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Abstract

A control procedure of global dynamics is applied to a reduced order model of noncontact AFM with the aim to shift the homoclinic

bifurcation involving the system hilltop saddle. The method consists of adding to the system harmonic excitation controlling

superharmonics to be properly identified by solving an optimization problem. The analytical bifurcation threshold is determined

through the asymptotic Melnikov method, for the reference system and for the controlled system. The practical effect of the control

as regards possibly increasing the system overall robustness by shifting the start of the erosion of the safe basin is then numerically

investigated by means of a dynamical integrity analysis based on the evolution of basins of attraction.
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1. Introduction

In Atomic Force Microscope (AFM) literature several control techniques have been proposed in the last decades

to improve microscope performances or avoid unwanted behaviors1,2,3. They are mostly based on feedback methods

aimed at stabilizing single suitable responses, so their effects on the overall dynamics are generally unknown. In

particular, recent studies have shown that, while being generally effective in realizing the specific aim for which it

is designed4, the insertion of an external feedback control in a noncontact AFM model causes a generalized reduc-

tion of the stability region and a dangerous decrease of system safety with respect to the unwanted jump to contact

phenomenon5.

Yet, from a practical stability perspective, an acceptable system-dependent residual integrity is needed to guarantee

secure AFM operation since it is nowadays well known that the safety of a nonlinear system depends not only on

stability of its solutions but also on the uncorrupted basins of attraction surrounding them6. Thus, focusing on the

preservation of dynamical integrity, it is worth exploiting whether a non-feedback control technique specifically aimed

at favorably affecting a global bifurcation event which triggers basins erosion can also work for the AFM system and

reduce the basin erosion which leads to the loss of safety. The method7 consists of optimally modifying the shape
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of the reference harmonic excitation to shift the occurrence of the global event (i.e., homo/heteroclinic bifurcation of

some saddle) which triggers the sudden fall down of the dynamical integrity profiles, thus obtaining an overall control

of the dynamics and an enlargement of the system safe region in parameters space. Usually, global bifurcations

triggering erosion involve the stable and unstable manifolds of the hilltop saddle; in this case, their occurrence can be

analytically detected by the asymptotic Melnikov method8, and their control has proved to be effective in somehow

delaying the erosion also when the actual fall down of the profiles is likely due to other secondary bifurcations which

involve internal saddles9.

In the light of this, the present work is focused on the application of the control method to the main bifurcation

event involving the hilltop saddle; the analytical procedure aimed at detecting the critical value of excitation ampli-

tude corresponding to the manifolds intersection is applied to the general system with N superharmonics (included the

reference harmonic case). The theoretical results are then numerically verified for the case of one controlling super-

harmonic, and for different values of the forcing frequency around the fundamental resonance, which has resulted to

be a very critical region for the system4,10. Finally, the evolution of the basins of attraction for the controlled system

is investigated with the aim to point out the effect of the bifurcation shift on the evolution of the basins erosion.

2. Control of homoclinic bifurcation of hilltop saddle

2.1. AFM model

The control procedure is applied to a reduced model of noncontact AFM already studied in10 (see figure 1(a)),

whose equation of motion in the case of horizontal and harmonic scan excitation is:

ẍ + α1x + α3x3 +
Γ1

(1 + x)2
= −ρ1 ẋ − xμ1ω

2
uU1 sin(ωut) (1)

where x is the transverse microcantilever displacement; α1, α3 are linear and cubic stiffness terms; ρ1 is the linear

damping coefficient; Γ1 is the attractive Lennard-Jones like atomic interaction coefficient11; U1 is the amplitude of

the horizontal parametric-like excitation and ωu is the relevant forcing frequency.

The operation domain of the noncontact AFM must be such to avoid the jump to contact with the scanned sample.

