x2) as the infimum of the lengths, computed with

respect to the Euclidean metric, of all paths from x1 to x2 entirely contained in P .

Every polygon used in the following proofs will be endowed with such intrinsic Eu-

clidean metric.

Proposition 5.3.2. Filled geodesic triangles of dq̃ are convex and do not contain

zeroes of q̃ in their internal part, which is connected.

Given a triple of points x̃1, x̃2, x̃3 ∈ X̃, the corresponding filled geodesic triangle ∆

can have one dimensional components. For every i = 1, 2, 3 we define ṽi as the point

on x̃ix̃j ∩ x̃ix̃k, i 6= j 6= k which has maximum distance with x̃i.

If
◦
∆ is not empty, then its border is exactly ṽ1ṽ2∪ ṽ2ṽ3∪ ṽ1ṽ3 and for every i = 1, 2, 3,

if x̃i 6= ṽi, then x̃iṽi is the only one dimensional component of ∆ starting from x̃i.

The internal angles of
◦
∆ in the three points ṽi are strictly convex, while all other

internal angles are concave and less than 2π.

Finally, every filled geodesic triangle for dq̃ is isometric to a planar polygon, which

eventually could be degenerate (one dimensional) or with at most three one dimen-

sional components.

Figure 5.3: An example of a filled geodesic triangle ∆.

Proof. By lemma 5.3.1, if x̃ix̃j and x̃ix̃k intersect in a point p̃ 6= x̃i, then they must

coincide over all p̃x̃i. It follows that
◦
∆ is connected and its border is ṽ1ṽ2∪ ṽ1ṽ3∪ ṽ2ṽ3.

Suppose
◦
∆ 6= ∅ and denote by α1 the internal angle of

◦
∆ in ṽ1: we prove α1 < π.

Let α12 be the angle in ṽ1 determined by x̃1ṽ1 and ṽ1ṽ2 completely outside ∆ and let
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α13 be the angle in ṽ1 determined by x̃1ṽ1 and ṽ1ṽ3 completely outside ∆. Clearly

it results α12 ≥ π and α13 ≥ π: if α1 ≥ π then lemma 5.3.1 would imply ṽ1 ∈ ṽ2ṽ3

and consequently
◦
∆ = ∅. In the same way one proves that the internal angles of

◦
∆

in ṽ2, ṽ3 must be strictly convex.

If ṽ is a zero of q̃ in the border of
◦
∆, ṽ 6= ṽ1, ṽ2, ṽ3, the internal angle βṽ of

◦
∆ in

ṽ must be concave, and we now also prove βṽ < 2π.

Let ṽ ∈ ṽ1ṽ2, and suppose by contradiction βṽ ≥ 2π. Let τi, i = 1, 2, be the angle

in ṽ determined by ṽ3ṽ and ṽṽi inside ∆. Since βṽ ≥ 2π, it must follow τ1 ≥ π or

τ2 ≥ π. Suppose τ1 ≥ 1, then ṽ3ṽ1 would be a concatenation of ṽ1ṽ and ṽṽ3, implying

ṽ = ṽ1. This last equality contradicts the previous assumption ṽ 6= ṽ1, ṽ2, ṽ3.

Finally, suppose by contradiction that one or more zeroes z̃j of q̃ are contained in
◦
∆. Denote by αi, θj , βk the internal angles of

◦
∆ respectively in ṽi, z̃j , w̃k, where w̃k

is a zero of q̃ on the border of
◦
∆.

Applying Gauss-Bonnet formula on
◦
∆ one gets:∑

i

(π − βi) + (π − α1) + (π − α2) + (π − α3) = 2π +
∑
j

(θj − 2π).

From what we have proved it follows∑
k

(π − βk) ≤ 0, (π − α1) + (π − α2) + (π − α3) < 3π

and consequently we now get

2π +
∑
j

(θj − 2π) < 3π.

The total angle in z̃j ∈
◦
∆ must be greater than or equal to 3π, but this contradicts

the last inequality.

In order to prove that ∆ is isometric to a planar polygon endowed with its intrinsic

Euclidean metric it is clearly sufficient to prove that
◦
∆ is isometric to a planar polygon.

Let Dev : (X̃, |q̃|)→ R2 be the developing map (for a precise definition see for example

[Tr2]), notice that, if Dev is injective on a point ṽ on the border of
◦
∆, then the internal

angle of
◦
∆ in ṽ coincides with the internal angle of Dev(

◦
∆) in Dev(ṽ).

We will prove that Dev :
◦
∆→ R2 is injective, or equivalently that Dev(

◦
∆) is a simple

polygon (not self-intersecting).

Suppose by contradiction that Dev is not injective. We divide two cases:
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1. Dev is not injective on any of the points ṽi. Then denote by P1 be the simple

polygon identified by the external border of Dev(
◦
∆). Notice that internal angles

of P1 can correspond to internal angles of
◦
∆ or can be originated by overlays

on points where Dev fails to be injective. Internal angles of the latter kind

must be strictly concave and consequently convex internal angles of P1 must

correspond to convex internal angles of
◦
∆. Since P1 is simple, it must have at

least three strictly convex internal angles. It would follow that
◦
∆ must have

at least six strictly convex internal angles: the three angles αi plus the angles

which correspond to the three strictly convex internal angles of P1. This fact

clearly contradicts the hypothesis.

2. Dev is injective on ṽ1. Then there is a polygon P2 ⊂ Dev(
◦
∆) which is maximal

with respect to inclusion on the set of polygons {Q} such that

• Q ⊂ Dev(
◦
∆),

• Dev(ṽ1) is a vertex of Q,

• Dev is injective on Dev−1(Q).

Let P0 be the simple polygon identified by the external border of Dev(
◦
∆) and

define P1 := P0 \ P2 (see figure 5.4 for an example.). As before, convex internal

angles of P1 must correspond to convex internal angles of
◦
∆.

Figure 5.4: On the left there is an example of Dev(
◦
∆) we want to exclude. On the

right there is the corresponding polygon P1.

It would follow that
◦
∆ must have at least four strictly convex internal angles:

α1 plus the angles which correspond to the three strictly convex internal angles

of P1. This fact clearly contradicts the hypothesis.

Finally, convexity of ∆ follows from the fact that, given any pair x̃, ỹ ∈ ∆, the

geodesic for the intrinsic Euclidean metric connecting them is also a locally minimizing

geodesic for dq̃ and consequently also globally minimizing.
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We now go back to consider the fundamental domain P defined in the preceding

section.

Given the point p̃n+1 ∈ P and the three points x̃1, x̃2, x̃3 ∈ X (p̃n) corresponding to

the centers of the closed balls, we consider the filled geodesic triangle ∆ for (X̃1, dq̃1)

with vertices x̃1, x̃2, x̃3. Following the characterization of the previous proposition,

we divide two cases:

1. p̃n+1 ∈ ∆, then, since the three geodesics p̃n+1x̃i are smooth and do not contain

other zeroes of q̃1, it follows that ∆ can not have one dimensional components.

2. p̃n+1 6∈ ∆, then ∆ can have one dimensional components and even be a degen-

erate polygon (one dimensional).

Denote by ∆′ the filled geodesic triangle for (X̃2, dσ̃2
) with vertices x̃′1, x̃

′
2, x̃
′
3.

Again, we divide three cases:

(i) ∆′ is not one dimensional, but can have at most three one dimensional compo-

nents,

(ii) ∆′ is one dimensional and it is not possible to renumber the vertices in order to

obtain x′3 ∈ x′1x′2,

(iii) ∆′ is one dimensional and it is possible to renumber the vertices in order to

obtain x′3 ∈ x′1x′2.

Combining them, we have a total of six cases we need to care care of.

In cases (1,i),(1,ii),(1,iii) our goal is to find a point p̃′n+1 ∈ ∆′ such that

dq̃1(x̃i, p̃n+1) ≥ dσ̃2
(x̃′i, p̃

′
n+1) for i = 1, 2, 3.

In the remaining cases (2,i),(2,ii),(2,iii) we will use the orthogonal projection on convex

sets in Cat(0) spaces:

pr : (X̃1, dq̃1)→ ∆,

where the image pr(x̃) of every point x̃ ∈ X̃1 is defined as the unique point such that

dq̃1(x̃, pr(x̃)) = inf
ỹ∈∆

dq̃1(x̃, ỹ).

The projection pr does not increase distances (for a proof and a list of other properties

of pr one could see [BH], proposition 2.4, page 176) and in particular it results

dq̃1(x̃i, p̃n+1) ≥ dq̃1(x̃i, pr(p̃n+1)) for i = 1, 2, 3.

Then, we will look for a point p̃′n+1 ∈ ∆′ such that

dq̃1(x̃i, pr(p̃n+1)) ≥ dσ̃2
(x̃′i, p̃

′
n+1) for i = 1, 2, 3.
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We chose to confront distances with pr(p̃n+1) instead of p̃n+1 because in the following

procedures it will be crucial to always consider points inside ∆.

Cases (1,ii),(1,iii),(2,ii) and (2,iii) are easily solvable. We will prove only case

(1,ii), since the others are almost identical.

If ∆′ is one dimensional, then it always contains a vertex ṽ′ such that

ṽ′ ∈ x̃′1x̃′2 ∩ x̃′1x̃′3 ∩ x̃′2x̃′3.

Figure 5.5: An example of vertex ṽ′ ∈ ∆′.

If, for every index i = 1, 2, 3, it results dσ̃2
(x̃′i, ṽ

′) ≤ dq̃1(x̃i, p̃n+1), then we can

choose p̃′n+1 = ṽ′.

