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Abstract We consider planar skew Brownian motion (BM) across pre-fractal Koch inter-
faces ∂�n and moving on �n ∪ �n = �n

ε where �n is a suitable neighbourhood of ∂�n.
We study the asymptotic behaviour of the corresponding multiplicative functionals when
thickness of �n and skewness coefficients vanish with different rates. Thus, we provide
a probabilistic framework for studying diffusions across semi-permeable pre-fractal (and
fractal) layers and the asymptotic analysis concerning the insulating fractal layer case.
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1 Introduction

State of the Art Diffusions on irregular domains have been investigated by many authors
as well as the construction of reflecting Brownian motions on non smooth domains ([9, 22,
29, 30]). However, if the domain D is Lipschitz, then we can construct the usual reflecting
BM as in [9]. Let D ⊂ R

d , d ≥ 2, a bounded Lipschitz domain. Existence and uniqueness
of the solution to dXt = dBt + n(Xt )dL∂D

t have been investigated in [6, 7] when n(z)

is the inward normal vector at z ∈ ∂D and L∂D
t is the local time of X on the boundary

of D. In particular, L∂D
t is a non-decreasing process such that

∫∞
0 1D(Xt )dL∂D

t = 0 that
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is, the process does not increase inside D. The local time can be associated with the sur-
face measure ([8, 9]) in the sense of the Revuz correspondence. Moreover, convergence of
reflecting BM in varying domain has been also investigated (see for example [14] and the
references therein). In [8] the authors studied the Robin problem on fractal domains in the
framework of the so called trap domains (see [15]) which is a nice property to deal with
for our purposes. We also deal with processes which are skew diffusions. The skew BM has
been introduced in [33, 34, 54] and constructed to model permeable barrier in [44, 45]. An
interesting surveys can be found in [39]. It has been also investigated by many researchers
as a tool in applied sciences. Applications to a single interface have been developed in [4,
33, 34, 40, 43, 46, 54]. Recent results on multidimensional skew BM can be found in [5,
52, 53]. In [38, 55] the authors approach homogenization problems. As well described in
[34, pag. 272], it is possible to construct a reflecting BM B+ on � ⊂ R

2, by considering
a BM B on R

2 and the occupation time f of B on �. That is, B(f−1) is identical in law to
B+. It is also shown in [34] that by killing B(f−1) at a random time T with conditional law
P(T > t |B(f−1)) = exp− ∫

�(f−1(t), x)κ(dx), one obtains the connection with the motion
driven by the Feynman-Kac generator (� is a local time and κ is a killing rate). An interest-
ing connection has been also given by verifying a conjecture of Feller. Indeed, an elastic BM
on [0,∞) with elastic condition γ u(0) = (1− γ )u′(0), γ ∈ (0, 1) is identical in law to B+
killed according with the conditional law P(T > t |B+) = exp− γ

1−γ
�+(t, 0). We notice

that the special cases γ = 1 or γ = 0 correspond to Dirichlet or Neumann conditions.

Our Results In this paper we consider boundary value problems on snowflake domain
� by using the homogenization results obtained in [19, 20] with the approach of insulat-
ing layers (see, for example, [1, 13] in smooth layers). More precisely, the fractal layer
is approximated by a two-dimensional insulating thin layer �n with vanishing thickness
and decreasing conductivity. Therefore, the emerging operators have discontinuous coeffi-
cients on the pre-fractal interfaces ∂�n and so we consider skew Brownian motions, that is
generalized diffusions processes (see, for example, [44, 45] and [53]).

More precisely, the process we are dealing with is a skew planar BM on a bounded
domain �n

ε = �n ∪ �n with pre-fractal interface ∂�n. We say that the BM in �n
ε is skew

meaning that it has different probability to stay in either �n or �n
ε \�n. We have a skewness

condition on the boundary ∂�n. We denote by B
ν,∗
t the skew (modified) planar BM on �n

ε

and we focus on the multiplicative functional Mn
t = 1

(t<ζ�n
ε )

of B
ν,∗
t where ζ�n

ε is the
lifetime of Bν,∗ on �n

ε and ν is the skewness parameter (see Section 5).
In our analysis, we mainly focus on occupation measures and stopping times. A key role

is played by the fact that the pre-fractal and fractal Koch domains are non trap. Thus, the
fact that the semi-permeable barrier is given by the pre-fractal curve ∂�n does not affect
our discussion in terms of occupation measures. Let T be the lifetime of the skew Brow-
nian motion Bν,∗ and cn be a sequence of positive constants describing the transmission
condition on ∂�n. Under the non-restrictive assumption that T = Tcn (that is the life-
time depends on cn) we consider the lifetime T̂cn with conditional law P(T̂cn > t |Bν,∗) =
exp−cnσn

∫
∂�n �n

t (y)ds (see Section 5.1) where σn is a structural constant associated with
the arc-length measure s on the pre-fractal boundary. In particular, we consider a sequence
of exponential random variables ζ n with parameter cn ∈ [0,∞] from which we construct a
sequence of stopping times ζ̂ �n (see formula (6.1) below) depending on the time the process
spends on (or cross) the pre-fractal interfaces.

Our aim is to investigate the asymptotic behaviour of Mn
t when thickness (of �n) and

skewness coefficients vanish with different rates according with cn. We show that the limit
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process can be the elastic, reflecting or absorbing Brownian motion according to the asymp-
totic behaviour of the parameter cn (see Theorem 10). Our approach is based on the study
of the asymptotic behaviour of 1

(t<ζ̂�n
)
or equivalently M̂n

t = 1(t<T̂cn ).

Concerning the Dirichlet problem on D ⊂ R
d , the connection between variational and

probabilistic approach to diffusion equations with killing has been investigated for example
in [10]. Boundary value problems with varying domains has been also investigated in [16,
50] where a key role is played by the capacity induced by a regular Dirichlet form.

Plan of theWork The plan of the paper is the following. Section 2 introduces notation and
definitions of the pre-fractal and fractal Koch curves. Moreover, we recall the homogeniza-
tion results obtained in [20]. Section 3 gives some basic aspects about positive continuous
additive functionals and random times. In Section 4 we consider skew BM across a regular
layer. The skew BM across irregular boundaries is introduced in Section 5. Our main results
are collected and discussed in Section 6.

2 Notation and Preliminary Results

In this section we introduce the notation and some preliminary results. We recall the def-
inition of the Koch curve with endpoints A = (0, 0), and B = (1, 0). We consider the
family �α = {ψα

1 , . . . , ψα
4 } of contractive similitudes ψα

i : C → C, i = 1, . . . , 4, with
contraction factor α−1, 2 < α < 4,

ψα
1 (z) = z

α
, ψα

2 (z) = z

α
eiθ(α) + 1

α
,

ψα
3 (z) = z

α
e−iθ(α) + 1

2
+ i

√
1

α
− 1

4
, ψα

4 (z) = z− 1

α
+ 1,

where θ(α) = arcsin
(√

α(4−α)
2

)
.

By the general theory of self-similar fractals (see [27]), there exists a unique closed
bounded set Kα which is invariant with respect to �α , that is,

Kα = ∪4i=1ψα
i (Kα). (2.1)

We recall that Kα supports a unique self-similar Borel measure

μα which is equivalent to the df − dimensional Hausdorff measure (2.2)

where df = log 4
logα

. LetK0 be the line segment of unit length that has as endpointsA = (0, 0)
and B = (1, 0). We set, for each n in N,

K1
α =

4⋃

i=1
ψα

i (K0), K2
α =

4⋃

i=1
ψα

i (K1
α), . . . , Kn+1

α =
4⋃

i=1
ψα

i (Kn
α); (2.3)

Kn
α is the so-called n-th pre-fractal curve. Moreover, the iterates Kn

α converge to the self-
similar set Kα in the Hausdorff metric, when n tends to infinity. Let �0 be the triangle

with vertices A = (0, 0), B = (1, 0), and C = ( 12 ,−
√
3
2 ). We construct on the side with

endpoints A and B the pre-fractal Koch curve defined before, which will be denoted by
Kn

1,α and the Koch curve defined before, which will be denoted by K1,α . In a similar way,
we construct on the other sides the analogous pre-fractal Koch curves (the Koch curves)
denoting by Kn

2,α and Kn
3,α (by K2,α and K3,α) the curves with endpoints B and C, and C
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and A, respectively. We denote by �n
α the pre-fractal domain that is the set bounded by the

pre-fractal Koch curves Kn
j,α

, j = 1, 2, 3. Moreover, we denote by �α the snowflake that

is the set bounded by the Koch curves Kj,α , j = 1, 2, 3 (see Fig. 1). We denote by �0
1 the

open set condition triangle of vertices A = (0, 0), B = (1, 0) and C = (1/2, b/2) where
b = tan( θ

2 ).
Following the construction in [18], for every n and ε, we define the fiber �n

1,α,

ε-neighborhood of Kn
1,α to be the (open) set

�n
1,α =

⋃

i|n
�

i|n
1,α, where �

i|n
1,α = ψα

i|n(�0
1)

(see Fig. 2). We proceed in a similar way in order to construct the fiber �n
j,α, ε-

neighborhood of Kn
j,α (j = 2, 3) and, we define the fiber �n

α , ε-neighborhood of
∂�n,

�n
α =

3⋃

j=1
�n

j,α and �n
ε,α = �n

α

⋃
�n

α.

From now on, we omit α when it does not give rise to misunderstanding, by writing
simply � instead of �α or μ instead of μα and similar expressions. Moreover, we denote
by C positive, possibly different constants that do not depend on n and on ε. We note that

�n ⊂ �n+1 ⊂ � ⊂ �n+1
ε ⊂ �n

ε .

We define a weight wn as follows. Let P – for some i|n – belong to the boundary ∂(�
i|n
1 )

of �
i|n
1,ε and let P⊥ be the orthogonal projection of P on K

i|n
1 . If x ∈ R

2 belongs to the

segment with end-points P and P⊥, we set, in our current notation,

wn
1 (x) = 3|P − P⊥|

3+ b2
,

where |P − P⊥| is the (Euclidean) distance between P and P⊥ in R
2. We proceed in a

similar way in order to construct the weights wn
j on �n

j (j = 2, 3) and we define wn on �n
ε

wn(x) =
{

wn
j (x) if x ∈ �n

j

1 if x ∈ �n.
(2.4)

Fig. 1 The pre-fractal domains
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Fig. 2 The fibers

Associated with the weight wn, we consider the Sobolev spaces H 1(�n
ε ;wn) and

H 1
0 (�n

ε ;wn), defined as the completion of C∞(�n
ε ) and C∞0 (�n

ε ), respectively, in the norm

‖u‖H 1(�n
ε ;wn) =

(∫

�n
ε

u2dx +
∫

�n
ε

|∇u|2wndx

) 1
2

(2.5)

where dx denote the 2-dimensional Lebesgue measure.
We define the coefficients

an
ε (x) =

{
cnσn wn(x) if x ∈ �n

1 if x ∈ �n,
(2.6)

where
cn > 0 (2.7)

and

σn = αn

4n
. (2.8)

The following theorem states the existence and the uniqueness of the variational solu-
tion of the reinforcement problem. We consider the bilinear form associated with the
reinforcement problem

an(u, v) :=
∫

�n
ε

an
ε∇u∇v dx + δn

∫

�n
ε

u v dx (2.9)

where an
ε is defined in Eqs. 2.6, 2.8, 2.7, and δn > 0.

We denote by s the arc-length measure on ∂�n.

