Potential Anal CrossMark
DOI 10.1007/s11118-016-9588-4

Skew Brownian Diffusions Across Koch Interfaces

Raffaela Capitanelli! - Mirko D’Ovidio!

Received: 19 January 2016 / Accepted: 24 August 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We consider planar skew Brownian motion (BM) across pre-fractal Koch inter-
faces 9" and moving on Q" U " = Q” where X" is a suitable neighbourhood of 9Q".
We study the asymptotic behaviour of the corresponding multiplicative functionals when
thickness of X" and skewness coefficients vanish with different rates. Thus, we provide
a probabilistic framework for studying diffusions across semi-permeable pre-fractal (and
fractal) layers and the asymptotic analysis concerning the insulating fractal layer case.

Keywords Brownian motion - Additive functionals - Boundary value problems - Fractals

Mathematics Subject Classifications (2010) 60J65 - 60J55 - 35J25 - 28A80

1 Introduction

State of the Art Diffusions on irregular domains have been investigated by many authors
as well as the construction of reflecting Brownian motions on non smooth domains ([9, 22,
29, 30]). However, if the domain D is Lipschitz, then we can construct the usual reflecting
BM asin [9]. Let D C R?, d > 2, a bounded Lipschitz domain. Existence and uniqueness
of the solution to dX; = dB; + n(X[)dL?D have been investigated in [6, 7] when n(z)
is the inward normal vector at z € 9D and L?D is the local time of X on the boundary
of D. In particular, L?D is a non-decreasing process such that f0°° 1 D(X,)dL? D — ( that
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is, the process does not increase inside D. The local time can be associated with the sur-
face measure ([8, 9]) in the sense of the Revuz correspondence. Moreover, convergence of
reflecting BM in varying domain has been also investigated (see for example [14] and the
references therein). In [8] the authors studied the Robin problem on fractal domains in the
framework of the so called trap domains (see [15]) which is a nice property to deal with
for our purposes. We also deal with processes which are skew diffusions. The skew BM has
been introduced in [33, 34, 54] and constructed to model permeable barrier in [44, 45]. An
interesting surveys can be found in [39]. It has been also investigated by many researchers
as a tool in applied sciences. Applications to a single interface have been developed in [4,
33, 34, 40, 43, 46, 54]. Recent results on multidimensional skew BM can be found in [5,
52, 53]. In [38, 55] the authors approach homogenization problems. As well described in
[34, pag. 272], it is possible to construct a reflecting BM B+ on R?, by considering
a BM B on R? and the occupation time § of B on €. That is, B(f~!) is identical in law to
BT . Itis also shown in [34] that by killing B(f‘l) at a random time 7" with conditional law
P(T > t|B(f‘1 )) =exp— f K(f_1 (1), x)k (dx), one obtains the connection with the motion
driven by the Feynman-Kac generator (€ is a local time and « is a killing rate). An interest-
ing connection has been also given by verifying a conjecture of Feller. Indeed, an elastic BM
on [0, 0o) with elastic condition yu(0) = (1 — y)u’(0), y € (0, 1) is identical inlaw to BT
killed according with the conditional law P(T > t|B™) = exp — €+(z 0). We notice
that the special cases y = 1 or y = 0 correspond to Dirichlet or Neumann conditions.

Our Results In this paper we consider boundary value problems on snowflake domain
2 by using the homogenization results obtained in [19, 20] with the approach of insulat-
ing layers (see, for example, [1, 13] in smooth layers). More precisely, the fractal layer
is approximated by a two-dimensional insulating thin layer X" with vanishing thickness
and decreasing conductivity. Therefore, the emerging operators have discontinuous coeffi-
cients on the pre-fractal interfaces 92" and so we consider skew Brownian motions, that is
generalized diffusions processes (see, for example, [44, 45] and [53]).

More precisely, the process we are dealing with is a skew planar BM on a bounded
domain Q" = Q" U £" with pre-fractal interface dQ". We say that the BM in Q7 is skew
meaning that it has different probability to stay in either Q" or Q7 \ Q". We have a skewness
condition on the boundary dQ2". We denote by B,"* the skew (modified) planar BM on
and we focus on the multiplicative functional M = 1 (1<) of Bt‘”* where ;Q? is the
lifetime of B"* on Q7 and v is the skewness parameter (see Section 5).

In our analysis, we mainly focus on occupation measures and stopping times. A key role
is played by the fact that the pre-fractal and fractal Koch domains are non trap. Thus, the
fact that the semi-permeable barrier is given by the pre-fractal curve 92" does not affect
our discussion in terms of occupation measures. Let T be the lifetime of the skew Brow-
nian motion BY"* and ¢, be a sequence of positive constants describing the transmission
condition on 9Q". Under the non-restrictive assumption that 7 = T, (that is the life-
time depends on ¢,) we consider the lifetime Tc,, with conditional law ]P’(Tcn > t|BY*) =
exp —Cnop fam £} (y)ds (see Section 5.1) where o, is a structural constant associated with
the arc-length measure s on the pre-fractal boundary. In particular, we consider a sequence
of exponential random variables ¢ " with parameter ¢, € [0, co] from which we construct a
sequence of stopping times ¢ 2" (see formula (6.1) below) depending on the time the process
spends on (or cross) the pre-fractal interfaces.

Our aim is to investigate the asymptotic behaviour of M;" when thickness (of £") and
skewness coefficients vanish with different rates according with c¢,,. We show that the limit
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Skew Brownian Diffusions Across Koch Interfaces

process can be the elastic, reflecting or absorbing Brownian motion according to the asymp-
totic behaviour of the parameter ¢, (see Theorem 10). Our approach is based on the study

of the asymptotic behaviour of 1 (t<z OF equivalently M;' = 1(; <To)

Concerning the Dirichlet problem on D C R, the connection between variational and
probabilistic approach to diffusion equations with killing has been investigated for example
in [10]. Boundary value problems with varying domains has been also investigated in [16,
50] where a key role is played by the capacity induced by a regular Dirichlet form.

Plan of the Work The plan of the paper is the following. Section 2 introduces notation and
definitions of the pre-fractal and fractal Koch curves. Moreover, we recall the homogeniza-
tion results obtained in [20]. Section 3 gives some basic aspects about positive continuous
additive functionals and random times. In Section 4 we consider skew BM across a regular
layer. The skew BM across irregular boundaries is introduced in Section 5. Our main results
are collected and discussed in Section 6.

2 Notation and Preliminary Results

In this section we introduce the notation and some preliminary results. We recall the def-
inition of the Koch curve with endpoints A = (0,0), and B = (1,0). We consider the
family W* = {¢f, ..., ¥} of contractive similitudes ¥ : C — C,i = 1,...,4, with
contraction factor o~ !, 2 < o < 4,

z zZ 1

Yi2) = =, Yi (@) = =@ 4 —
o o o

o0y — Zpmibe 1L 1 PO Sl S
Y3 (2) o +2+l 5 1 Yy (2) " +1,

Nee=n)
2

where 0 () = arcsin (

By the general theory of self-similar fractals (see [27]), there exists a unique closed
bounded set K, which is invariant with respect to W%, that is,

Ko = Ul_ ¥ (Ko). .1

We recall that K, supports a unique self-similar Borel measure
e Which is equivalent to the d y — dimensional Hausdorff measure 2.2)
wheredy = ]lgg: . Let K9 be the line segment of unit length that has as endpoints A = (0, 0)

and B = (1, 0). We set, foreach n in N,
4 4 4
Ke=Uvi & ki=Uvwi&kn. ... KM=JyED: @3
i=1 i=1 i=1

K is the so-called n-th pre-fractal curve. Moreover, the iterates K] converge to the self-
similar set K,, in the Hausdorff metric, when n tends to infinity. Let QO be the triangle

with vertices A = (0,0), B = (1,0), and C = (%, —?). We construct on the side with
endpoints A and B the pre-fractal Koch curve defined before, which will be denoted by
K i’ . and the Koch curve defined before, which will be denoted by K7 4. In a similar way,
we construct on the other sides the analogous pre-fractal Koch curves (the Koch curves)

denoting by K g.a and K g’ o (by K24 and K3 o) the curves with endpoints B and C, and C
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and A, respectively. We denote by 2 the pre-fractal domain that is the set bounded by the
pre-fractal Koch curves K }1&, Jj = 1,2, 3. Moreover, we denote by €2, the snowflake that

is the set bounded by the Koch curves K; ,, j = 1, 2, 3 (see Fig. 1). We denote by E? the
open set condition triangle of vertices A = (0,0), B = (1,0) and C = (1/2, b/2) where
b= tan(%).

Following the construction in [18], for every n and e, we define the fiber X
e-neighborhood of K I’ o to be the (open) set

n
1l

E’l”a = UE;"‘;, where lelz =y (2?)

iln
iln
(see Fig. 2). We proceed in a similar way in order to construct the fiber Z?a, -

neighborhood of K;”a (j = 2,3) and, we define the fiber X}, e-neighborhood of
BQ",

3
=z, ad @, =)z
=1

From now on, we omit o when it does not give rise to misunderstanding, by writing
simply €2 instead of 2, or u instead of u, and similar expressions. Moreover, we denote
by C positive, possibly different constants that do not depend on » and on . We note that

et cocart! con

We define a weight w" as follows. Let P — for some i |n — belong to the boundary 8(22'")
iln

of Z;lz and let P1 be the orthogonal projection of P on K G Ifx e R? belongs to the
segment with end-points P and P+, we set, in our current notation,

3|P — P

wi() = =55

’

where |P — P2 is the (Euclidean) distance between P and P in R2. We proceed in a
similar way in order to construct the weights w;.l on E;? (j = 2, 3) and we define w" on Q%

n H n
wj(x) if xe Ej

1 if xeQn. 24

w'(x) = {

Fig. 1 The pre-fractal domains
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Fig. 2 The fibers

Associated with the weight w", we consider the Sobolev spaces H 1(Qn; w") and
H(} (2%; w™), defined as the completion of C*°(27) and C°(€2}), respectively, in the norm

1
2
||u||H1(Q?;wn)=(/ u2dx+/ |Vu|2w”dx> (2.5)

where dx denote the 2-dimensional Lebesgue measure.
We define the coefficients

c,o, wh(x) if xe X"
al(x) = I 1” nwh(x) i xeom 2.6)
where
¢, >0 2.7)
and
al‘l
on =" 2.8)

The following theorem states the existence and the uniqueness of the variational solu-
tion of the reinforcement problem. We consider the bilinear form associated with the
reinforcement problem

an(u,v) :=/ alVu Vvdx+8,,/ uvdx 2.9)
Q Qn
where a is defined in Eqgs. 2.6, 2.8, 2.7, and §,, > 0.
We denote by s the arc-length measure on 92".