If, up to renumbering the indexes, it results dσ̃2
(x̃′1, ṽ

′) > dq̃1(x̃1, p̃n+1), we choose

p̃′n+1 to be the point on x̃′1ṽ
′ such that dq̃1(x̃1, p̃n+1) = dσ̃2

(x̃′1, p̃
′
n+1).

Then it will follow dσ̃2
(x̃′i, p̃

′
n+1) ≤ dq̃1(x̃i, p̃n+1) for i = 2, 3, since

dσ̃2
(x̃′i, p̃

′
n+1) = dσ̃2

(x̃′1, x̃
′
i)−dq̃1(x̃1, p̃n+1) ≤ dq̃1(x̃1, x̃i)−dq̃1(x̃1, p̃n+1) ≤ dq̃1(p̃n+1, x̃i).

In case (2,i) it will always be possible to suppose ∆ does not have one dimensional

components, since

• if pr(p̃n+1) is on a one dimensional component x̃1ṽ1 of ∆ then it suffices to

choose p̃′n+1 ∈ x̃′1ṽ′1 such that

dσ̃2
(p̃′n+1, x̃

′
1) ≤ dq̃1(pr(p̃n+1), x̃1) and dσ̃2

(p̃′n+1, ṽ
′
1) ≤ dq̃1(pr(p̃n+1), ṽ1).

• Otherwise, pr(p̃n+1) ∈
◦
∆, where

◦
∆ corresponds to the filled geodesic triangle of

vertices ṽ1, ṽ2, ṽ3 (which are the vertices with strictly convex internal angle as

in proposition 5.3.2).
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In this case one can choose p̃′n+1 such that d∆(ṽi, p̃n+1) ≥ d∆′(ṽ
′
i, p̃
′
n+1).

In this way one obtains

dσ̃2
(p̃′n+1, x̃

′
i) ≤ dσ̃2

(p̃′n+1, ṽ
′
i) + dσ̃2

(ṽ′i, x̃
′
i) ≤

≤ dq̃1(pr(p̃n+1), ṽi) + dq̃1(ṽi, x̃i) = dq̃1(pr(p̃n+1), x̃i)

for i = 1, 2, 3 as desired.

The rest of the chapter will be devoted to the explanation of our method to find

p̃n+1 in cases (1,i) and (2,i). As we anticipated it will depend on following theorem

5.3.3 and conjecture 5.1.

Consider the two previously defined filled geodesic triangles of vertices respectively

x̃1, x̃2, x̃3 and x̃′1, x̃
′
2, x̃
′
3. Zeroes on the border of ∆ can change position in ∆′ and in

particular the following things can happen:

(i) if z̃ ∈ x̃ix̃j , then it can happen z̃′ ∈ x̃′ix̃′k,

(ii) a zero z̃ on the border of ∆ can be such that z̃′ 6∈ ∆′,

(iii) a zero z̃′ on the border of ∆′ can be such that z̃ 6∈ ∆.

Every time case (ii) is verified, we consider the previously defined orthogonal

projection on convex sets in Cat(0) spaces

pr : (X̃2, dσ̃2
)→ ∆′

and take into account the point pr(z̃′) ∈ ∂∆′. Then it will follow

dσ̃2
(pr(z̃′), x̃′i) ≤ dσ̃2

(z̃′, x̃′i) ≤ dq̃1(z̃, x̃i)

for i = 1, 2, 3 and

dσ̃2
(pr(z̃′), w̃′) ≤ dσ̃2

(z̃′, w̃′) ≤ dq̃1(z̃, w̃)

for every zero w̃′ on the border of ∆′.

In the following construction we will need to consider, for every point on the border of

∆, a corresponding point on the border of ∆′. For this reason, by abuse of notation,

every time previous case (ii) is verified we will denote the point pr(z̃′) simply by z̃′

and consider it the point on the border of ∆′ corresponding to z̃.

Notice that proceeding in this way ∆′ could end up having two or more coinciding

vertices: this will not be a problem.

From now on it will be more convenient to consider filled geodesic triangles ∆ and

∆′ exclusively as planar polygons endowed respectively with the intrinsic Euclidean
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metrics d∆ and d∆′ . For this reason we will consider zeroes on the border of ∆ simply

as vertices of the polygon. Furthermore, in order to lighten up the notation, vertices

will be denoted without the overlying tilde.

For every couple of points u, v ∈ ∆ we will denote by uv the geodesic for d∆ connect-

ing them. Given any two points u′, v′ ∈ ∆′, we will denote by u′v′ the geodesic for

d∆′ connecting them.

We will initially consider the case there is a function

ι : V ertices(∆)→ V ertices(∆′)

which to every vertex z of ∆ associates a vertex ι(z) = z′ of ∆′ in such a way that

vertices of ∆ and of ι(V ertices(∆)) are disposed in the same order. This means that:

• for every vertex z of ∆, if z ∈ xixj , then z′ ∈ xixj ,

• for every couple of vertices z1, z2 ∈ xixj , if d∆(xi, z1) < d∆(xi, z2), then

d∆′(x
′
i, z
′
1) ≤ d∆′(x

′
i, z
′
2).

We will summarize this condition on the vertices of ∆ and ∆′ saying that the common

vertex of ∆ and ∆′ have the same order.

We noticed that, given two vertices v1, v2 of ∆, it can happen that their correspond-

ing vertices of ∆′ coincide as points on ∂∆′. For a reason which will be clear in the

following proofs, we will consider v′1 and v′2 as distinct vertices of ∆′ which are at

distance zero on ∂∆′: we will refer to them as multiple vertices.

We can thus suppose the function ι is always injective and the number of vertices of

∆′ is always greater than or equal to the number of vertices of ∆.

We underline again an important hypothesis on distances between vertices of ∆

and ∆′: for every pair of vertices u, v of ∆ such that uv is smooth it results

d∆(u, v) ≥ d∆′(u
′, v′).

This fact clearly implies the same inequality also in case uv is a concatenation of

smooth segments.

The following theorem is our fundamental tool to find the desired point p̃′n+1.

Theorem 5.3.3. Suppose the number of vertices of ∆′ is greater than or equal to the

number of vertices of ∆ and that the common vertices have the same order, in the

sense we explained earlier. Suppose furthermore that ∆′ can have one dimensional

components.
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Then there is a 1-Lipschitz map f : ∆ → ∆′ (with respect to the intrinsic Euclidean

metrics of the polygons) such that:

f(z) = z′

for every vertex z of ∆.

Clearly, given any point p̃n+1 ∈ ∆, we will set the point p̃′n+1 to be f(p̃n+1).

Instead of proving theorem 5.3.3 directly, we will prove the following theorem 5.3.4

which will then imply theorem 5.3.3. The reason for this choice will be made clear in

the proof of theorem 5.3.4 and in particular by the example of figure 5.11.

Given any planar polygon P with n ≥ 3 vertices, we will say that P ′ is a degener-

ate polygon comparable with P if P ′ is obtained connecting planar polygons through

common vertices or one dimensional components and furthermore all the following

conditions are satisfied.

(i) P ′ is connected, simply connected, can be embedded in R2 and contains at least

one planar polygon.

(ii) Every planar polygon of P ′ is linked (by shared vertices or one dimensional com-

ponents) to at most other two planar polygons of P ′. The degenerate polygon

P ′ can have one dimensional components which are linked to just one planar

polygon of P ′ (as polygons ∆′ corresponding to geodesic triangles of dq̃ do).

(iii) There is an injective function ι : V ertices(P ) → V ertices(P ′), which to every

vertex z of P associates a unique vertex z′ of P ′.

Given two vertices z1, z2 of P , their corresponding vertices of P ′ can coincide as

points on ∂P ′: we will consider z′1, z
′
2 as distinct vertices of P ′ at distance zero

on ∂P ′ and refer to them as multiple vertices.

Consequently, the total number of vertices of P ′ is m ≥ n.

(iv) For every pair of vertices z1, z2 of P it results

dP (z1, z2) ≥ dP ′(z′1, z′2).

(v) If y′ is a vertex of P ′ which does not correspond to any vertex of P and y′ does

not lie on a one dimensional component, then the internal angle at y′ is:

• convex, if y′ is a shared vertex of two planar polygons of P ′ or from y′

starts a one dimensional component,

• concave, otherwise.
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A vertex y′ which does not correspond to any vertex of P can also lie on a

one dimensional component, but it can not be at the extremity which is not

connected to a planar polygon.

(vi) The vertices of P and of ι(V ertices(P )) are disposed in the same order in the

following sense. There is a continuous, surjective function τ : [0, 1] → ∂P ′

such that τ(0) = z′ ∈ ι(V ertices(P )) and for every x′ ∈ ∂P ′ the cardinality of

τ−1(x′) is:

• two, if x′ is a shared vertex of two planar polygons of P ′ or x′ in on a one

dimensional component,

• one, otherwise.

Then one can choose a parametrization γ : [0, 1]→ ∂P of ∂P such that γ(0) = z

and γ and τ meet respectively the vertices of P and of ι(V erices(P )) in the same

order (up to removing one copy of the vertices which τ meets twice).

In figure 5.6 there are some example which will clarify our definition of degenerate

polygons comparable with P and of condition (vi).

