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Abstract: We study the effect on the stationary currents of constraints affecting the hopping rates in
stochastic particle systems. In the framework of zero range processes with drift within a finite volume,
we discuss how the current is reduced by the presence of the constraint and deduce exact formulae, fully
explicit in some cases. The model discussed here has been introduced by Cirillo et al. (Does communication
enhance pedestrians transport in the dark? To appear in C. R. Mécanique 344 (2016), 19–23) and is relevant
for the description of pedestrian motion in elongated dark corridors, where the constraint on the hopping
rates can be related to limitations on the interaction distance among pedestrians, but finds also applica-
tions in the modeling of various transport phenomena.
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1 Introduction

This paper reports on exact results for the calculation of stationary currents for a class of one-dimensional
zero range processes (ZRPs) with threshold modeling the dynamics of pedestrians walking in an elongated
corridor with no visibility. Modeling the corridor as a one-dimensional array of discrete sites, we assume
that more pedestrians (particles) can occupy the same site (forming, possibly, social structures) and no
interaction between these particles takes place.

The evolution of the pedestrians is determined by the level of occupancy of the sites. The main
specific feature is the presence of the activation threshold which keeps the “escape rate” minimal until a
certain occupation number on the site, corresponding to the threshold, is reached. The threshold can be
related to the limited interaction distance among pedestrians [1]: only if a site is sufficiently populated
pedestrians can efficiently exchange information and move coherently to a neighboring spot. The
approach can be further extended to consider the presence of multiple thresholds (e. g. communication
saturation thresholds cf. Ref. [2], de-centralized task-allocation thresholds cf. Ref. [3], and so on).
However, in that case of multiple thresholds exact calculations are out of reach. Our attempt is particu-
larly relevant for the construction of exact microscopic and macroscopic fundamental diagrams (explicit
relationships between the pedestrians speed and local density, see Ref. [4]) for pedestrians motion in one-
dimensional models.

The distinguishing feature of the model is the presence of the activation threshold whose meaning
for pedestrian motion has been discussed earlier (see, also, Ref. [5] for the discussion of threshold effects
in pedestrian dynamics in the framework of a two-dimensional model). Nevertheless, different
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interpretations are possible: for instance, in the framework of Porous Media, the bulk porosity estimates
how many particles can be accommodated in a cell and this connects to the activation threshold.
Activation thresholds are also meaningful in pure mechanical applications: imagine that a device is
equipped with valve-like door whose opening results from the balance between the pressure inside the
cell and an external force exerted by a spring. A minimal – structural – opening of the door, with the
spring maintained at rest, corresponds to the presence of an activation threshold. A psychologico-
geometrical interpretation is also possible: the activation threshold can be indeed regarded as a measure
of the domain of communication between the individuals and the level this communication is processed
towards a decision on the motion. Moreover, the mathematical framework developed in this work paves
also the way for a deeper understanding, through the prism of stochastic dynamics, of the kinetic
mechanisms giving rise to the hydrodynamic properties observed, e. g. in the study of the transport of
a gas or a liquid through polymeric matrices, see e. g. Refs. [6, 7]. Interestingly, note that despite the
microscopic dynamics described in the sequel is not related to any energy function, the activation
threshold present in our model connects, quite naturally, with the activation energy occurring in the
Arrhenius expression for the rate of a chemical reaction, with the site occupancy (a random variable)
playing the role of a temperature. It is also worth mentioning that a suitable variant of the model
discussed below was also introduced in the literature, see Ref. [8], to investigate the thermodynamic
properties of heterogeneous materials, in which, e. g., a single site may be equipped with a hopping rate
whose dependence on the site occupancy differs from the rule assigned to the remaining sites. This
situation was shown to give rise to interesting physical phenomena, cf. also Ref. [9].

Coming back to the original problem, the microscopic dynamics is modeled here via a ZRP, cf. Ref. [10],
in which the particles hop, with a certain intensity and an assigned probability, to the neighboring sites and
in which the threshold affects the intensity of the jumps from each lattice site. In the framework of ZRP
models, thresholds are not a novelty, see e. g. Refs. [11, 12], where condensation and metastability effects
have been studied. In those papers the value of the threshold is scaled with the size of the system and
distinguishes between “fast” sites, namely those with a sufficiently small number of particles, and “slow”
sites, the remaining ones.

We exploit the threshold in a different fashion, see Ref. [1, 2]: indeed, for our application, the hopping
rate must be increasing with the number of particles on the spot and the threshold is used to activate the
regime in which the rate starts to increase linearly with the number of particles. In Refs. [1, 2] the model has
been studied in the hydrodynamic limit, whereas in this Note we solve the model for finite values of the
lattice size and the number of particles. In particular, here we compute the steady-state current, which is,
even in the pedestrian motion interpretation, the main quantity of interest.