In dynamical system terms, this is ascertained by considering the undamped, unforced version of (1)

ẍ + α1x + α3x3 +
Γ1

(1 + x)2
= 0 (2)
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Fig. 1: AFM microcantilever (a), potential V(x) (b), and unperturbed phase space (c) for α1 = 1, α3 = 0.1, Γ1 = 0.1. In (c), homoclinic orbit yh
(solid red), periodic orbit (solid black), unbounded orbit (dashed black), equilibrium point (E), hilltop saddle point (S H) are reported.
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whose Hamiltonian reads

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ =
∂H
∂y

ẏ = −∂H
∂x

H(x, y) = +
y2

2
+ V(x) = +

y2

2
+
α1x2

2
+
α3x4

4
− Γ1

1 + x
(3)

with the associated single potential well with left (i.e., towards the sample position x = −1) contact direction (escape),

as shown in figure 1(b). The unperturbed state space is depicted in figure 1(c), where the two fixed points of the time-

independent problem, the stable equilibrium (E) of the cantilever tip under elastic (α1, α3) and atomic interaction (Γ1)

forces and the corresponding hilltop saddle (S H), are reported for a given set of values of the governing parameters.

The homoclinic orbit of the saddle is represented by the red curve in figure 1(c), and separates the inner region

of bounded periodic solutions, representing the safe domain for noncontact AFM operation, from the outer region

of unbounded solutions leading to the unwanted jump to contact phenomenon. Its expression, obtained from the

Hamiltonian system (3), reads

yh(x) =
dxh

dt
= ±√2(V(xS H ) − V(x)) (4)

where xS H is the coordinate of the hilltop saddle. The integral (4) cannot be obtained in closed form but has to be com-

puted numerically. It is worth reminding that such a curve represents the right unstable (Wu(S H)) and stable (W s(S H))

manifolds of the hilltop saddle, which coincide with each other due to the unperturbed nature of the Hamiltonian

system (see sketch in figure 2).

2.2. Analytical procedure

The control procedure aims at shifting the bifurcation threshold by optimally modifying the excitation shape7,

i.e. by adding controlling superharmonics to the harmonic excitation of the system (1):

ẍ + α1x + α3x3 +
Γ1

(1 + x)2
= −ρ1 ẋ − xμ1ω

2
uU1

N∑
j=1

U j

U1

sin( jωut + Ψ j) (5)

where U1 is the horizontal parametric-like reference excitation while U j and Ψ j are the amplitudes and phases of the

controlling superharmonics.

The presence of damping and excitation in system (5) causes the separation of the stable and unstable manifolds

of the Hamiltonian system (1) (see figure 2), which may remain disjoint or intersect depending on the value of the

excitation parameters. The critical situation of manifolds tangency corresponds to the occurrence of a global homo-

Fig. 2: Qualitative behavior of the stable (WS ) and unstable (WU ) manifolds of the hilltop saddle for the Hamiltonian system (red) and the

ε-perturbed, forced, damped system (black).
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clinic bifurcation, which can be analytically detected by the classical Melnikov method. Following the method, and

in presence of weak excitation and damping, the system (5) can be expressed as an ε-perturbation of the Hamiltonian

system (3): ⎧⎪⎪⎨⎪⎪⎩
ẋ = y
ẏ = −α1x − α3x3 − Γ1

(1+x)2 + ε
(
−ρ1y − xμ1ω

2
uU1

∑N
j=1

U j

U1
sin( jωut + Ψ j)

) (6)

where ε is a smallness parameter. To the first order of the underlying asymptotic expansion, the distance between the

stable (W s(S Hε)) and unstable (Wu(S Hε)) manifolds of the perturbed system is furnished by the Melnikov integral:

M(t0) =

∫ +∞
−∞

yh(t)
(
−ρ1yh(t) − xh(t)μ1ω

2
uU1

N∑
j=1

U j

U1

sin( jωu(t + t0) + Ψ j)
)
dt

= 2ρ1I1 − 2μ1ω
2
uU1I2(ωu)h(m)

(7)

where

I1 = −
∫ xS H

xA

yh(x)dx, I2( jωu) =

∫ xS H

xA

x sin
(

jωu

∫ x

xA

dr
yh(r)

)
dx

are integrals to be numerically computed, and

h(m) =

N∑
j=1

h j cos( jωut0 + Ψ j), h j =
U jI2( jωu)

U1I2(ωu)

is 2π-periodic with zero mean value (m = ωut0).