Theorem 1 Let σn be as in Eq. 2.8 and dn ∈ R. Then, for any fn ∈ L2(�n
ε ), there exists

one and only one solution un of the following problem
{
find un ∈ H 1

0 (�n
ε ;wn) such that

an(un, v) = ∫
�n

ε
fn v dx + σndn

∫
∂�n v ds ∀ v ∈ H 1

0 (�n
ε ;wn),

(2.10)

where an(·, ·) is defined in Eq. 2.9. Moreover, un is the only function that realizes the
minimum of the energy functional

min
v∈H 1

0 (�n
ε ;wn)

{
an(v, v)− 2

∫

�n
ε

fn v dx − 2σndn

∫

∂�n

v ds
}
. (2.11)

In the following theorems, we state the existence and uniqueness of the variational solu-
tion of the Robin, Neumann, and Dirichlet problems on the domain �. We consider the
bilinear form associated with the Robin problem

ac0(u, v) :=
∫

�

∇u∇v dx + δ0

∫

�

u v dx + c0

∫

∂�

γ0u γ0v dμ (2.12)

where μ is the measure on ∂� that coincides, on each Kj j = 1, 2, 3, with the Hausdorff
measure (2.2) defined before and γ0u denotes the trace of the function u on the boundary of
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�, that is for v in L1
loc(D), where D is an arbitrary open set of R2, the trace operator γ0 is

defined as

γ0v(P ) := lim
r→0

1

m(B(P, r) ∩D)

∫

B(P,r)∩D
v(x) dx (2.13)

at every point P ∈ D where the limit exists (see, for example, page 15 in [35]). From
now on, we suppress γ0 in the notation, when it does not give rise to misunderstanding, by
writing simply v instead of γ0v and similar expressions. We assume that

c0 ≥ 0, δ0 ≥ 0, and max(c0, δ0) > 0. (2.14)

Theorem 2 Let us assume (2.14) and d ∈ R. Then, for any f ∈ L2(�), there exists one
and only one solution u of the following problem

{
find u ∈ H 1(�) such that
ac0(u, v) = ∫

�
f v dx + d

∫
∂�

v dμ ∀ v ∈ H 1(�)
(2.15)

where ac0(·, ·) is defined in Eq. 2.12. Moreover, u is the only function that realizes the
minimum of the energy functional

min
v∈H 1(�)

{
ac0(v, v)− 2

∫

�

f v dx − 2d
∫

∂�

v dμ
}
. (2.16)

In a similar way, we prove the following result. We consider the bilinear form associated
with the Dirichlet problem and

a∞(u, v) :=
∫

�

∇u∇v dx + δ0

∫

�

u v dx. (2.17)

We assume that
δ0 ≥ 0. (2.18)

Theorem 3 Let us assume (2.18). Then, for any f ∈ L2(�), there exists one and only one
solution u of the following problem

{
find u ∈ H 1

0 (�) such that
a∞(u, v) = ∫

�
f v dx ∀ v ∈ H 1

0 (�)
(2.19)

where a∞(·, ·) is defined in Eq. 2.17. Moreover, u is the only function that realizes the
minimum of the energy functional

min
v∈H 1

0 (�)

{
a∞(v, v)− 2

∫

�

f v dx
}
. (2.20)

We recall the notion of M−convergence of functionals, introduced in [41], (see also
[42]).

Definition 1 A sequence of functionals Fn : H → (−∞,+∞] is said to M−converge to
a functional F : H → (−∞,+∞] in a Hilbert space H , if

(a) For every u ∈ H there exists un converging strongly to u in H such that

lim supFn[un] ≤ F [u], as n→+∞. (2.21)

(b) For every vn converging weakly to u in H

lim infFn[vn] ≥ F [u], as n→+∞. (2.22)
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Let �∗ be an open regular domain such that �∗ ⊃ �n
ε , for all n : in order to fix notation

we choice as�∗ the ball with the center in the point P0 = ( 12 ,− 1
2 ) and radius 1. We consider

the sequence of weighted energy functionals in L2(�∗)

F n[u] =
{ ∫

�n
ε
an
ε |∇u|2dx + δn

∫
�n

ε
u2dx if u|�n

ε
∈ H 1

0 (�n
ε ;wn)

+∞ otherwise in L2(�∗)
(2.23)

(the coefficients an
ε are defined in Eqs. 2.6, 2.8, 2.7, δn > 0) and

Fc0 [u] =
{ ∫

�
|∇u|2dx + δ0

∫
�

u2dx + c0
∫
∂�

u2dμ if u|� ∈ H 1(�)

+∞ otherwise in L2(�∗). (2.24)

Moreover, we consider the case where the layer is weakly insulating (see Eq. 2.31 below)
and we introduce the following functional (2.25) in L2(�∗)

F∞[u] =
{ ∫

�
|∇u|2dx + δ0

∫
�

u2dx if u|� ∈ H 1
0 (�)

+∞ otherwise in L2(�∗). (2.25)

In order to study the asymptotic behaviour of the functions un, we fix the further
assumptions

fn, f ∈ L2(�∗), and fn → f ∈ L2(�∗), as n→+∞, (2.26)

δn > 0 and δn → δ0 as n→+∞, (2.27)

cn > 0 and cn → c0 as n→+∞, (2.28)

dn, d ∈ R, and dn → d as n→+∞. (2.29)

We also introduce the following results which have been proved in [20] and turn out to
be useful further on.

Proposition 1 Let σn be as in Eq. 2.8. Then, for every sequence gn ∈ H 1(�) weakly
converging towards g∗ in H 1(�), we have

σn

∫

∂�n

gnds→
∫

∂�

g∗ dμ , as n→+∞. (2.30)

Theorem 4 Let us assume (2.28) and (2.27). Then, the sequence of functionals Fn, defined
in Eq. 2.23, M−converges in L2(�∗) to the functional Fc0 defined in Eq. 2.24 as n→+∞.

Now we consider the case when the conductivity of the thin fibers vanishes slower than
the thickness of the fiber: more precisely, we suppose

cnw
n → 0, cn →+∞. (2.31)

Theorem 5 Let us assume (2.31) and (2.27). Then the sequence of functionals Fn, defined
in Eq. 2.23, M−converges in L2(�∗) as n→ +∞ to the energy functional F∞[u] defined
in Eq. 2.25.

In conclusion, throughout we consider the geometric constant σn as in Proposition 1 and
the following condition on the conductivity of the thin fibers �n

cnw
n → 0 as n→∞. (2.32)
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3 Positive Continuous Additive Functionals and Random Times

We recall some basic aspects and introduce some notations. Let E be a locally compact
separable metric space and m be a positive Radon measure on E such that supp[m] = E.
A Dirichlet form E with domain D(E) is a Markovian closed symmetric form on L2(E,m)

(see [30, Chapter 1]). Let X = ({Xt }t≥0;F;Px, x ∈ E) be an m-symmetric Hunt process
whose Dirichlet form (E, D(E)) on L2(E,m) is regular (see [30, Chapter 5]).

We say that At , t ≥ 0 is a positive continuous additive functional (PCAF) and write
At ∈ A+c denoting by A+c the totality of PCAFs of an m-symmetric Hunt process X (see
[24, A.3.1] for details). More precisely, we say that At ∈ A+c if

A.1) At , t ≥ 0 is Ft -measurable ({Ft } is the minimum completed admissible filtration),
A.2) there exists a set � ∈ F∞ and an exceptional set N ⊂ E with Cap(N) = 0 such

that Px(�) = 1 for all x ∈ E \N , θt� ⊂ � for all t > 0; for every ω ∈ �, At(ω) :
t �→ At(ω) is continuous, A0(ω) = 0; for all s, t ≥ 0 As+t (ω) = At(ω)+ As(θtω)

where θt , t ≥ 0 is the (time) translation semigroup,
A.3) for all ω ∈ �, At(ω) : t �→ At(ω) is non-decreasing.

In this section, we denote by μ a positive Radon measure on E. Hereafter, we write
〈v, u〉μ =

∫
E

v(x)u(x)μ(dx) and, in some case, we simply write 〈v, μ〉with obvious mean-
ing of the notation. We denote by C0 the set of continuous functions with compact support.
A positive Radon measure μ for which ([30, pag. 74])

∫
|v(x)|μ(dx) ≤ C

√
E1(v, v), ∀ v ∈ D(E) ∩ C0(E) (3.1)

where

Eλ(u, v) = E(u, v)+ λ〈u, v〉m (3.2)

is said of finite energy integral and formula (3.1) holds if and only if there exists, for each
λ > 0, a unique function Uλμ ∈ D(E) (where Uλμ is a λ-potential) such that

Eλ(Uλμ, v) =
∫

v(x)μ(dx). (3.3)

We recall that ([30, pag. 64]), for an open set B ⊂ E and LB = {v ∈ D(E) : v ≥
1m-a.e. on B}, the capacity is defined as Cap(B) = infu∈LB

E1(u, u) if LB �= ∅ and
Cap(B) = ∞ if LB = ∅. We say that a Borel measure μ on E is a smooth measure and
write μ ∈ S = S(E) if ([30, pag. 80])

μ.1) μ charges no set of zero capacity;
μ.2) there exists an increasing sequence {Fn} of closed sets such that μ(Fn) < ∞ and

Cap(K \ Fn)→ 0 for all compact sets K .

The class of smooth measures S is therefore large and it contains all positive Radon mea-
sures charging no set of zero capacity. By [30, Lemma 2.2.3], all measures of finite energy
are smooth. We use the notation introduced in [30] and denote by S0 ⊂ S the set of positive
Radon measure of finite energy integrals, by S00 ⊂ S0 the set of finite measures with
‖U1μ‖∞ <∞.

Let us consider μA ∈ S and At ∈ A+c associated with the m-symmetric Hunt process X

with Pm(�) = ∫
E
Px(�) m(dx) and Px(�) = Px(Xt ∈ �) for � ∈ F. Then, the measure
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μA and the PCAF At are in the Revuz correspondence if, for any f ∈ B+(E) (the set of
non-negative and measurable functions on E), we have that

〈f,μA〉 = lim
t↓0

1

t
Em

[∫ t

0
f (Xs)dAs

]

= lim
λ→∞ λEm

[∫ ∞

0
e−λtf (Xt )dAt

]

. (3.4)

We say that μA is the Revuz measure of A ∈ A+c and if μA ∈ S, then there exists a
unique (up to equivalence) PCAF {At }t≥0 with Revuz measure μA ([30, Theorem 5.1.4 and
Theorem 5.1.3]). Throughout, we write μ instead of μA if no confusion arises. Moreover,
we introduce

Rλf (x) = Ex

[∫ ∞

0
e−λtf (Xt )dt

]

and Uλ
Af (x) = Ex

[∫ ∞

0
e−λtf (Xt )dAt

]

(3.5)

(see [47] for a complete discussion). Throughout, we consider the local time process L∂E
t =

L∂E
t (X) = ∫ t

01∂E(Xs)ds which is the PCAF increasing when X hits the boundary ∂E.
We introduce some further notation and basic aspects. In the following sections we

consider the killed process

Xt =
{

X̃t , t < τ

∂, t ≥ τ
(3.6)

(X̃t admits no killing inside E and ∂ is the “coffin state” not in E) where τ will be a suitable
random time and Pt f (x) = Ex[f (Xt )] = Ex[f (X̃t ) ; t < τ ], x ∈ E is the associated
semigroup. In particular, we consider the following cases: i) τ = ζE is a random time such
that (ζE < t) ≡ (L∂E

t > ζ) and ζ is an exponential random variable, with parameter
c0 ∈ (0,∞), independent from X; ii) τ = ∞ under suitable conditions; iii) τ = τE is the
exit time of X from E.

