
LECTURES ON WONDERFUL VARIETIES

GUIDO PEZZINI

Abstract. These notes are an introduction to wonderful varieties. We discuss

some general results on their geometry, their role in the theory of spherical

varieties, several aspects of the combinatorics arising from these varieties, and
some examples.

1. Introduction

These notes are based on a series of lectures given by Michel Brion and Ja-
copo Gandini on wonderful varieties, in occasion of the “Workshop on Spherical
Varieties”, held from October 31 to November 4, 2016 at the Tsinghua Sanya In-
ternational Mathematics Forum.

Wonderful varieties first appeared in the work of De Concini and Procesi, as
compactifications (with remarkable properties) of symmetric spaces G/Gθ, where
G is a semisimple linear algebraic group and θ : G→ G is an involution (see [DP83]).
One of their motivations was to attack problems in classical enumerative geometry.
These varieties include several ones studied in the theory of reductive groups, such
as the variety of complete conics, or the space of complete collineations. Among
the most important cases we may also mention the wonderful compactifications of
adjoint semisimple groups, which have many relevant applications.

Later, Luna considered more general varieties, defining them wonderful if they
have the same main properties of the De Concini-Procesi compactifications (see Def-
inition 2.5). Such varieties have been then better understood, and have a central
role, in the theory of spherical varieties. Knop proved in [Kn96] that, in a precise
sense, there are “enough” wonderful varieties among the spherical ones (see The-
orem 4.3 below). This enabled Luna to initiate in [Lu01] a classification program
for spherical varieties, built around studying the wonderful case. This program has
been completed recently, see [BP16] and references therein.
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2. Definitions and examples

Throughout the paper, the ground field will be the field of complex numbers C.
We fix a connected reductive group G, and, unless otherwise stated, we fix a Borel
subgroup B ⊆ G, a maximal torus T ⊆ B, we denote by S the corresponding set of
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simple roots, and W the Weyl group. Given an algebraic group H, we denote by
X (H) its group of characters, by Hr its radical, by Hu its unipotent radical, and
by Z(H) its center.

Wonderful varieties are G-varieties where the orbit structure is particularly nice.
Their structure is similar to the following basic example.

Example 2.1. Let n ≥ 1 and G = (C∗)n, which acts on Cn by multiplication

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn).

The G-stable prime divisors, i.e. the coordinate hyperplanes, are smooth and inter-
sect transversally. The intersection of any subset of such divisors is non-empty and
is an orbit closure, and all orbit closures are obtained in this way.

It is easy to give examples where the orbit structure does not fulfill these prop-
erties.

Example 2.2. The group SL(n) acting linearly on Cn (with n ≥ 2) has two
orbits, namely {0} and its complement. The orbit {0}, which is closed, is not the
intersection of G-stable prime divisors.

Our goal is to give a general definition for complete G-varieties, where the orbit
structure resembles the one in Example 2.1. We start with the following.

Definition 2.3. Let X be a smooth variety, and D1, . . . , Dr ⊂ X prime divisors.
The divisor D = D1 + . . .+Dr has strict normal crossings if, for all p ∈ X, any Di

containing p has a local equation in OX,p, and the set of these local equations can
be completed to a local system of parameters of OX,p.

If a divisor D = D1 + . . . + Dr as above has strict normal crossings, then the
components D1, . . . , Dr are smooth. They induce a stratification of X into locally
closed smooth subvarieties, indexed by subsets I ⊆ {1, . . . , r}, namely the varieties

XI =

(⋂
i∈I

Di

)
r

⋃
j /∈I

Dj

 .

Notice that we do not require yet that the intersection D1∩. . .∩Dr is non-empty.

Example 2.4. Let n ≥ 2 and X = P(Cn ⊕ C) with its natural action of SL(n),
and define Y = Blp(X) where p = [0, . . . , 0, 1]. Then the action of SL(n) lifts to
an action on Y , and Y has exactly two SL(n)-stable prime divisors. Their sum has
strict normal crossings, but their intersection is empty.

We come to our main definition.

Definition 2.5 (Luna). Let X be an irreducible G-variety. Then X is wonderful
(of rank r) if it is smooth, complete, it has exactly r prime divisors D1, . . . , Dr

that are G-stable, and in addition they have strict normal crossings, non-empty
intersection, and the stratum XI is a G-orbit for all I ⊆ {1, . . . , r}.

Remark 2.6. Let X be a wonderful G-variety of rank r.

(1) The variety X has 2r G-orbits; among them, exactly one is open, namely
X∅, and exactly one is closed, namely X{1,...,r}.

(2) Since X is in particular normal with only one closed G-orbit, it follows by
[Su74] that X is projective, and a standard argument yields that the radical
of G acts trivially on X.
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Wonderful varieties play a crucial role in the theory of spherical varieties, let us
recall the definition.

Definition 2.7. An irreducible normal G-variety X is spherical if a Borel subgroup
of G has an open orbit on X.

A spherical variety has in particular an open G-orbit; the stabilizer H of a point
on this G-orbit (so that the latter is the homogeneous space G/H) is called a
spherical subgroup of G.

The first observation we make to relate the two definitions above is the following.

Theorem 2.8 ([Lu96]). Any wonderful variety is spherical.

We point out that all requirements of Definition 2.5 are necessary to have spheric-
ity, as seen in the next example.

Example 2.9 ([Lu96]). Consider X = P(C2) × P(Sym2(C2)) under the action of
G = SL(2). Then X is smooth and projective, it has exactly 4 orbits and two
smooth G-stable prime divisors which intersect in a single G-orbit. More precisely,
one G-stable prime divisor is P(C2) × Y , where Y is the unique G-stable prime
divisor of P(Sym2(C2)). We recall that any point of P(Sym2(C2)) can be written
as a product [v ·w] for some v, w ∈ C2 r {0}, and that Y is the set of the points of
the form [v · v] where v ∈ C2 r {0}. The other G-stable prime divisor of X is the
set of points ([u], [v · w]) with u, v, w ∈ C2 r {0} such that Cu = Cv or Cu = Cw.
It is elementary to write local equations of these divisors, and conclude that they
have the same tangent space in any point of their intersection, which is a single
G-orbit. As a consequence, they don’t have strict normal crossings, and X is not
spherical since it has dimension 3. It is also possible to construct SL(2)-varieties
of dimension 3, where all G-stable prime divisors have strict normal crossings but
empty intersection (see [MJ88]).