Theorem 1 Let 0, be as in Eq. 2.8 and d, € R. Then, for any f, € LZ(QZ), there exists
one and only one solution u, of the following problem

(2.10)

find u, € H(% (QF; w")  such that
an(uy, v) = fg,g, fovdx +0ydy f[yon vds Yuve HOI(Q;'; w™),

where ay (-, -) is defined in Eq. 2.9. Moreover, u, is the only function that realizes the
minimum of the energy functional

fovdx —20,d, /

min {a,,(v, v) —2
aqn

v ds}. @2.11)
veH (Q;w")

n
Qs

In the following theorems, we state the existence and uniqueness of the variational solu-
tion of the Robin, Neumann, and Dirichlet problems on the domain 2. We consider the
bilinear form associated with the Robin problem

acy(u, v) ::/ Vqudx—i—So/ uvdx—i—c()/ you yovdu (2.12)
Q Q R

where w is the measure on €2 that coincides, on each K; j = 1, 2, 3, with the Hausdorff
measure (2.2) defined before and ypu denotes the trace of the function u on the boundary of
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Q, thatis for v in L }OC(D), where D is an arbitrary open set of R, the trace operator yy is
defined as
1
yu(P) := lim ————— v(x)dx (2.13)
r—=0m(B(P,r) N D) Jpp,rnD
at every point P € D where the limit exists (see, for example, page 15 in [35]). From
now on, we suppress )y in the notation, when it does not give rise to misunderstanding, by

writing simply v instead of ypv and similar expressions. We assume that

co >0, §o > 0, and max(co, 8p) > O. (2.14)

Theorem 2 Let us assume (2.14) and d € R. Then, for any f € L%(Q), there exists one
and only one solution u of the following problem

find we HY(Q) such that

ac,(u,v) = [o fvdx +d [yovdu Yve H(Q)

where ac (-, -) is defined in Eq. 2.12. Moreover, u is the only function that realizes the
minimum of the energy functional

min [am(v,v)—szvdx—zd/ vdp.]. (2.16)
Q Q2

veH (Q)

(2.15)

In a similar way, we prove the following result. We consider the bilinear form associated
with the Dirichlet problem and

oo (U, V) ::/ Vqudx—i-So/ uvdx. (2.17)
Q Q

We assume that
8o > 0. (2.18)

Theorem 3 Let us assume (2.18). Then, for any f € L*(R2), there exists one and only one

solution u of the following problem

{find ue HO1 (2)  such that

Cloo(u, U) = .[Q fvdx Vove Hol (Q) (2.19)

where aoo (-, -) is defined in Eq. 2.17. Moreover, u is the only function that realizes the
minimum of the energy functional

min [aoo(v, v)—2/fvdx}. (2.20)
Q

veHl ()

We recall the notion of M —convergence of functionals, introduced in [41], (see also
[420.

Definition 1 A sequence of functionals F" : H — (—o0, +0o¢] is said to M —converge to
a functional F : H — (—o00, 4+00] in a Hilbert space H, if
(a) Forevery u € H there exists u, converging strongly to # in H such that

limsup F"'[u,] < Flu]l, as n— +oo. (2.21)
(b) For every v, converging weakly to u in H

liminf F"[v,] > Fu], as n — 4oo. 2.22)
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Let Q* be an open regular domain such that Q* > Q7 for all n : in order to fix notation
we choice as Q* the ball with the center in the point Py = (%, — %) and radius 1. We consider
the sequence of weighted energy functionals in L?(Q*)

; Jon alIVul?dx + 8, [ u?dx ifulgr € Hy(Q1; w")
F'u]l = : : ., (2.23)
400 otherwise in L*(2*)
(the coefficients a} are defined in Eqgs. 2.6, 2.8, 2.7, §, > 0) and
Fo[u] = Jo IVulPdx + 8o [quPdx + co [y u?dp ifulg € H'() (2.04)
O 400 otherwise in LZ(Q*). '

Moreover, we consider the case where the layer is weakly insulating (see Eq. 2.31 below)
and we introduce the following functional (2.25) in L2(9%)

Jo IVul?dx + 8y [qudx if ulg € Hy ()

2.2
+00 otherwise in LZ(Q2*). (2.25)

Foolu] = {

In order to study the asymptotic behaviour of the functions u,, we fix the further
assumptions

fus f € LXQY), and f, — f € L*(Q*),asn — +oo, (2.26)
8, > 0 and 6, — 89 asn — 400, 2.27)

¢, > 0and ¢, — cpasn — +o0, (2.28)

d,,d € R, andd, — dasn — +oo. (2.29)

We also introduce the following results which have been proved in [20] and turn out to
be useful further on.

Proposition 1 Let o, be as in Eq. 2.8. Then, for every sequence g, € H' () weakly
converging towards g* in H' (), we have

Un/ g,,d5—>/ g du ,as n — +oo. (2.30)
Q" Q

Theorem 4 Let us assume (2.28) and (2.27). Then, the sequence of functionals F", defined
in Bq. 2.23, M —converges in L>(2*) to the functional Fe, defined in Eq. 2.24 as n — +o0.

Now we consider the case when the conductivity of the thin fibers vanishes slower than
the thickness of the fiber: more precisely, we suppose

cw" — 0, ¢, — +oo. (2.31)

Theorem 5 Let us assume (2.31) and (2.27). Then the sequence of functionals F", defined
in Eq. 2.23, M —converges in L2(Q*) as n — 400 to the energy functional Fao[u] defined
in Eq. 2.25.

In conclusion, throughout we consider the geometric constant ¢;, as in Proposition 1 and
the following condition on the conductivity of the thin fibers X"

cuw" — 0 asn — oo. (2.32)
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3 Positive Continuous Additive Functionals and Random Times

We recall some basic aspects and introduce some notations. Let E be a locally compact
separable metric space and m be a positive Radon measure on E such that supp[m] = E.
A Dirichlet form £ with domain D(E) is a Markovian closed symmetric form on L%(E, m)
(see [30, Chapter 1]). Let X = ({X;};>0; §; Px, x € E) be an m-symmetric Hunt process
whose Dirichlet form (£, D(E)) on L?(E, m) is regular (see [30, Chapter 5]).

We say that A;, + > 0 is a positive continuous additive functional (PCAF) and write
A; € AT denoting by A7 the totality of PCAFs of an m-symmetric Hunt process X (see
[24, A.3.1] for details). More precisely, we say that A; € Aj‘ if

A.l) Ay, t > 0is F;-measurable ({F;} is the minimum completed admissible filtration),

A.2) there exists a set A € Fo and an exceptional set N C E with Cap(N) = 0 such
that P, (A) = 1forallx € E\ N,6;A C Aforallt > 0; forevery w € A, A;(w) :
t — A;(w) is continuous, Ag(w) = 0; forall s, > 0 As4+(w) = Ar(w) + As(Brw)
where 60;, t > 0 is the (time) translation semigroup,

A3) forallw e A, A/(w) : t — A;(w) is non-decreasing.

In this section, we denote by w a positive Radon measure on E. Hereafter, we write
(v,u), = fE v(x)u(x)u(dx) and, in some case, we simply write (v, ;) with obvious mean-
ing of the notation. We denote by Cy the set of continuous functions with compact support.
A positive Radon measure p for which ([30, pag. 74])

/ lv(x)|u(dx) < Cy/E1(v,v), Yve DE)NCy(E) (3.1
where
E(u,v) = EW, v) + Au, v), 3.2)

is said of finite energy integral and formula (3.1) holds if and only if there exists, for each
A > 0, a unique function Uy u € D(E) (where U, u is a A-potential) such that

5,\(Uw,v)=/v(X)M(dX)~ (3.3)

We recall that ([30, pag. 64]), for an open set B C E and Lz = {v € D) : v >
lm-a.e. on B}, the capacity is defined as Cap(B) = infyer, E1(u,u) if Lp # @ and
Cap(B) = oo if L = (). We say that a Borel measure 1 on E is a smooth measure and
write u € S = S(E) if ([30, pag. 80])

w.1)  u charges no set of zero capacity;
w.2) there exists an increasing sequence {F},} of closed sets such that w(F;,) < oo and
Cap(K \ F,) — 0 for all compact sets K.

The class of smooth measures S is therefore large and it contains all positive Radon mea-
sures charging no set of zero capacity. By [30, Lemma 2.2.3], all measures of finite energy
are smooth. We use the notation introduced in [30] and denote by Sp C S the set of positive
Radon measure of finite energy integrals, by Soo C So the set of finite measures with
IUistlloe < 00.