In the absence of threshold, the stationary current increases proportionally to the number of
particles, whereas it tends to an asymptotic value when the threshold is equal to the number of particles.
In such a case no site exceeds the threshold and the hopping rate stays always equal to its minimal value.
We compute the steady current for any intermediate value of the threshold and, in particular, we have
some analytical and numerical evidence that thresholds proportional to the number of particles are
sufficient to induce the asymptotic limiting regime.

We remark that the focus of the paper is on the combined effect of a bias (i. e. a driving force, breaking
the condition of detailed balance) and an activation threshold in the presence of a finite number of particles
moving on a finite lattice, endowed with periodic boundary conditions. Thus, we shed light on the finite size
corrections to the value of the stationary current obtained in the hydrodynamic limit of the model (see Ref.
[13] for mathematical details): this program is pursued, here, by evaluating the canonical partition function,
which can be explicitly read out in a few cases.

The paper is organized as follows. In Section 2 we introduce the model and define the stationary
current. In Section 3 we derive the expression of the partition function of the model that is exploited in
Section 4 to compute the current and to compare theoretical results to numerical simulations. Conclusions
are drawn in Section 5.
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2 The model

We consider a positive integer L and define a ZRP on the finite torus Λ := 1, . . . , Lf g � Z, cf. Refs. [13, 14].
We fix N 2 Z + and consider the finite state or configuration space ΩL,N :

ΩL,N : = η 2 f0, . . . ,NgΛ,
XL
x = 1

ηx =N

( )
. (1)

Given η= ðη1, . . . , ηLÞ 2 ΩL,N the integer ηx is called number of particle at site x 2 Λ in the state or
configuration η. Pick the threshold T 2 1, . . . ,Nf g and define the intensity

gTð0Þ=0, gTðkÞ= 1 for 1 ≤ k ≤T, gTðkÞ = k −T + 1 for k >T. (2)

The ZRP considered in this paper is the continuous-time Markov process ηt 2 ΩL,N , with t ≥0, such that
each site x 2 Λ is updated with intensity gTðηxðtÞÞ and, once such a site x is chosen, a particle jumps to
the neighboring sites x − 1 and x + 1 with probabilities, respectively, 1− p and p (recall periodic boundary
conditions are imposed). Note that the equilibrium condition of detailed balance holds only for p= 1=2.
The above-described jump process corresponds, hence, to an inhomogeneous Poisson process with
hopping rates

rx, x + 1ðηÞ= gðηxÞp, rx, x − 1ðηÞ= gðηxÞð1− pÞ and rx, yðηÞ=0 for y ≠ x − 1, x + 1. (3)

Given the threshold T, the intensity function is constantly equal to 1 up to T and then it increases linearly
with the number of particles occupying the site. In other words, all sites with number of particles smaller or
equal to T are treated equally by the dynamics, whereas the updating of those sites with more than T
particles is favored. For this reason T is called activation threshold.

We note that in the limiting case T = 1 the intensity function becomes g1ðkÞ= k, for k > 0, and thus the
well-known independent particle model is recovered. A different limiting situation is the one in which the
intensity function is constantly equal to 1 for any k ≥ 1 and equal to 0 for k =0. In this case, a ZRP whose
configurations can be mapped to the simple exclusion model states is found. We shall refer to the latter
case as to the simple exclusion-like model. Such a model is found, in our setup, when T =N. We stress that
one of the interesting issues of our model is the fact that it is able to tune between two very different
dynamics: the independent particle and simple exclusion-like behavior.

It can be proven (see Ref. [10, 13]) that the invariant measure of the ZRP is a product measure of
the form

μL,N, TðηÞ =
1

ZL,N,T

Y
x = 1, ..., L :

ηx ≠ 0

1
gTð1Þ � � � gTðηxÞ

(4)

for any η 2 ΩN, L, where the partition function ZL,N, T is the normalization constant.
The main quantity of interest, in our study, is the stationary current representing the difference between

the average number of particles crossing a bond between two given sites from the left to the right and that
in the opposite direction. More precisely, since periodic boundary conditions are imposed, the current does
not depend on the chosen bond and is defined as

JL,N, T : = rx, x + 1 − rx + 1, xh iL,N,T = ð2p− 1Þ gTh iL,N, T (5)

where we introduced the notation f ðηÞh iL,N, T : =
P

ημL,N, TðηÞf ðηÞ for any function f : ΩL,N,T ! R .