Thus Xt , t ∈ [0,∞], is a Markov process with state space E∂ := E ∪ {∂}. The transition
function is not conservative according with the cemetery point {∂}, that is Px(Xt = ∂) ≥ 0,
∀ x ∈ E∂ , t ≥ 0. In particular, X is conservative if Px(ζ

E < ∞) = 0 for every x ∈ E

where we denote by ζE also the lifetime of the process on E. Since Xt is a Markov process,
Px(X0 = x) = 1 for all x ∈ E∂ and P∂ (Xt = ∂) = 1 for all t . Our discussion is mainly
concerned with trap domains. A point x ∈ E∂ is called a trap of X if Px(Xt = x) = 1
for every t ≥ 0. We give the definition of trap domain further on in the text. In i) it is well
known that, the lifetime of the process follows the law Px(ζ

E > t |Xt) = e−c0L
∂E
t for every

x ∈ E and t > 0. Thus, L∂E
0 = 0 and Px(ζ

E > 0) = 1. L∂E is the occupation time of X

on ∂E. For � ⊆ E, we denote by ��
t (X) = meas{s ∈ [0, t] : Xs ∈ �} the occupation

time process of X on �. The semigroup Pt is strongly continuous and we use the fact that
λRλf → f and λ〈Uλ

Af, m〉 → 〈f,μ〉 as λ→∞ where μ is the Revuz measure associated
with the additive functional A and therefore, to the random time τ ∈ [τE,∞].

Let us consider the perturbed Dirichlet form on L2(E,m) written as

Eμ
λ (u, v) = Eλ(u, v)+ 〈u, v〉μ, u, v ∈ D(E) ∩ L2(E,μ) (3.7)

where Eλ has been introduced in Eq. 3.2, μ ∈ S. Let At ∈ A+c and X̃t as in Eq. 3.6. The
transition function

Pμ
t f (x) = Ex[e−At f (X̃t )] (3.8)

is associated with the regular form (Eμ
0 ,D(Eμ

0 )) where μ is the Revuz measure of At (see
[30, Theorem 6.1.1 and Theorem 6.1.2]). We simply write Pt instead of P

μ
t . In the following
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sections we consider m-version of X̃ associated with our problems on fractal domains (and
pre-fractal if clearly specified).

We say that Xn converges in law to X and write Xn law→ X if Ef (Xn) → Ef (X) as
n→∞ for every continuous and bounded function f .

Throughout, we consider the PCAF (in the strict sense, that is, in A.2) � is the defining
set and N is an empty set) An

t =
∫ t

0f (Xn
s )ds, the multiplicative functional Mn

t = e−An
t and

a stopping time Tn. We have that (see [23, Lemma 2.1])

lim
t↓0 E

n
xA

n
t = lim

t↓0
[
E

n
x[An

t ; t < Tn] + E
n
x[An

t ; t ≥ Tn]
] = lim

t↓0 E
n
x[An

t ; t < Tn]. (3.9)

4 Transmission Condition on Regular Interfaces

In this section we consider the probabilistic approach of thin layer when � is a disc. Actu-
ally, we provide a sketch of proof for the problem with collapsing annulus by following
two approaches. Here, the purpose is to underline the main differences with the fractal
case investigated in the next sections. Notice also that speed measure and scale function
characterize uniquely one-dimensional diffusions.

First Approach Let us consider a BM X on R
2 started (at x ∈ R

2) away from zero. For
θ ′ ∈ [0, 2π), r ′ > 0 we can write, Px(Xt ∈ dy) = P(θ ′,r ′)(�t ∈ dθ, Rt ∈ dr) where
R = |X| is a Bessel process. In particular, R and � are the radial and the angular part of X.
It is also well-known that a skew-product representation is given in term of (R,�) where
R = |X| is a Bessel process and � = X/|X| = B(

∫
R−2z dz) with B an independent BM on

the sphere S1 ([34, pag. 269]). Here � is a time-changed BM on S1 (the winding number of
Xt ).

Let ν ∈ (0, 1) and Bν be a planar BM on the disc C2 with a disc C1 ⊂ C2 (centred at
the same point (0, 0), with radius r1 < r2 = r1 + ε, ε > 0), Dirichlet condition on ∂C2
and transmission condition on ∂C1 (the skew condition, that is Px(B

ν
t ∈ C2 \ C1) = ν,

Px(B
ν
t ∈ C1) = 1 − ν for x ∈ ∂C1). Due to the non-symmetry (1 − ν, ν) we say that Bν

is a skew planar BM (that is a 2-dimensional extension of the skew BM, see for example
Section 11.10 of [39] or [52]). Let Ln be the governing operator of Bν . We examine in this
section the classical case corresponding to the (formal) problem

Lnun = −fn on C2

(1− ν) ∂nun

∣
∣
∂C1− = ν ∂nun

∣
∣
∂C1+

un

∣
∣
∂C1− = un

∣
∣
∂C1+

un

∣
∣
∂C2
= 0

where ∂n is the normal derivative and we denote by ∂C1− and ∂C1+ the boundary from
the interior and from the exterior of C1. Let us consider the sequences ν = ν(n), ε = ε(n),
n ∈ N. Our aim is to study the asymptotic behaviour of the solution as n → ∞ and
ν, ε → 0, ν/ε → c with different rate given by the elastic coefficient c ≥ 0. Then, the
problem above can be associated with Bν started away from the origin, that is the process
is partially (normally) reflected on ∂C1 and totally absorbed in ∂C2.

A reflecting BM on a disc can be constructed (in law) by considering suitable time
change and rotation ([34, pag. 272]). The time change in this case is a stochastic clock given
by an additive functional of the radial motion as indicated before. Denote by C1,2 the annu-
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lusC2\C1. Thus, for 0 < r ′ < r2 and 0 < θ ′ ≤ 2π , Px(B
ν
t ∈ dy) = P(θ ′,r ′)(�t ∈ dθ, Rν

t ∈
dr) where Rν = |Bν | is a skew Bessel process on (0, r2) such that, Pr1(R

ν
t ∈ (r1, r2)) = ν.

We have normal reflection on ∂C1 and

∀ x ∈ ∂C1, Px(B
ν
t ∈ dy) = dθ

2π
Pr1(R

ν
t ∈ dr). (4.1)

The BM can move from ∂C1 according with an uniformly distributed angle � for the
choice of the starting point, that is

∫ 2π

0
P(θ,r1)(B

ν
t ∈ C1,2)

dθ

2π
= ν and

∫ 2π

0
P(θ,r1)(B

ν
t ∈ C1)

dθ

2π
= 1− ν. (4.2)

Let R be the part of the Bessel process R̃ on (0, r2) with R̃ ∈ (0,∞). We cut the excur-
sions of R̃ by considering a time change given by the inverse of �

(r1,r2)
t (R̃). We do the same

with �
(0,r1)
t (R̃). As in [34, pag. 115] we can obtain a skew motion by considering the ν por-

tion of �
(r1,r2)
t (R̃) and the 1− ν portion of �

(0,r1)
t (R̃), that is a new occupation time, say f.

Thus, it is possible to consider a suitable time change f−1, in order to obtain partial (normal)
reflection on r1 and, Rν = Rf−1 is a Bessel process on (0, r2) with transmission condition
on r1. The skew BM constructed in this way has the skew-product representation involving
the time-changed Bessel process Rf−1 where the BM on the circle is identical in law to the

original process (that is,�
law= �f−1 ). More precisely, let us consider T ν

t =
∫ f−1(t)
0 (Rν

z )−2dz

where Rν
t = Rf−1(t) and Tt =

∫ t

0R−2z dz. Then �ν
t = B(T ν

t ) where B is independent from

T ν
t and�t = B(Tt )whereB is independent from Tt . Since T ν

t
law= Tt we get that�ν

t
law= �t .

Thus, the only process we consider is the radial part Rt time-changed by f−1, that is Rν .
The Bessel process can start from zero and then it is instantaneously reflected. It never hits
the origin at some t > 0. The mean exit time

vε(r) = E[τ(0,r2)(R
ν)|Rν

0 = r ∈ (0, r2)] = Er τC2

can be explicitly written by following standard techniques for one-dimensional diffusions
(see for example [37]) and, as ε→ 0, ν → 0 according with ν/ε → c, we find that it solves

v′′0 = −1
v0(0) = 0
v0(r1) = 0 if c = ∞
v′0(r1) = −c v0(r1) if c ∈ [0,∞).

This corresponds to the study of un with fn = 1. Due to isotropy and the discussion
about the angular part of the planar BM, we arrive at the solution u∞ of the problem above.
Therefore, the boundary conditions on r1 depend on the limit of the ratio between the skew-
ness coefficient ν and the thickness coefficient ε. According with Section 2, we note that
σn = 1/2π , wn = ε(n) and cnw

n = ν(n), �n = C1,2 is the thin layer.

Second Approach Alternatively, we can approach the problem as follows. Let Tcn be
the stopping time for the skew BM on C2 with r2 = r1 + ε(n) and ν = ν(n) under the
assumption that limn→∞ cn = limn→∞ ν(n)/ε(n). The lifetime depends on the asymptotic
behaviour of the process on the collapsing annulus C1,2. Our result in fractal domains can
be reformulated here (in regular domains) by considering the stopping time Tcn and the
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fact that (Tcn > t |Bν) ≡ (Tcn > t |Rν) in view of the previous discussion about �
law=

�f−1 . In particular we consider the lifetime ζC2 = Tcn of Rν and ζ̂ C2 = τC2 ∧ T̂cn where

T̂cn = inf{s > 0 : L
r1
s > ζn} with conditional law Px(T̂cn > t |Rν) = exp−cnL

r1
t

where L
r1
t is the symmetric local time of Rν at r1. That is, we consider ζ n as exponential

random variable with parameter cn and independent from Rν . Thus, under the assumption
that limn→∞ cn = limn→∞ ν(n)/ε(n), we study the asymptotic behaviour of

un(r) = Er

[∫ Tcn

0
fn(R̃

ν
t )dt

]

= Er

[∫ ∞

0
fn(R

ν
t )Mn

t dt

]

where Mn
t = 1(t<Tcn ) by means of the asymptotic behaviour of

ûn(r) = Er

[∫ ∞

0
fn(R

ν
t )M̂n

t dt

]

where M̂n
t = 1(t<T̂cn ) and (assume here x ∈ C1 for the reader’s convenience)

Px(T̂cn > t |Rν)
law→

⎧
⎨

⎩

1, cn → 0,
exp−c0L

r1
t , cn → c0 ∈ (0,∞),

1(t<τC1 ), cn →∞,

as n→∞.

For the local times we have that Lr1
t (Rν(n))→ L

r1
t (R+) in law where R+ is a reflecting

Bessel process on (0, r1). Thus, we estimate the stopping time T by T̂ and exploit the fact
that ζ̂ C2 ≤ ζC2 with probability one. This immediately follows by considering the definition
of ζ̂ C2 which can be also written as ζ̂ C2 = inf{s ∈ (0, ζC2 ] : L

r1
s > ζn}. The convergence

of Rν(n) can be obtained by considering that Pr (R
ν(n)
t > M) ≤ M−1ER

ν(n)
t and that the

moment is bounded.

Remark 1 For a compact subset K ⊂ R
d ([48, Theorem 22.7])

Px(Bt ∈ K for some t > 0) =
∫

G(x, y)μK(dy) = GμK(x)

is a potential of a unique measure μK concentrated on ∂K . The capacity Cap(K) =
inf{E(μ) : Gμ ≥ 1 on K} where E(μ) = ∫

G(x, y)μ(dx)μ(dy) can be defined from
μK(K).

Define σK = sup{s > 0 ; Bs ∈ K} with sup∅ = 0, then for x ∈ R
d , y ∈ K , t > 0, we

have that ([25, 31])

Px(BσK
∈ dy, σK ∈ dt) = p(t, x, y)μK(dy)dt (4.3)

and we recover an interesting connection between elastic coefficient and capacity. Consider
K = C1: the last exit time can be therefore rewritten as σK = inf{s > 0 : Lr1

s > ζn} where
now ζ n is the time the process spends on (or cross) r1 before absorption in r2.