Let us consider us € S and A; € A associated with the m-symmetric Hunt process X
with P, (A) = fE Py (A)m(dx) and P, (A) = P, (X, € A) for A € §. Then, the measure
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w4 and the PCAF A, are in the Revuz correspondence if, for any f € B (F) (the set of
non-negative and measurable functions on E), we have that

t 00
(f, na) = lim 1Em [/ f(XS)dAS] = lim AE, |:/ ef)‘tf(Xt)dAt] . 3.4
tl0 1 0 A—00 0

We say that @4 is the Revuz measure of A € Aj and if u4 € S, then there exists a
unique (up to equivalence) PCAF {A,};>¢ with Revuz measure p 4 ([30, Theorem 5.1.4 and
Theorem 5.1.3]). Throughout, we write p instead of w4 if no confusion arises. Moreover,
we introduce

Ry f(x) = E, [/OO e*“f(X,)dt] and U} f(x) =E, Uoo e*“f(X,)dA,] (3.5)
0 0

(see [47] for a complete discussion). Throughout, we consider the local time process L?E =
LYE(X) = [y15£(X,)ds which is the PCAF increasing when X hits the boundary 9 E.

We introduce some further notation and basic aspects. In the following sections we
consider the killed process

(Tr<r
X,—[& t>71 3.6)

(3(7 admits no killing inside E and 9 is the “coffin state” not in £) where t will be a suitable
random time and P; f(x) = E,[f(X;)] = Ex[f(X;); t < 7], x € E is the associated
semigroup. In particular, we consider the following cases: i) T = ¢ £ is a random time such
that (¢ < 1) = (LfE > ¢) and ¢ is an exponential random variable, with parameter
co € (0, 00), independent from X; ii) T = oo under suitable conditions; iii) T = tf is the
exit time of X from E.

Thus X;, t € [0, oo], is a Markov process with state space Ey := E U {9}. The transition
function is not conservative according with the cemetery point {9}, that is P, (X, = 9) > 0,
Vx € Ey, t > 0. In particular, X is conservative if P, (;E < o0) = 0 forevery x € E
where we denote by ¢ £ also the lifetime of the process on E. Since X; is a Markov process,
P.(Xo = x) = 1 forall x € Ej and P3(X; = d) = 1 for all 7. Our discussion is mainly
concerned with trap domains. A point x € Ej is called a trap of X if P, (X; = x) = 1
for every t > 0. We give the definition of trap domain further on in the text. In i) it is well
known that, the lifetime of the process follows the law P, (¢ E > 11X, = e—coLi® for every
x € Eandt > 0. Thus, L) = 0 and P, (¢£ > 0) = 1. L€ is the occupation time of X
on dE. For A C E, we denote by FtA (X) = meas{s € [0,t] : Xy € A} the occupation
time process of X on A. The semigroup P, is strongly continuous and we use the fact that
AR, f — f and )L(Uﬁ f,m) — (f, u) as A — oo where p is the Revuz measure associated
with the additive functional A and therefore, to the random time t € [tg, o0].

Let us consider the perturbed Dirichlet form on LZ(E ,m) written as

Elu,v) = E(u,v) + (U, v)y,  u,v e DE)NLYE, 1) (3.7)

where &, has been introduced in Eq. 3.2, u € S. Let A; € Aj and )7, as in Eq. 3.6. The
transition function

P/ f(x) = B le™ £(X))] (3.8)

is associated with the regular form (&, ! D(é'(’f )) where w is the Revuz measure of A, (see
[30, Theorem 6.1.1 and Theorem 6.1.2]). We simply write P, instead of Pf‘ . In the following
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sections we consider m-version of X associated with our problems on fractal domains (and
pre-fractal if clearly specified).

law

We say that X" converges in law to X and write X" — X if Ef(X") — Ef(X) as
n — oo for every continuous and bounded function f.

Throughout, we consider the PCAF (in the strict sense, that is, in A.2) A is the defining
setand N is an empty set) A} = fot f(X})ds, the multiplicative functional M} = e~ and
a stopping time 7;,. We have that (see [23, Lemma 2.1])

EmE!A" = lim [EX[AY 5 t < Tyl + ELAY; £ > T,]] = imE'[A"; 1 < T,].  (3.9)
110 110 110

4 Transmission Condition on Regular Interfaces

In this section we consider the probabilistic approach of thin layer when €2 is a disc. Actu-
ally, we provide a sketch of proof for the problem with collapsing annulus by following
two approaches. Here, the purpose is to underline the main differences with the fractal
case investigated in the next sections. Notice also that speed measure and scale function
characterize uniquely one-dimensional diffusions.

First Approach Let us consider a BM X on R? started (at x € R?) away from zero. For
0" € [0,27), r' > 0 we can write, P (X; € dy) = P (O, € db, R, € dr) where
R = |X| is a Bessel process. In particular, R and ® are the radial and the angular part of X.
It is also well-known that a skew-product representation is given in term of (R, ®) where
R = |X| is a Bessel process and © = X/|X| = B(f R;zdz) with B an independent BM on
the sphere S! ([34, pag. 269]). Here © is a time-changed BM on S' (the winding number of
X;).

Let v € (0, 1) and BY be a planar BM on the disc C; with a disc C1 C C; (centred at
the same point (0, 0), with radius 1 < r» = r; + ¢, € > 0), Dirichlet condition on dC,
and transmission condition on dCj (the skew condition, that is P, (B} € Cz \ Cy) = v,
Py (B € C1) =1 — v for x € 3Cy). Due to the non-symmetry (1 — v, v) we say that B”
is a skew planar BM (that is a 2-dimensional extension of the skew BM, see for example
Section 11.10 of [39] or [52]). Let £,, be the governing operator of B'. We examine in this
section the classical case corresponding to the (formal) problem

Lpu, = —fn onC

(1-=v) aﬂ””|aclf = uanu,,|acl+
”ﬂ|3c1— = ”"|ac1+
”n‘acz =0

where 9y, is the normal derivative and we denote by dC1— and dC;+ the boundary from
the interior and from the exterior of C. Let us consider the sequences v = v(n), € = &(n),
n € N. Our aim is to study the asymptotic behaviour of the solution as n — oo and
v, e — 0, v/e — c with different rate given by the elastic coefficient ¢ > 0. Then, the
problem above can be associated with B" started away from the origin, that is the process
is partially (normally) reflected on 0C and totally absorbed in 9C>.

A reflecting BM on a disc can be constructed (in law) by considering suitable time
change and rotation ([34, pag. 272]). The time change in this case is a stochastic clock given
by an additive functional of the radial motion as indicated before. Denote by Cj » the annu-
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lus C2\Cy. Thus, for0 < ' < rpand0 < 0’ <27, Py (B} € dy) =Py (0, €dO, R} €
dr) where R¥ = | B”| is a skew Bessel process on (0, r2) such that, P (R} € (r1, r2)) = v.
We have normal reflection on dC; and

de
VeedCi  Pu(B) edy)= P (R €dr). @.1)
T

The BM can move from dC; according with an uniformly distributed angle ® for the
choice of the starting point, that is

2 4o 2 4o
A Pe,r (B, € CI'Z)E =v and /0 Pe,r (B, € CI)E =1—-v. “4.2)

Let R be the part of the Bessel process R on (0, rp) with Re (0, 00). We cut the excur-
sions of R by considering a time change given by the inverse of F,(r' ) (ﬁ). We do the same
with FI(O’”)(I?). Asin [34, pag. 115] we can obtain a skew motion by considering the v por-
tion of F,(r' ) (E) and the 1 — v portion of Ffo’r')(ﬁ), that is a new occupation time, say f.
Thus, it is possible to consider a suitable time change f_] , in order to obtain partial (normal)
reflection on | and, RV = Ry is a Bessel process on (0, ) with transmission condition
on r1. The skew BM constructed in this way has the skew-product representation involving
the time-changed Bessel process R;-1 where the BM on the circle is identical in law to the

-1
original process (thatis, ® faw ©;-1). More precisely, let us consider 7,” = fof ® (R;)’Zdz
where Ry’ = Rj-1(,y and T; = fot R:2dz. Then ®) = B(T,”) where B is independent from
T} and ®; = B(T;) where B is independent from 7;. Since ;" law T; we get that ©; law Q.

Thus, the only process we consider is the radial part R; time-changed by f~!, that is R".

The Bessel process can start from zero and then it is instantaneously reflected. It never hits
the origin at some ¢ > 0. The mean exit time

ve(r) = E[t(0,r)(R")IRy =7 € (0, 2)] = E, 1,

can be explicitly written by following standard techniques for one-dimensional diffusions
(see for example [37]) and, as ¢ — 0, v — 0 according with v/e — ¢, we find that it solves

vy =—1
v9(0) =0
vo(r)) =0 if c = 00

v(r1) = —cuo(r) if ¢ € [0, 00).

This corresponds to the study of u, with f, = 1. Due to isotropy and the discussion
about the angular part of the planar BM, we arrive at the solution u, of the problem above.
Therefore, the boundary conditions on r; depend on the limit of the ratio between the skew-
ness coefficient v and the thickness coefficient €. According with Section 2, we note that
op = 1/2m, w" = g(n) and c,w" = v(n), " = Cy 2 is the thin layer.

Second Approach Alternatively, we can approach the problem as follows. Let 7., be
the stopping time for the skew BM on C, with r, = r; + €(n) and v = v(n) under the
assumption that lim,_, o, ¢, = lim,— o v(n)/e(n). The lifetime depends on the asymptotic
behaviour of the process on the collapsing annulus Cj 3. Our result in fractal domains can
be reformulated here (in regular domains) by considering the stopping time 7, and the
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fact that (T, > t|B") = (T, > t|R") in view of the previous dlscusswn about @ =
®f_1 In particular we consider the lifetime ¢2 = T, of R¥ and {CZ =10, A Tcn where
Tc,, = inf{s > 0 : L} > ¢"} with conditional law }P’X(Tcn > t|R") = exp—c,L}'
where L;' is the symmetric local time of R¥ at r;. That is, we consider ¢" as exponential
random variable with parameter ¢, and independent from R". Thus, under the assumption
that lim,,—, o ¢;; = limy,_, o v(n)/€(n), we study the asymptotic behaviour of

TL‘n ~ o
un(r)=]Er|: fn(R;})dlj| =Er |:/ fn(sz)Mtndlj|
0 0

where My’ = 1(;<7,,) by means of the asymptotic behaviour of

() = E, [ f ” fn(R,“)MAfdt]
0

where M]' = 1(1 T and (assume here x € C for the reader’s convenience)
n

, 1, ¢, — 0,
P, (T, > tIR") LY exp—coLl', cp = co € (0,00), asn — oo.
1(t<rc1)7 Cp —> 00,

For the local times we have that L}' (R"®) — L' (R™) in law where R is a reflecting
Bessel process on (0, r1). Thus, we estimate the stopping time 7" by T and exploit the fact
that ¢ €2 < ¢©2 with probability one. This immediately follows by considering the definition
of £€2 which can be also written as £€2 = inf{s € (0,¢€2] : L}' > ¢"}. The convergence
of R"™ can be obtained by considering that P, (R’ > M) < M~'ER’"™ and that the
moment is bounded.