A general expression for the expectation, with respect to the invariant measure (4), of the intensity
function can be provided (see Ref. [10]). More precisely it holds
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gTh iL,N,T =
ZL,N − 1,T

ZL,N,T
(6)

Equations (5) and (6) yield the following expression:

JL,N,T = ð2p− 1Þ ZL,N − 1,T

ZL,N,T
(7)

for steady-state current.

3 Canonical partition function

The final goal of this paper is computing the steady-state current at finite volume for any value of the
threshold. In order to apply eq. (7), we need an explicit expression of the partition function.

In this section we shall prove an exact formula expressing the partition function in terms of sums of
factorials and yielding explicit expression of the partition function in the limiting cases T = 1 and T =N.

We first state a combinatorial lemma whose proof is based on techniques borrowed from Ref. [15]. Given
the positive integers i, j, k, we let Φði, j, kÞ be the number of ways in which j indistinguishable balls can be
distributed into i distinguishable urns with at most k balls into each urn. Note that for j > ki we shall
understand Φði, j, kÞ=0. For i, j positive integers, we also let

i
j

� �
: =

i+ j− 1
j

� �
(8)

which can be proven to be equal to the number of ways in which j indistinguishable balls can be distributed
into i distinguishable urns, see Ref. [15, section 3.2.12].

Lemma 3.1. Let i, j, k be positive integers such that j ≤ ki, then

Φði, j, kÞ=
X�s
s=0

ð− 1Þs i
j− sðk + 1Þ

� �
i
s

� �
(9)

where �s := min i, j=ðk + 1Þb cf g.

We omit the simple proof of Lemma 3.1. It suffices to remark, here, that the proof relies on the theory of
generating functions, as presented, e. g. in Ref. [15, section 3.3.2].

The expression of Φði, j, kÞ provided by Lemma 3.1 attains a simpler form in a few cases. For instance,
when j= k, no constraint is imposed on the allocation of balls among the urns; hence, one should find

Φði, j, jÞ = i
j

� �
(10)

This is indeed the case, since it holds �s=0. Note that this is the result which is found when, in the Bose–
Einstein statistics, one counts the number of ways in which j particles can be distributed among i states. A
second relevant case is the one in which at most one particle can be allocated into each urn. The
corresponding value of Φ may then be derived either from eq. (8), by using the fact that, since k = 1 and
i ≥ j, it holds �s= j=2b c, or from the combinatorial definition of Φði, j, 1Þ. In either case, one obtains

Φði, j, 1Þ= i
j

� �
(11)

Note that this is the result one encounters in the Fermi–Dirac statistics, in which one counts the number of
ways in which j particles can be distributed among i states with the limitation, due to the exclusion
principle, of at most one particle per state.
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We can now state our main result about the canonical partition function of the ZRP model. Recall, see
eq. (4), that

ZL,N, T =
X

η :jηj=N

Y
x = 1, ..., L :

ηx ≠0

1
gTð1Þ � � � gTðηxÞ

. (12)

Theorem 3.2. For N, L positive integers

ZL,N, 1 =
LN

N!
(13)

Moreover, for any T ≥ 2 and L ≥ dN=ðT − 1Þe

ZL,N, T =ΦðL,N, T − 2Þ+
X�m
m= 1

�
L
m

�X�n
n=0

ΦðL−m,N − ½ðT − 1Þm+ n�,T − 2Þm
n

n!
(14)

where �m= bN=ðT − 1Þc and �nðmÞ =N − ðT − 1Þm.

Proof. Consider, first, the case T = 1. By eqs. (2) and (12) we get

ZL,N, 1 =
X

η : η =Njj

Y
x = 1, ..., L

1
ηx!

where we also used the convention 0!= 1. Thus, eq. (13) follows immediately by applying the multinomial
theorem, see, e. g. Ref. [15, equation (3.35)].

Consider, now, the case T ≥ 2. Call m 2 ½0, �m� the number of sites in which the number of particles is
larger than T − 1 and n 2 ½0, �n� the number of particles that, for a given m, exceeds the value T. Given a
configuration η, let also

nx =0 for ηx ≤T − 1 and nx = ηx − ðT − 1Þ for ηx >T − 1. (15)

Then, the partition function can be rewritten as

ZL,N, T =ΦðL,N, T − 2Þ+
X�m
m= 1

�
L
m

�X�n
n=0

ΦðL−m,N − ½ðT − 1Þm+ n�,T − 2Þ
X

n1 + ... + nm = n
nx ≥0

1
n1!...nm!