Let us give some examples of wonderful varieties.

Example 2.10. (1) An irreducible G-variety X is wonderful of rank 0 if and
only if it is homogeneous and complete. This is equivalent to being a partial
flag variety X = G/P , where P is a parabolic subgroup of G.

(2) An irreducible complete normal G-variety X is wonderful of rank 1 if and
only if it has two G-orbits, one open and one of codimension 1. Such
varieties are classified, see [Ah83] and [Br88]. Let us give some examples.
(a) The product X = P1 × P1, with diagonal action of G = SL(2). The

G-stable prime divisor is the diagonal.
(b) The variety X = P2 = P(Sym2(C2)) under the action of G = SL(2).
(c) The variety X = P(M2), where M2 is the vector space of (2 × 2)-

matrices, under the action of G = GL(2)×GL(2) induced by left and
right multiplication. The points corresponding to matrices of rank 1
form the G-stable prime divisor.

(3) Wonderful varieties of rank 2 have been classified in [Wa96]. A classical
example is the variety of complete conics, which is the variety

X = {([A], [B]) ∈ P(M3)× P(M3) | AB ∈ C · 13×3} .
where we denote by Mn the space of (n × n)-matrices, and by 1n×n the
unit matrix. The variety X is the wonderful compactification of the homo-
geneous space SL(3)/SO(3)Z(SL(3)), which is the space of smooth conics
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in P2. The two G-stable prime divisors of X are:

D1 = {A non-invertible},
D2 = {B non-invertible}.

(4) Let us describe an example of rank 3 (see [Pe09, Section 3.5]). Let G =
Sp(2a) × Sp(2b) (with a, b ≥ 2), and call Ω, Ω′ the bilinear forms on C2a

and C2b defining Sp(2a) and Sp(2b). For k, n ∈ N, denote by Grk(Cn)
the Graßmannian of k-dimensional vector subspaces of Cn. Consider the
variety

X =

(E,F, p)

∣∣∣∣∣∣
E ∈ Gr2(C2a),
F ∈ Gr2(C2b),
p ∈ P(Hom(E,F ))

 ,

where G acts in a natural way. Under this action X is wonderful of rank
3, with G-stable prime divisors:

D1 = {rank M = 1},
D2 = {Ω|E1

= 0},
D3 = {Ω′|E2

= 0}.

where we set p = [M ] for M ∈ Hom(E,F ).
(5) An example of higher rank is given by the space of complete collineations

(see [Se51]). It is a wonderful variety of rank r for G = GL(r+1)×GL(r+1),
where r ≥ 1. We can describe it starting from the variety Y = P(Mr+1),
which is a G-variety under left and right multiplication. Notice that Y
has r + 1 orbits, whose closures Zr+1 ⊃ Zr ⊃ . . . ⊃ Z1 are given by the
condition that Zi is the set of points corresponding to matrices of rank at
most i. While Y is not a wonderful variety (if r ≥ 2), we can blow up
Y successively along the (strict transform of) Z1, . . . , Zr−1, and obtain a
wonderful variety X. Its open G-orbit is isomorphic to PGL(r + 1), hence
X is a wonderful compactification of this group.

We end this section with an easy observation on the geometry of wonderful
varieties.

Proposition 2.11. Let X be a wonderful variety of rank r as in Definition 2.5,
and I ⊆ {1, . . . , r}. Then

XI = XI =
⋂
i∈I

Di

is a wonderful variety, of rank r − |I|.

3. The local structure theorem

We discuss in this section the fundamental result of Brion, Luna, and Vust on
the local structure of G-varieties, applied to the wonderful case.

Let X be a wonderful G-variety of rank r. Its closed G-orbit Y is a complete
homogeneous space for G, so it is isomorphic to a quotient of the form G/Q, where
Q is the stabilizer of a point y ∈ Y , and it is a parabolic subgroup of G.

Denote by P a parabolic subgroup of G opposite to Q, i.e. such that P ∩Q = L
is a Levi subgroup of P and Q. Denote by Pu the unipotent radical of P .
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Theorem 3.1 ([BLV86]). Under the above assumptions, there exists a locally closed
affine subvariety Z ⊆ X containing y such that Z is L-stable, and such that the
map

Pu × Z → X
(g, x) 7→ gx

is an open P -equivariant immersion, where an element p ∈ P acts on Pu × Z as
vl · (u, z) = (vlul−1, lz), where u, v ∈ Pu, l ∈ L, z ∈ Z, and p = vl.

The above theorem holds in this form for varieties that are much more general
than wonderful ones. However, since X here is wonderful, the structure of the
variety Z is very particular, and motivates further the analogy with Example 2.1.

Proposition 3.2. A variety Z as in Theorem 3.1 is isomorphic to the affine space
Ar, on which L acts as g ·(u1, . . . , ur) = (σ1(g)u1, . . . , σr(g)ur) where σ1, . . . , σr are
linearly independent characters of L. Moreover, under the isomorphism Z ∼= Ar,
the intersection Di ∩ Z is identified with {ui = 0} for all i ∈ {1, . . . , r}.
Proof. Consider the point y ∈ Z ∩ Y as above. Recall that the orbit map Pu → Y
sending g to gy is an open immersion by the Bruhat decomposition of Y . Then
Theorem 3.1 implies Z ∩ Y = {y}, and also that Z is smooth of dimension r.

Since X is wonderful, there exist local coordinates t1, . . . , tr around y such that
ti is a local equation of Di for all i. Theorem 3.1 implies the restriction vi = ti|Z
is a local equation of Di ∩ Z in Z in a neighborhood of the point y.