Remark 1 For a compact subset K C R? ([48, Theorem 22.7])

P, (B; € K for some t > 0) = / G, y)ug(dy) = Gug (x)

is a potential of a unique measure g concentrated on dK. The capacity Cap(K) =
inf{€(w) : Gu > lonK} where E(u) = [ G(x, y)u(dx)u(dy) can be defined from
pk (K).

Define ox = sup{s > 0; By € K} with sup® = 0, then for x € R4, yeK,t>0,we
have that ([25, 31])

Py (Bsy € dy,ox €dt) = p(t,x, y)uk (dy)dt 4.3)

and we recover an interesting connection between elastic coefficient and capacity. Consider
K = Cq: the last exit time can be therefore rewritten as ox = inf{s > 0 : L}' > ¢"} where
now ¢" is the time the process spends on (or cross) | before absorption in r;.

Remark 2 Notice that we used isotropy and skew product representation which are not
suitable tools for approaching our fractal problem. In particular, if we consider the Koch
domain €2, the normal vector does not exist at almost all boundary points. However it is
possible to define the Robin boundary condition in the sense of the dual of certain Besov
spaces (see [17, Theorem 4.2 ]).
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5 Transmission Conditions on Irregular Interfaces

In this section we introduce the modified skew BM B,V * ¢t > 0on Q7. The parameter
v € [0, 1] is the so called skewness parameter. Skew BM is a process with associated
Dirichlet form in LZ(QZ, m,) given by

Ew,v) = %/ VuVvdm,, DE)=H"(Q"m,) (5.1

where m,,(x) = 2(1 — v)1gn(x) 4+ 2v1xn(x) and it can be associated with discontinuous
diffusion coefficients. We focus on the sequence of elliptic operators

Lyu = —div (a Vu) (5.2)
in divergence form with coefficients given in Eq. 2.6 and

D(L,) = {u € LX(Q",dx), : ulgn € HX(Q"), u|zn € HZ(E”)}.

The discontinuous coefficients af in Eq. 5.2 introduce the transmission condition in the
L2(3Q")

Vu-n|_ =cyopVu-m|  VyedQ" (5.3)
(where n is the outer normal to %, y~ =y € Q"N 3IQ" and y© = y € T" N IQ", we
recall that w"|3qn = 1) and therefore, the corresponding diffusion behaves like a skew BM.
For a given n, the operator (5.2) can be regarded as the governing operator of the planar
skew BM BY = ({B;};>0; §"; P%, x € Q) on R? from which we define the killed process
BV. Let L, be the governing operator of B” on LZ(QS dx) with

D(L,) = {u € LX(Q!,dx), ulgr € HX(Q"Y), ulsn € HX(Z"),

”|aszn =0, u is continuous on 32" and satisfies (5.3)}.
&

Then, the transition function P} f (x) = E¢[f(B})] = E{[ f (f?? ); t < Ton] with transi-
tion kernel p¥ where v depends on the coefficients a;] and therefore, on Eq. 5.3, is governed
by

d
a—‘: =Lyu on Q (5.4)
and £, f = éL f, f € D(L,). The parabolic equation (5.4) can be rewritten by consid-
ering the infinitesimal generator [Z,, = ;A on L%(m,) with D(L'”) =D(L,) (see [24, pag
356] for details) where
m, (x) = 1gn (x) + ¢popw” 1 (x). (5.5)

From the transition kernel p” we can write
IP’ﬁ(EfeA,t<fgg)=/ Pt x,y)dy xeQ! (5.6)
A
for some Borel set A € ¥ with the (first) exit time
tqn = inf(s > 0 : BY ¢ Q). (5.7)

We refer to BY as a modified skew BM in the sense that it depends on both the skewness
coefficient v (that is the BM is skew) and the weight w" given in Eq. 2.4 (that is, the
skew BM is modified). The process B" represents a Brownian diffusion of a particle with
transmission condition (5.3) on the pre-fractal d2"”. The BM is partially reflected when it
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hits dQ": that is, Vx € 9dQ" the process starting from x moves toward Q" or X" with
probability 1 — v or v respectively by taking into account the structural constant o,. In
particular, according with Eq. 4.2,

an/ PY(B} € £")ds =v and o,,/ PY(B € Q")ds =1—v. (5.8)
aqn Q

Let v = v(n) be a sequence such that v(n) — 0 as n — oo. Heuristically, Egs. 5.8 and
5.3 say that
a't 1

n—+

e -1 uniformly on 992" as n — oo
ags  +ag

v(n)o,
Since condition (2.32) holds true, from the construction we present here, it must be that
v(n)/caw" — 1 on X" as n — oo. Equivalently,
v(n) 1
1—v(@n) c,w™

— 1 uniformly on X" as n — oo. (5.9

In view of Eq. 5.9, we also refer to v as transmission parameter. However, due to the fact
that w"|3» = 1, we must pay particular attention on the pre-fractal boundary.

We follow the characterization of trap domain given in [8, 15]. Consider an open con-
nected set D C RY, d > 2 with finite volume and the reflected BM BT on D. Let B C D
be an open ball with non-zero radius and denote by 735 = inf{s > 0 : B;r € 0B} the
hitting time of the reflecting BM B™ € D \ B.

Definition 2 The set D is a trap domain if

sup E, 198 = oo. (5.10)
xeD\B

Otherwise, D is a non-trap domain.

Notice that the definition above does not depend on the choice of B ([15, Lemma 3.3]).
In both Lipschitz domains " and %" the process B" behaves like a BM B reflecting on
02", As shown in [8, 15], the pre-fractal and fractal Koch domains are non-trap. Then, V n,
Q" and X" are non trap for B”. Condition (5.10) can be rewritten in analytic way as follows

sup / G (x, y)dy = 00
xeD\BJD\B

where G is the Green function of BT on D and D = Q" or D = ¥".
The process BY on € is a transient BM for which P{1gn(x) = Py(rer > 1) and
Eyton = f Pi1qn (x)dt < oo. Nevertheless, we are looking for asymptotic results concern-

ing also a non transient limit process. Thus, for the skew BM B/, t < TQn, We introduce

the Green function G,,(x, y) = fooo e‘sn’p“(t, x, y)dt for which we write

G, f(x) = f G, (x,y) f(y)dy =Eg [/0 " 675"’]’(13;”)6#] (5.11)

where [E7 is the expectation under (5.6). Furthermore, we write
G111 = [ Gutx ) ) w2y

where G, (-, -) = fooo p(t, -, -)dt is the Green function of a BM B on Q7.
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Let us consider the reflected Brownian motions B on ©2" and B" on R? \ Q" where
B™ and B are independent Brownian motions with P, (B;" € RZ\ Q") = 1 and P, (B; €
Q") = 1 and depending on w" with w”" # 1 only outside ©2”. We introduce the following

representation
~ w 2 7 . g
B = B/” on Rn \ w¥th probab}l}ty v . (5.12)
B, on Q with probability 1 — v

law 7%

Thus, B} By ' Bt” , that is B” equals B, with probability v and B; with probability 1 — v.

We now introduce the process B * which is the m-symmetric extension of B" to (R?\
QU Qn (see [53, Remark 1.1], [24, Definition 7.5.8 and Definition 7.7.1]). To be precise,
we say that B,"" is an m-symmetric extension meaning that

m@Q") =0

where m is the 2-dimensional Lebesgue measure. The process B™* is the part process of
B;"* on Q" where B,"* equals B* on Q" (the m-symmetric extension of B on Q") and B,"*
equals BY>* on R? \ Q" (the m-symmetric extension of B* on R? \ ©") according with

representation (5.12).
Let us introduce the following measures on Q7

my(dx) = 1gnusn (x) dx + 1ygn (x) ds (5.13)
and
m} (dx) = my g, (x) dx + 2v(n)o,1yon (x) ds (5.14)

where the measure on the pre-fractal curve is taken according with Proposition 1. Notice
that m,, is related to m, by means of Egs. 5.3, 5.8, 5.9. Thus, we write (5.6) as P% (B} € A)
and

P (B € A) = f P2(B,"* € A)m! (dx). (5.15)
Q*

5.1 Local Time and Occupation Measure

The skew BM is a Markov process with continuous paths (and discontinuous local time).
The boundary local time is a PCAF defined as an occupation time process on the boundary
(see [21, 26] for example). Moreover, we deal with a modified skew BM depending on the
weights w”. For a given n, we introduce the occupation density £} (x), x € %, ¢ > 0 such
that, for A € Q*, the following occupation formula holds true

IATQn t
/ 15(B!™)ds = f 14 (B}*)ds
0 0

= /Aﬁf(y; Bv’*)mﬁ'(dy)=/ intgy OV B” BV) m? (dy) (5.16)

where m! is the measure (5.13). With some abuse of notation we do not distinguish here
between absolutely continuity of the occupation density on A C Q7 or A C 9Q2". For the
sake of simplicity we use the same symbol £} for a density w.r.t. m%. In particular, with
Eq. 3.4 in mind, as t — 0 we have that