Figure 5.6: In example (1) one can find τ such that it encounters the vertices of P ′

in the order x′1, x
′
2, x
′
4, x
′
3, x
′
4, x
′
6, x
′
5, x
′
6, x
′
2. One then discards the first copy of x′4 and

x′6 and the last copy of x′2. In example (2) one can find τ such that it encounters

the vertices of P ′ in the order x′1, x
′
5, x
′
4, x
′
2, x
′
3, x
′
4, x
′
5, x
′
6. One then discards the first

copy of x′5 and x′4.
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As it is easily verifiable, polygons ∆ and ∆′ as in the hypothesis of theorem 5.3.3

satisfy all previous conditions.

If u, v are vertices of P , uv is smooth and lies entirely on the border of P then

we will call uv a side of P and sometimes denote it simply by γ. If w, z are vertices

of P , wz is smooth and wz ∩ ∂P = {w, z}, then we will call uv a smooth diagonal of

P and sometimes denote it simply by d. If wz is a concatenation of segments and is

not entirely contained in the border of P we call wz a diagonal of P and sometimes

denote it with the same symbol d.

We define sides γ′ of P ′ in the same way. A diagonal d′ of P ′ is a geodesic u′v′ such

that uv is a diagonal of P . In particular one should notice that:

• a diagonal d′ of P ′ can be entirely contained in a one dimensional component,

• u′v′ can be a diagonal of P ′ only if u′, v′ ∈ ι(V ertices(P )).

Given sides γ, γ′ and diagonals d, d′, we will denote by l(γ), l(γ′), l(d), l(d′) their

lengths (of which the first and the third are computed with respect to dP and the

second and the fourth with respect to dP ′).

Before starting the proof, we feel it is necessary to anticipate why we decided to

consider such a complicated set of degenerate polygons. The short answer is that the

set of degenerate polygons P ′ comparable to P is closed with respect to the operation

of cutting along a diagonal d′ of P ′, operation which is crucial in the proof of theorem

5.3.4. We will further clarify this concept in the proof.

Theorem 5.3.4. Let P be a planar polygon with n ≥ 3 vertices and P ′ a degenerate

polygon which is comparable with P in the sense we just explained. Then there is a

1-Lipschitz map f : P → P ′ (with respect to the intrinsic Euclidean metrics of the

polygons) such that

f(z) = z′

for every other vertex z of P .

The idea of the proof will be to turn P ′ into the polygon P through a finite number

of steps, called elementary steps, which will modify lengths of sides and diagonals of

P ′. Each elementary step will provide us of a 1-Lipschitz map: the final 1-Lipschitz

map f will be the composition of all intermediate 1-Lipschitz maps. Of course, all

intermediate polygons will be endowed with the corresponding intrinsic Euclidean

metric and the intermediate maps will have Lipschitz coefficient 1 with respect to

those metrics.

We specify that intermediate polygons obtained through elementary steps can fail to
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be planar and just be generalized polygons: a generalized polygon is a polygon which

is obtained gluing planar polygons along sides of the same length and which can not

be embedded in R2. For any generalized polygon it still makes sense to define the

intrinsic Euclidean metric.

Given any generalized polygon Q and a vertex v of Q, in the following proofs we will

denote by αv the internal angle of Q at v.

We will now define the two types of elementary steps we will use. In order to

make the definition easier, we will first make the assumption P ′ does not have one

dimensional components.

Elementary step of type one:

If γ′ is a side of P ′ such that l(γ′) < l(γ) then though an elementary step of type

one on the side γ′ of P ′ it is possible to obtain a polygon P̂ and a 1-Lipschitz map

φ : P̂ → P ′ such that:

• l(γ) ≥ l(γ̂) > l(γ′) (where γ̂ denotes the side of P̂ corresponding to γ′) and all

other sides of P̂ are of the same length of the corresponding sides of P ′,

• all the diagonals d̂ of P̂ are such that l(d) ≥ l(d̂) ≥ l(d′).

We presently explain how the elementary step of type one on the side γ′ = x′y′ of P ′

is performed.

Let z′ be another vertex of P ′ such that x′z′ and y′z′ are sides or smooth diagonals

of P ′ (it is always possible to suppose the existence of such z′). Let P (x′, y′, z′) ⊂ P ′

be the triangle of vertices x′, y′, z′, the set P ′ \ P (x′, y′, z′) consists of a number of

polygons Q′i which varies between zero and two.

Denote by P (x̂, ŷ, ẑ) the triangle obtained from P (x′, y′, z′) increasing dP ′(x
′, y′) and

without changing dP ′(x
′, z′) and dP ′(y

′, z′).

Figure 5.7: An example of an elementary step of type one: P (x′, y′, z′) is the triangle

drawn with a dashed line, while P (x̂, ŷ, ẑ) is the triangle drawn with a continuous

line.
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The polygon P̂ is then obtained gluing back on the sides of P (x̂, ŷ, ẑ) the corre-

sponding polygons Q′i.

There is a 1-Lipschitz map φ1 : P (x̂, ŷ, ẑ) → P (x′, y′, z′) which is the identity on

the two sides whose length is not increased. The map φ1 can then be extended to a

1-Lipschitz map φ : P̂ → P ′ by defining it as the identity on Q′i.

We will also consider degenerate elementary steps of type one, in which P (x′, y′, z′)

is one dimensional and is then turned into a triangle. This will happen for example

in case of coinciding vertices, which correspond to sides of length zero.

Elementary step of type two:

If d′ is a smooth diagonal of P ′ such that l(d′) < l(d) then through an elementary

step of type two on the diagonal d′ of P ′ it is possible to obtain a polygon P̂ and a

1-Lipschitz map ψ : P̂ → P ′ such that:

• all sides of P̂ have the same length of the corresponding sides of P ′,

• all diagonals d̂ of P̂ are such that l(d) ≥ l(d̂) ≥ l(d′).

We presently explain how the elementary step of type two on the smooth diagonal

d′ = x′y′ of P ′ is performed.

Unlike elementary steps of type one, it is possible to perform an elementary step

on a smooth diagonal d′ = x′y′ of P ′ only if there are other vertices u′, v′ of P ′ such

that:

• all four geodesics u′x′, x′v′, v′y′, y′u′ are smooth and thus define a quadrilateral

P (x′, y′, u′, v′) ⊂ P ′,

• x′y′ is a smooth diagonal of P (x′, y′, u′, v′),

• P (x′, y′, u′, v′) has only one strictly concave internal angle, which is in x′ or

y′. Consequently all other three internal angles of P (x′, y′, u′, v′) are strictly

convex.

We allow the quadrilateral P (x′, y′, u′, v′) to be degenerate in the sense that one

of the internal angles of P (x′, y′, u′, v′) in u′ or v′ can be zero.

The set P ′ \ P (x′, y′, u′, v′) consists of a number of polygons Q′i which varies be-

tween zero and four. It is possible to obtain another quadrilateral P (x̂, ŷ, û, v̂) from

P (x′, y′, u′, v′) increasing dP ′(x
′, y′), decreasing the strictly concave angle of the quadri-

lateral P (x′, y′, u′, v′) and leaving unchanged the lengths of its sides. The polygon P̂ is

then obtained gluing back the polygons Q′i on the corresponding sides of P (x̂, ŷ, û, v̂).
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Figure 5.8: An example of an elementary step of type two: P (x′, y′, u′, v′) is the

quadrilateral drawn with a dashed line, while P (x̂, ŷ, û, v̂) is the quadrilateral drawn

with a continuous line.

There is a 1-Lipschitz map ψ1 : P (x̂, ŷ, û, v̂)→ P (x′, y′, u′, v′), with respect to the

intrinsic Euclidean metrics of the polygons, which is the identity on the sides of the

quadrilaterals. It can be extended to a 1-Lipschitz map ψ : P̂ → P ′ defining it as the

identity on the polygons Q′i.

Notice that both types of elementary steps do not change the sum of the internal

angles of polygons Q′ on which they are performed.

Now that we have defined the two types of elementary steps, we can go back to

explaining how to obtain the desired 1-Lipschitz map f : P → P ′.

We will use the following lemma regarding generalized polygons. Notice that any

generalized polygon Q′ with m vertices has sum of internal angles equal to π(m− 2).

Indeed, suppose Q is obtained gluing two planar polygons Q1 and Q2 along a side

vw: denote by m1,m2 the number of vertices of Q1 and Q2, then it must follow

m1 +m2 = m+ 2 (since gluing Q1 and Q2 we lose two vertexes which are identified

together). Consequently the sum of internal angles of Q is equal to π(m1 − 2) +

π(m2 − 2) = π(m− 2).

Lemma 5.3.5. Let Q′ be a generalized polygon with n vertices. Then it is possible to

apply a finite sequence of elementary steps of type two on Q′ turning it into a convex

polygon Q̂ such that all sides of Q̂ are of the same length of the corresponding sides

of Q′.

Proof. We proceed by induction on the number m of vertices of Q′.

If m = 4 then the result is trivial. Suppose the thesis is true for all polygons Q′ with

number of vertices between 4 and m > 4, then we will prove it for polygons Q′ with
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m+ 1 vertices.

We cut Q′ along a smooth diagonal v′w′ obtaining two generalized polygons Qi on

which we can apply the inductive hypothesis thus turning them into two convex

polygons Q̂i: we glue Q̂1, Q̂2 back together along v̂ŵ obtaining a polygon Q̂ which

can have strictly concave internal angles only in v̂ and ŵ. If αv̂ > π then one performs

an elementary step of type two on P (v̂1, v̂, v̂2, ŵ) (where v̂1, v̂2 are the vertices next

to v̂) stretching v̂ŵ until αv̂ = π. Finally, only the angle αŵ can be strictly concave.