Remark 2 Notice that we used isotropy and skew product representation which are not
suitable tools for approaching our fractal problem. In particular, if we consider the Koch
domain �, the normal vector does not exist at almost all boundary points. However it is
possible to define the Robin boundary condition in the sense of the dual of certain Besov
spaces (see [17, Theorem 4.2 ]).
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5 Transmission Conditions on Irregular Interfaces

In this section we introduce the modified skew BM B
ν,∗
t , t ≥ 0 on �n

ε . The parameter
ν ∈ [0, 1] is the so called skewness parameter. Skew BM is a process with associated
Dirichlet form in L2(�n

ε ,mν) given by

E(u, v) = 1

2

∫

�n
ε

∇u∇v dmν, D(E) = H 1(�n
ε ,mν) (5.1)

where mν(x) = 2(1 − ν)1�n(x) + 2ν1�n(x) and it can be associated with discontinuous
diffusion coefficients. We focus on the sequence of elliptic operators

Ln u = − div
(
an
ε ∇u

)
(5.2)

in divergence form with coefficients given in Eq. 2.6 and

D(Ln) =
{
u ∈ L2(�n

ε , dx), : u|�n ∈ H 2(�n), u|�n ∈ H 2(�n)
}

.

The discontinuous coefficients an
ε in Eq. 5.2 introduce the transmission condition in the

L2(∂�n)

∇u · n∣∣
y− = cnσn ∇u · n∣∣

y+ ∀ y ∈ ∂�n (5.3)

(where n is the outer normal to �n, y− = y ∈ �n ∩ ∂�n and y+ = y ∈ �n ∩ ∂�n, we
recall that wn|∂�n = 1) and therefore, the corresponding diffusion behaves like a skew BM.
For a given n, the operator (5.2) can be regarded as the governing operator of the planar
skew BM B̃ν = ({B̃ν

t }t≥0;Fν;Pn
x, x ∈ �n

ε) on R
2 from which we define the killed process

Bν . Let Ln be the governing operator of Bν on L2(�n
ε , dx) with

D(Ln) =
{

u ∈ L2(�n
ε , dx), u|�n ∈ H 2(�n), u|�n ∈ H 2(�n),

u
∣
∣
∂�n

ε
= 0, u is continuous on ∂�n and satisfies (5.3)

}

.

Then, the transition function Pn
t f (x) = E

n
x[f (Bν

t )] = E
n
x[f (B̃ν

t ); t < τ�n
ε
] with transi-

tion kernel pν where ν depends on the coefficients an
ε and therefore, on Eq. 5.3, is governed

by
∂u

∂t
= Ln u on �n

ε (5.4)

and Lnf := 1
2Lnf , f ∈ D(Ln). The parabolic equation (5.4) can be rewritten by consid-

ering the infinitesimal generator L̃n := 1
2� on L2(m̃ν) with D(L̃n) = D(Ln) (see [24, pag

356] for details) where

m̃ν(x) = 1�n(x)+ cnσnw
n 1�n(x). (5.5)

From the transition kernel pν we can write

P
n
x(B̃

ν
t ∈ �, t < τ�n

ε
) =

∫

�

pν(t, x, y) dy x ∈ �n
ε (5.6)

for some Borel set � ∈ Fν with the (first) exit time

τ�n
ε
= inf{s > 0 : B̃ν

s /∈ �n
ε }. (5.7)

We refer to Bν as a modified skew BM in the sense that it depends on both the skewness
coefficient ν (that is the BM is skew) and the weight wn given in Eq. 2.4 (that is, the
skew BM is modified). The process Bν represents a Brownian diffusion of a particle with
transmission condition (5.3) on the pre-fractal ∂�n. The BM is partially reflected when it
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hits ∂�n: that is, ∀ x ∈ ∂�n the process starting from x moves toward �n or �n with
probability 1 − ν or ν respectively by taking into account the structural constant σn. In
particular, according with Eq. 4.2,

σn

∫

∂�n

P
n
x(B

ν
t ∈ �n)ds = ν and σn

∫

∂�n

P
n
x(B

ν
t ∈ �n)ds = 1− ν. (5.8)

Let ν = ν(n) be a sequence such that ν(n)→ 0 as n→∞. Heuristically, Eqs. 5.8 and
5.3 say that

an+
ε

an−
ε + an+

ε

1

ν(n)σn

→ 1 uniformly on ∂�n as n→∞
Since condition (2.32) holds true, from the construction we present here, it must be that
ν(n)/cnw

n → 1 on �n as n→∞. Equivalently,

ν(n)

1− ν(n)

1

cnwn
→ 1 uniformly on �n as n→∞. (5.9)

In view of Eq. 5.9, we also refer to ν as transmission parameter. However, due to the fact
that wn|∂�n = 1, we must pay particular attention on the pre-fractal boundary.

We follow the characterization of trap domain given in [8, 15]. Consider an open con-
nected set D ⊂ R

d , d ≥ 2 with finite volume and the reflected BM B+ on D. Let B ⊂ D

be an open ball with non-zero radius and denote by τ∂B = inf{s ≥ 0 : B+s ∈ ∂B} the
hitting time of the reflecting BM B+ ∈ D \ B.

Definition 2 The set D is a trap domain if

sup
x∈D\B

Ex τ∂B = ∞. (5.10)

Otherwise, D is a non-trap domain.

Notice that the definition above does not depend on the choice of B ([15, Lemma 3.3]).
In both Lipschitz domains �n and �n the process Bν behaves like a BM B+ reflecting on
∂�n. As shown in [8, 15], the pre-fractal and fractal Koch domains are non-trap. Then, ∀ n,
�n and �n are non trap for Bν . Condition (5.10) can be rewritten in analytic way as follows

sup
x∈D\B

∫

D\B
G+(x, y)dy = ∞

where G+ is the Green function of B+ on D and D = �n or D = �n.
The process Bν on �n

ε is a transient BM for which Pn
t 1�n

ε
(x) = Px(τ�n

ε
> t) and

Exτ�n
ε
= ∫

Pn
t 1�n

ε
(x)dt <∞. Nevertheless, we are looking for asymptotic results concern-

ing also a non transient limit process. Thus, for the skew BM Bν
t , t < τ�n

ε
, we introduce

the Green function Gν
n(x, y) = ∫∞

0 e−δntpν(t, x, y)dt for which we write

Gν
nf (x) =

∫
Gν

n(x, y) f (y) dy = E
n
x

[∫ τ�n
ε

0
e−δntf (B̃ν

t )dt

]

(5.11)

where En
x is the expectation under (5.6). Furthermore, we write

Gν
nf (x) =

∫
Gn(x, y) f (y)mν(y)dy

where Gn(·, ·) =
∫∞
0 p(t, ·, ·)dt is the Green function of a BM B on �n

ε .
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Let us consider the reflected Brownian motions B on �n and Bw on R
2 \ �n where

Bw and B are independent Brownian motions with Px(B
w
t ∈ R

2 \ �n) = 1 and Px(Bt ∈
�n) = 1 and depending on wn with wn �= 1 only outside �n. We introduce the following
representation

˜̃
Bν

t :=
{

Bw
t on R

2 \�n with probability ν

Bt on �n with probability 1− ν
. (5.12)

Thus, B̃ν
t

law= ˜̃
Bν

t , that is B̃ν
t equals Bw

t with probability ν and Bt with probability 1− ν.

We now introduce the process B̃
ν,∗
t which is the m-symmetric extension of ˜̃Bν

t to (R2 \
�n)∪�n (see [53, Remark 1.1], [24, Definition 7.5.8 and Definition 7.7.1]). To be precise,
we say that B̃ν,∗

t is an m-symmetric extension meaning that

m(∂�n) = 0

where m is the 2-dimensional Lebesgue measure. The process Bν,∗ is the part process of
B̃

ν,∗
t on �n

ε where B̃
ν,∗
t equals B∗ on �n (the m-symmetric extension of B on �n) and B̃

ν,∗
t

equals Bw,∗ on R
2 \ �n (the m-symmetric extension of Bw on R

2 \ �n) according with
representation (5.12).

Let us introduce the following measures on �n
ε

mn
ε (dx) = 1�n∪�n(x) dx + 1∂�n(x) ds (5.13)

and
mn

ε (dx) = mν(n)(x) dx + 2ν(n)σn1∂�n(x) ds (5.14)

where the measure on the pre-fractal curve is taken according with Proposition 1. Notice
that mν is related to m̃ν by means of Eqs. 5.3, 5.8, 5.9. Thus, we write (5.6) as Pn

x(B
ν
t ∈ �)

and

P
n
mn

ε
(B

ν,∗
t ∈ �) =

∫

�∗
P

n
x(B

ν,∗
t ∈ �) mn

ε (dx). (5.15)

5.1 Local Time and Occupation Measure

The skew BM is a Markov process with continuous paths (and discontinuous local time).
The boundary local time is a PCAF defined as an occupation time process on the boundary
(see [21, 26] for example). Moreover, we deal with a modified skew BM depending on the
weights wn. For a given n, we introduce the occupation density �n

t (x), x ∈ �∗, t ≥ 0 such
that, for � ∈ �∗, the following occupation formula holds true

∫ t∧τ�n
ε

0
1�(B̃

ν,∗
s )ds =

∫ t

0
1�(Bν,∗

s )ds

=
∫

�

�n
t (y;Bν,∗) mn

ε (dy) =
∫

�

�n
t∧τ�n

ε
(y; B̃ν,∗) mn

ε (dy) (5.16)

where mn
ε is the measure (5.13). With some abuse of notation we do not distinguish here

between absolutely continuity of the occupation density on � ⊂ �n
ε or � ⊂ ∂�n. For the

sake of simplicity we use the same symbol �n
t for a density w.r.t. mn

ε . In particular, with
Eq. 3.4 in mind, as t → 0 we have that

1

t
E

n
mn

ε

[∫ t

0
f (Bν,∗

s )d��
s

]

→
∫

�n
ε

f (x)1�(x)dx,

1

t
E

n
mn

ε

[∫ t

0
f (Bν,∗

s )dL�
s

]

→ σn

∫

∂�n

f (x)1�(x)ds.

(5.17)



R. Capitanelli and M. D’Ovidio

The occupation density �n
t (y;Bν,∗) must be discontinuous on ∂�n (and continuous on

�n ∪ �n with different “speed” measures depending on wn; recall that wn|�n = 1). In
particular,

�n
t (y;Bν)dy = �n

t (y;B1/2)mν(dy)

where the process B1/2 behaves like the BM (5.12) on �n
ε with ν = 1/2 (that is, there is

no reflection on ∂�n for B1/2). The occupation density on the boundary can be therefore
written by considering the ”right” (reflection from the exterior, �n) and ”left” ( reflection
from the interior, �n) densities. The symmetric local time

∫ t

0
1∂�n(Bν,∗

s )ds = L∂�n

t (Bν,∗) (5.18)

= (L∂�n−
t + L∂�n+

t )/2 = σn

∫

∂�n

�n
t (y;Bν,∗)mn

ε (dy) (5.19)

is written in terms of L∂�n−
t = L∂�n−

t (Bν,∗) and L∂�n+
t = L∂�n+

t (Bν,∗), say ”left” and
”right” local time. In particular, �n+

t (y;Bν,∗) = 2ν(n)σn�
n
t (y;Bν,∗) and �n−

t (y;Bν,∗) =
2(1−ν(n))σn�

n
t (y;Bν,∗). Recall that we are dealing with the BM Bν,∗ such that Bν,∗ = B∗

on �n and Bν,∗ = Bw,∗ on �n with probability respectively given by 1 − ν and ν as
in Eq. 5.12. We have that L∂�n−

t (Bν,∗) = L∂�n

t (B∗) and L∂�n+
t (Bν,∗) = L∂�n

t (Bw,∗)
according with Eqs. 5.12 and 5.19, that is

L∂�n−
t (Bν,∗) = 2(1− ν)L∂�n

t (Bν,∗) and L∂�n+
t (Bν,∗) = 2νL∂�n

t (Bν,∗) (5.20)

where L∂�n

t (Bν,∗) is a symmetric local time (independent from ν). Since t �→ L∂�n

t (Bν,∗)
is a continuous additive functional, formulas in Eq. 5.20 define PCAFs. Indeed, for η > 0,
ηL ∈ A+c iff L ∈ A+c ([49, Proposition VI.45.10]). The representations (5.20) can be
obtained by considering excursions of B̃ν,∗ and suitable time changes for example in
the case of regular interfaces as in Section 4. According with (5.9), for the sequence of
probabilities ν(n), it holds that