*Efiqn [/ f(By")dT; }—>/ F(0)1a (x)dx,
@

1

¢

(5.17)
- [/ f(BS”’*)dLS ] — an/ F(x)1A(x)ds.
‘¢ LJo aQn
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The occupation density £7(y; B"*) must be discontinuous on 92" (and continuous on
Q" U X" with different “speed” measures depending on w"; recall that w" |z = 1). In
particular,

£ (y: B")dy = €] (y; B'ymy (dy)
where the process B!/? behaves like the BM (5.12) on Q7 with v = 1/2 (that is, there is
no reflection on Q" for B'/%). The occupation density on the boundary can be therefore

written by considering the “right” (reflection from the exterior, ") and “left” ( reflection
from the interior, ") densities. The symmetric local time

t
/ 1yon (BV*)ds = LI (BV*) (5.18)
0

(L= 4 L0y 2 = an/ ' (y; BV ) m™(dy) (5.19)
aQM

is written in terms of L?Qn_ = Lfm_(B”**) and L;m““ = L?Q”JF(B”’*), say “left” and
“right” local time. In particular, €/ (y; B"*) = 2v(n)o, £ (y; B**) and €/~ (y; B"*) =
2(1—-v(n))o, L} (y; B”*). Recall that we are dealing with the BM B"-* such that B”"* = B*
on Q" and B™* = B™>* on X" with probability respectively given by 1 — v and v as
in Eq. 5.12. We have that L?¥'~(B¥*) = L??"(B*) and L% *(BV*) = LI?"(B"*)
according with Egs. 5.12 and 5.19, that is

LI =(B"*) =2(1 = v)LI* (B"*) and  L{?'F(B"*) = 20LI¥ (B"*)  (5.20)

where L?Qn (B"*) is a symmetric local time (independent from v). Since ¢ +— L? Q' (gyr)
is a continuous additive functional, formulas in Eq. 5.20 define PCAFs. Indeed, for n > 0,
nL e Al iff L € Af ([49, Proposition VI1.45.10]). The representations (5.20) can be
obtained by considering excursions of BY-* and suitable time changes for example in
the case of regular interfaces as in Section 4. According with (5.9), for the sequence of
probabilities v(n), it holds that

I " . "
—— ——— — 1 uniformly on £" asn — oo. (5.21)
v(in) 1+ c,w™

Observe that we always have c,w"” — 0 (as n — 00) as basic assumption between
conductivity and thickness of the fiber, the insulating fractal layer case. We use the fact that,
forany f € B,

/I\f(y)ﬁ?Jr(y: B"")mg(dy) = ZV(n)Un/Af(y)ﬁ'f(y; B mg (dy)
= /Af(y)é?(y; BY*)ymi(dy), if A CIQ"(5.22)
and
/Af(y)e?(y; B"*)mg (dy) = 2v(n) fA FOOE (i BYymi(dy), if ACSE" (5.23)
under E}. Formulas (5.22) and (5.23) can be also obtained by considering (5.14) together

with representation (5.12) and by following similar arguments as in [11]. Indeed, for 0 <
1 <1y < tgun,and A = supp[u] where u is the Revuz measure of A;, we have that

%) 15}
EY U f(Bs”’*)dAs] =/ dS/Q f) p"* (s, x, y) n(dy). (5.24)
t 1 *

1
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If A, = L}, then
4 t
Eﬁ |:/(; f(BSU’*)dAs] = /0 ds L* ) pw,*(s’x’ ) M(y)mg’(dy)

t
= 2(n)on /0 ds /A FO) P ox )y midy) (525

where p""*(s, x, y) is the transition kernel of B""* on Q7 \ ©" and formula (5.22) follows
by Egs. 5.16 and 5.19. Notice that for A € X" (that is, A; = F,A), the integral (5.23)
vanishes as n — oo.

For the Neumann heat kernel py in an inner uniform domain, it holds that ([32])

d>@.y) d>@.y)
1 - -] ===
cit” e 2 < py({t,x,y) <c3t e @ . (5.26)

In view of Eq. 5.24 and the Gaussian bound (5.26), there exists C = C(t1, ) > 0 such that

1]
EY [/ f(st’*)dAs] < C/Q F () u(dy). (5.27)
15 *

It is known that the reflecting BM B spends zero Lebesgue amount of time on the
boundary Q. On the other hand, we are interested in I'{? obtained as a limit of FQ \e

QH
for some ¢ < T. Moreover, we focus on L?*'*+ and L?*"~ or equivalently on T, A and

Iy A i our analysis. In order to streamline the notation as much as possible we write £}
in place of £} (B""*) and ¢, instead of £{° when no confusion arises.

5.2 The Probabilistic Framework

Here the aim is to provide a suitable framework to start with in the next section. We for-
malize some link between the previous sections and Brownian motions on trap domains, in
particular on a domain with Koch interfaces. Hereafter, we assume that d, = 0 and d = 0
without loss of generality. Moreover, we point out that for the planar BM B, VA C R2,
Py -almost surely, fooo e 81, (Bs)ds = oo if § = 0. The problem in Theorem 1 can be
formulated as follows.

Theorem 6 The unique weak solution of problem (2.10) can be written as

7.'92 -
Up(x) = E! [ / e ' fn(Blv(”)’*)dt] . (5.28)
0

The associated Dirichlet form on Hé (Q27) is given by Eq. 5.1 or equivalently by Eq. 2.9.
The perturbed form (5(’; A D(E(’)LA" )) is obtained by considering the Revuz measure of the
additive functional A associated with the killing time tgn. Let cope be the measure which
is 400 on the complement D¢ of a Borel set D. Formula (3.8) becomes

P! F(x) = B'LF(BY)] = Elle™™ F(B)™)] = E'e ™™ f(B)*); t < tr]  (5.29)

where Aig' = 8, t + A} is a PCAF with drift §, (8, > 0) and associated Revuz measure
which can be written as uzz(dx) = 8,dx + oopc and D = Q. The resolvent kernel is
written as follows

Q! —~ o8] — —~
R f(x) =E" [ / e Mot f(B,‘”*)dt] =F" [ / e MA f(Bt”’*)dt] . (5.30)
0 0
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For the sake of simplicity we consider 6, = O (if not otherwise specified). The case
8, > 0 can be immediately obtained by considering Ai’f with puzw(dx) = pan(dx) + 8, dx
and following similar arguments. We rewrite (3.7) by considering that the semigroup (5.29)
generates the Dirichlet form on L?(R") given by

EN (u, v) = dn (u, v) + (U, V) s u,v € H' (RN L (an) (5.31)
where

an(u,v) = (1 — v(n))/ VuVvdx 4+ v(n) VuVvdx. (5.32)
Qn R2\Q»

Observe that the part process of B,”* on Q! is transient if and only if Cap(R? \ Q) >0
([24, Proposition 3.5.10]). The lifetime is finite and the process is killed. The representation
(5.29) says also that for our initial problem (2.10) it can be given a variational formulation
as in [16] by considering the measure

+o00, if Cap; (B N (R?\ Q7)) > 0,

0,  otherwise (5.33)

oo (B) = {
Thus, the Dirichlet condition is prescribed in the capacity sense and the modified BM
moves on R
We continue with the following representation of the solution in Theorem 2.

Theorem 7 The unique weak solution of Eq. 2.15 can be written as
o0 —180—C, LBQ
u(x) = E, / e "0 oli™ (B dt (5.34)
0

where Bt = ({B;"},zo; St Py, x € Q) is a reflecting BM on Q and L?Q = L?Q(BJF) is
the local time on the boundary 0S2.

The associated Dirichlet form, say 5[’)‘ 4 is therefore given by Eq. 2.12 with D(S(’f Y =
HY(Q) N L2(copiy). The solution (5.34) is obtained by considering the exponential random
variable ¢ with parameter ¢y > O (independent from B*) and % =inf{s > 0 : L?Q ¢
[0, ¢]}. Thus, the associated semigroup is written as

P S0 = B[ (B )0 < ¢ =By [ (B): ¢ > 1]9]
= B, [ fBOELE > LI®[FT)] = B[ £B7) 00k,

Let A, = FIA(B) and At_l =inf{s > 0 : A ¢ [0, ¢]}. Since A, is a non-decreasing
process, (A;l < §) = (As > t) and we say that A~ is the inverse of A. Obviously we
have that (;’Q > 1) = (LtaQ < ¢). It is worth mentioning that Bt+ can not be written (for
all # > 0) as B, )-1. We can not consider the skew product representation as in Section 4
or in the recent paper [51] for instance. The reflecting BM has been investigated by many
researchers and some different constructions have been also considered. Nevertheless, some
technical problems can arise from the characterization of the domains. Here we consider a
domain with fractal boundary and in particular, we exploit the fact that our pre-fractal and
fractal Koch domains are non trap. This permits us to consider occupation measures even
if the fractal nature of the boundary does not allow the study of the corresponding time
changed processes. Theorem 3 can be formulated as follows.

@ Springer



Skew Brownian Diffusions Across Koch Interfaces

Theorem 8 The unique weak solution of problem (2.19) can be written as
Q -
u(x) = E, [ / e 1% f(B,)dt] (5.35)
0

where tgq is the first time the BM B hits the boundary 92.

The associated Dirichlet form, say 5(‘)‘ 4, is given by Eq. 2.17 with D(S(’)‘ Y =
H'(R?) N L2(coge).

We shall approach the convergence in L of the solutions we are interested in, by first
considering convergence of measures. Let {P"}, be a sequence of probability measures on

(E, ©). We say that P" converges weakly-x to IP on (E, €) as n — oo and write P”" 3; P,
if B f(X") = [ fdP" — [, fdP = Ef(X),V f € Cp(E) where X" and X are the
random variables with probability measures P" and IP (that is, X" convergences in law to X

. I} . .
and we also write X" = X).If a sequence of stochastic processes converges (weakly) in
the sense of finite-dimensional laws (write X" f—) X)) we are in need of tightness in order

. . I} . ..
to get convergence in law. Moreover, we write X" X 00 (meaning also that X" L o,
that is almost surely or with probability one) if VM, In* : P(X" > M) =1, Vn > n*.
We use vague convergence arguments in this case, that is for a sequence of measures p,

on E U {400} we have u, =5 wif (f, wn) — (i), Vf € C7, the class of continuous
functions f : R — Ry with compact support.