Notice that all diagonals ŵẑ must be smooth, where ẑ is any vertex of Q̂ not adjacent

to v̂: using this fact and the hypothesis on the internal angles of Q′ one gets that

it is always possible to flatten the angle αŵ performing elementary steps of type 2

stretching ŵx̂, where x̂ is a vertex of Q̂ such that αx̂ < π, without making any angle

αx̂ strictly concave.

Observation 5.3.6. Notice that, given polygons Q′ and Q̂ as in the previous lemma,

if x′ is a vertex of Q′ such that αx′ ≥ π, then it can not result αx̂ < π.

To see this, denote by x′1, x
′
2 the two vertices of Q′ adjacent to x′ and by x̂1, x̂2 the

two corresponding vertices of Q̂. If αx̂ < π then x̂1x̂2 is a segment of length strictly

smaller than dQ′(x
′
1, x
′) + dQ′(x

′, x′2) = dQ′(x
′
1, x
′
2) and consequently it would result

dQ′(x
′
1, x
′
2) > dQ̂(x̂1, x̂2).

This inequality would contradict the fact that, since Q̂ is obtained from Q′ through a

sequence of elementary steps of type two, there is a 1-Lipschitz map f : Q̂→ Q′ which

sends vertices to corresponding vertices.

We can now start the proof of theorem 5.3.4, using induction on the number n

of vertices of P . In order to make the proof more easily readable, we will divide the

following arguments in succeeding lemmas.

Suppose n = 3, then P is an Euclidean triangle, while P ′ can have many more vertices

than P . In order to satisfy condition (v) of the definition of degenerate polygons

comparable to P , P ′ can have only one planar subpolygon and at most three one

dimensional components ending in points of ι(V ertices(∆)).

Consequently, for n = 3, P and P ′ will be polygons of the type described in theorem

5.3.3: for this reason we will denote them by ∆,∆′.

Lemma 5.3.7. If n = 3, it is possible to turn ∆′ into ∆ using only elementary steps

of type one and two and consequently get a 1-Lipschitz map f : ∆ → ∆′ obtained

composing all intermediate 1-Lipschitz maps between intermediate polygons.

Proof. We first get rid of the one dimensional components of ∆′, turning them into

part of
◦
∆ using elementary steps as thus explained (we will explain the procedure

only for the one dimensional component starting at x′1, the other two will be treated
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in the same way).

Suppose there is a one dimensional component x′1v
′
1 starting at x′1 and v′1 ∈

◦
∆ is the

vertex such that the corresponding internal angle of
◦
∆ must be strictly convex. Let

v′2 be the vertex of x′1v
′
1 closer to v′1 and let w′1, u

′
1 be the two vertices of

◦
∆ adjacent

to v′1. We perform an elementary step of type two on P (u′1, v
′
1, v
′
2, w

′
1) (which is a

degenerate polygon, since the internal angle in v′2 is zero) until P (u′1, v
′
1, v
′
2, w

′
1) is no

longer degenerate. Notice that there are two ways of performing an elementary step

of type two on a degenerate quadrilateral P (u′1, v
′
1, v
′
2, w

′
1) (as it is showed in figure

5.9): in one way u′1v
′
1 is stretched and it will result v̂1 ∈ ŵ1v̂2 and in the other way

v′1w
′
1 is stretched and it will result v̂1 ∈ û1v̂2. Since we do not care on which side the

vertex v̂1 will end up, we can choose either way.

Figure 5.9: Two ways of performing an elementary step of type two on P (u′1, v
′
1, v
′
2, w

′
1)

We then proceed in the same way considering the vertex v′3 of the one dimensional

component v′2x
′
1 closer to v′2.

Having done so, we obtain a polygon without one dimensional components and with

concave internal angles in all vertices which are not in ι(V ertices(∆)): we turn it

into an Euclidean triangle ∆̂ of vertices x̂i, i = 1, 2, 3 using lemma 5.3.5 through

elementary steps of type two. Finally, we perform a finite sequence of elementary

steps of type one on the three sides x̂ix̂j of ∆̂ in order to make them of the same

length of the corresponding sides of ∆.

Suppose all three sides of ∆̂ are such that d∆̂(x̂i, x̂j) < d∆(xi, xj). We start by

stretching the length of x̂1x̂2 until the angle in x̂3 is equal to π − ε, with ε > 0 very

small: in this way it results l(x̂1x̂3)2 + l(x̂2x̂3)2 = l(x̂1x̂2)2 + ψ(ε) with lim
ε→0

ψ(ε)
ε = 0.

Performing again an elementary step of type one stretching x̂2x̂3 until the angle in x̂1
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is equal to π − ε one gets 2l(x̂1x̂3)2 + l(x̂2x̂3)2 = l(x̂2x̂3)2 + ψ1(ε) with lim
ε→0

ψ1(ε)
ε = 0.

Consequently, proceeding in this way, after a finite number of steps one side must

reach its maximum length. Then we proceed in the same way until all sides of ∆̂ are

of the same length of the corresponding sides of ∆.

Now suppose the inductive hypothesis is verified if the number of vertices of P is

not greater than n, then we shall find the 1-Lipschitz map if P has n+ 1 vertices.

Lemma 5.3.8. If there is a diagonal v′w′ of P ′ such that l(v′w′) = l(vw), then it is

possible to apply the inductive hypothesis to obtain the 1-Lipschitz map f : P → P ′.

Proof. We divide two cases.

• if vw is smooth then we cut the polygons P and P ′ in the following way:

– we cut P along vw obtaining P1 and P2,

– we cut P ′ along v′w′ obtaining P ′1 and P ′2.

Notice that if v′w′ is not smooth then the operation of cutting along v′w′ must

be further clarified. If d′ passes through a side of P ′ (resp. a one dimensional

component), then such side (resp. one dimensional component) will appear on

both polygons P ′i . Notice that in this way the polygons P ′i could acquire new

one dimensional components and new vertices. We will follow this rule to name

the new vertices: if u′ is a vertex of ι(V ertices(P )) on v′w′ and u ∈ ∆1 (resp.

u ∈ ∆2), then u′ will be a vertex only of ∆′1 (resp. ∆′2).

Figure 5.10: An example of cutting in case d′ is not smooth: notice that the points

v′, w′ appear on both P ′1 and P ′2, while u′ appears only on P ′1, since u ∈ P1. On P ′2

there is a new vertex z′ 6∈ ι(V ertices(P2)).

Sometimes a polygon P ′i could be entirely degenerate (i.e. one dimensional): in

that case we perform a degenerate elementary step of type one on P ′i turning it

into a degenerate polygon which includes at least one planar polygon.

We can thus suppose both newly obtained polygons P ′1 and P ′2 are degenerate
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polygons comparable respectively with P1 and P2. Indeed, condition (v) of the

definition is verified since, if z′ ∈ v′w′, z′ 6∈ ι(V ertices(P )) is a vertex of a

planar polygon of P ′, a corresponding vertex z′i ∈ P ′i can have strictly convex

internal angle only if from z′i starts a one dimensional component.

This is the crucial property we were looking for: we can now apply the inductive

hypothesis and obtain two 1-Lipschitz maps fi : ∆i → ∆′i which must agree on

vw: we will define f : ∆→ ∆′ to be such that f |∆i
:= fi.

Notice that the same reasoning could not have been done considering polygons

∆ and ∆′ of the hypothesis of theorem 5.3.3, as explained in picture 5.11.

Figure 5.11: The diagonals d and d′ are drawn in red. One clearly sees that the bottom

half of ∆ has four strictly convex angles, while the bottom half of ∆′ is composed by

two triangles connected by a one dimensional component.

• if vw is not smooth, then suppose vw is the concatenation of segments vv1∗v1v2∗
· · · ∗ vmw: at least one of them must be a smooth diagonal, so suppose vv1 is.

Notice that if l(vw) = l(v′w′) then it must follow v′w′ = v′v′1 ∗ v′1v′2 ∗ · · · ∗ v′mw′,
otherwise one would get

l(vv1) + l(v1v2) + · · ·+ l(vmw) < l(v′v′1) + l(v′1v
′
2) + · · ·+ l(v′mw

′)

which contradicts the hypothesis on the distances in P and P ′.

Now one can just consider the diagonals vv1 (which is smooth) and v′v′1 and

fall into the previous case.

After these considerations we can always suppose all diagonals of P ′ are strictly

shorter than the corresponding diagonals of P . We will now deal with one dimensional

components of P ′.
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Lemma 5.3.9. Suppose all diagonals of P ′ are strictly shorter than the corresponding

diagonals of P . Then, using elementary steps, it is possible to turn P ′ in a degen-

erate polygon comparable to P without one dimensional components. If in doing so

one diagonal of P ′ reaches its maximum length (i.e. the length of the corresponding

diagonal of P ) it is possible to apply the inductive hypothesis to obtain the desired

1-Lipschitz map f : P → P ′.

Proof. We will proceed in a way which is almost identical to the one applied in the

previous case n = 3. Let v′1x
′
1 be a one dimensional component of P ′ and v′2 the

vertex of v′1x
′
1 closer to v′1, then we will apply an elementary step of type two on

P (u′1, v
′
1, v
′
2, w

′
1) (where, as before, u′1 and w′1 are vertices of a planar subpolygon

of P ′ adjacent to v′1) in such a way that the newly obtained degenerate polygon P̂

satisfies axiom (vi). In particular, if v′1, u
′
1, w

′
1, v
′
2 are all vertices of ι(V ertices(P ))

then we will apply the elementary step which gives v̂1 ∈ ŵ1v̂2 (resp. v̂1 ∈ û1v̂2) if

v1 ∈ w1v2 (resp. v1 ∈ u1v2). If v′1 is not a vertex of ι(V ertices(P ′)), then it is possible

to perform both types of elementary step of type one.