1

ν(n)

cnw
n

1+ cnwn
→ 1 uniformly on �n as n→∞. (5.21)

Observe that we always have cnw
n → 0 (as n → ∞) as basic assumption between

conductivity and thickness of the fiber, the insulating fractal layer case. We use the fact that,
for any f ∈ B+,

∫

�

f (y)�n+
t (y;Bν,∗)mn

ε (dy) = 2ν(n)σn

∫

�

f (y)�n
t (y;Bν,∗) mn

ε (dy)

=
∫

�

f (y)�n
t (y;Bν,∗)mn

ε (dy), if � ⊆ ∂�n(5.22)

and
∫

�

f (y)�n
t (y;Bν,∗)mn

ε (dy) = 2ν(n)

∫

�

f (y)�n
t (y;Bw) mn

ε (dy), if � ⊆ �n (5.23)

under En
x . Formulas (5.22) and (5.23) can be also obtained by considering (5.14) together

with representation (5.12) and by following similar arguments as in [11]. Indeed, for 0 <

t1 < t2 < τ�n
ε
, and � = supp[μ] where μ is the Revuz measure of At , we have that

E
n
x

[∫ t2

t1

f (Bν,∗
s )dAs

]

=
∫ t2

t1

ds

∫

�∗
f (y) pν,∗(s, x, y) μ(dy). (5.24)
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If At = L�+
t , then

E
n
x

[∫ t

0
f (Bν,∗

s )dAs

]

=
∫ t

0
ds

∫

�∗
f (y) pw,∗(s, x, y) μ(y)mn

ε (dy)

= 2ν(n)σn

∫ t

0
ds

∫

�

f (y) pw,∗(s, x, y)mn
ε (dy) (5.25)

where pw,∗(s, x, y) is the transition kernel of Bν,∗ on �n
ε \ �n and formula (5.22) follows

by Eqs. 5.16 and 5.19. Notice that for � ⊆ �n (that is, At = ��
t ), the integral (5.23)

vanishes as n→∞.
For the Neumann heat kernel pN in an inner uniform domain, it holds that ([32])

c1t
−1e−

d2(x,y)
c2 t ≤ pN(t, x, y) ≤ c3t

−1e−
d2(x,y)

c4 t . (5.26)

In view of Eq. 5.24 and the Gaussian bound (5.26), there exists C = C(t1, t2) > 0 such that

E
n
x

[∫ t2

t1

f (Bν,∗
s )dAs

]

≤ C

∫

�∗
f (y) μ(dy). (5.27)

It is known that the reflecting BM B+ spends zero Lebesgue amount of time on the

boundary ∂�. On the other hand, we are interested in ��
t obtained as a limit of �

�n
ε\�n

t

for some t < T . Moreover, we focus on L∂�n+ and L∂�n− or equivalently on �
�n

ε\�n

t and

�
�n

ε\�n

t in our analysis. In order to streamline the notation as much as possible we write �n
t

in place of �n
t (B

ν,∗) and �t instead of �∞t when no confusion arises.

5.2 The Probabilistic Framework

Here the aim is to provide a suitable framework to start with in the next section. We for-
malize some link between the previous sections and Brownian motions on trap domains, in
particular on a domain with Koch interfaces. Hereafter, we assume that dn = 0 and d = 0
without loss of generality. Moreover, we point out that for the planar BM B, ∀� ⊆ R

2,
Px-almost surely,

∫∞
0 e−δs1�(Bs)ds = ∞ if δ = 0. The problem in Theorem 1 can be

formulated as follows.

Theorem 6 The unique weak solution of problem (2.10) can be written as

un(x) = E
n
x

[∫ τ�n
ε

0
e−tδnfn(

˜
B

ν(n),∗
t )dt

]

. (5.28)

The associated Dirichlet form on H 1
0 (�n

ε ) is given by Eq. 5.1 or equivalently by Eq. 2.9.
The perturbed form (EμAn

0 , D(EμAn

0 )) is obtained by considering the Revuz measure of the
additive functional An

t associated with the killing time τ�n
ε
. Let∞Dc be the measure which

is +∞ on the complement Dc of a Borel set D. Formula (3.8) becomes

Pn
t f (x) = E

n
x[f (B

ν,∗
t )] = E

n
x[e−An

t f (B̃
ν,∗
t )] = E

n
x[e−δnt f (B̃

ν,∗
t ) ; t < τ�n

ε
] (5.29)

where An
t = δn t + An

t is a PCAF with drift δn (δn ≥ 0) and associated Revuz measure
which can be written as μAn(dx) = δndx + ∞Dc and D = �n

ε . The resolvent kernel is
written as follows

Rn
λf (x) = E

n
x

[∫ τ�n
ε

0
e−λt−δnt f (B̃

ν,∗
t )dt

]

= E
n
x

[∫ ∞

0
e−λt−An

t f (B̃
ν,∗
t )dt

]

. (5.30)
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For the sake of simplicity we consider δn = 0 (if not otherwise specified). The case
δn > 0 can be immediately obtained by considering An

t with μAn(dx) = μAn(dx)+ δn dx

and following similar arguments. We rewrite (3.7) by considering that the semigroup (5.29)
generates the Dirichlet form on L2(�n

ε ) given by

EμAn

0 (u, v) = ãn(u, v)+ 〈u, v〉μAn , u, v ∈ H 1(R2) ∩ L2(μAn) (5.31)

where

ãn(u, v) := (1− ν(n))

∫

�n

∇u∇v dx + ν(n)

∫

R2\�n

∇u∇v dx. (5.32)

Observe that the part process of B̃
ν,∗
t on �n

ε is transient if and only if Cap(R2 \ �n
ε) > 0

([24, Proposition 3.5.10]). The lifetime is finite and the process is killed. The representation
(5.29) says also that for our initial problem (2.10) it can be given a variational formulation
as in [16] by considering the measure

∞(�n
ε )c (B) =

{+∞, if Cap1(B ∩ (R2 \�n
ε)) > 0,

0, otherwise
. (5.33)

Thus, the Dirichlet condition is prescribed in the capacity sense and the modified BM
moves on R2.

We continue with the following representation of the solution in Theorem 2.

Theorem 7 The unique weak solution of Eq. 2.15 can be written as

u(x) = Ex

[∫ ∞

0
e−tδ0−c0L

∂�
t f (B+t ) dt

]

(5.34)

where B+ = ({B+t }t≥0;F+;Px, x ∈ �) is a reflecting BM on � and L∂�
t = L∂�

t (B+) is
the local time on the boundary ∂�.

The associated Dirichlet form, say EμA

0 , is therefore given by Eq. 2.12 with D(EμA

0 ) =
H 1(�)∩L2(c0μα). The solution (5.34) is obtained by considering the exponential random
variable ζ with parameter c0 > 0 (independent from B+) and ζ� = inf{s ≥ 0 : L∂�

s /∈
[0, ζ ]}. Thus, the associated semigroup is written as

P+t f (x) = Ex

[
e−δ0t f (B+t ); t < ζ�

] = Ex

[
e−δ0t f (B+t ); ζ > L∂�

t

]

= Ex

[
e−δ0t f (B+t )E[ζ > L∂�

t

∣
∣F+]

]
= Ex

[
f (B+t ) e−δ0t−c0L

∂�
t

]
.

Let At = ��
t (B) and A−1t = inf{s ≥ 0 : As /∈ [0, t]}. Since At is a non-decreasing

process, (A−1t < s) ≡ (As > t) and we say that A−1 is the inverse of A. Obviously we
have that (ζ� > t) ≡ (L∂�

t < ζ). It is worth mentioning that B+t can not be written (for
all t > 0) as B(At )−1 . We can not consider the skew product representation as in Section 4
or in the recent paper [51] for instance. The reflecting BM has been investigated by many
researchers and some different constructions have been also considered. Nevertheless, some
technical problems can arise from the characterization of the domains. Here we consider a
domain with fractal boundary and in particular, we exploit the fact that our pre-fractal and
fractal Koch domains are non trap. This permits us to consider occupation measures even
if the fractal nature of the boundary does not allow the study of the corresponding time
changed processes. Theorem 3 can be formulated as follows.
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Theorem 8 The unique weak solution of problem (2.19) can be written as

u(x) = Ex

[∫ τ�

0
e−tδ0f (B̃t )dt

]

(5.35)

where τ� is the first time the BM B̃ hits the boundary ∂�.

The associated Dirichlet form, say EμA

0 , is given by Eq. 2.17 with D(EμA

0 ) =
H 1(R2) ∩ L2(∞�c).

We shall approach the convergence in L2 of the solutions we are interested in, by first
considering convergence of measures. Let {Pn}n be a sequence of probability measures on

(E,E). We say that Pn converges weakly-� to P on (E,E) as n→ ∞ and write Pn w�→ P,
if Enf (Xn) = ∫

E
f dPn → ∫

E
f dP = Ef (X), ∀ f ∈ Cb(E) where Xn and X are the

random variables with probability measures Pn and P (that is, Xn convergences in law to X

and we also write Xn law→ X). If a sequence of stochastic processes converges (weakly) in

the sense of finite-dimensional laws (write Xn f.d.→ X) we are in need of tightness in order

to get convergence in law. Moreover, we write Xn law→ ∞ (meaning also that Xn a.s.→ ∞,
that is almost surely or with probability one) if ∀M, ∃n∗ : P(Xn > M) = 1, ∀ n > n∗.
We use vague convergence arguments in this case, that is for a sequence of measures μn

on E ∪ {+∞} we have μn
v→ μ if 〈f, μn〉 → 〈f,μ〉, ∀ f ∈ C+0 , the class of continuous

functions f : R→ R+ with compact support.

Theorem 9 ([42])The Mosco convergence of the forms is equivalent to the strong conver-
gence of the associated resolvents and semigroups.

Convergence of semigroups, by the Markov property, provides convergence of finite
dimensional laws. In particular (let the symbol ”→” denote strong convergence of semi-
groups), for the semigroup (5.29), under (2.26) and (2.27), consider that (see Theorems 4
and 5):

i) Robin, under (2.28) with c0 > 0 and δ0 ≥ 0,

Pn
t fn(x)→ Ex

[
e−δ0t f (B+t ) ; t < ζ�

] ; (5.36)

ii) Neumann, under (2.28) with c0 = 0 and δ0 > 0,

Pn
t fn(x)→ Ex

[
e−δ0t f (B+t )

] ; (5.37)

iii) Dirichlet, under (2.31) and δ0 ≥ 0,

Pn
t fn(x)→ Ex

[
e−δ0t f (B̃t ) ; t < τ�

] = Ex

[
e−δ0t f (B+t ) ; t < τ�

]
. (5.38)

Thus, starting from the part process of B̃
ν,∗
t on �n

ε (and therefore from Eq. 5.29), we
simply write

Pn
t fn(x)→ Pt f (x) = Ex

[
e−δ0t f (B+t ); t < Tc∞

]
(5.39)

where the stopping time depends on limn→∞ cn = c∞ ∈ [0,∞]. We arrive at the reflecting
BM on � stopped by Tc∞ , that is the lifetime depends on the asymptotic behaviour of
the process on the thin layer �n. However, the convergence in Eq. 5.39 follows once the
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convergence of a suitable sequence of stopping times to Tc∞ in an appropriate sense has
been shown. If mn → m, for the Borel sets {�j } we have that

E
n
mn
[1�1(X

n
t1
) · · · 1�k

(Xn
tk
)] → Em[1�1(Xt1) · · · 1�k

(Xtk )] (5.40)

as n→∞. This is due to the Markov property and the fact that

E
n
x[1�1(X

n
t1
) · · · 1�k

(Xn
tk
)] = Pn

t1
1�1P

n
t2−t1

1�2 · · ·Pn
tk−tk−11�k

(x) (5.41)

where Pn
t f (x) is the transition (non conservative) semigroup (5.29). Thus we have conver-

gence of finite dimensional laws. If in addition, Pn
mn

is tight, then P
n
mn

converges weakly-�
to Pm.