Theorem 9 ([42])The Mosco convergence of the forms is equivalent to the strong conver-
gence of the associated resolvents and semigroups.

Convergence of semigroups, by the Markov property, provides convergence of finite
dimensional laws. In particular (let the symbol ”— " denote strong convergence of semi-
groups), for the semigroup (5.29), under (2.26) and (2.27), consider that (see Theorems 4
and 5):

i)  Robin, under (2.28) with ¢y > 0 and 59 > 0,
P fu(x) > B [e™ F(B): 1 < ¢%]: (5.36)
ii) Neumann, under (2.28) with ¢g = 0 and §y > O,
P fu(0) = Ex [e7 f(BD)]: (5.37)
iii)  Dirichlet, under (2.31) and §y > 0,
P! fu(x) > B [e™ (Bt <to] =Ex[e ™ f(B}); 1 <10].  (538)

—~

Thus, starting from the part process of B,"* on " (and therefore from Eq. 5.29), we
simply write

P} fu(x) —> P f(x) =By [e7 f(B); 1t < T ] (5.39)

where thi stopping time depends on lim,,_, o ¢;; = coo € [0, 00]. We arrive at the reflecting
BM on € stopped by T, that is the lifetime depends on the asymptotic behaviour of
the process on the thin layer X”. However, the convergence in Eq. 5.39 follows once the
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convergence of a suitable sequence of stopping times to 7., in an appropriate sense has
been shown. If m, — m, for the Borel sets {A j} we have that

EZ [ay (X)) - Ta (XD] = Eplla, (Xg) - 1a, (Xo)] (5.40)
as n — oo. This is due to the Markov property and the fact that
EY[a, (X5) - 1a, (Xp)I =PrAa Py, Any - Py 1a, (x) (5.41)

where P} f(x) is the transition (non conservative) semigroup (5.29). Thus we have conver-

gence of finite dimensional laws. If in addition, P/, is tight, then PP, converges weakly-x
IP) n n

to IPy,.

Definition 3 The sequence of probability measures {IP"}, on a metric space E is said to be
tight if for every € > 0, there exists a compact set K C E such that sup, P*(E \ K) <e.

We use the (Kolmogorov-Chentsov) criterion based on the moments of increments, that
is, the sequence X" is tight if Xg = 0 and there exist o, 8 > 0 and C > 0 such that, for
T >0,

E[|X" — X"*] < C |t — s|PT! (5.42)

holds uniformly onn € Nand 0 < 5,1 < T (see [36, Corollary 14.9]). Thus, the sequence
X" is tight in the space of all continuous processes, equipped with the norm of locally
uniform convergence.

6 Main Results

We consider occupation measures on both Q7 and 9Q" (local times) instead of planar
Brownian motions. Let {Q? be the lifetime of B,”* on Q7 and % be the lifetime of the
limit process on 2. Let us focus now on Eq. 5.39. Let X} be the m-version of B,”(")’* =

(B SRR T.,} with transition semigroup P/ (associated with the form £)*") and X,
be the process with transition semigroup P; (associated with the form Eg 4%, Our aim is to
prove the following theorem.

Theorem 10 Let A} be the PCAF associated with M]' = 1(z<;9? as in Eq. 5.29. We have:

)
i) ¢ — co € (0,00) & ;'Qg la—>w ;Q & an = Hao = co Mg (Mo is defined in
Eq. 2.2). -
X, is an elastic (or partially reflected) BM on Q;
.o Qn a.s. w
i) cp—> 08 S 00 < An — pe = 0.
X; is a reflecting BM on Q;
1 l
iii) caw" —> 0,¢p > 0 & CQS ay TQ & [Uan 5 e = oo (is locally infinite).
X; is an absorbing BM on <.

The main tools we deal with are stopping times. We first assume that a.s. % = 1., Vn,
that is the lifetime is equivalent to a random time depending on ¢, > 0. Then, we focus on
the sequence of random times T, with ¢, — ¢ € [0, 00] as n — 0o and we study the
convergence T, — T, . Thus, T, plays the role of lifetime for the limit BM on €2 (or Q).
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Remark 3 Let ¢" be a r.v. with density law P(¢" € dx) = ¢, exp(—c, x)1[p,00)(x) dx. We
obviously have that P(¢" < x) = 1 — exp(—cpx) and E¢” = 1/c,. We denote by ¢ the
limit of ¢" as n — oo in the following sense.

If ¢, — oo, then " E) % = 0. Indeed, by Markov’s inequality, we have that P(|¢" —
I® > €) < 6_1E|§"| — 0as ¢, — 00. Moreover, {*®° > 0 with E¢* = 0. Thus,
P(>® =0)=1.

If ¢, — 0 we have that P(¢*° < x) = 0 for all x € [0, oo) with ¢*° > 0 and, by
observing that E¢* = oo, we conclude that P(lim,, o0 ¢" = ¢ = 00) = 1.

If ¢, — co € (0,00), we simply have that ¢” lgu £® = ¢ asn — oo where ¢ is the
exponential r.v. with parameter co.

We can alsorelate at.v. ¢ to the time the process B,”* spends on (or cross) the pre-fractal
Q" as follows. For a fixed 1, denote by ¢ the r.v. written as

£ = inf{0 < s < ¢ 1 LY (B > ¢") = inf(s > 0 : L' (BY) > ¢")  (6.1)

assuming that ¢” is independent from B"* (and therefore, from the local time on the pre-
fractal boundary). Obviously, ¢ " isa sequence of Markov stopping times before absorption
on dQ2?. To be clear, ¥ < {QZ with probability one, Vn € N and Eq. 6.1 can be rewritten
as .
(¥ =1 AT,

in terms of the first exit time tor and T\cn = inf{s > 0 : L?Q" (B;"") > ¢} with ¢”
exponentially distributed, that is 7’"; corresponds to the elastic boundary condition. We also
observe that (6.1) can be regarded as the lifetime of the process up to the last visit on
Q" assuming that ¢” is the time the process spends on the pre-fractal boundary before
absorption on 9€27. In this case we have the lifetime on Q" written as (see also Remark 1)

¢ =sup{s > 0 : BY"* ¢ Q") = o 6.2)
which is no longer Markovian. Moreover, P, (;'/Q\g > Qn) > 0, m-a.e. x and
Py (ogr > 0) = Py (ton < 00).

We consider (6.1) with exponential threshold ¢” given in Remark 3.

Remark 4 From the discussion in the previous remark, we have the following cases.

If ¢, = oo, then ¢" E) 0 and

£ Winf(s > 0 1 L(BT) > 0} = 19 (6.3)

provided that the occupation time sequence L?Qn converges in law to the local time L?Q of
the corresponding limit process.
Similarly, as ¢;, — 0, P(lim,,— 0 " = 00) = 1 and then

“on law

¢ Linfs > 0 : L*(BT) = o0} = o0. (6.4)

If ¢, — co € (0, 00), then ¢" lig) ¢ and the lifetime of the limit process depends on the
random variable ¢ with parameter cg. In particular, we have that

“on law

(9 2 —infls > 0 : LB > ¢) 65

provided the convergence in law of the occupation time process on the fractal boundary 9€2.
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For the sake of simplicity we write ¢ in place of £ . We focus on the PCAF

Q\Q

AP =T (B) + LI (V) = (B") (6.6)

t/\f U -
and fo % dA™ is the occupation time process on Q7 \ ©2" of the skew BM B"*. Let us
write

;Qg —
Rx,uvn @) =201 +¢p) " Ley op E? |:/ e M1 0 (B,V(n)’*)dti|
0

where wi(dx) = 2(1 + c;) 'enon Lygn (x) m™(dx). Let AT e A} be in Revuz
correspondence with the measure ;.
Let us consider the symmetric local time

as in Eq. 5.19.

Proposition 2 Under (2.14), the boundary local time {L?S” .t < %) is the unique PCAF
such that, for any x € QF,

¢
R)\Mn(x)—>E |:/
0

Proof First we notice that i, has finite energy integral. Indeed,

Q

e Moot dL?Q+] as n — oo. 6.7)

1/2 _
/ v(x) it (dx) < (1 ;(89”)) / vl 2gny = 2(1 + cp) lcn«/anllv”Lz(mn).
Q*

From [20, Theorem 8.1] we know that

C
2 2

< —
“U||L2(3Qn) = 3 ”v“Hl(RZ)

where C is independent of n. Since (1 + ) e, <1, by extension theorem (see [20,
Theorem A.3]) we obtain that (v, u) < JC ||v||H1(Qg) and w € Sp. Since, under (2.14),

R ;f (x) is bounded (and in view of [24, Lemma 4.1.5]) we have that ;7 € Spo. Let
Coo € [0, 00] be such that ¢;, — coo. From Eq. 2.30, for all f € B4 we get that

(frhy - 2(1+coo)_1coo/ fdu as n— oo.
I

For a fixed n, consider the occupation measure (6.6). In view of Egs. 5.16, 5.19, 5.22 and
5.23, we write

thtgn
E" U AV *)dA”+]
X
0
1ATgn — IATgn - n
= 2v(n) E} |:/ f(Bv(n) *)d[‘E / g f(B;(n),*)dLgQ ]
0 0

where I'>" = T'>"(BY). Set U* f(x) = E! [f0°° e M- 5"’f(B“*)1(,<§Qn dA} ] From
Eq. 5.17 and the fact that E§[1(0<CQS)] =P (ng > 0) = 1forall x € Q7 we obtain