The first term in eq. (3) takes into account the contribution to the sum defining the partition function of
those configurations in which no site has a number of particles larger or equal to T − 1. The second term can
be explained as follows: the first binomial coefficient counts the number of ways one can choose the m sites
such that ηx ≥T − 1. Note that �m denotes the maximum value attained by m, for which it holds:
�m=minðLbN=ðT − 1ÞcÞ. Yet, by requiring L ≥ dN=ðT − 1Þe, one has �m= bN=ðT − 1Þc, as indicated in the
statement of the theorem. The coefficient ΦðL−m,N − ½ðT − 1Þm+ n�, T − 2Þ counts the number of ways to
allocate the remaining N − ½ðT − 1Þm+ n� particles on the L−m sites for which it holds ηx ≤ T − 2. The last sum
counts the number of ways in which the particles exceeding T, namely, those on the top of the T–1 filled
columns, can be distributed on the m sites. Finally, recalling eq. (2), we have that the last factor in the
equation is a smart rewriting of the last factor in eq. (12). Equation (14) in the theorem finally follows by
using the multinomial theorem (see, e. g. Ref. [15, equation (3.35)]). ◻

We remark that, although eq. (14) is not an explicit expression for the partition function, it is nevertheless
very useful. Indeed, the sum over the configuration space present in the definition of the partition function,
eq. (12), involves a number of terms exponentially large in the number of particles N, whereas the sum in
eq. (14) is only polynomial in N. Moreover, the expression for partition function given in eq. (12) involves a
constraint, namely ηj =N,j which has been removed in eq. (14).

E. N. Cirillo et al.: Steady Currents with Constrained Hopping Rates 103

Unauthenticated
Download Date | 4/14/16 10:31 AM



It is also interesting to remark that in the simple exclusion-like regime, namely, T = N, the partition
function ZL,N,N can be written explicitly as

ZL,N,N =ΦðL,N,NÞ=
D
L
N

E
=
�
L+N − 1
N

�
. (16)

To prove this formula, we compute, first, the term ΦðL,N,N − 2Þ in eq. (14). By using eq. (9) with i= L, j=N,
and k =N − 2, noted that �s= 1, one finds

ΦðL,N,N − 2Þ=ΦðL,N,NÞ−
D
L
1

E�
L
1

�
=ΦðL,N,NÞ− L2 (17)

Next, we evaluate the sums in eq. (14). Since �m= �n= 1, one needs to calculate just the terms
ΦðL− 1, 0,N − 2Þ and ΦðL− 1, 1,N − 2Þ. Since, for both terms, �s=0 in eq. (9), we get

ΦðL− 1, 0,N − 2Þ=
D
L− 1
0

E
= 1 and ΦðL− 1, 1,N − 2Þ=

D
L− 1
1

E
= L− 1 (18)

Equation (16) finally follows from eqs. (17), (18) and (14).
Note that the result in eq. (16) could also be directly deduced by eq. (12). Indeed, from definition (2) of

the intensity function, it follows that, for T =N, the sum in eq. (12) is indeed a sum of 1’s and, thus, yields
straightforwardly the total number of configurations ΦðL,N,NÞ.

As discussed in the Introduction, the threshold limits the hopping rate on sites whose occupancy
number is smaller than the threshold itself, whereas, when the prescribed value of the threshold is reached,
the hopping rate starts increasing proportionally to the number of particles on the site. In this respect, the
case T =N is peculiar, because all the sites are updated with the same minimal rate regardless of their
occupancy number.

It is also possible to guess another remarkable result: namely, when the threshold, although smaller
than N, scales proportionally to N, then the stationary current is close, for large N, to the value obtained for
T =N. More precisely, take α < 1; α 2 R

+ and suffciently close to 1, and compare the canonical partition
function of the systems with N particles, and thresholds equal, respectively to αN and N.

We thus conjecture that for N ! ∞

ZL,N, αN
ZL,N,N

= 1 + oð1Þ (19)

where o(1) denotes a function tending to zero in the limit N ! ∞.
We omit, here, the lengthy algebraic details, and we just mention that this observation may be relevant

in the study of the hydrodynamic limit of heterogeneous ZRP, in which the hopping rate from a given site
can be modified so as to scale with the size of the system.

4 Stationary currents and numerical simulations

In this section we report and compare both analytical and numerical results for the steady current in the
ZRP with threshold introduced in Section 2.