The tangency of the stable and unstable manifolds, i.e. the occurrence of the homoclinic bifurcation, corresponds

to a simple zero of the Melnikov integralM(t0) = 0 for some t0:

U1,cr =
ρ1I1

μ1ω2
u|I2(ωu)|M , with

⎧⎪⎪⎨⎪⎪⎩
M = M+ = maxm∈[0,2π]{h(m)}, I2(ωu) > 0

M = M− = −minm∈[0,2π]{h(m)}, I2(ωu) < 0
(8)

Note that in presence of the sole reference harmonic excitation ( j = 1) h1 = 1 and M = 1.

The aim of the control method is to shift the occurrence of the homoclinic tangency to the highest possible value

of the forcing amplitude, which corresponds to the following optimization problem7:

Maximize min
m∈[0,2π]

{h(m)}, I2(ωu) < 0

Minimize max
m∈[0,2π]

{h(m)}, I2(ωu) > 0
(9)

The optimization can be achieved by properly choosing h j and Ψ j, where j = 1, 2, 3, ..,N is the number of superhar-

monics to be added to the system. To measure the improvement obtainable with respect to the reference harmonic

excitation, the gain G is introduced: G = U1,cr/Uh
1,cr = 1/M, where Uh

1,cr represents the critical amplitude for the

reference harmonic system. Setting Ψ j = 0 and focusing on the addition on one superharmonic, i.e. j = 2, the

evolution of h(m) for varying h2 is reported in figure 3(a). Here, the black curve corresponds to the presence of the

sole harmonic excitation (h2 = 0) with the minimum of the curve which is equal to −1 (G = 1), the orange curve is

obtained for h2 = 0.353553 and is the solution of the optimization problem (9), as its minimum reaches the maximum

value in h(m) = −0.707107, corresponding to the maximal theoretical gain G = 1.41427. Finally, the grey curve,

obtained for h2 = 0.8535, shows the minimum equal to −1, as in the harmonic case. Referring to such three cases, the

relevant homoclinic bifurcation thresholds detected by means of the Melnikov method are reported in figure 3(b) in

the excitation parameters plane (ωu, U1). The outcomes confirm that the presence of the optimal superharmonic into

the model (orange curve in figure) manages to shift the bifurcation threshold to higher values of the forcing amplitude

with respect to the harmonic case (black curve), apart from the region around the ”anti-resonant” frequency ωu ≈ 1.03

at which the threshold goes to infinity due to the first order nature of the Melnikov approximation. It is worth noting
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Fig. 3: h(m) for different values of the h2 parameter (a) and relevant analytical bifurcation thresholds in the ωu-U1 plane (b). Black curve: reference

harmonic system; Orange curve: system with superharmonic h2 = 0.353553 (optimal); Grey curve: system with superharmonic h2 = 0.8535.

that the black curve represents also the results obtained for the case h2 = 0.8535 (grey curve in figure 3(a)), meaning

that in this case the presence of the superharmonic is non influential in the occurrence of the global bifurcation.

2.3. Numerical validation

The analytical results have been validated by the numerical detection of the hilltop manifolds for different values of

forcing amplitude and for a frequency range which includes values to the right and left of the fundamental resonance

ω1 = 0.8357. Figure 4 shows the tangency between the stable (red) and unstable (blue) hilltop manifolds at ωu = 0.7
for the system with harmonic excitation (figure 4(a)) at U1 = Uh