We may suppose that vi ∈ C[Z]. Then the classes v1, . . . , vr are a basis of my/m
2
y,

where we denote by my the maximal ideal in C[Z] of the point y.
The ideal my is a rational L-module, and m2

y is a submodule. Since Di ∩ Z is
L-stable for all i, the class vi is an L-eigenvector. Since L is reductive, we can lift
these classes to L-eigenvectors u1, . . . , ur ∈ my. Notice that (L,L) fixes u1, . . . , ur,
therefore it acts trivially on Z.

The L-eigenvectors u1, . . . , ur ∈ my have linearly independent weights, because
otherwise a monomial un1

1 · · ·unr
r (with exponents not all zero) would be a non-

constant element of C(Z)L. But the latter is equal to C(X)P by Theorem 3.1, and
this field is C by Theorem 2.8. We also deduce that L has an open orbit on Z.

At this point [Lu73, Corollaire 2, p. 98] implies that Z = SpecC[u1, . . . , ur] ∼= Ar.
Moreover, the subsets {u1 = 0}, . . . , {ur = 0} of Z are its unique L-stable prime
divisors, hence they coincide with resp. D1 ∩ Z, . . . ,Dr ∩ Z. �

From now on, we fix a Borel subgroup B ⊆ G contained in P . We give some
definitions for the wonderful variety X, taken from the theory of spherical varieties.

Definition 3.3. With the above notations, we define:

(1) the set ∆(X) of the B-stable, not G-stable prime divisors of X, called the
colors of X,

(2) the set Σ(X) = {σ1, . . . , σr}, whose elements are called the spherical roots
of X.

(3) the lattice Ξ(X) of the B-eigenvalues of B-eigenvectors of C(X).

Remark 3.4. Thanks to Proposition 3.2, the spherical roots of X are also the
weights of T acting on the normal space TX,y/TY,y.

Example 3.5. It is not difficult to compute Σ(X) for X equal to the space of
complete conics, using the definition we have given in Example 2.10: we have
Σ(X) = {2α1, 2α2}, where α1, α2 are the simple roots of SL(3).
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Lemma 3.6. The set Σ(X) is a basis of Ξ(X).

Proof. Let C(X)(B) be the multiplicative group of rational functions on X that are
B-eigenvectors. By Theorem 3.1 we have C(X)(B) = C(Z)(B∩L), and the lemma
follows from Proposition 3.2. �

Proposition 3.7. The open B-orbit of X is equal to Pu ·Z0, where Z0 is the open
L-orbit of Z. Moreover, we have

X r (Pu · Z) =
⋃

D∈∆(X)

D.

Proof. The first assertion is clear thanks to Theorem 3.1 and Proposition 3.2, let
us show the second one.

Let D ∈ ∆(X). If D intersects Pu · Z then the intersection is a B-stable prime
divisor of Pu · Z ∼= Pu × Z, so it is of the form Pu × E where E is a (B ∩ L)-
stable prime divisor of Z. But then E is one of coordinate hyperplanes of Z, and
D∩(Pu·Z) coincides with Di∩(Pu·Z) for some i. This yields D = Di, contradicting
the assumption that D is not G-stable. So D ⊆ X r (Pu · Z).

Conversely, the set Xr(Pu ·Z) has pure codimension 1, since Pu ·Z ∼= Pu×Z is
affine. Let D be one of its irreducible components: it is B-stable because Pu · Z is
B-stable, and D is not G-stable because it cannot contain the unique closed G-orbit
Y . Hence D ∈ ∆(X), and the proof is complete. �

Proposition 3.8 ([Br89]). The Picard group of X is freely generated by the classes
of the colors, and the classes of the G-stable prime divisors are linearly independent.

Proof. Let D be a divisor of X, and let D0 be the linear combination with same
coefficients only of the prime divisors of D that are not colors. Since X0 = X r⋃
D∈∆(X)D is an affine space, the divisor D0 is principal in X0, i.e. D0 = (f) for

some f ∈ C(X0). But then D − (f), where the divisor (f) is taken now in X, is a
linear combination of colors.

In other words, up to linear equivalence we may assume D0 = 0. If now D is
principal in X, with D = (f) for some f ∈ C(X), then f |X0

is a nowhere-vanishing
regular function on X0. It follows that f is constant, and D = 0.

This shows the first assertion of the proposition. To show the second, suppose
that a linear combination a1D1 + . . . + arDr is principal, so it is equal to (f) for
some f ∈ C(X). Then f restricts to a nowhere-vanishing regular function on the
open G-orbit G/H of X. Pull-back f along the quotient G → G/H. By [KKV89,
Proposition 1.2], this pull-back is a character of G up to a multiplicative constant:
since the radical of G acts trivially on X, we conclude that f is constant and so
the coefficients a1, . . . , ar are all 0. �

Thanks to the above proposition, we can express for all i the class [Di] of Di as
a linear combination of the classes of the colors, enabling us to give the following.

Definition 3.9. We define the Cartan pairing of X as the map

c : ∆(X)× Σ(X)→ Z
such that

[Di] =
∑

D∈∆(X)

c(D,σi)[D]

in the Picard group of X, for all i ∈ {1, . . . , r}.
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Often the Cartan pairing is extended linearly to a map

c : spanZ∆(X)× spanZΣ(X)→ Z.

Remark 3.10. To compute the Cartan pairing in practice, we can use Proposi-
tions 3.2 and 3.7. They imply that a G-stable prime divisor Di of a wonderful
variety X has a local equation fi ∈ C(X) around the point y, such that fi is a
B-eigenvector of B-eigenvalue −σi. Moreover, thanks to the two propositions men-
tioned above, the order of fi along any other G-stable prime divisor is 0, and any
other zero or pole of fi is a color. It follows that the corresponding principal divisor
is Di −

∑
D∈∆(X) c(D,σi)D. We may rephrase this analysis as follows: the Cartan

pairing c(D,σi), for D ∈ ∆(X) is equal to the valuation of f−1
i along the prime

divisor D.