Jim (UL foml) = (f. @) VS e By (6.8)
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where [, T (dx) = 2v(n)(1sn + o, 150n) ml(dx) on Q7 \ Q" and therefore, by [30, Theo-
rem 5.1.4] there exists a unique PCAF of B;”* in Revuz correspondence with ji, T, that is
Eq. 6.6. Notice also that, since v(n) < 1, we can follow the same arguments as before in
order to see that [i, 7 € Sy. Let us consider £, € " and 0 < M,, < oo. Since condition
(5.21) holds true, we get that

tim (1,77 = Jim (20, - 200 e 2%, [ as
n—0o0 n—00 I+ cpw™(§)° L +cn aQn
and therefore, from Proposition 1 and Eq. 2.32,

f. o) = 2(1 + coo) ' eso /(;Q fdu, asn— oo

where (1 = 114 is the only Borel measure which is in Revuz correspondence with the ”sym-
metric” local time L?Q. Indeed, according with Eq. 3.4 and the setting in Eq. 3.7 with

E = Q, we have that

o
lim AE,, [ f e—“f(BodL?Q]: / fdu.
A—>00 0 Q2

Notice that
Q

¢
R} 1} () = 2(1+ €o0) ™ oo B [ / e““ﬂ’lamB,*)dt} <00
0

according with Eq. 5.39. From the one to one correspondence between (6.6) and its Revuz
measure [i,, " we prove (6.7) and the claim. (I

We also focus on the PCAF
ApT =1 (BT 4 LI (B = T (B (6.9)

where D;’ is an increasing sequence of open sets such that D" = U; D;’ — Qand A, =
Q7 \ D,.Let us write

% —
Ry (x) =2(1 +¢) "' o, B [/ ) PYoY (Bt"(")’*)dt:|
0

where pu,, (dx) = 2(1 + ) Lo, 1yan () m?(dx). Let A} € Aj‘ be in Revuz correspon-
dence with the measure ;.

Proposition 3 Under (2.14), the boundary local time {L?Qi < {Q} is the unique PCAF
such that, for any x € QF,

¢
Rip, (x) — Ey |:/
0

Proof We basically follows the proof of Proposition 2. Indeed, we can write the left local
time by considering (6.9) instead of Eq. 6.6 and the density £ (y) = 2(1 — v(n))o, £} (y)
as indicated in Section 5.1. We get that /i, (dx) = 2(1 — v(n))o,m” (dx) is the Revuz

Q

e)\tz?otdL?Qj| , asn — 00. (6.10)

measure of A7 ™. The result follows from the previous proof of Proposition 2. O
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From the previous results we have that 4, is the Revuz measure of

Cn

At =2

1+c¢, n

o [ eomiay =21
IQ + ¢
and p,, is the Revuz measure of
1

Al =2 o "dy) =
=2 [ aomiay)

Q"

1+c¢,

As we can immediately see (A7 T+ A7) /2 = LI Nevertheless, A"t and A~ behave

respectively like L?Qn"' and L?Q”_ only as n — oo. As we observed in Section 5.1, the

local time L' of the process B,”* is given by
Q" n n
L; _o,,/ 4 (y) mg (dy). (6.11)
aQn
According with Proposition 1, we now study the convergence of Eq. 6.11 to
= [ atau 6.12)
aQ

with L9 € A} (see for example [8] for the existence and other properties of Eq. 6.12). The
connection between tightness on the line and continuity of the limit process has been pointed
out starting from [2, 3]. The convergence in law of Eq. 6.11 is proved in the following
Proposition 4 and Proposition 5. We begin with the following result concerning the tightness
of the sequence L?Qn, t<T.

Proposition 4 The sequence {LY?"}, is tight in C([0, T1, [0, 00)).

Proof Let us consider the sets A, € d2". The process L,A ", t < T is a continuous additive

functional of zero energy ([24, pag. 149]) and IEX[|LZA" |, t < T] < oo q.e. x. Indeed, from
Egs. 5.20 and 5.27, we have that

t t t
E" [/ dL{}"—]JrE; U de}an] = 2E" [/ de}"}
s N s

const - (t —s) - oy / me(dy). (6.13)

n

IA

‘We have that Lé\” =O0foralln and, fork > 1 and c¢; > O,
E[|ILM — LM K] < o m™ (M) e1 [t — s* < ¢ |t — s]F. (6.14)

Indeed, for s < ¢,

[/ dLM } = kvf / 1An(3“<"> ). 1y, (BX *)]dm ... dzk (6.15)

< k'/ / 1A,1(B“<"> ). 1y, (B"(”)*)] dzy...dzi.  (6.16)
We recall (5.26) and the fact that PtD < Pf\' a.e., the transition function of the reflecting

BM dominates that of the absorbing BM. From Eqs. 5.41 and 6.13 we can write (6.14).
Since k > 1, a Kolmogorov-type criterion shows the tightness. O
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Since ;“/Q\" < % we can write P, (% < 1) < ]P’x(g/@ <1 =P@E" < L) =
l—IExe*C"L?Q and, equivalently P, (;“QZ >1) > Exe"'"L?Q . Assume that u is the bounded
solution to du = Lnu — kp(x)u with ug = 1 in H'(R2) N L2(R?, 0,130nds) where
& = calyon. Then, ast — 0, =1 (1 — u(x, 1)) = —L,ug + 6 (xX)up = K, (x) gives the
killing rate which can be also obtained as ([12])

liII(l) t_I]Px (B,V’* is killled in the time interval (0, ¢]).
11—

Since for A, = [j f(X;)ds, de?t /dt = f(X;)e and et — 1 = [; f(X,)esds, we get
that

lim ' (1 = Bye 5% ) = im B, [enlyan (B))] = & (x).
t—0 t—0

Then, u(x, t) =P 2" > t). We use the symbol &, in order to underline the connection
with the transition semigroup

—~—

P £ () = ELLF By < c)) = ELe M (B (6.17)

with resolvent 1/32 where E& is defined as in Eq. 6.1. For §,, identically zero,

Pl (x) = B [lgr (B)™);t < (P =PI (2 > 1).

If §,, > 0 we have that I/’?lgg (x) = e~ P1 (E& > ).

The heat equation solution with Robin boundary conditions has been studied using a
Feynamn-Kac formula and a theorem of Ray and Knight on Brownian local time in [8]. In
[28], the authors reviewed Kac’s method by underlining the connection between the higher-
order moments of A, = fOTK(X 1)dt and the Feynman-Kac formula. Thus, En[(A0¥] =
k'm Gfl where G, w(x) = f G(x,dy)x(y)w(y) (here m is an arbitrary initial distribution).
In particular,

T 00
f(x) = E, [exp/ K(B,)dt] =Y G, xen (6.18)
0 k=0

is finite if and only if is the minimal solution to f(x) = 1 + f k(y)f(y)G(x, dy) where
k : A — [0, 00) is a measurable Borel function, 7T = 75 and G is the Green function of
the killed BM on the boundary of the open set A.

Proposition 5 Forx € Q!, ¥Vt >0,
oo " oo
f el PLLIY € dl) —>/ el P (LI edl), asn— oo
0 0

m-a.e. x, for every sequence c, > 0 such that ¢, - cx € [0, o0].

Proof The higher-order moment of the boundary local time can be written as in formula
(6.15) with s = 0. Then, by applying (5.40) we have that E? [(L??")}] — E, [(LI%)]
weakly (continuously on ¢ > 0, m-a.e. x). Indeed, we have weak convergence of finite-
dimensional distributions from Theorem 9 and tightness from Proposition 4.

Consider the expansion (6.18). We can also write vg, (x,t) = E} exp —c, L?Q" fort <
T¢, in terms of Eq. 6.15 with s = 0. For ¢, = A > 0 Vn, vg, is the Laplace transform of

P (L?Q" € dl)/dl. Since, P} 3; P, m-a.e. x (from the convergence of moments), then the
convergence holds for every ¢, > 0 (and therefore, for every cs, € [0, 00]). O
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—~—

We can write A? = f(;/c,, (BY™*)ds in Eq. 5.29 where k,(-) is the state dependent
rate for the Markov killing time 7;,. Thus, we can focus on the multiplicative functional
Ml = e~ associated with the stopping time T, and therefore, with the sub-Markov
semigroup (5.39). In particular, (5.39) characterizes M;' uniquely ([12, Proposition 1.9]).

Also we write W = A (see formula (5.29)). Notice that (for A > 0)
0 ~~
R f(x) = Ej [ / e’“f(Bt”‘*)Mt”df]
0

— Top ~  —
Rl f(x) = E" [/0 e—“—érz’f(B,”’*)M;'dt]
where W = exp(—g?) with §,, ¢, as in Eq. 2.14 and ﬁ = ft@(B:(")’*)ds = an?Q".
The fundamental principle in our investigation is to approximate M by M and transfer
the properties known for the approximating functional.

~on law

Theorem 11 ¢ = T, and under (2.26), k\ﬁfn — Ry f strongly in L*().