Proceeding in this way one could end up with a vertex x′1 which connects two planar

polygons of P ′: it is possible to get rid of this ”pathology” with another elementary

step of type two as it is explained in figure 5.12.

Figure 5.12: If v ∈ v1v2 then one performs an elementary step of type two on

P (v′4, v
′, v′2, v

′
3).

In this way we explained also how to get rid of vertices of P ′ which link two different

planar polygons. Clearly, if at any point during this procedure of elimination of one

dimensional components, one ends up with a diagonal d′ of P ′ such that l(d′) = l(d)

then the 1-Lipschitz map f : P → P ′ is obtained as explained before.

At this point, we can suppose P ′ does not have one dimensional components, but

it can stil have more vertices than P . Notice that a straightforward consequence of

the definition of elementary steps of type two and of condition (v) of the definition

of degenerate polygons comparable to P is that all internal angles in vertices of P ′

which are not in ι(V ertices(P )) will have concave internal angle.

Lemma 5.3.10. Suppose all diagonals of P ′ are strictly shorter than the correspond-

ing diagonals of P and P ′ does not have one dimensional components. Then, using
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elementary steps, it is possible to turn P ′ in a degenerate polygon comparable to P

with the same vertices of P . If in doing so one diagonal of P ′ reaches its maximum

length (i.e. the length of the corresponding diagonal of P ) it is possible to apply the

inductive hypothesis to obtain the desired 1-Lipschitz map f : P → P ′.

Proof. One just has to apply lemma 5.3.5 (and observation 5.3.6), turning P ′ into a

convex polygon P̂ . The polygon P̂ will have flat internal angles at vertices ẑ such

that the corresponding vertex z′ of P ′ is not in ι(V ertices(∆)). At this point one

simply ”forgets” about ẑ and removes it from the set of vertices of P̂ .

Again, if, performing any of the elementary steps of type two of lemma 5.3.5, one

diagonal d′ of P ′ is stretched until l(d̂) = l(d), then the procedure is finished as we

already explained.

We will now stretch all sides of P ′ until they become of the same length of the

corresponding sides of P .

Lemma 5.3.11. Suppose all diagonals of P ′ are strictly shorter than the correspond-

ing diagonals of P , P ′ has the same vertices of P and P ′ does not have one dimen-

sional components. Then, using elementary steps of type one, it is possible to stretch

all sides of P ′ until they become of the same length of the corresponding sides of P .

If in doing so one diagonal of P ′ reaches its maximum length (i.e. the length of the

corresponding diagonal of P ) it is possible to apply the inductive hypothesis to obtain

the desired 1-Lipschitz map f : P → P ′.

Proof. First, notice that it is not always possible to stretch a side of ∆′ with just

one elementary step of type one until it reaches its maximum length. Indeed, let

x′1x
′
2 be a side of P ′ such that l(x′1x

′
2) < l(x1x2) and P (x′1, x

′
2, z
′) a triangle as in the

definition of elementary step of type one. Notice that the upper limit of the length

of the side x′1x
′
2 obtainable through an elementary step of type one on P (x′1, x

′
2, z
′) is

l(x′1z
′) + l(x′2z

′) (at whose length P (x′1, x
′
2, z
′) becomes a segment).

In order to overcome this difficulty, we number the vertices of P ′ in an increasing

order starting from from x′1, in such a way that its adjacent vertices are x′2 and x′m.

Then we will explain how to turn P ′ into a triangle with convex angles in x′1, x
′
2 and

internal angle in x′m equal to π − ε. In this way it will result that l(x′1x
′
2)2 is equal

to the sum of the squares of the lengths of all other sides of P ′ minus a term ψ(ε)

such that lim
ε→0

ψ(ε)
ε = 0: the conclusion will follow in the same way of the case of

the proof of lemma 5.3.7. Clearly, if doing so one diagonal d′ of P ′ is stretched until

l(d′) = l(d) then the procedure is finished as explained before. One should notice that

coinciding vertices do not constitute a problem, since they just correspond to sides
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of length zero (and will now be stretched by degenerate elementary steps of type one).

We now explain how to turn P ′ into a triangle with convex angles in x′1, x
′
2 and

internal angle in x′m equal to π− ε: first of all we apply lemma 5.3.5 and turn P ′ into

a convex polygon P̂ .

Denote by αx̂i the internal angle of P̂ in x̂i. If αx̂2 < π and αx̂j = π for j = 3, . . . , l−1,

we perform an elementary step of type one on P (x̂1, x̂2, x̂l) until αx̂j = π.

If αx̂i = π for i = 2, . . . , k − 1, we perform an elementary step of type one on

P (x̂1, x̂2, x̂k) until αx̂k = π and then perform an elementary step of type one on

P (x̂1, x̂2, x̂k−1) until αx̂k−1
= π.

Proceeding in this way one can flatten all angles αx̂i , i = 3, . . . ,m−1, until P̂ becomes

a triangle with convex angles only in x̂1, x̂2, x̂m. Finally, one performs an elementary

step of type one until αx̂m = π − ε.

The following lemma concludes the proof of theorem 5.3.4.

Lemma 5.3.12. Suppose all diagonals of P ′ are strictly shorter than the correspond-

ing diagonals of P , P ′ does not have one dimensional components, P ′ has the same

vertices of P and all sides of P ′ have the same length of the corresponding sides of

P . Then it is possible to obtain the desired 1-Lipschitz map f : P → P ′.

Proof. We will prove that it will always be possible to obtain a diagonal d′ of P ′ of

maximum length, applying a finite number of elementary steps of type two on P ′:

then the conclusion will follow as in the previous lemmas.

Once again, we turn P ′ into a convex polygon P̂ using lemma 5.3.5. In case P̂ 6= P ,

there must be a vertex x̂ of P̂ such that αx̂ > αx. If we can prove that this implies

the existence of a diagonal d̂ of P̂ such that l(d̂) ≥ l(d) then the proof is finished,

since this means that at some point during the sequence of elementary steps of type

two which turns P ′ into P̂ one gets l(d̂) = l(d).

We prove the equivalent statement that if all diagonals of P̂ are strictly shorter than

the corresponding diagonals of P , then all convex angles of P must be greater than

the corresponding angles of P̂ .

Denote by y and z the vertices of P next to x: suppose yz is the concatenation of the

smooth segments yx1 ∗ x1x2 ∗ · · · ∗ xkz for k ≥ 0.

Denote by Q the polygon delimited by xy, xz and yz: all internal angles of Q are

concave except for the ones in x, y, z and xxi, i = 1, . . . , k are smooth diagonals

contained in Q. We claim that decreasing the length of all diagonals xxi without

increasing the length of the sides of Q and without changing the lengths of xy and

xz, the angle αx will decrease: this can be proved modifying the lengths of sides of

Q one at a time.
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Indeed, if only dQ(xi, xi+1) decreases, then αx must decrease: this can be easily seen

shortening the side xixi+1 of the triangle P (x, xi, xi+1) of vertices x, xi, xi+1 without

changing the lengths of the other two sides of P (x, xi, xi+1). In the same way, if

only dQ(x, xi) decreases, then αx must decrease: this can be easily seen shortening

the diagonal xxi of the quadrilateral P (x, xi−1, xi, xi+1) of vertices x, xi−1, xi, xi+1

without changing the lengths of the sides of P (x, xi−1, xi, xi+1).

As we said, this ends the proof of theorem 5.3.4 and consequently also theorem

5.3.3 is proved.

We are now left with the case common vertices of ∆ and of ∆′ are not disposed

in the same order.

From now on, we will denote the vertices of ∆ with concave internal angle in the

following way, which will be useful in the succeeding reasonings.

• Denote by wj the vertices on x1x2, ordered in increasing order from x1 to x2.

• Denote by uk the vertices on x2x3, ordered in increasing order from x3 to x2.

• Denote by vl the vertices on x1x3, ordered in increasing order from x3 to x1.

As before, we denote by w′j , u
′
k, v
′
l the corresponding vertices of ∆′.

We say a vertex wj has changed side on ∆′ if w′j 6∈ x′1x′2.

Two vertices w′m, w
′
n ∈ x′1x

′
2 have changed their order if m < n and it results

d∆′(w
′
n, x
′
1) < d∆′(w

′
m, x

′
1).

Changes of side and order of vertices uk and vl are defined in the same way.

Common vertices of ∆ and of ∆′ are not disposed in the same order if there is at least

one change of side or one change of order.

As we anticipated, we are not able to prove a statement similar to the one of theorem

5.3.3 in case common vertices of ∆ and ∆′ are not disposed in the same order. So we

can only state the following conjecture.

Conjecture 5.1. Suppose the number of vertices of ∆′ can be greater than the number

of vertices of ∆, ∆′ can have one dimensional components and the common vertices

of ∆ and ∆′ are not disposed in the same order.

Then for every p ∈ ∆ there is a corresponding point p′ ∈ ∆′ such that

d∆′(p
′, x′i) ≤ d∆(p, xi), i = 1, 2, 3.

Clearly, it is not possible to adapt the proof of theorem 5.3.4 to prove conjecture

5.1, since the method consisting of elementary steps would only work if common ver-

tices of ∆ and ∆′ have the same order.
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Nonetheless, we are quite confident conjecture 5.1 must be true: this is because

changes of side or order of vertices force the polygon ∆′ to become smaller.