Example 3.11. Assume G is adjoint, and identify it with the G×G-homogeneous
(symmetric) space X0 = G × G/diag(G). Then X0 has a G × G-equivariant won-
derful completion X thanks to the work of De Concini and Procesi. Let us denote
by B− the Borel subgroup of G opposite to B with respect to T ; we fix the Borel
subgroup B ×B− of G×G and the maximal torus T × T .

We have Ξ(X) = {(χ,−χ) | χ ∈ X (T )}. The spherical roots of X are the
elements (α,−α), where α is any simple root of G. We can also choose the Borel
subgroup B ×B of G×G instead. With this choice, we consider the set of simple
roots of G × G as the union of the sets of simple roots of the two factors G. For
a simple root α of the first factor G, define α′ in such a way that −w0(α′) is the
simple root of the second factor G corresponding to α, where w0 is the longest
element of the Weyl group of G. Then the spherical roots of X are the set

Σ(X) = {α+ α′ | α simple root of G}.

Let us get back to the choice of the Borel subgroup B×B− ⊆ G×G. The colors
of X are the closures of the B ×B−-stable prime divisors of X0, and these are the
irreducible components of X0 rBB−, since BB− is the open B ×B−-orbit of X0.

Let us compute the Cartan pairing c : ∆(X) × Σ(X) → Z. Denote by G̃ the
universal cover of G, and by ωα the fundamental dominant weight corresponding

to a simple root α of G. Let V (ωα) be the irreducible G̃-module of highest weight
ωα, choose a highest weight vector vα ∈ V (ωα), and a lowest weight vector ηα in
the dual module V (ωα)∗. Recall that ηα has weight −ωα.

With these assumptions the matrix coefficient Fα : g 7→ 〈ηα, g−1vα〉 is a global

equation in C[G̃] of a divisor D̃α of G̃. We have that D̃α is the pull-back on G̃ of a
B ×B−-stable prime divisor Dα,0 of X0, so the closure Dα = Dα,0 in X is a color
of X. All colors of X are obtained in this way.

Finally, the function Fα is (B × B−)-semiinvariant, of weight (ωα,−ωα), hence
the product

fα =
∏

β simple root

F
〈α,β∨〉
β

is a (B×B−)-semiinvariant rational function on X with (B×B−)-weight equal to
(α,−α). Thanks to Remark 3.10, we conclude that c(Dα, (α,−α)) is equal to the
order of fα along Dα, i.e. the Cartan pairing c of X is given by the Cartan matrix
of G.
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4. The logarithmic tangent bundle

We begin this section recalling some basic facts on a G-variety X, only assuming
it is smooth and irreducible. For more details, we refer to [Br07, Section 2].

For a point x ∈ X, consider the orbit map G→ X sending g to gx. Its differential
in the neutral element e ∈ G is a linear map

θx : g→ TX,x

where g is the Lie algebra of G and TX,x is the tangent space of X in x. Notice
that θx is surjective if and only if the orbit G · x is open in X.

This picture can be globalized: denote by TX the sheaf of sections of the tangent
bundle of X, and denote by g the constant sheaf on X associated to g. Then the
G-action induces a morphisms of sheaves on X

θ : OX ⊗ g→ TX .
Notice that X is G-homogeneous if and only if this morphism of sheaves is

surjective.
Let now D = D1 + . . . + Dr be a divisor on X with strict normal crossings

as in Definition 2.3. Considering TX as the sheaf of derivations Der(OX), we can
consider the subsheaf of derivations stabilizing the ideal sheaf OX(−D) of D, and
we denote it by TX(−D). It is locally free, and it is called the logarithmic tangent
sheaf of the pair (X,D).

Remark 4.1. Let n = dim(X), so n ≥ r. Fix x ∈ X, and denote by I the subset
of {1, . . . , r} such that x ∈ Di if and only if i ∈ I. Denote by t1, . . . , tn local
coordinated around x, such that ti = 0 is a local equation of Di for all i ∈ I.
Then TX(−D) is generated, locally around x, by ti

∂
∂ti

for i ∈ I, and by ∂
∂tj

for

j ∈ {1, . . . , n}r I.

If G acts on X preserving D, then θ maps OX ⊗ g to TX(−D), and we have the
following.

Proposition 4.2. If X is wonderful then θ : OX ⊗ g → TX(−D) is surjective.
Moreover, the kernel ker θx (contained in the stabilizer gx) is the kernel of the
gx-action on the normal space TX,x/TGx,x.

Proof (sketch). The proof is reduced, thanks to Theorem 3.1 and Proposition 3.2,
to the elementary case of Example 2.1. �

The above proposition implies that, for all points x of an n-dimensional wonderful
variety X, the kernel ker θx is a Lie subalgebra of g of codimension n. This induces
the Demazure morphism

f : X → Grn(g)
x 7→ ker θx

where Grn(g) is the Graßmannian of n-codimensional vector subspaces of g.
We end this section summarizing in the following theorem several important

results on wonderful varieties.

Theorem 4.3. Let X be a wonderful variety, with open G-orbit G/H.

(1) The quotient NG(H)/H is finite.
(2) If H = NG(H) then f : X → Grn(g) is an immersion. In particular NG(H)

is the stabilizer of the Lie algebra h of H under the adjoint action of G on
g.
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(3) For any spherical subgroup K ⊆ G such that K = NG(K) the homogeneous
space G/K admits a wonderful completion.

Proof (references). The first assertion follows from [BrPa87, Corollaire 5.3]. The
second is proved in [Lo09b]. The third assertion is a fundamental theorem of Knop,
see [Kn96]. �

5. Spherical roots and colors

The finite sets ∆(X) and Σ(X), which we attach to any wonderful G-variety X,
have a quite rich combinatorial structure. It generalizes the combinatorial part of
the theory of symmetric spaces.