. on 1 . .
Proof First we show that £ hily T¢s a8 €y = Coo. Let us write £" = ¢/c, with P(¢ >

x) = e ¥, x > 0. Thus, a.s. {" — ¢*°. Assume &, = 0 and A > 0. From P} we write the
associated resolvent

o oo o o0 o
Rglgg(x)=/ e—*’P;Lng(x)dm/ e MPL (R > t)dt
0 0
and, from the resolvent (5.30),

o0 o0
Rilgn(x) = / e MNP gn (x)dt = / eTMPI Y > 1)dt.
) 0 ) 0

Recall that (5.39) holds true. That is, from M-convergence of forms ([20]), we have that
(Theorem 9)

o
Rilgn(x) — / ef)"IP’x(Tcoo > 1)dt = Ry1q(x)
0

strongly in L2(£2). The limit stopping time 7., depends on c, and corresponds to the
lifetime of the limit process. By construction we have that a.s. %™ = T, and

lim Rilgr(x) = lim Rj1gi(x), VxeQl. (6.19)
n—oo n—o0

Now we show convergence in law.
Step 1) Let us consider a reflecting BM on ", say X", and the first hitting time tg» on
the pre-fractal boundary 92". Let X be a reflecting BM on Q with Q" 4 Q. We have that

la

X" X asn — oo ([22, Theorem 4.4 and Remark 2], [14, Section 2]). Consider now the
killed process XJ',t < T started at x € Q; Here we can follow the same arguments as
in [10, Theorem 4.1 and Theorem 3.3 ]. In particular, we consider the additive functional
A} associated with ton with Revuz measure us» = oop, where D, is the complement of
Q". From stable convergence of multiplicative functionals we arrive at weak convergence of

. . . 1 .
stopping times, that is T g 7q. Therefore, we get a direct consequence of M-convergence
of the associated form and tightness of P} (tg» > ¢) (indeed E” ton is bounded by E7l7q:
L3
uniformly on n). Notice also that we arrive at the same result by considering Dirichlet

@ Springer



Skew Brownian Diffusions Across Koch Interfaces

condition on 92" and the corresponding (killed) process on 2". The variational approach
has been treated in [17].

Step 2) Now we focus on the family {P" ; x € Q7}. Let us write X;" = {B}""* started
from x € Q" = Q" U £"} m-a.e.. We first observe that

Vi, X;"ed ifandonlyif (t>¢%)v(Xy" €d).

Since x € ST;\ Q! = X" € 9, forn — oo we can consider starting points x € Q! Notice
also that, in the Neumann case, the cemetery point is assumed to be d = {#} and such that
m(9) = 0. This corresponds to Capl(Qg \ ") — 0. Thus, for x € Q; we write

Pl > 1)
=PiC >1,(t <ton) U (t = 100))
Q" QN
= ]E;l I:E_C"L’ |Z < ‘L'Qn] Pﬁ (t < ton) + ]Ez [e_C”Lr |t > ‘L'Qn] ]P);l(t > Ton)

= Pi(rqn > 1) + B} [ M7 LI > 0] Pt = 7).

From Proposition 5 and the fact that g lil)” 7o, we have that
P (Y > 1) % Py(rg > 1) + E, [e—CooL?“|Lf9 > 0] P.(t > t0) (6.20)

and therefore we obtain:

i) if ¢, — cp, by considering that

E, [e_COL;m]
—E, [e—foL?Q|Lf9" _ o] P! (LYY = 0) 4 E, [e—CoL?Q|L?Q” > o] P (LY > 0)
and the fact that P, (L?gZ =0) =P, (rq > 1), we have

E, [eiCOL?Q]

= B, [ |L]% = 0] Po(rq > 1) + By [ 07 |L]% > 0] Pt 2 70)

— Py(tq > 1) + E, [e"'OL?Q’L?Q > o] P.(t > 1q).
From Eq. 6.20, we obtain

P2 > 1) % E, [e*COL?“] P2 >1), V>0, (xeQ)

and thus, a.s. T, = ¢4

i) ifen — 0,PPCY > 1) S Py(rq > 1) + Py(t > 1g) = 1 forall 1 > 0, x € 2 and

Pow @ lim ¢ (@) = 00) =1 =P.(0 : Ty(w) = 00);

iii)  if ¢, = oo, P} (5/9\" > 1) N Py (tq > t) forall r > 0, (x € ) and we conclude that
a.s. Too = 1.

i —
Thus, we obtain that £ %" ay T.

0 *
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With this at hand, we now continue the proof. Since {Q < {Qs with probablhty one,
we have that P} ({Qf >1) > P! ({Q" > t). Thus, we have that P"l < P}/1and R"l <Rl
m-a.e. Xx. From the contraction property of P} we have that

IR fll20m) < IRYf2gny < A7 21 fll 2o (6.21)
for all measurable functions f. Strong convergence of resolvents in L?(2*) implies that,
for f € L*(QM),

”ILUO‘Q ||Rilf||1‘2(gzg) = ||ka||L2(Q)-
Since R} f is uniformly bounded, ||I/€§ £l L@ < C for all n. From this and convergence

a.e. we conclude that I’é’z f — R, f weakly in L3(Q). Convergence of I’?'E f implies that
=
lbniégf||RAf||L2(Qg) > ||R)Lf||L2(Q)~

Since we have that

IR fll 2

IA

lim inf || R? ’
iminf || Ry 1l 12 q)

IA

.. n o n _
l}ln_l>£f ||Rxf||L2(Q’£‘) = nlgTolo ||RAf||L2(Qg) = ”R)»f”LZ(Q)
we conclude that
: n 1 n
nlingo ”R)Lf”LZ(Q';) = nlggo ||R,xf||L2(Qg)~ (6.22)

Weak convergence of Ef f together with Eq. 6.22 says that I/QE f — Ry f strongly in L2(£2).
Now we consider f; as in Eq. 2.26. Since, from Eq. 6.21,

IR} fn — Rafll2) S IR fu — R fll2) + IR f — R fll 2
<2 7P = Fllize) + IRLS = Rif 2
we get the strong convergence of @ fn (or )\Ef fn)- O
In light of the previous results, we can study the convergence of Eq. 5.29 by considering
the semigroup (6.17) and therefore the corresponding form. By taking into account (3.9)
and (3.4), we can study the form
Eo M (u,v) =y, v) + (W, V). u,v € H' (RN L2 () (6.23)

associated with
[f (BV(n) *) *Cnfo 1yon (Bv(n) “)ds i| (624)

where aj, is defined in Eq. 5.32 and p 55 is supported on 9Q".

Proof of Theorem 10 From Theorem 11 we have that

ng —_—~ o0
EY [ f e*“*‘”‘f,xB,”’*)M;’dr} — Rf(x) =E, [ / e*“*%'f(BbM,dr]
0 0

(6.25)
strongly in L%(£2) where the multiplicative functional M" and the killing functional are
associated with the PCAF with Revuz measure jz, = 8, + (g + 00(qn)c. Let us relate R

to i, = 8, + pan in the same sense. From Eq. 6.25 we have that, V f € cr,
[ raw— [rae o [ram~ [ rae
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Indeed, the resolvents identify uniquely the multiplicative functionals. Thus we get that

Ton > oo (6.26)

This means equivalence between the corresponding additive functionals. Proposition 2 and
Proposition 3 authorize us to study the asymptotic behaviour of

A7 = ZArt +Ap)

and, by considering ;7 and w;;, with Egs. 3.5 and 3.4 in mind we get that

lim
L—00

(U3 f,mg) = CnGn/ JF ) Laon (x)ds = (f, uzn)-
agll
From Eq. 6.26, we get that

o o 1gq + 005, Coo = ¢o € (0, 00) (elastic kill),
Moo =80+ ¢ 0+ coge, Coo =0 (no kill),
00, Coo = OO (kill on the boundary).

With Egs. 5.9 and 5.8 in mind, we write

lim ¢, = lim P (B " € Z"ym” (dx) (6.27)

Op
n—00 n—oo tick(X") Jaqn
where w" /tick(X") — 1 as n — oo (tick(X") is the thickness of the fiber).

ili) If ¢, — oo, then point iii) of the proof of Theorem 11 holds and is also in accord with
Eq. 6.27, ton — tq faster than B/ (M-* _, B+ The BM is killed on the boundary. On
the other hand, if tor — g, the lifetime on €2 of the limit process is exactly tq. Then
for all x € 2 we have that P, (le = 0) = 1 for all ¥ < 7o which means that

Vx e, ]P’x(e_c"Lfm =1,t <1Q)=1, foralln (forallc, > 0).

This justifies the convention oo -0 = 0. Moreover, if the lifetime is 7g, from Eq. 6.3, it
must be that " — 0, thatis ¢, — oo. Thus, Tgn — g if and only if condition (2.31)
holds and 92 becomes a Dirichlet boundary as n — oco. We get that ton — 1o &
Cp —> 00.

ii) If ¢, — 0, then according with Eq. 6.27 we say that B, ™"* — B* on Q fort > 0
and thgrgfore, ;Qn — oo./(\)n the otheLEand, Remark 3and Remark 4 say that ¢, —
0= ¢ - oo. Since £ < %, 2" — o0 as well as the lifetime % — 0.
Moreover, % — oo = ¢, — 0 by using Remark 3.

i) Since ii) and iii) hold true, if ¢, — c¢g and ¢o # 0 or ¢cg # oo, then {er — T
and T # oo or T # tq. In particular, T € (tq, 00) is a random variable depending
on ¢y € (0, 00). From Theorem 11 we have that T = ¢% is an exponential random
variable with parameter co. Thus, ¢, — ¢y & {QZ — {Q. In this case (and also
the previous as particular cases) we recover the results about the asymptotic of Robin
problems on pre-fractal domains ([17]) by considering the forms (6.23). 0

Let us focus on Remark 1. We observe that, as n — oo,
cp—>c>0 <& Cap; (R2 \Q) >0 (transient case)
where = immediately follows and < is obtained from iii) and /). Moreover, from ii),

g —0 <& Cap (R2 \Q)=0 (recurrent case).
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Indeed, the process X, is transient iff Cap (R?\ Q) > 0 ([24, Proposition 3.5.10]).
A vanishing capacity can be related with the hitting distribution and in particular with
the recurrence of the corresponding process. Let us consider the hitting distribution
HZ1p(x) = Ey[e”**1£(By,)] where the expected value is taken under (4.3). For a > 0,
HZ.1(x) = E,[e7*"]. Since R\ Q" is a decreasing sequence of sets of finite capacity,
from [30, Theorem 4.2.1] we have that

Cap;(R*\ Q") — 0 iff Hg, o, 1(x) > 0 qee.

Z\Qn

and thus, for x € Q; Py (rqn < 00) — 0 (see also Eq. 6.2).

Acknowledgments We are very grateful to the reviewer for the precious and accurate reading of the
previous versions of the work.
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