1,cr = 0.001823 and with optimal superharmonic

(U2/U1 = −0.53898, figure 4(b)) at U1 = U1,cr = 0.002578 (which corresponds to G = 1.4142). Beyond confirming

the accuracy of the results furnished by the analytical Melnikov procedure, the outcomes highlight a qualitatively

different trend of the hilltop manifolds in the two cases, with the tangent point being shifted along the stable manifold

by the addition of the optimal superharmonic. It is worth noting that the increase of the bifurcation threshold occurs

for negative values of the amplitude of the controlling superharmonic, while positive amplitudes produce a worsening

effect of the global dynamical behavior. From an operational point of view, the same result can be achieved by

applying positive superharmonics with a phase shift Ψ2 = π.
The effect of different superharmonics can be observed in figure 5, obtained at ωu = 0.7 and U1 = Uh

1,cr = 0.001823

for the system with the optimal superharmonic U2/U1 = −0.53898 (figure 5(a)) and with the superharmonic U2/U1 =

x

y SH

x

y

(a)

SH

x

y

(b)

Fig. 4: Stable (red) and unstable (blue) manifolds of the hilltop saddle S H , and enlargement, for the reference harmonic system at Uh
1,cr = 0.001823

(a) and for the system with optimal superharmonic at U1,cr = 0.002578 (b). Circle points identify one of the manifolds tangency points.
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Fig. 5: Stable (red) and unstable (blue) manifolds of the hilltop saddle S H for the system with optimal superharmonic (a) and for the system with

superharmonic h2 = 0.8535 (b) at Uh
1,cr = 0.001823. Circle points identify one of the manifolds tangency points.

−1.301 (corresponding to h2 = 0.8535, figure 5(b)). The presence of the optimal controlling superharmonic causes the

maximal separation of the hilltop manifolds, and the maximum gain G. Instead, for U2/U1 = −1.301, the manifolds

intersect again, even if their pattern is rather different and the bifurcation point is shifted.

3. Effects of the control on the system dynamical robustness

In the previous section, the addition of controlling superharmonics into the model has shown to be a simple and

efficient procedure for delaying the occurrence of the homoclinic bifurcation involving the manifolds of the hilltop

saddle. The effects of such control on the evolution of the safe basin erosion are now discussed, by carrying out the

analysis of the system dynamical integrity. In this respect, the safe basin is defined as the union of the classical basins

of attraction inside the potential well, and the integrity measures used to quantify the erosion are the Global Integrity

Measure (GIM), corresponding to the area of the safe basin, and the Integrity Factor (IF), which represents the radius

of the largest circle inscribed into the safe basin and is a measure of its compact part12. By numerically obtaining the

basins of attraction for increasing values of the forcing amplitude, and by quantifying the basins integrity, the erosion

profiles of figure 6 are obtained, for the system with harmonic excitation (black curves) and for the one with optimal

superharmonic (orange curves), at frequency values before and after the fundamental resonance ω1 = 0.8357.

(a) (b)

Fig. 6: Erosion profiles as a function of the forcing amplitude U1 for the reference harmonic system (black) and for the system with optimal

superharmonic (orange), at ωu = 0.7 (a) and at ωu = 0.9 (b). Dashed lines: profiles obtained with Integrity Factor (IF); Continuous lines: profiles

obtained with Global Integrity Measure (GIM); IM: Integrity Measures.
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Fig. 7: Manifolds and basins of attraction for the system with optimal superharmonic at U1 = 0.002 (a) and at U1 = 0.003 (b), for ωu = 0.7.

The results highlight that the controlling superharmonic is not able to improve the system integrity, i.e to shift the

profiles fall down to higher values of the forcing amplitude, different from what observed in several other systems with

escape12. Moreover, right of the fundamental resonance the controlled profiles result to be sharper than the harmonic

ones, especially in their final part (see figure 6(b)), meaning that for high values of the forcing amplitude the control

worsens the system robustness (this is anyway a well known behavior, detected in other literature systems12). To

investigate the causes of this behavior, the evolution of the basins of attraction for increasing U1 has been numerically

investigated, for the reference harmonic system and for the system with optimal superharmonic, even if in this paper

only the results related to the latter are reported for the sake of brevity. Figure 7 shows the behavior of the basins and

manifolds before and after the homoclinic bifurcation at U1 = 0.002578 for the controlled system at the left of the

resonance (ωu = 0.7). Once the manifolds intersect, the unbounded solution basin which surrounds the potential well