The first main result we mention is Theorem 5.1 below. Before stating it, we
recall that the spherical roots can be defined also for a general spherical variety.
Correspondingly, Theorem 5.1 can be stated also for a general spherical variety; it
is due to Brion in characteristic 0 (see [Br90]), and to Knop in odd characteristic
(see [Kn14]).

Let X be a wonderful G-variety. We equip Ξ(X)⊗Z Q with an inner product by
restricting a W -invariant inner product on X (T )⊗Z Q.

Theorem 5.1 ([Br90, Kn14]). Let X be a wonderful variety. The set Σ(X) is the
set of simple roots of a root system.

We denote by W (X) the Weyl group of the root system generated by Σ(X). It
is called the little Weyl group of X, and generalizes the little Weyl group classically
defined for symmetric spaces.

Also the set of colors ∆(X), equipped with the Cartan pairing c : ∆(X)×Σ(X)→
Z, plays a crucial role in this picture, and in some sense generalizes the set of simple
coroots of Σ(X). This analogy is suggested first of all by Example 3.11, and also
by the rigid combinatorial properties of ∆(X) we will see in this section, but it
must not be taken literally, since ∆(X) is not in general the set of simple coroots
of Σ(X).

Let us give in the next proposition a first view of the interplay between the
combinatorics of ∆(X) and Σ(X), and the geometry of X. In the proof we will use
some results from [Kn91] concerning G-equivariant morphisms between wonderful
varieties. They also have a very effective combinatorial counterpart, and will be
recalled in details in Section 7.

Proposition 5.2. Let X a wonderful G-variety with open orbit G/H, and denote
by P the parabolic subgroup as in Section 3. Then the following hold.

(1) dim(X) = dimPu + |Σ(X)|.
(2) rk(X (H)) = |∆(X)| − |Σ(X)|.
(3) The subgroup H is reductive if and only if there exists a linear combination

σ of spherical roots with non-negative coefficients, such that 〈D,σ〉 > 0 for
all D ∈ ∆(X).

(4) The subgroup H is very reductive, i.e. it is not contained in any proper
parabolic subgroup of G, if and only if |∆(X)| = |Σ(X)|.

Proof. Part (1) follows from Theorem 3.1 and Proposition 3.2.
Let us show part (2). Recall that ∆(X) is a basis of Pic(X). Up to the natural

identification of Σ(X) with the set of G-stable prime divisors of X, the desired
equality follows putting together the following:
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(1) the short exact sequence

0→ spanZΣ(X)→ Pic(X)→ Pic(G/H)→ 0,

(2) the isomorphism
Pic(G/H) ∼= X (H),

which holds thanks to [KKV89, Proposition 3.2] and the fact that we may
assume G semisimple and simply connected.

Part (3) is shown in [Kn91], let us show part (4). Let us denote by C the convex
cone generated in the vector space N = HomZ(Ξ(X),Q) by the elements c(D,−)
for D varying in ∆(X), and by V the convex cone generated by the elements
−σ∗1 , . . . ,−σ∗r , where σ∗1 , . . . , σ

∗
r is the dual basis of Σ(X).

We recall that, by [Kn91], the vector space N is generated, as a convex cone, by
C and V . Assume that |∆(X)| = |Σ(X)|. Then, by Proposition 3.8, the elements
c(D,−) for D varying in ∆(X) are linearly independent. The consequences are
that C is strictly convex, and that the map Pic(X) → N induced by the Cartan
pairing is injective.

We claim that C ∩ V = {0}. Otherwise, there exist non-negative coefficients
n1, . . . , nr and mD for D ∈ ∆(X) such that

n1D1 + . . .+ nrDr +
∑

D∈∆(X)

mDD

is a principal divisor, and not all coefficients are zero. But, being X complete, any
effective principal divisor must be zero: contradiction. This proves the claim, which
in turn implies that the linear combination of part (3) exists.

Therefore H is reductive. If it is contained in a proper parabolic subgroup Q
of G, then H is contained in a Levi subgroup of Q, so there exists a non-trivial
torus T ′ ⊆ Q centralizing H. If T ′ is not contained in H then the first assertion
of Theorem 4.3 is contradicted, so T ′ ⊆ H. But then X (H) has positive rank,
contradicting part (2). We conclude that H is very reductive.

Vice versa, assume H is not contained in any proper parabolic subgroup of G.
Then it is well known that H is reductive, hence by part (3) the elements c(D,−)
for D varying in ∆(X) generate a strictly convex cone inside HomZ(Ξ(X),Q).

Suppose, for sake of contradiction, that |∆(X)| > |Σ(X)|. This means in partic-
ular that |∆(X)| is greater than the dimension of N . Recall that this vector space
is generated, as a convex cone, by the sets C and V . Then one can show, with an
elementary argument on convex polytopes, that there is at least one E ∈ ∆(X) such
that N is generated, as a convex cone, by V together with the elements c(D,−) for
D varying in ∆(X) r {E}.

By [Kn91, Theorem 5.4], there exists a G-equivariant morphism X → G/Q,
where Q is a parabolic subgroup of G, such that E is the inverse image of a color
of G/Q. This implies that Q is a proper subgroup of G, and it contains H up to
conjugation. This contradicts our assumptions, and the proof is complete. �

The colors of a wonderful G-variety are also related to the simple roots of G, as
in the following.

Definition 5.3. A color D of a wonderful G-variety X is moved by a simple root α
of G if D is not stable under the minimal parabolic subgroup Pα strictly containing
B and associated to α. We denote by Sp(X) the set of simple roots moving no
color.
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By Proposition 3.7, the parabolic subgroup P of Section 3 is the common sta-
bilizer of all colors, so it is the parabolic subgroup of G containing B and corre-
sponding to Sp(X).

As we will remark later, there are compatibility properties satisfied by Sp(X)
and Σ(X). Let us see one following directly from the local structure of X.

Lemma 5.4. If α ∈ Sp(X), then 〈α∨, σ〉 = 0 for all σ ∈ Σ(X).