Indeed, if two vertices wm, wn of x1x2 change order in ∆′, then it must result

d∆′(x
′
1, x
′
2) ≤ d∆(x1, x2) − d∆(wm, wn). Since each change of order of the vertices

contributes to the shortening of x′1x
′
2, as the number of changes of order of vertices

of x1x2 increases, the shortening of x′1x
′
2 also increases.

In a similar way, if a vertex of ∆ changes side and for example it is u′k0
∈ x′1x′3, then,

since the distances d∆′(u
′
k, u
′
k0

) can not be greater than the corresponding distances

d∆(uk, uk0), all other vertices u′k are forced to ”follow” u′k0
and become closer to ver-

tices of x′1x
′
3. This fact will force some distances inside ∆′ to become smaller than

the corresponding distances in ∆.

In light of these observations, one could even consider the case common vertices of ∆

and ∆′ are disposed in the same order as the worst one to prove the existence of p′,

since no distance inside ∆′ is forced to decrease.

The following two propositions should support our intuition. Indeed, they show

some cases where the change of side of one or more vertices of ∆′ directly implies the

existence of p′.

Proposition 5.3.13. Suppose there is at least one vertex of ∆′ which changes side,

for example u′ ∈ x′1x′3. Then for every p ∈ ∆ such that d∆(p, x3) ≤ d∆′(u
′, x′3) there

is a point p′ ∈ ∆′ such that

d∆′(p
′, x′i) ≤ d∆(p, xi), i = 1, 2, 3.

Proof. Choose p′ ∈ u′x′3 at distance d∆(p, x3) from x′3. Then it results

d∆′(p
′, x′1) = d∆′(x

′
1, x
′
3)− d∆′(p

′, x′3) ≤ d∆(x1, x3)− d∆(p, x3) ≤ d∆(p, x1),

d∆′(p
′, x′2) ≤ d∆′(p

′, u′) + d∆′(u
′, x′2) ≤ d∆(x2, x3)− d∆(p, x3) ≤ d∆(p, x2).

Proposition 5.3.14. Suppose one of the following three conditions is satisfied:

(i) there are vertices u′, v′ ∈ x′1x′2 such that d∆′(x
′
1, v
′) > d∆′(x

′
1, u
′),

(ii) there are vertices u′, w′ ∈ x′1x′3 such that d∆′(x
′
1, w

′) > d∆′(x
′
1, u
′),

(iii) there are vertices v′, w′ ∈ x′2x′3 such that d∆′(x
′
2, w

′) > d∆′(x
′
2, v
′).

Then for every p ∈ ∆ there is a corresponding point p′ ∈ ∆′ such that

d∆′(p
′, x′i) ≤ d∆(p, xi), i = 1, 2, 3.
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Proof. We will prove the proposition only for case (i), since the proof is identical for

the other two cases.

One can find p′ as follows.

1. If d∆(p, x2) ≤ d∆′(u
′, x′2) let p′ be the point on u′x′2 at distance d∆(p, x2) from

x2. It then results

d∆′(p
′, x′1) = d∆′(x

′
1, x
′
2)− d∆′(p

′, x′2) ≤ d∆(x1, x2)− d∆(p, x2) ≤ d∆(p, x1),

d∆′(p
′, x′3) ≤ d∆′(x

′
3, u
′)+d∆′(u

′, x′2)−d∆′(p
′, x′2) ≤ d∆(x2, x3)−d∆(p, x2) ≤ d∆(p, x3).

2. If d∆(p, x3) ≤ d∆′(u
′, x′3) let p′ be the point on x′3u

′ at distance d∆(p, x3) from

x′3. It results

d∆′(p
′, x′2) ≤ d∆′(x

′
3, u
′)+d∆′(u

′, x′2)−d∆′(p
′, x′3) ≤ d∆(x2, x3)−d∆(p, x3) ≤ d∆(p, x2),

d∆′(p
′, x′3) + d∆′(p

′, x′1) ≤ d∆′(v
′, x′3) + d∆′(v

′, x′1) ≤ d∆(x1, x3),

d∆′(p
′, x′1) ≤ d∆(x1, x3)− d∆′(p

′, x′3) = d∆(x1, x3)− d∆(p, x3) ≤ d∆(p, x1)

3. If d∆(p, x2) > d∆′(u
′, x′2) and d∆(p, x3) > d∆′(u

′, x′3) then there is always a

point p′ ∈ x′1u′ such that one of the following two conditions is satisfied:

• d∆′(p
′, x′2) = d∆(p, x2) and d∆′(p

′, x′3) ≤ d∆(p, x3), then one can proceed

as in previous case (1),

• d∆′(p
′, x′3) = d∆(p, x3) and d∆′(p

′, x′2) ≤ d∆(p, x2), then one can proceed

as in previous case (2).

One could try to prove conjecture 5.1 using the following approach.

Consider a subpolygon ∆̂ ⊂ ∆′ such that to every vertex xi, wj , uk, vl of ∆ there is a

unique corresponding vertex x̂i, ŵj , ûk, v̂l of ∆̂.

We say that ∆̂ is a subpolygon of ∆′ comparable to ∆ if x̂i = x′i, i = 1, 2, 3 and ∆, ∆̂

satisfy the hypothesis of theorem 5.3.4. In particular, this condition implies that :

• common vertices of ∆̂ and of ∆ are disposed in the same order,

• the distance between any two vertices of ∆ is greater than or equal to the

distance between the corresponding two points of ∆̂.

If such polygon ∆̂ exists, then preceding theorem 5.3.4 will grant the existence of

a 1-Lipschitz map φ : ∆ → ∆̂ which sends vertices of ∆ to corresponding vertices of

∆̂. Since for every couple of points x′, y′ ∈ ∆̂ it results d∆̂(x′, y′) ≥ d∆′(x
′, y′), one

will conclude that φ is also a 1-Lipschitz map from ∆ to ∆′ such that φ(xi) = x′i,

105



5.3 Proof of theorem 5.2.2 5. Equality of Thurston’s metrics

i = 1, 2, 3.

Notice that there is no need to require the polygon ∆̂ to have exactly three strictly

convex internal angles, since it is not required in the hypothesis of theorem 5.3.4.

Unfortunately we were not able to develop a method which always produces such

polygon ∆̂ for every ∆,∆′. Indeed, we can only make the following conjecture.

Conjecture 5.2. Suppose the number of vertices of ∆′ can be greater than the number

of vertices of ∆, ∆′ can have one dimensional components and the common vertices

of ∆ and ∆′ are not disposed in the same order.

Then there always is a subpolygon ∆̂ of ∆′ comparable to ∆.

As we just explained, conjecture 5.2 implies conjecture 5.1.

We feel conjecture 5.2 must be true for the same reasons we explained to justify

conjecture 5.1: each vertex which changes side or order in ∆′ forces some distances

to decrease.

We are only able to prove conjecture 5.2 in two simple cases, which we now illustrate.

Proposition 5.3.15. If there is only one point u′k0
of ∆′ such that u′k ∈ x′1x′3 and

no other vertex changes order or side, then there is a subpolygon ∆̂ of ∆′ comparable

to ∆.

Proof. In this case it is possible to obtain ∆̂ in the following way.

One replaces x′2x
′
3 with x′3u

′
k0
∗ u′k0

x′2 and evaluates if it is possible to find points

û1, . . . , ûk0−1, ûk0+1, . . . , ûk ∈ x′3u′k0
∗u′k0

x′2 corresponding to u′1, . . . , u
′
k0−1, u

′
k0+1, . . . , u

′
k

such that the polygon identified by x′1x
′
2, x
′
3u
′
k0
∗ u′k0

x′2, x
′
1x
′
3 is a subpolygon of ∆′

comparable to ∆.

If so, the proof is concluded, since we have found the desired polygon ∆̂.

If not, consider the orthogonal projection pr : ∆′ → x′2x
′
3: one moves the point uk0

in ûk0 on u′k0
pr(u′k0

) towards pr(u′k0
) until one of the following events happens.

(i) Replacing x′2x
′
3 with x′3ûk0 ∗ ûk0x

′
2 it is possible to find points û1, . . . , ûk0−1,

ûk0+1, . . . , ûk ∈ x′3ûk0
∗ ûk0

x′2 corresponding to u′1, . . . , u
′
k0−1, u

′
k0+1, . . . , u

′
k such

that the polygon identified by x′1x
′
2, x
′
3ûk0

∗ ûk0
x′2, x

′
1x
′
3 is a subpolygon of ∆′

comparable to ∆. Then the polygon ∆̂ is found.

(ii) The distance of ûk0
with one of the points x′1, v

′
j , w

′
l becomes equal to the dis-

tance between corresponding points of ∆ (suppose for example d∆′(ûk0
, v′j) =

d∆(uk0 , vj)).

Define ∆̂ as the polygon obtained from ∆′ replacing x′2x
′
3 with x′3ûk0

∗ûk0
x′2. The

vertices û1, . . . , ûk0−1 of ∆̂ corresponding to u′1, . . . , u
′
k0−1 will be their orthog-

onal projection on x′3ûk0
, while the vertices ûk0+1, . . . , ûk of ∆̂ corresponding

to u′k0+1, . . . , u
′
k will be their orthogonal projection on ûk0x

′
2. One then cuts ∆̂
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along ûk0
v′j obtaining ∆̂1, ∆̂2 and cuts ∆ along uk0

vj obtaining ∆1,∆2.