Definition 3 The sequence of probability measures {Pn}n on a metric space E is said to be
tight if for every ε > 0, there exists a compact set K ⊆ E such that supn P

n(E \K) ≤ ε.

We use the (Kolmogorov-Chentsov) criterion based on the moments of increments, that
is, the sequence Xn is tight if Xn

0 = 0 and there exist α, β > 0 and C > 0 such that, for
T > 0,

E[|Xn
t −Xn

s |α] ≤ C |t − s|β+1 (5.42)

holds uniformly on n ∈ N and 0 ≤ s, t ≤ T (see [36, Corollary 14.9]). Thus, the sequence
Xn is tight in the space of all continuous processes, equipped with the norm of locally
uniform convergence.

6 Main Results

We consider occupation measures on both �n
ε and ∂�n (local times) instead of planar

Brownian motions. Let ζ�n
ε be the lifetime of B

ν,∗
t on �n

ε and ζ� be the lifetime of the

limit process on �. Let us focus now on Eq. 5.39. Let Xn
t be the m-version of B

ν(n),∗
t =

{˜Bν(n),∗
t , t < Tcn} with transition semigroup Pn

t (associated with the form EμAn

0 ) and Xt

be the process with transition semigroup Pt (associated with the form EμA∞
0 ). Our aim is to

prove the following theorem.

Theorem 10 Let An
t be the PCAF associated with Mn

t = 1
(t<ζ�n

ε )
as in Eq. 5.29. We have:

i) cn → c0 ∈ (0,∞) ⇔ ζ�n
ε

law→ ζ� ⇔ μAn
w→ μA∞ = c0 μα (μα is defined in

Eq. 2.2).
Xt is an elastic (or partially reflected) BM on �;

ii) cn → 0⇔ ζ�n
ε

a.s.→∞⇔ μAn
w→ μA∞ = 0.

Xt is a reflecting BM on �;

iii) cnw
n → 0, cn →∞⇔ ζ�n

ε
law→ τ� ⇔ μAn

v→ μA∞ = ∞ (is locally infinite).
Xt is an absorbing BM on �.

The main tools we deal with are stopping times. We first assume that a.s. ζ�n
ε = Tcn ∀ n,

that is the lifetime is equivalent to a random time depending on cn ≥ 0. Then, we focus on
the sequence of random times Tcn with cn → c∞ ∈ [0,∞] as n → ∞ and we study the
convergence Tcn → Tc∞ . Thus, Tc∞ plays the role of lifetime for the limit BM on � (or �).
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Remark 3 Let ζ n be a r.v. with density law P(ζ n ∈ dx) = cn exp(−cn x)1[0,∞)(x) dx. We
obviously have that P(ζ n ≤ x) = 1 − exp(−cnx) and Eζ n = 1/cn. We denote by ζ∞ the
limit of ζ n as n→∞ in the following sense.

If cn →∞, then ζ n P→ ζ∞ = 0. Indeed, by Markov’s inequality, we have that P(|ζ n −
ζ∞| > ε) ≤ ε−1E|ζ n| → 0 as cn → ∞. Moreover, ζ∞ ≥ 0 with Eζ∞ = 0. Thus,
P(ζ∞ = 0) = 1.

If cn → 0 we have that P(ζ∞ ≤ x) = 0 for all x ∈ [0,∞) with ζ∞ ≥ 0 and, by
observing that Eζ∞ = ∞, we conclude that P(limn→∞ ζ n = ζ∞ = ∞) = 1.

If cn → c0 ∈ (0,∞), we simply have that ζ n law→ ζ∞ = ζ as n → ∞ where ζ is the
exponential r.v. with parameter c0.

We can also relate a r.v. ζ n to the time the processB
ν,∗
t spends on (or cross) the pre-fractal

∂�n as follows. For a fixed n, denote by ζ̂ �n the r.v. written as

ζ̂ �n := inf{0 < s ≤ ζ�n
ε : L∂�n

s (B̃ν,∗) > ζn} = inf{s > 0 : L∂�n

s (Bν,∗) > ζn} (6.1)

assuming that ζ n is independent from Bν,∗ (and therefore, from the local time on the pre-
fractal boundary). Obviously, ζ�n

is a sequence of Markov stopping times before absorption
on ∂�n

ε . To be clear, ζ̂ �n ≤ ζ�n
ε with probability one, ∀ n ∈ N and Eq. 6.1 can be rewritten

as
ζ̂ �n = τ�n

ε
∧ T̂cn

in terms of the first exit time τ�n
ε
and T̂cn := inf{s > 0 : L∂�n

s (B̃
ν,∗
s ) > ζn} with ζ n

exponentially distributed, that is T̂cn corresponds to the elastic boundary condition. We also
observe that (6.1) can be regarded as the lifetime of the process up to the last visit on
�n assuming that ζ n is the time the process spends on the pre-fractal boundary before
absorption on ∂�n

ε . In this case we have the lifetime on �n written as (see also Remark 1)

ζ�n = sup{s > 0 : Bν(n),∗
s ∈ �n} = σ�n (6.2)

which is no longer Markovian. Moreover, Px(ζ̂
�n

ε > ζ�n
) > 0, m-a.e. x and

Px(σ�n > 0) = Px(τ�n <∞).

We consider (6.1) with exponential threshold ζ n given in Remark 3.

Remark 4 From the discussion in the previous remark, we have the following cases.

If cn →∞, then ζ n P→ 0 and

ζ̂ �n law→ inf{s > 0 : L∂�
s (B+) > 0} =: τ� (6.3)

provided that the occupation time sequence L∂�n

t converges in law to the local time L∂�
t of

the corresponding limit process.
Similarly, as cn → 0, P(limn→∞ ζ n = ∞) = 1 and then

ζ̂ �n law→ inf{s > 0 : L∂�
s (B+) = ∞} = ∞. (6.4)

If cn → c0 ∈ (0,∞), then ζ n law→ ζ and the lifetime of the limit process depends on the
random variable ζ with parameter c0. In particular, we have that

ζ̂ �n law→ ζ� = inf{s > 0 : L∂�
s (B+) > ζ } (6.5)

provided the convergence in law of the occupation time process on the fractal boundary ∂�.
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For the sake of simplicity we write ζ� in place of ζ�∞ . We focus on the PCAF

Ãn+
t = ��n

t (B̃ν,∗)+ L∂�n+
t (B̃ν,∗) = �

�n
ε\�n

t (B̃ν,∗) (6.6)

and
∫ t∧τ�n

ε

0 dÃn+
s is the occupation time process on �n

ε \ �n of the skew BM Bν,∗. Let us
write

Rn
λμ+n (x) = 2(1+ cn)

−1cn σn E
n
x

[∫ ζ�n
ε

0
e−λt−tδn1∂�n(

˜
B

ν(n),∗
t )dt

]

where μ+n (dx) = 2(1 + cn)
−1cnσn 1∂�n(x)mn

ε (dx). Let An+
t ∈ A+c be in Revuz

correspondence with the measure μ+n .
Let us consider the symmetric local time

L∂�
t = (L∂�+

t + L∂�−
t )/2

as in Eq. 5.19.

Proposition 2 Under (2.14), the boundary local time {L∂�+
t , t < ζ ∂�} is the unique PCAF

such that, for any x ∈ �n
ε ,

Rn
λμ+n (x)→ Ex

[∫ ζ�

0
e−λt−δ0t dL∂�+

t

]

as n→∞. (6.7)

Proof First we notice that μn has finite energy integral. Indeed,
∫

�∗
v(x)μ+n (dx) ≤ (

μ+n (∂�n)
)1/2 ‖v‖L2(∂�n) = 2(1+ cn)

−1cn
√

σn‖v‖L2(∂�n).

From [20, Theorem 8.1] we know that

‖v‖2
L2(∂�n)

≤ C

σn

‖v‖2
H 1(R2)

where C is independent of n. Since (1 + cn)
−1cn ≤ 1, by extension theorem (see [20,

Theorem A.3]) we obtain that 〈v, μ+n 〉 ≤
√

C ‖v‖H 1(�n
ε ) and μ+n ∈ S0. Since, under (2.14),

Rn
λμ+n (x) is bounded (and in view of [24, Lemma 4.1.5]) we have that μ+n ∈ S00. Let

c∞ ∈ [0,∞] be such that cn → c∞. From Eq. 2.30, for all f ∈ B+ we get that

〈f, μ+n 〉 → 2(1+ c∞)−1c∞
∫

∂�

f dμ as n→∞.

For a fixed n, consider the occupation measure (6.6). In view of Eqs. 5.16, 5.19, 5.22 and
5.23, we write

E
n
x

[∫ t∧τ�n
ε

0
f (

˜
B

ν(n),∗
s )dÃn+

s

]

= 2ν(n)En
x

[∫ t∧τ�n
ε

0
f (

˜
B

ν(n),∗
s )d��n

s +
∫ t∧τ�n

ε

0
f (

˜
B

ν(n),∗
s )dL∂�n

s

]

where ��n

t = ��n

t (Bw). Set Uλ
n f (x) = E

n
x

[∫∞
0 e−λt−δntf (B̃

ν,∗
t ) 1

(t<ζ�n
ε )

dÃn+
t

]
. From

Eq. 5.17 and the fact that En
x[1(0<ζ�n

ε )
] = P

n
x(ζ

�n
ε > 0) = 1 for all x ∈ �n

ε we obtain

lim
λ→∞〈λUλ

n f,mn
ε 〉 = 〈f, μ̃n

+〉, ∀ f ∈ B+ (6.8)
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where μ̃n
+(dx) = 2ν(n)(1�n + σn1∂�n) mn

ε (dx) on �n
ε \�n and therefore, by [30, Theo-

rem 5.1.4] there exists a unique PCAF of B
ν,∗
t in Revuz correspondence with μ̃n

+, that is
Eq. 6.6. Notice also that, since ν(n) ≤ 1, we can follow the same arguments as before in
order to see that μ̃n

+ ∈ S0. Let us consider ξn ∈ �n and 0 ≤ Mn < ∞. Since condition
(5.21) holds true, we get that

lim
n→∞〈f, μ̃n

+〉 = lim
n→∞

(

2Mn

cnw
n(ξn)

1+ cnwn(ξn)
f (ξn)+ 2

cn

1+ cn

σn

∫

∂�n

f ds

)

and therefore, from Proposition 1 and Eq. 2.32,

〈f, μ̃n
+〉 → 2(1+ c∞)−1c∞

∫

∂�

f dμ, as n→∞

where μ = μα is the only Borel measure which is in Revuz correspondence with the ”sym-
metric” local time L∂�

t . Indeed, according with Eq. 3.4 and the setting in Eq. 3.7 with
E = �, we have that

lim
λ→∞ λEm

[∫ ∞

0
e−λtf (Bt )dL∂�

t

]

=
∫

∂�

f dμ.

Notice that

Rn
λμ+n (x)→ 2(1+ c∞)−1c∞ Ex

[∫ ζ�

0
e−λt−δ0t1∂�(B+t )dt

]

<∞

according with Eq. 5.39. From the one to one correspondence between (6.6) and its Revuz
measure μ̃n

+ we prove (6.7) and the claim.