(white basin in figure) starts penetrating inside the well through fractal tongues from the outer edge. However, the safe

basin erosion develops so slowly that it can be observed only through enlargements (not reported) of the basin border,

and does not affect the basin size and, consequently, the slope of the erosion profiles. It is worth pointing out that just

before the homoclinic bifurcation, at U1 = 0.00244, inside the basin of the nonresonant 1-period solution (grey basin

in figures 7 and 8) a new basin arises (pink basin in figures 7 and 8), corresponding to the competing resonant 1-period

solution, and it grows to the detriment of the former as the amplitude increases (see10 for the detailed behavior of the

reference system basins). In this situation, the safe basin is considered as the sum of the two basins of attraction, under

the condition of total absence of the unbounded basin between them.

When the amplitude approaches the value U1 = 0.0067 (numerically detected) corresponding to the profiles fall

down, the two 1-period basins separate due to the penetration of the unbounded basin tongue, as reported in figure 8(b).

As a consequence, the safe basin size is suddenly reduced and becomes coincident with the sole grey (nonresonant)

basin (which is the bigger one), thus causing the sharp decrease of the profiles in figure 6(a), which actually occurred

also in the absence of control. At this amplitude, the positive effects of the homoclinic bifurcation shift, occurred at

considerably lower values of excitation amplitude, have been exhausted; in fact, the stable and unstable manifolds of
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Fig. 8: Manifolds and basins of attraction for the system with optimal superharmonic at U1 = 0.005 (a) and at U1 = 0.01 (b), for ωu = 0.7.
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the hilltop saddle clearly intersect each other. However, the presence of two basins inside the potential well suggests

the presence of other internal saddles whose manifolds are responsible for the basins behavior inside the well.

After the fundamental resonance (see figure 6(b)), there is no more coexistence of the two competing reso-

nant/nonresonant solutions10 and the safe basin corresponds to the main 1-period solution (apart from multiple period

solutions occurring in very narrow ranges of the forcing amplitude). At these frequencies, the safe basin erosion

develops slowly over a wide range of excitation amplitudes, and only for high relevant values, far away from the

homoclinic bifurcation amplitude, the presence of secondary solutions causes the fall down of the erosion profile.

4. Conclusions

A control procedure aimed at shifting the occurrence of the homoclinic bifurcation involving the manifolds of the

hilltop saddle has been applied to a reduced model of noncontact AFM, with also the practical objective to possibly

increase the system robustness by shifting the start of the erosion phenomenon which leads to the undesired jump

to contact to higher values of the forcing amplitude. The method, based on the introduction of controlling superhar-

monics into the model, has been analytically developed by applying the asymptotic first order Melnikov procedure

to determine the occurrence of the homoclinic bifurcation. After that, the optimal superharmonic has been detected

based on the universal optimization problem formulated in other literature works for various mechanical systems.

The results have been numerically validated and they have confirmed the efficiency of the control method in moving

the global bifurcation to higher amplitude values, thus enhancing the system safe, i.e. non fractal, region mostly for

frequencies around the fundamental resonance which are proved to be the most critical ones for the system4,10.

However, different from other literature cases, the analysis of the basins evolution has shown that the control of

the hilltop saddle manifolds does not manage to improve the system overall robustness with respect to the increasing

forcing amplitude. This is likely due to the homoclinic bifurcation of the hilltop saddle being too far from the start

of the safe basin erosion, and by the meaningful role played in this respect by other saddles present in the system.

Preliminary investigations have pointed out the importance of the internal saddle on the boundary between the main

in-well competing solutions, whose manifolds undergo two subsequent global bifurcations for forcing amplitudes very

close to the start of the robustness reduction (i.e. to the erosion profile fall down), thus probably being responsible

for the erosion development. Ongoing studies are addressed to the careful detection and control of these other global

bifurcations, for which however the analytical Melnikov procedure cannot be applied and a fully numerical technique

has to be implemented.
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