Numerics have been performed via Monte Carlo techniques by simulating the model as follows: call
ηðtÞ the configuration at time t, a number τ is chosen at random with exponential distribution of
parameter

PL
x = 1 gTðηxðtÞÞ and time is updated to t + τ, a site is chosen at random with probability

gTðηxðtÞÞ=
PL

x = 1 gTðηxðtÞÞ and a particle is moved from such a site to its right with probability p and to
its left with probability 1− p.

The Monte Carlo simulation is let, first, to evolve for a number of time steps n0⁓107, and the stationary
current is thus defined as the ratio of the difference between the total number of particles jumping from site
L to site 1 and that of particles jumping from site 1 to site L, to the total time. We remark that the initial
number of time steps n0 is chosen large enough to guarantee that a constant value, with respect to time, is
reached by the current.
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As for the analytical results on the current, note that the theory developed in the earlier sections paves
the way to the computation of the stationary current for any finite value of the parameters of the model, N,
L and T. We stress that we are considering a transport problem in which a net convective flux occurs in the
case p ≠ 1=2. Equations (7) and (14) can be used to reduce the computation of the stationary current to an
algebraic sum. In particular, in the two limiting cases T = 1 and T =N analytic formulae can be derived.

Indeed, from eqs. (7) and (13), the steady-state current for T = 1, i. e. in the independent particle
case, reads

JL,N, 1 = ð2p − 1ÞNL (20)

On the other hand, eqs. (7) and (16) imply that, for T =N, i. e. in the simple exclusion-like regime, the
current is given by

JL,N,N = ð2p− 1ÞN
L

1
1 + N

L −
1
L

(21)

We stress that the two results above are valid for any finite volume Λ and for any finite number of particles.
If the limit N, L ! ∞ with N=L= % is considered, the well-known hydrodynamic limit is found for the
current, see Ref. [16, equation (1.3)].

Coherently with its physical interpretation, the effect of the activation threshold is that of slowing down
the current. As T is increased the steady-state current decreases. In particular, it is worth mentioning that at
T = 1 the current is a linear function of the number of particles N, whereas at T =N the current saturates to a
limiting value when N is increased. For intermediate thresholds, namely, 1 <T <N, the current increases
slowly with N and only after a certain value it starts growing linearly. This effect is clearly illustrated in
Figure 1 (left panel) where the current is plotted versus the total number of particle for the values
T = 1, 5, 10 of the activation threshold and L= 100.

Data in Figure 1 (right panel) refer to the cases T =N and T =N=2, with L= 100. The saturation effect on the
current due to the presence of the threshold T =N (simple exclusion-like regime) is clearly illustrated. In
other words, when the hopping rate is constantly equal to 1 and does not depend on the number of particles
on the site, the current tends to saturate to a constant value for N large. It is worth remarking that the same
effect is also observed when the threshold is equal to N=2, suggesting that for an activation threshold
increasing proportionally to the number of particles, the current is reduced in the same fashion. This
property is indeed an immediate consequence of eqs. (7) and (19). Deviation from the T =N behavior in the
case T =N=2 can in fact be observed for small values of L and N.

Figure 1: Current versus number of particles for L= 100. Left panel: Open circles, solid circles and solid squares denote,
respectively, the simulated stationary current for the threshold T = 1, 5, 10. The associated solid lines represent the analytic
solutions: eqs. (7) and (14) have been used in the cases T =5 and T = 10, whereas the explicit formula in eq. (20) has been used
for T = 1. Right panel: Open circles and solid squares denote, respectively, the simulated stationary current for the threshold
T =N and T =N=2. The associated solid lines represent the analytic solutions computed by using eqs. (7) and (14) for T =N=2
and eq. (21) for T =N. The two solid lines are not distinguishable in the picture.
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5 Conclusions

We considered the problem of computing the steady-state current in a ZRP subjected to a drift as well as to
an “activation” threshold affecting the hopping rates of the particles to the neighboring sites. By exploiting
combinatorial arguments, we derived an exact formula for the partition function, which is amenable to an
analytical treatment for T = 1 and T =N. We also discussed the asymptotic behavior of the partition function
when the threshold scales proportionally to the number of particles: the latter case is of particular relevance
in the discussion of the hydrodynamic limit of the model. We then obtained explicit formulae for the
particle current, also supported by Monte Carlo simulations, revealing that the main effect of the activation
threshold on the steady-state dynamics is to decrease the current, thus tuning between two limiting
regimes, the independent particle model and the simple exclusion-like process. We also remarked that
this last behavior is shown by the model even for T <N, provided the threshold increases proportionally to
the number of particles.

Acknowledgment: ENMC expresses his thanks to ICMS (TU/e, The Netherlands) for the kind hospitality and
financial support.
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