Since both ∆1, ∆̂1 and ∆2, ∆̂2 satisfy the hypothesis of theorem 5.3.4, one can

conclude there are two 1-Lipschitz maps φi : ∆i → ∆̂i, i = 1, 2. From the

equality d∆′(ûk0 , v
′
j) = d∆(uk0 , vj) one gets that it is possible to obtain a 1-

Lipschitz map φ : ∆ → ∆̂ sending vertices to corresponding vertices and such

that φ(p) := φi(p) if p ∈ ∆i. This proves that the distance between any two ver-

tices of ∆ is greater than or equal to the distance between the two corresponding

vertices of ∆̂.

Proposition 5.3.16. If only two adjacent vertices wm, wm+1 of ∆ change order in

∆′ and no vertex of ∆ changes side, then there is a subpolygon ∆̂ of ∆′ comparable

to ∆.

Proof. In figure 5.13 is represented an example of this situation with m = 1.

Figure 5.13: The order of w′1 and w′2 is changed.

We will move only one vertex between w′m and w′m+1 and prove it will always be

possible to set ŵm = ŵm+1 := w′m+1 or ŵm = ŵm+1 := w′m.

Clearly, in case one sets ŵm = ŵm+1 := w′m+1 then w′m+1 will become a multiple

vertex of ∆̂ and w′m will be a vertex of ∆̂ not in ι(V ertices(∆)).

All other vertices of ∆̂ will coincide with the corresponding vertices of ∆′. As it

will be clear, all our considerations will not change in case ∆′ has one dimensional

components, more vertices than ∆ or multiple vertices.

We define the following subsets of the sets of vertices of ∆ and ∆′:

Twm := {p is a vertex of ∆ such that d∆(p, wm) ≤ d∆(p, wm+1)},

Twm+1 := {p is a vertex of ∆ such that d∆(p, wm+1) ≤ d∆(p, wm)},

T ′wm := {p′ is a vertex of ∆′ such that p ∈ Twm},
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T ′wm+1
:= {p′ is a vertex of ∆′ such that p ∈ Twm+1

}.

The meaning of these sets is that in order to being able to impose ŵm := w′m+1

one has to check only the distances of w′m+1 with the points of T ′wm , since for every

p′ ∈ T ′wm+1
it results

d∆′(p
′, w′m+1) ≤ d∆(p, wm+1) ≤ d∆(p, wm).

For the same reason, in order to set ŵm+1 := w′m one has to check only the distances

of wm with the points of T ′wm+1
.

It is possible to further develop this reasoning defining the following two sets:

T̂wm := {p′ ∈ T ′wm such that d∆′(p
′, w′m) ≤ d∆′(p

′, w′m+1)},

T̂wm+1 := {p′ ∈ T ′wm+1
such that d∆′(p

′, w′m+1) ≤ d∆′(p
′, w′m)}.

Following our previous idea, only points of T̂wm (resp. of T̂wm+1
) can prevent one

from imposing ŵm := w′m+1 (resp. ŵm+1 := w′m).

The example of figure 5.13 is particularly simple, since the sets T̂w1 , T̂w2 are empty

and consequently it is possible to impose both ŵ1 = ŵ2 := w′2 and ŵ1 = ŵ2 := w′1.

Figure 5.14: The convex envelope of Tw1
and T ′w1

is drawn in green and the convex

envelope of Tw2 and T ′w2
is drawn in orange.

One will not always be so lucky: we will use the following simple lemma to study

the general case.

Lemma 5.3.17. Consider w′m, w
′
m+1 ∈ x′1x′2 such that d∆′(x

′
1, x
′
m+1) < d∆′(x

′
1, x
′
m).

If there is a vertex v′ ∈ x′1x′3 such that d∆′(v
′, w′m) ≤ d∆′(v

′, w′m+1), then for every

p′ ∈ v′x′3, w′mx′2, x′2x′3 it will also follow d∆′(p
′, w′m) ≤ d∆′(p

′, w′m+1).

Proof. We will first prove d∆′(p
′
1, w

′
m) ≤ d∆′(p

′
1, w

′
m+1) for every p′1 ∈ v′w′m. Suppose

by contradiction there is a point p′2 ∈ v′w′m such that d∆′(p
′
2, w

′
m) > d∆′(p

′
2, w

′
m+1)
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and denote by pr : ∆′ → v′w′m+1 the orthogonal projection on v′w′m+1. Then it would

follow:

d∆′(v
′, w′m+1) = d∆′(v

′, pr(p′2)) + d∆′(pr(p
′
2), w′m+1) ≤ d∆′(v

′, p′2) + d∆′(p
′
2, w

′
m+1) <

< d∆′(v
′, p′2) + d∆′(p

′
2, w

′
m) = d∆′(v

′, w′m)

which contradicts the hypothesis.

For every point p′ ∈ v′x′3, w′mx′2, x′2x′3 then define p̃ := p′w′m+1 ∩ v′w′m (notice that if

v′w′m is not smooth then it can happen p′ = p̃ if p′ ∈ x′2x′3). It results:

d∆′(p
′, w′m+1) = d∆′(p

′, p̃) + d∆′(p̃, w
′
m+1) ≥ d∆′(p

′, p̃) + d∆′(p̃, w
′
m) ≥ d∆′(p

′, w′m).

Notice that there can not be points w′j in T̂wm or T̂wm+1 , otherwise there would

be another change of order of the vertices.

One can apply the preceding lemma to make the following inferences.

• There can not be a point u′j ∈ T̂wm+1
and a point v′i ∈ T̂wm , since if it results

d∆′(v
′
i, w
′
m) ≤ d∆′(v

′
i, w
′
m+1) then it must follow d∆′(u

′
j , w

′
m) ≤ d∆′(u

′
j , w

′
m+1).

• There can not be a point v′i ∈ T̂wm+1 and a point u′j ∈ T̂wm , since if it results

d∆(vi, wm+1) ≤ d∆(vi, wm) then it must follow d∆(uj , wm+1) ≤ d∆(uj , wm)

(since clearly there is an analogue version of the preceding lemma on ∆).

• There can not be a point v′i ∈ T̂wm+1
and a point v′j ∈ T̂wm , since they would

be forced to have inverted order.

One can conclude that the two sets T̂wm+1
, T̂wm can not be both non-empty and

consequently it is always possible to set ŵm := w′m+1 or ŵm+1 := w′m.
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Chapter 6

An hermitian metric on

Hg(2g − 2)

In this last chapter we present a result which has some significance on the theory of

moduli spaces of translation surfaces, although not being related to Thurston’s metric.

Fix any genus g ≥ 2 and consider the moduli space Hg(2g − 2) of Abelian differ-

entials with one zero.

For any ϕ ∈ Hg(2g − 2) we denote by Xϕ the complex structure on Sg with respect

to which ϕ is an Abelian differential.

Every tangent space TϕHg(2g − 2) ' H1(X,C) can be endowed with the hermitian

product hϕ of signature (2g, 0), defined in the following way:

hϕ(ϕ̇, ψ̇) :=
1

2

∫
Xϕ

ϕ̇ ∧ (∗ψ̇) =
i

2

(∫
Xϕ

ϕ̇1,0 ∧ ψ̇1,0 −
∫
Xϕ

ϕ̇0,1 ∧ ψ̇0,1

)

for every φ̇, ψ̇ ∈ TϕHg(2g − 2).

In the preceding expression the decomposition in holomorphic and anti-holomorphic

forms is done with respect to the complex structure Xϕ and ∗ is the Hodge star

operator of Xϕ on complex differential forms:

∗ : A1
C(Xϕ)→ A1

C(Xϕ)

which in local coordinates z = x+ iy is defined by

∗dx = dy and ∗ dy = −dx

and for every complex 1-form σ = fdz + gdz on Xϕ it results

∗σ := −ifdz + igdz.
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Endowing every tangent space TϕHg(2g − 2) with the hermitian product hϕ, one

obtains a well defined hermitian form h on H1
g(2g − 2).

We denote by Ω the corresponding skew symmetric 2-form

Ω := −Im(h).

The present chapter is devoted to the proof of the following theorem.

Theorem 6.0.1. The hermitian form h on H1
g(2g − 2) is not a Kähler form, since

dΩ 6= 0.

Proof. In order to being able to compute dΩ it is clearly necessary to first write down

the hermitian product h in local coordinates on Hg(2g − 2) and thus to consider the

variation of the Hodge star operator to nearby surfaces.

We will perform the computations at first order.

Let {ϕ1, ϕ2, . . . , ϕ2g} be any basis of H1(X,Σ(ϕ),C) ' H1(X,C) (where Σ(ϕ) is

the zero of ϕ) made of complex differential forms which are zero in a neighborhood of

Σ(ϕ) in Xϕ. For any t = (t1, . . . , t2g) ∈ D ⊂ C2g, where D is an open neighborhood

of the origin, one obtains a first order deformation ϕ(t) of ϕ in Hg(2g− 2) as follows:

ϕ(t) = ϕ+ εϕ̇(t) + o(ε), ϕ̇(t) =

2g∑
l=1

tlϕl

and the coefficients t can be considered as local coordinates around ϕ.

We will be consistent with the previous notation and writeXϕ(t) to denote the complex

structure with respect to which ϕ(t) is an Abelian differential.

The hermitian form h can be written down explicitly in the point ϕ(t) as:

hϕ(t) =

2g∑
j,k=1

hjk(t)dtidtj

and, thanks to the fact that the forms ϕi vanish in a neighborhood of Σ(ϕ), the

coefficients hjk(t) are:

hjk(t) = hϕ(t)(ϕj , ϕk) =
1

2

∫
Cϕ(t)

ϕj ∧ (∗tϕk),

where we wrote ∗t instead of ∗Xϕ(t)
to linghten the notation.