We also focus on the PCAF

Ãn−
t = �

�n\Dn

t (B̃ν,∗)+ L∂�n−
t (B̃ν,∗) = �

�n
t (B̃ν,∗) (6.9)

where Dn
j is an increasing sequence of open sets such that Dn = ∪jD

n
j → � and �n =

�n \Dn. Let us write

Rn
λμ−n (x) = 2(1+ cn)

−1 σn E
n
x

[∫ ζ�n
ε

0
e−λt−tδn1∂�n(

˜
B

ν(n),∗
t )dt

]

where μ−n (dx) = 2(1 + cn)
−1σn 1∂�n(x) mn

ε (dx). Let An−
t ∈ A+c be in Revuz correspon-

dence with the measure μ−n .

Proposition 3 Under (2.14), the boundary local time {L∂�−
t , t < ζ�} is the unique PCAF

such that, for any x ∈ �n
ε ,

Rn
λμ−n (x)→ Ex

[∫ ζ�

0
e−λt−δ0t dL∂�−

t

]

, as n→∞. (6.10)

Proof We basically follows the proof of Proposition 2. Indeed, we can write the left local
time by considering (6.9) instead of Eq. 6.6 and the density �n−

t (y) = 2(1 − ν(n))σn�
n
t (y)

as indicated in Section 5.1. We get that μ̃n
−(dx) = 2(1 − ν(n))σnm

n
ε (dx) is the Revuz

measure of Ãn−
t . The result follows from the previous proof of Proposition 2.
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From the previous results we have that μ+n is the Revuz measure of

An+
t = 2

cn

1+ cn

σn

∫

∂�n

�n
t (y)mn

ε (dy) = 2
cn

1+ cn

L∂�n

t

and μ−n is the Revuz measure of

An−
t = 2

1

1+ cn

σn

∫

∂�n

�n
t (y)mn

ε (dy) = 2
1

1+ cn

L∂�n

t .

As we can immediately see (An+
t +An−

t )/2 = L∂�n

t . Nevertheless, An+
t and An−

t behave
respectively like L∂�n+

t and L∂�n−
t only as n → ∞. As we observed in Section 5.1, the

local time L∂�n

t of the process B
ν,∗
t is given by

L∂�n

t = σn

∫

∂�n

�n
t (y) mn

ε (dy). (6.11)

According with Proposition 1, we now study the convergence of Eq. 6.11 to

L∂�
t =

∫

∂�

�t (y) dμ (6.12)

with L∂�
t ∈ A+c (see for example [8] for the existence and other properties of Eq. 6.12). The

connection between tightness on the line and continuity of the limit process has been pointed
out starting from [2, 3]. The convergence in law of Eq. 6.11 is proved in the following
Proposition 4 and Proposition 5. We begin with the following result concerning the tightness
of the sequence L∂�n

t , t < T .

Proposition 4 The sequence {L∂�n

t }n is tight in C([0, T ], [0,∞)).

Proof Let us consider the sets �n ⊆ ∂�n. The process L
�n
t , t < T is a continuous additive

functional of zero energy ([24, pag. 149]) and Ex[|L�n
t |, t < T ] <∞ q.e. x. Indeed, from

Eqs. 5.20 and 5.27, we have that

E
n
x

[∫ t

s

dL�n−
u

]

+ E
n
x

[∫ t

s

dL�n+
u

]

= 2En
x

[∫ t

s

dL�n
u

]

≤ const · (t − s) · σn

∫

�n

mn
ε (dy). (6.13)

We have that L�n

0 = 0 for all n and, for k > 1 and c1 > 0,

Ex[|L�n
t − L�n

s |k] ≤ σn mn
ε (�n) c1 |t − s|k < c1 |t − s|k. (6.14)

Indeed, for s < t ,

Ex

[∫ t

s

dL�n
z

]k

= k!
∫ z1

s

. . .

∫ t

zk−1
Ex

[
1�n(B

ν(n),∗
z1

) . . . 1�n(B
ν(n),∗
zk

)
]
dz1 . . . dzk (6.15)

≤ k!
∫ t

s

. . .

∫ t

s

Ex

[
1�n(B

ν(n),∗
z1

) . . . 1�n(B
ν(n),∗
zk

)
]
dz1 . . . dzk. (6.16)

We recall (5.26) and the fact that PD
t ≤ PN

t a.e., the transition function of the reflecting
BM dominates that of the absorbing BM. From Eqs. 5.41 and 6.13 we can write (6.14).
Since k > 1, a Kolmogorov-type criterion shows the tightness.
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Since ζ̂ �n ≤ ζ�n
ε we can write Px(ζ

�n
ε ≤ t) ≤ Px(ζ̂�n ≤ t) = Px(ζ

n ≤ L∂�n

t ) =
1−Exe

−cnL∂�n

t and, equivalently Px(ζ
�n

ε > t) ≥ Exe
−cnL∂�n

t . Assume that u is the bounded
solution to ∂tu = Ln u − κ̂n(x)u with u0 = 1 in H 1(R2) ∩ L2(R2, σn1∂�nds) where
κ̂n = cn1∂�n . Then, as t → 0, t−1(1 − u(x, t)) → −Ln u0 + κ̂n(x)u0 = κ̂n(x) gives the
killing rate which can be also obtained as ([12])

lim
t→0

t−1Px(B
ν,∗
t is killled in the time interval (0, t]).

Since for At =
∫ t

0f (Xs)ds, deAt /dt = f (Xt )e
At and eAt − 1 = ∫ t

0f (Xs)e
As ds, we get

that
lim
t→0

t−1(1− Exe
−cnL∂�n

t ) = lim
t→0

Ex

[
cn1∂�n(B

ν,∗
t )

] = κ̂n(x).

Then, u(x, t) = P
n
x(ζ̂

�n
> t). We use the symbol κ̂n in order to underline the connection

with the transition semigroup

P̂n
t f (x) := E

n
x[f (

˜
B

ν(n),∗
t ); t < ζ̂�n ]) = E

n
x[e−Ân

t f (B
ν(n),∗
t )] (6.17)

with resolvent R̂n
λ where ζ̂ �n is defined as in Eq. 6.1. For δn identically zero,

P̂n
t 1�n

ε
(x) = Ex[1�n

ε
(
˜
B

ν(n),∗
t ); t < ζ̂�n ] = P

n
x(ζ̂

�n
> t).

If δn > 0 we have that P̂n
t 1�n

ε
(x) = e−δnt

P
n
x(ζ̂

�n
> t).

The heat equation solution with Robin boundary conditions has been studied using a
Feynamn-Kac formula and a theorem of Ray and Knight on Brownian local time in [8]. In
[28], the authors reviewed Kac’s method by underlining the connection between the higher-
order moments of Aκ =

∫ T

0 κ(Xt )dt and the Feynman-Kac formula. Thus, Em[(Aκ)k] =
k!mGk

κ1 where Gκw(x) = ∫
G(x, dy)κ(y)w(y) (here m is an arbitrary initial distribution).

In particular,

f (x) = Ex

[

exp
∫ T

0
κ(Bt )dt

]

=
∞∑

k=0
Gk

κ1(x), x ∈ � (6.18)

is finite if and only if is the minimal solution to f (x) = 1 + ∫
κ(y)f (y)G(x, dy) where

κ : � �→ [0,∞) is a measurable Borel function, T = τ� and G is the Green function of
the killed BM on the boundary of the open set �.

Proposition 5 For x ∈ �1
ε , ∀ t ≥ 0,

∫ ∞

0
e−cnl

P
n
x(L

∂�n

t ∈ dl)→
∫ ∞

0
e−c∞l

Px(L
∂�
t ∈ dl), as n→∞

m-a.e. x, for every sequence cn ≥ 0 such that cn → c∞ ∈ [0,∞].

Proof The higher-order moment of the boundary local time can be written as in formula
(6.15) with s = 0. Then, by applying (5.40) we have that En

x

[
(L∂�n

t )k
] → Ex

[
(L∂�

t )k
]

weakly (continuously on t ≥ 0, m-a.e. x). Indeed, we have weak convergence of finite-
dimensional distributions from Theorem 9 and tightness from Proposition 4.

Consider the expansion (6.18). We can also write vκ̂n(x, t) = E
n
x exp−cnL

∂�n

t for t ≤
Tcn in terms of Eq. 6.15 with s = 0. For cn = λ ≥ 0 ∀ n, vκ̂n is the Laplace transform of

P
n
x(L

∂�n

t ∈ dl)/dl. Since, Pn
x

w�→ Px , m-a.e. x (from the convergence of moments), then the
convergence holds for every cn ≥ 0 (and therefore, for every c∞ ∈ [0,∞]).
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We can write An
t =

∫ t

0κn(
˜
B

ν(n),∗
s )ds in Eq. 5.29 where κn(·) is the state dependent

rate for the Markov killing time Tcn . Thus, we can focus on the multiplicative functional
Mn

t = e−An
t associated with the stopping time Tcn and therefore, with the sub-Markov

semigroup (5.39). In particular, (5.39) characterizes Mn
t uniquely ([12, Proposition 1.9]).

Also we write Mn
t = e−An

t (see formula (5.29)). Notice that (for λ ≥ 0)

Rn
λf (x) = E

n
x

[∫ ∞

0
e−λtf (B̃

ν,∗
t )Mn

t dt

]

R̂n
λf (x) = E

n
x

[∫ τ�n
ε

0
e−λt−δntf (B̃

ν,∗
t )M̂n

t dt

]

where M̂n
t = exp(−Ân

t ) with δn, cn as in Eq. 2.14 and Ân
t =

∫ t

0 κ̂n(
˜
B

ν(n),∗
s )ds = cnL

∂�n

t .
The fundamental principle in our investigation is to approximate M by M̂ and transfer

the properties known for the approximating functional.

Theorem 11 ζ̂ �n law→ Tc∞ and under (2.26), R̂n
λfn → Rλf strongly in L2(�).

Proof First we show that ζ̂ �n law→ Tc∞ as cn → c∞. Let us write ζ n = ς/cn with P(ς >

x) = e−x , x ≥ 0. Thus, a.s. ζ n → ζ∞. Assume δn = 0 and λ > 0. From P̂n
t we write the

associated resolvent

R̂n
λ1�n

ε
(x) =

∫ ∞

0
e−λt P̂n

t 1�n
ε
(x)dt =

∫ ∞

0
e−λt

P
n
x(ζ̂

�n
> t)dt

and, from the resolvent (5.30),

Rn
λ1�n

ε
(x) =

∫ ∞

0
e−λtPn

t 1�n
ε
(x)dt =

∫ ∞

0
e−λt

P
n
x(ζ

�n
ε > t)dt.

Recall that (5.39) holds true. That is, from M-convergence of forms ([20]), we have that
(Theorem 9)

Rn
λ1�n

ε
(x)→

∫ ∞

0
e−λt

Px(Tc∞ > t)dt = Rλ1�(x)

strongly in L2(�). The limit stopping time Tc∞ depends on c∞ and corresponds to the
lifetime of the limit process. By construction we have that a.s. ζ̂ �∞ = Tc∞ and

lim
n→∞Rn

λ1�n
ε
(x) = lim

n→∞ R̂n
λ1�n

ε
(x), ∀ x ∈ �1

ε. (6.19)

Now we show convergence in law.
Step 1) Let us consider a reflecting BM on �n, say Xn, and the first hitting time τ�n on

the pre-fractal boundary ∂�n. Let X be a reflecting BM on � with �n ↑ �. We have that

Xn law→ X as n→∞ ([22, Theorem 4.4 and Remark 2], [14, Section 2]). Consider now the
killed process Xn

t , t < τ�n started at x ∈ �1
ε . Here we can follow the same arguments as

in [10, Theorem 4.1 and Theorem 3.3 ]. In particular, we consider the additive functional
An

t associated with τ�n with Revuz measure μAn = ∞Dn where Dn is the complement of
�n. From stable convergence of multiplicative functionals we arrive at weak convergence of

stopping times, that is τ�n
law→ τ�. Therefore, we get a direct consequence of M-convergence

of the associated form and tightness of Pn
x(τ�n > t) (indeed E

n
xτ�n is bounded by E

n
xτ�1

ε

uniformly on n). Notice also that we arrive at the same result by considering Dirichlet
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condition on ∂�n and the corresponding (killed) process on �n. The variational approach
has been treated in [17].