Proof. Let L be the Levi subgroup of P containing T . From Proposition 3.2 we
have that the restriction of σ to the maximal torus T ∩ (L,L) of (L,L) is zero. The
lemma follows. �

Example 5.5. If G = SL(2), then there exist exactly 4 wonderful G-varieties up
to isomorphism. They are the following.

• A single point: it has no color and no spherical root.
• The variety X = P1 = G/B: it has one color but no spherical root (the

Cartan pairing is the empty map).
• The variety X = P1 × P1, where SL(2) acts diagonally. Denote by α the

simple root of SL(2); then X has two colors D+
α and D−α , one spherical root

α, and c(D±α , α) = 1.
• The variety X = P2 = P(Sym2(C2)). It has one color Dα and one spherical

root 2α, with c(Dα, 2α) = 2.

All colors of these varieties are moved by the simple root α of G, since in this case
Pα = G.

In [Lu97], Luna showed in general that a simple root cannot move arbitrarily
many colors, using a reduction to the case of the above example. He also showed
that the values of the Cartan pairing are strongly influenced by which simple roots
move which colors, and in [Lu01] that only in specific situations the same color can
be moved by two different simple roots.

We summarize these results in the following.

Proposition 5.6 ([Lu97, Lu01]). Let X be a wonderful G-variety.

(1) A simple root α moves at most two colors. It moves two colors, denoted by1

D+
α , D

−
α , if and only if α ∈ Σ(X), in which case c(D+

α ,−) + c(D−α ,−) =
α∨|Ξ(X).

(2) If a color D is moved by α ∈ S∩Σ(X) and c(D,σ) > 0 for some σ ∈ Σ(X),
then σ is a simple root, it moves D, and c(D,σ) = 1.

(3) Two different simple roots α and β move the same color D if and only if
one of the two following mutually exclusive situations occur.
(a) Both α and β are spherical roots, and they move the same color.
(b) The simple roots α and β are orthogonal, and α+ β or 1

2 (α+ β) is in
Σ(X).

(4) If 2α ∈ Σ(X) with α a simple root, then α moves only one color D, and
c(D,−) = 1

2α
∨|Ξ(X).

(5) If a simple root α satisfies α, 2α /∈ Σ(X) and moves one color D, then
c(D,−) = α∨|Ξ(X).

1There is in general no preferred way to decide which color is denoted by D+
α and which by D−α .

However, whenever possible, it is common to choose them in such a way that c(D+
α ,−) ≥ c(D−α ,−).
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Example 5.7. Let us illustrate in an example statements (2) and (3a) of Propo-
sition 5.6. Let G = SL(3), and let H1 be the subgroup of matrices of the form 1 x ∗

0 1 x
0 0 1


for x ∈ C. Define H = NG(H1). Then G/H has a wonderful completion, with
spherical roots α1, α2 (see [Av15] for more details of such subgroups). It has three
colors: one, denoted by D+

α1
= D+

α2
, is moved by α1 and α2, the others D−α1

and
D−α2

are moved resp. by α1 and α2. The Cartan pairing is

α1 α2

D+
α1

1 1
D−α1

1 −2
D−α2

−2 1

A similar example can be built in any simple group G, setting H = NG(H1) and
defining H1 to be a subgroup of Bu containing the commutator (Bu, Bu) and such
that the Lie algebra of H1 contains a one-dimensional subspace “diagonal” in the
sum ⊕

α simple root

gα,

where gα is the root space of the Lie algebra g of G corresponding to the root α (see
also Example 8.3(3)). The spherical roots of the corresponding wonderful variety
are the simple roots of G. Each simple root α moves two colors D+

α , D−α , and we
have D+

α = D+
β for all simple roots α, β. The value of c(D+

α , α) is 1 for any simple

root α, whereas for all simple roots α, β we have c(D−α , β) = 〈β, α∨〉 − 1, according
to statement (1) of Proposition 5.6. For example, if G has type B2 the resulting
Cartan matrix is

α1 α2

D+
α1

1 1
D−α1

1 −2
D−α2

−3 1

Example 5.8. An example of the situation of statement (3b) of Proposition 5.6
is given by the varieties X of Example 3.11, under the action of G × G for G an
adjoint group. Recall that we choose B × B− as a Borel subgroup of G × G. As
described in Example 3.11, the variety X has a color Dα for each simple root α
of G, and the Cartan pairing between Dα and the spherical root (β,−β) (for β
simple root of G) is equal to 〈β, α∨〉. One can show, e.g. using the function Fα of
Example 3.11, that Dα is moved exactly by the two simple roots (α, 0) and (0,−α)
of G×G, which are indeed orthogonal and add up to a spherical root.

Remark 5.9. We give another property of the combinatorics of Σ(X). It follows
from Propositions 2.11 and 3.2 that any spherical root σ of a wonderful variety X
is the spherical root of a wonderful variety Y of rank 1, with the same associated
parabolic subgroup P , i.e. Sp(X) = Sp(Y ).

As mentioned in Example 2.10, wonderful varieties of rank 1 are classified, and
their spherical roots together with the sets Sp are known. This imposes another
condition on the possible elements of Σ(X), and a compatibility condition between
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each single spherical root and the set Sp(X). This condition will be given explicitly
in Section 6.

The triple (Sp(X), Σ(X), ∆(X)), where often ∆(X) is replaced by the subset of
colors moved by simple roots that are spherical roots, is called the spherical system
of X. Luna suggested in [Lu01] a purely combinatorial notion of spherical systems,
based on the properties stated in Proposition 5.6 and Remark 5.9.

In the same paper Luna also conjectured that spherical systems classify wonderful
varieties, proving it for groups of type A. The conjecture has been proved in general
in [Lo09] (uniqueness of a wonderful variety having a given spherical system) and
[BP16] (existence of a wonderful variety having a given spherical system). We refer
to [BP16] and references therein for details on this classification.

6. Luna diagrams

As Luna observed in [Lu01], the above properties impose so stringent conditions
on Sp(X), Σ(X), ∆(X), and the Cartan pairing, that it is possible to represent these
objects entirely with diagrams “attached” to the Dynkin diagrams of G. These are
now called Luna diagrams.