In order to being able to compute the derivatives of the coefficients hjk(t), we first

have to find an explicit way to compute the Hodge operator ∗t.

Given any Riemann surface X and a Beltrami differential µ on it with local coef-

ficient ν, the following formulas, which can be found in [Ro], allow one to compute
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the Hodge operator ∗Xµ of the complex structure Xµ obtained deforming X with the

Beltrami differential µ:

∗Cµ(dz + νdz) = −i(dz + νdz), (6.1)

∗Cµdz =
−i(1 + |ν|2)

1− |ν|2
dz − 2iν

1− |ν|2
dz. (6.2)

In case of the first order deformation ϕ(t), the complex structureXϕ(t) can be obtained

deforming Xϕ with the Beltrami differential µ(t):

µ(t) = εµ̇(t) + o(ε), µ̇(t) =

∑2g
l=1 tlϕ

0,1
l

ϕ
,

where µ̇(t) has local coefficient ν̇(t):

ν̇(t) =

∑2g
i=1 tlf

0,1
l

f

and f, f0,1
l are the local coefficients of ϕ and ϕ0,1

l :

ϕ = fdz, ϕl = ϕ1,0
l + ϕ0,1

l = f1,0
l dz + f0,1

l dz.

Applying formulas (6.1) and (6.2) to this case we obtain:

∗tdz = −idz − 2iν̇(t)dzε+ o(ε),

∗tdz = idz + 2iν̇(t)dzε+ o(ε)

and thus the following local expression for hjk(t):

hjk(t) = h0
jk(t) + εihεjk(t) + o(ε)

with

h0
jk(t) =

1

2

(∫
Xϕ(t)

ϕ1,0
j ∧ ϕ

1,0
k −

∫
Xϕ(t)

ϕ0,1
j ∧ ϕ

0,1
k

)
,

hεjk(t) =

∫
Xϕ(t)

ϕj ∧ f1,0
k

2g∑
l=1

tlf
0,1
l

f
dz −

∫
Xϕ(t)

ϕj ∧ f0,1
k

2g∑
m=1

tmf
0,1
m

f
dz

which can be rewritten as

hjk(t) =
1

2

∫
Xϕ(t)

ϕj∧(∗ϕk)+iε

2g∑
l=1

(
tl

∫
Xϕ(t)

f1,0
k

f
ϕ0,1
j ∧ ϕ

0,1
l − tl

∫
Xϕ(t)

f0,1
k

f
ϕ1,0
j ∧ ϕ

0,1
l

)
+o(ε).

It is now possible to compute the derivatives of hjk(t) with respect to ti and ti:

∂

∂ti
hjk(t) = −iε

∫
Xϕ(t)

f0,1
k

f
ϕ1,0
j ∧ ϕ

0,1
i
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∂

∂ti
hjk(t) = iε

∫
Xϕ(t)

f1,0
k

f
ϕ0,1
j ∧ ϕ

0,1
i = iε

∫
Xϕ(t)

f0,1
j

f
ϕ1,0
k ∧ ϕ

0,1
i .

The skew symmetric 2-form Ω = −Im(h) has the following local expression in

coordinates t1, . . . , t2g:

Ω =
i

2

2g∑
j,k=1

hjk(t)dtj ∧ dtk

and so it follows

dΩ =
i

2

2g∑
i,j,k=1

∂

∂ti
hjk(t)dti ∧ dtj ∧ dtk +

∂

∂ti
hjk(t)dti ∧ dtj ∧ dtk.

It is clear that the existence of a triple i, j, k such that

∂

∂ti
hjk(t) 6= ∂

∂tj
hik(t)

will imply dΩ 6= 0.

To this end we define

Θ(i, j, k) := i

(∫
Xϕ(t)

f0,1
k

f
ϕ1,0
j ∧ ϕ

0,1
i −

∫
Xϕ(t)

f0,1
k

f
ϕ1,0
i ∧ ϕ

0,1
j

)
= i

∫
Xϕ(t)

f0,1
k

f
ϕj ∧ ϕi

and we will display a basis {ϕ1, . . . , ϕ2g} of H1(Xϕ,C) made of complex differential

forms which vanish in a neighborhood of Σ(ϕ) such that there is a triple i, j, k with

Θ(i, j, k) 6= 0.

Let {σ1, . . . , σg} be any basis of H0(X,Ω1
C) such that σ1 = ϕ.

Choose a small neighborhood U of Σ(ϕ) in Xϕ and let ι : U → Xϕ be the inclusion

map. Up to shrinking U , we can assume the existence, for every i = 1, . . . , g, of an

holomorphic function Fi : U → C such that ι∗σi = dFi.

Let V be another neighborhood of Σ(ϕ) such that V ⊂ U . Pick a smooth function

ψ : Xϕ → R such that ψ|V ≡ 1 and ψ|X\U ≡ 0.

We define the basis {ϕ1, . . . , ϕ2g} of H1(X,C) in the following way:

ϕi := σi − d(ψFi), ϕi+g = σi − d(ψF i) for i = 1, . . . , g.

In this basis it will follow Θ(g + 1, 1, g + 1) 6= 0. Indeed, proceeding with the compu-

tations we obtain

Θ(g + 1, 1, g + 1) = i

∫
Xϕ(t)

f0,1
g+1

f
ϕ1 ∧ ϕg+1 = I1 + I2
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with

I1 = i

∫
Xϕ(t)\U

ϕ ∧ ϕ,

I2 = i

∫
U\V

(
1− ψ − ∂z(ψ)F1

f

)
((ϕ− d(ψF1)) ∧ (ϕ− d(ψF 1))).

Since

i

∫
Xϕ(t)\U

ϕ ∧ ϕ > 0

we just have to evaluate I2.

In a natural coordinate z = x + iy near Σ(ϕ) the differential ϕ and the function F1

have the local expressions

ϕ = z2g−2dz, F1 =
z2g−1

2g − 1
.

Substituting these expressions in I2 we obtain

I2 = i

∫
U\V

(
1− ψ − ∂z(ψ)z

2g − 1

)((
1−2ψ+ψ2+

(ψ − 1)

2g − 1

(
(∂zψ)z+(∂zψ)z

))
|z|4g−4dz∧dz

)
and consequently

I2 = J1 + J2 + J3

with

J1 = i

∫
U\V
|z|4g−4(1− ψ)3dz ∧ dz,

J2 =
−i

2g − 1

∫
U\V
|z|4g−4(1− ψ)2(2z(∂zψ) + z(∂zψ))dz ∧ dz,

J3 =
i

(2g − 1)2

∫
U\V
|z|4g−4(z2(∂zψ)2 + |z|2(∂zψ)(∂zψ))dz ∧ dz.

We can choose U to be the open disk of center Σ(ϕ) and radius r in the natural

coordinates for ϕ, V to be the open disk of center Σ(ϕ) and radius r′ < r and choose

ψ to be

ψ = e
−(|z|−r′)2

(|z|−r)2 on U \ V .

With these choices it will follow that all three summands J1, J2, J3 are real and greater

than zero.

In particular, since 1− ψ > 0 for r′ < |z| < r and 1− ψ = 0 for |z| = r′, it results

i

∫
U\V
|z|4g−4(1− ψ)3dz ∧ dz > 0.

One could also simplify the integrand of J2 as follows

2z(∂zψ) + z(∂zψ) =
3

2
(x(∂xψ) + y(∂yψ)) +

i

2
(y(∂xψ)− x(∂yψ))
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and since on U \ V it results

x(∂xψ) + y(∂yψ) = −2(r′ − r)|z|ψ (|z| − r′)
(|z| − r)3

< 0, y(∂xψ)− x(∂yψ) = 0

one obtains

−i
2g − 1

∫
U\V
|z|4g−4(1− ψ)2(2z(∂zψ) + z(∂zψ))dz ∧ dz > 0.

Finally, since z2(∂zψ)2 + |z|2(∂zψ)(∂zψ) can be rewritten as

2(x(∂xψ) + y(∂yψ))2 + 2i((y2 − x2)(∂xψ)(∂yψ) + xy((∂xψ)2 − (∂yψ)2))

and on U \ V it results

x(∂xψ) + y(∂yψ) < 0, ((y2 − x2)(∂xψ)(∂yψ) + xy((∂xψ)2 − (∂yψ)2)) = 0

it finally follows

i

(2g − 1)2

∫
U\V
|z|4g−4(z2(∂zψ)2 + |z|2(∂zψ)(∂zψ))dz ∧ dz > 0.

We have thus proved Θ(g + 1, 1, g + 1) > 0 and dΩ 6= 0.
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[PT] A.Papadopoulos, G.Théret, On the topology defined by Thuston’s

asymmetric metric, Mathematical Proceedings, Cambridge University Press

(CUP), 2007, 142 (3), pp.487-496.

119



BIBLIOGRAPHY BIBLIOGRAPHY

[PT2] A.Papadopoulos, G.Theret, On Theichmüller’s metric and Thurston’s

asymmetric metric on Teichmüller space, Handbook of Teichmüller Theory,

Volume 1, 11, European Mathematical Society Publishing House, 2007, IRMA

Lectures in Mathematics and Theoretical Physics.

[Ro] H.L.Royden, The variation of harmonic differentials and their peri-

ods, Complex analysis, Birkhäuser Verlag Basel 1988.
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