Step 2) Now we focus on the family {Pn
x ; x ∈ �n

ε }. Let us write X
x,n
t = {Bν(n),∗

t started
from x ∈ �n

ε = �n ∪�n} m-a.e.. We first observe that

∀ n, X
x,n
t ∈ ∂ if and only if (t > ζ�n

ε ) ∨ (X
x,n
0 ∈ ∂).

Since x ∈ �1
ε \�n

ε ⇒ X
x,n
0 ∈ ∂ , for n→∞we can consider starting points x ∈ �1

ε . Notice
also that, in the Neumann case, the cemetery point is assumed to be ∂ = {∅} and such that
m(∂) = 0. This corresponds to Cap1(�1

ε \�n)→ 0. Thus, for x ∈ �1
ε we write

P
n
x(ζ̂

�n
> t)

= P
n
x(ζ̂

�n
> t, (t < τ�n) ∪ (t ≥ τ�n))

= E
n
x

[
e−cnL∂�n

t
∣
∣t < τ�n

]
P

n
x(t < τ�n)+ E

n
x

[
e−cnL∂�n

t
∣
∣t ≥ τ�n

]
P

n
x(t ≥ τ�n)

= P
n
x(τ�n > t)+ E

n
x

[
e−cnL∂�n

t
∣
∣L∂�n

t > 0
]
P

n
x(t ≥ τ�n).

From Proposition 5 and the fact that τ�n
law→ τ�, we have that

P
n
x(ζ̂

�n
> t)

w�→ Px(τ� > t)+ Ex

[
e−c∞L∂�

t
∣
∣L∂�

t > 0
]
Px(t ≥ τ�) (6.20)

and therefore we obtain:

i) if cn → c0, by considering that

Ex

[
e−c0L

∂�
t

]

= Ex

[
e−c0L

∂�
t |L∂�n

t = 0
]
P

n
x(L

∂�n

t = 0)+ Ex

[
e−c0L

∂�
t |L∂�n

t > 0
]
P

n
x(L

∂�n

t > 0)

and the fact that Px(L
∂�
t = 0) = Px(τ� > t), we have

Ex

[
e−c0L

∂�
t

]

= Ex

[
e−c0L

∂�
t
∣
∣L∂�

t = 0
]
Px(τ� > t)+ Ex

[
e−c0L

∂�
t
∣
∣L∂�

t > 0
]
Px(t ≥ τ�)

= Px(τ� > t)+ Ex

[
e−c0L

∂�
t
∣
∣L∂�

t > 0
]
Px(t ≥ τ�).

From Eq. 6.20, we obtain

P
n
x(ζ̂

�n
> t)

w�→ Ex

[
e−c0L

∂�
t

]
= Px(ζ

� > t), ∀ t ≥ 0, (x ∈ �)

and thus, a.s. Tc0 = ζ�;

ii) if cn → 0, Pn
x(ζ̂

�n
> t)

w�→ Px(τ� > t)+ Px(t ≥ τ�) = 1 for all t ≥ 0, x ∈ � and

Px(ω : lim
n→∞ ζ̂ �n

(ω) = ∞) = 1 = Px(ω : T0(ω) = ∞);

iii) if cn →∞, Pn
x(ζ̂

�n
> t)

w�→ Px(τ� > t) for all t > 0, (x ∈ �) and we conclude that
a.s. T∞ = τ�.

Thus, we obtain that ζ̂ �n law→ Tc∞ .
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With this at hand, we now continue the proof. Since ζ̂ �n ≤ ζ�n
ε with probability one,

we have that Pn
x(ζ

�n
ε > t) ≥ P

n
x(ζ̂

�n
> t). Thus, we have that P̂n

t 1 ≤ Pn
t 1 and R̂n

λ1 ≤ Rn
λ1

m-a.e. x. From the contraction property of Pn
t we have that

‖R̂n
λf ‖L2(�n

ε ) ≤ ‖Rn
λf ‖L2(�n

ε ) ≤ λ−1/2‖f ‖L2(�n
ε ) (6.21)

for all measurable functions f . Strong convergence of resolvents in L2(�∗) implies that,
for f ∈ L2(�n

ε ),
lim

n→∞‖R
n
λf ‖L2(�n

ε ) = ‖Rλf ‖L2(�).

Since Rn
λf is uniformly bounded, ‖R̂n

λf ‖L2(�n
ε ) < C for all n. From this and convergence

a.e. we conclude that R̂n
λf → Rλf weakly in L2(�). Convergence of R̂n

λf implies that

lim inf
n→∞ ‖R̂

n
λf ‖L2(�n

ε ) ≥ ‖Rλf ‖L2(�).

Since we have that

‖Rλf ‖L2(�) ≤ lim inf
n→∞ ‖R̂

n
λf ‖L2(�n

ε )

≤ lim inf
n→∞ ‖R

n
λf ‖L2(�n

ε ) = lim
n→∞‖R

n
λf ‖L2(�n

ε ) = ‖Rλf ‖L2(�)

we conclude that
lim

n→∞‖R
n
λf ‖L2(�n

ε ) = lim
n→∞‖R̂

n
λf ‖L2(�n

ε ). (6.22)

Weak convergence of R̂n
λf together with Eq. 6.22 says that R̂n

λf → Rλf strongly inL2(�).
Now we consider fn as in Eq. 2.26. Since, from Eq. 6.21,

‖R̂n
λfn − Rλf ‖L2(�) ≤ ‖R̂n

λfn − R̂n
λf ‖L2(�) + ‖R̂n

λf − Rλf ‖L2(�)

≤ λ−1/2‖fn − f ‖L2(�) + ‖R̂n
λf − Rλf ‖L2(�)

we get the strong convergence of R̂n
λfn (or λR̂n

λfn).

In light of the previous results, we can study the convergence of Eq. 5.29 by considering
the semigroup (6.17) and therefore the corresponding form. By taking into account (3.9)
and (3.4), we can study the form

Eμ
Ân

0 (u, v) = ãn(u, v)+ 〈u, v〉μ
Ân

, u, v ∈ H 1(R2) ∩ L2(μÂn) (6.23)

associated with

E
n
x

[

fn(
˜
B

ν(n),∗
t ) e−cn

∫ t
0 1∂�n (

˜
B

ν(n),∗
s )ds

]

(6.24)

where ãn is defined in Eq. 5.32 and μÂn is supported on ∂�n.

Proof of Theorem 10 From Theorem 11 we have that

E
n
x

[∫ τ�n
ε

0
e−λt−δnt fn(B̃

ν,∗
t )M̂n

t dt

]

→ Rλf (x) = Ex

[∫ ∞

0
e−λt−δ0t f (B+t )Mtdt

]

(6.25)
strongly in L2(�) where the multiplicative functional M̂n

t and the killing functional are
associated with the PCAF with Revuz measure μ̂n = δn + μÂn +∞(�n

ε )c . Let us relate Rn
λ

to μn = δn + μAn in the same sense. From Eq. 6.25 we have that, ∀ f ∈ C+0 ,
∫

f dμn →
∫

f d� ⇔
∫

f dμ̂n →
∫

f d�.
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Indeed, the resolvents identify uniquely the multiplicative functionals. Thus we get that

μn
v→ μ̂∞. (6.26)

This means equivalence between the corresponding additive functionals. Proposition 2 and
Proposition 3 authorize us to study the asymptotic behaviour of

Ân
t =

cn

2
(An+

t + An−
t )

and, by considering μ+n and μ−n , with Eqs. 3.5 and 3.4 in mind we get that

lim
λ→∞〈λUn

λ f,mn
ε 〉 = cnσn

∫

∂�n

f (x)1∂�n(x)ds = 〈f,μÂn〉.
From Eq. 6.26, we get that

μ∞ = δ0 +
⎧
⎨

⎩

c0 μα 1∂� +∞�
c , c∞ = c0 ∈ (0,∞) (elastic kill),

0+∞
�

c , c∞ = 0 (no kill),
∞�c , c∞ = ∞ (kill on the boundary).

With Eqs. 5.9 and 5.8 in mind, we write

lim
n→∞ cn = lim

n→∞
σn

tick(�n)

∫

∂�n

P
n
x(B

ν(n),∗
t ∈ �n)mn

ε (dx) (6.27)

where wn/tick(�n)→ 1 as n→∞ (tick(�n) is the thickness of the fiber).

iii) If cn →∞, then point iii) of the proof of Theorem 11 holds and is also in accord with
Eq. 6.27, τ�n

ε
→ τ� faster than B

ν(n),∗
t → B+t . The BM is killed on the boundary. On

the other hand, if τ�n
ε
→ τ�, the lifetime on � of the limit process is exactly τ�. Then

for all x ∈ � we have that Px(L
∂�
t = 0) = 1 for all t < τ� which means that

∀ x ∈ �, Px(e
−cnL∂�

t = 1, t < τ�) = 1, for all n (for all cn ≥ 0).

This justifies the convention∞·0 = 0. Moreover, if the lifetime is τ�, from Eq. 6.3, it
must be that ζ n → 0, that is cn →∞. Thus, τ�n

ε
→ τ� if and only if condition (2.31)

holds and ∂� becomes a Dirichlet boundary as n → ∞. We get that τ�n
ε
→ τ� ⇔

cn →∞.
ii) If cn → 0, then according with Eq. 6.27 we say that B

ν(n),∗
t → B+t on � for t ≥ 0

and therefore, ζ�n → ∞. On the other hand, Remark 3and Remark 4 say that cn →
0 ⇒ ζ̂ �n → ∞. Since ζ̂ �n ≤ ζ�n

ε , ζ̂ �n → ∞ as well as the lifetime ζ�n
ε → ∞.

Moreover, ζ�n
ε →∞⇒ cn → 0 by using Remark 3.

i) Since ii) and iii) hold true, if cn → c0 and c0 �= 0 or c0 �= ∞, then ζ�n
ε → T

and T �= ∞ or T �= τ�. In particular, T ∈ (τ�,∞) is a random variable depending
on c0 ∈ (0,∞). From Theorem 11 we have that T = ζ� is an exponential random
variable with parameter c0. Thus, cn → c0 ⇔ ζ�n

ε → ζ�. In this case (and also
the previous as particular cases) we recover the results about the asymptotic of Robin
problems on pre-fractal domains ([17]) by considering the forms (6.23).

Let us focus on Remark 1. We observe that, as n→∞,

cn → c0 > 0 ⇔ Cap1(R
2 \�) > 0 (transient case)

where⇒ immediately follows and⇐ is obtained from iii) and i). Moreover, from ii),

cn → 0 ⇔ Cap1(R
2 \�) = 0 (recurrent case).
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Indeed, the process Xt is transient iff Cap1(R2 \ �) > 0 ([24, Proposition 3.5.10]).
A vanishing capacity can be related with the hitting distribution and in particular with
the recurrence of the corresponding process. Let us consider the hitting distribution
Hα

�c1E(x) = Ex[e−ατ�1E(Bτ�)] where the expected value is taken under (4.3). For α > 0,
Hα

�c1(x) = Ex[e−ατ� ]. Since R2 \ �n is a decreasing sequence of sets of finite capacity,
from [30, Theorem 4.2.1] we have that

Cap1(R
2 \�n)→ 0 iff H 1

R2\�n1(x)→ 0 q.e.

and thus, for x ∈ �1
ε , Px(τ�n <∞)→ 0 (see also Eq. 6.2).

Acknowledgments We are very grateful to the reviewer for the precious and accurate reading of the
previous versions of the work.
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