Let us explain how they are constructed. Colors are represented by circles,
possibly filled; whether filled or not depends on Σ(X) as explained below.

A circle corresponding to a color D is drawn in the vicinity of a simple root α
(which means below, above, or around α) if α moves D. It can happen that more
than one simple root, say α, . . . , αk, move D. In this case we represent D as k
circles, each drawn in the vicinity of resp. α1, . . . , αk, and joined by a line.

How a color D is drawn in the vicinity of a simple root α that moves D is decided
in the following way, following Proposition 5.6.

(1) If α ∈ Σ(X), then D is one of D+
α , D

−
α . They are drawn resp. above and

below α.
(2) If 2α ∈ Σ(X), then α moves only D, which is drawn below α.
(3) Otherwise α moves only D, which is drawn around α.

Each spherical root σ ∈ Σ(X) is a linear combination of simple roots with
rational, non-negative coefficients (see [Lu01]), and if G is adjoint then these linear
combinations have integer coefficients, since spherical roots obviously belong to the
root lattice in this case. The set of simple roots whose coefficient is positive is called
the support of σ.

For simplicity we assume that G is adjoint, and each spherical root σ appearing
in this case has its own symbol as in Table 1. This symbol is drawn on the part
of the Dynkin diagram of G corresponding to the support of σ. The presence of a
given spherical root forces simple roots on its support to move some colors. These
colors are then drawn in Table 1, and if in the table no color is explicitly drawn in
the vicinity of a simple root α, then α moves no color. This rule has actually two
exceptions:

(1) in the sixth case, the spherical root α1 + . . .+ αr with support of type Br,
the simple root αr may move colors,

(2) in the ninth case, the spherical root α1 + 2(α2 + . . . + αr−1) + αr with
support of type Cr, the simple root α1 may move colors.

In the table we mark these exceptions with an asterisk, which is however not re-
produced in the actual Luna diagram.
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These remarks amount to the compatibility conditions between α ∈ Sp(X) and
σ ∈ Σ(X) mentioned in Remark 5.9, in the case where α is in the support of σ. If
this is not the case, the only compatibility condition is the one given in Lemma 5.4.

Notice that some of the symbols of the table are realized simply by filling the
circle corresponding to some color D moved by a simple root α in the support of
the spherical root. If a color does not constitute in this way the symbol of some
spherical root, it is drawn not filled.

We also precise that a “zigzag” line appearing as the fourth case (the spherical
root α1 + . . .+αr, where α1, . . . , αr form a subdiagram of type Ar) is meant in our
convention to join the two vertices α1, αr, not the two circles drawn around them.
The two circles correspond to two different colors.

Much of the Cartan pairing is often deduced from Proposition 5.6, therefore only
in specific situations we need to add some indications about it to the Luna diagram.

Following the proposition, the value of c(D,−) for a color D moved by a simple
root α is entirely determined by α, unless α ∈ Σ(X). Even in this case, where α
moves the two colors D+

α , D
−
α , it is enough to give the Cartan pairing for only one

of them, since c(D±α ,−) = α∨ − c(D∓α ,−). Finally, the value c(D±α , σ) is positive
for some σ ∈ Σ(X) if and only if it is equal to 1, the spherical root σ is a simple
root, and D±α also appears as D±σ . Hence such values are deduced from the Luna
diagram as we have described it so far.

It remains to include some indications on the value c(D±α , σ) in the cases where
it is not positive and 〈α∨, σ〉 6= 0. In these cases we indicate the value c(D±α , σ) = k
by drawing −k small arrows on the side of one of the circles representing the color,
pointing at some simple root in the support of σ. We remark that negative values
smaller than −1 are possible, as shown in Example 5.7.

A common practice in the literature is to draw these arrows only for the color D+
α

(the one drawn above α), since this is enough to determine the value of the Cartan
pairing for D−α , as we have already observed. We will follow this convention here,
but we point out that it is then slightly more cumbersome to recognize whether
two different Luna diagrams (with equal Σ and ∆) give the same Cartan pairing or
not. For this reason, indications for both colors are found in some references.

Example 6.1. For any spherical root of Table 1, one can find a description of the
open G-orbit of the corresponding wonderful variety in [Wa96, Table 1]. Here we
have already seen the cases α1 and 2α1 for G = SL(2) in Example 5.5. Let us see
some more cases.

(1) The variety X = P(Cn+1)× P((Cn+1)∗), under the diagonal action of G =
SL(n + 1), is the wonderful completion of the homogeneous space SL(n +
1)/GL(n) and has spherical root α1 + . . .+ αn.

(2) The variety X = P(V ), where V is the irreducible 8-dimensional Spin(7)-
module, is wonderful under the action of SO(7), and has spherical root
α1 + 2α2 + 3α3.

(3) The varietyX = P(U), where U is the irreducible 7-dimensional G2-module,
is wonderful under the action of G2, and has spherical root 4α1 + 2α2.

Example 6.2. (1) Partial flag varieties G/P with P ⊇ B don’t have spherical
roots, and their colors are the Schubert divisors. The Luna diagram is
therefore given only drawing a circle around each simple root that moves
some Schubert divisor. For example, let G be SL(4) with simple roots
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Table 1. Diagrams of spherical roots

diagram spherical rootqee α1

qe 2α1

eq eq α1 + α′1

q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppppppppp α1 + . . .+ αr (r ≥ 2)

eppp p pp p p pp p pp p p pp p pp pq qq q α1 + 2α2 + α3

q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p ∗ α1 + . . .+ αr (r ≥ 2)

q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2 2(α1 + . . .+ αr) (r ≥ 2)

q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3

q qq qq qq q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p∗ α1 + 2(α2 + . . .+ αr−1) + αr (r ≥ 2)

eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@
2(α1 + . . .+ αr−2) + αr−1 + αr (r ≥ 4)

q q q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3 + 2α4

q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe α1 + α2

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p 2α1 + α2

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2 4α1 + 2α2

α1, α2, α3. The Luna diagram of X = G/B isqe qe qe
Let P be the parabolic subgroup of SL(4) containing B and with Levi
subgroup having only the simple root α3. Then the Luna diagram of X ′ =
G/P is e eq q q

(2) The diagram

qeeq qe e
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represents the set of spherical roots {α1 + α3, α2}, and the set of colors
{D,D+

α2
, D−α2

} with Cartan pairing

α1 + α3 α2

D 2 −1
D+
α2

−1 1
D−α2

−1 1

(3) The diagram q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p qee
(for G of type Bn) represents the set of spherical roots {α1 + α2, α2 +
α3, . . . , αn−2 + αn−1, αn−1 + αn, αn}. Any color takes the values of some
simple coroot, except for D+

αn
, D−αn

, which take the following values:

α1 + α2 . . . αn−3 + αn−2 αn−2 + αn−1 αn−1 + αn αn
D+
αn

0 . . . 0 −1 0 1
D−αn

0 . . . 0 −1 0 1

Notice that c(D±αn
, αn−1 + αn) = 0 because if one of these values were

non-zero, one would be strictly positive (since 〈α∨n , αn−1 + αn〉 = 0), con-
tradicting Proposition 5.6.

(4) The diagram

q qq qq qqee qee qeee
for G = SL(5) with simple roots α1, . . . , α4 represents Σ(X) = {α1, α2, α4}
and ∆(X) = {D+

α1
, D−α1

= D−α4
, D+

α2
= D+

α4
, D−α2

} with Cartan pairing

α1 α2 α4

D+
α1

1 0 −1
D−α1

1 −1 1
D+
α2
−1 1 1

D−α2
0 1 −1

7. Morphisms

In [Kn91] dominant morphisms with connected fibers between spherical varieties
are studied. The special case of morphisms between wonderful varieties was derived
from loc.cit. in [Lu01]. We report this case in this section.

Let X be a wonderful variety. Recall that we have defined the convex cone
V generated inside N = HomZ(Ξ(X),Z) by the elements −σ∗1 , . . . ,−σ∗r , where
σ∗1 , . . . , σ

∗
r is the dual basis of Σ(X).

Definition 7.1. Let X be a wonderful variety with open G-orbit G/H. If K is a
subgroup of G containing H, we denote by ∆K the set of colors of G/H mapped
dominantly to G/K by the natural map G/H → G/K, and CK the subset of N
consisting of all elements vanishing on B-eigenvalues of B-eigenvectors in C(G/K).

Definition 7.2. Let C be a vector subspace of N , and ∆′ ⊆ ∆(X). The couple
(C,∆′) is a colored subspace (of N) if C is generated, as a convex cone, by finitely
many elements of V together with the elements c(D,−) for D ∈ ∆′.
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Theorem 7.3 ([Kn91]). Let X be a wonderful variety with open G-orbit G/H. The
map K 7→ (CK ,∆K) is a bijection between the set of subgroups K of G containing
H such that K/H is connected, and the set of colored subspaces of N . Moreover, K
has finite index in NG(K) if and only if the image of V in N/CK is strictly convex.

Definition 7.4. A subset ∆′ ⊆ ∆(X) is distinguished if −V intersects the relative
interior E0 of the cone E generated by the elements c(D,−) for D ∈ ∆′.

Lemma 7.5. Let F1 and F2 be polyhedral convex cones in a finite-dimensional
rational vector space. The convex cone generated by F1 and F2 is a vector subspace
if and only if the relative interiors of −F1 and of F2 intersect.

Proof. If the relative interior of −F1 and of F2 intersect, then the convex cone R
generated by F1 and F2 contains the two vector subspaces generated resp. by F1

and F2. It follows that R is the vector subspace generated by F1 together with F2.
Vice versa, suppose that R is a vector subspace, and consider a point x in the

relative interior of −F1. Then x ∈ R, so it is a sum x = f1 + f2 where fi ∈ Fi for
all i ∈ {1, 2}. The point f2 = x − f1 is in the relative interior of −F1, and also in
F2.

By symmetry, we also have that −F1 intersects the relative interior of F2, let z
be a point in this intersection. If z = f2 then we are done, otherwise any point on
the segment joining f2 and z (possibly except for the endpoints) lyes in the relative
interiors of −F1 and of F2. �

Proposition 7.6 ([Lu01]). Let X be a wonderful variety with open G-orbit G/H,
and ∆′ ⊆ ∆(X). Then ∆′ is distinguished if and only if there exists a unique
vector subspace C of N such that (C,∆′) is a colored subspace, and the image of V
in N/CK is strictly convex.

Proof. First we notice that, if C is a vector subspace of N , the image of V in N/C
is strictly convex if and only if C ∩ (−V ) is a face of −V .

Now assume that there exists a colored subspace (C,∆′) of N such that C∩(−V )
is a face F of −V . Denote as above by E the cone generated by the elements c(D,−)
for D ∈ ∆′, and E0 the relative interior of E. Then F generates C as a convex cone
together with E, which implies that −F intersects E0 by Lemma 7.5. Hence ∆′ is
distinguished.

Vice versa, suppose that ∆′ is distinguished, so −E0 intersects V . Suppose that
there exist two faces F1, F2 of V such that their relative interiors intersect −E0.
Then the relative interior of the face of V generated by F1 and F2 also intersects
−E0.

It follows that there exists a unique maximal face F of V such that its relative
interior intersects −E0. Then F and E generate a vector subspace C of N by
Lemma 7.5.

Finally, we prove the uniqueness of C. Let (C′,∆′) be a colored subspace such
that C′ ∩ V is a face F ′ of V . Since C′ contains −E0, we have that F ′ contains
−E0 ∩ V , which intersects the relative interior of F . It follows that F ′ contains F .
On the other hand, F ′ and E generate C′ as a convex cone, which implies that the
relative interior of F ′ intersects −E0. By maximality of F , we have F = F ′ and
C = C′. �

Example 7.7. The set of all colors ∆(X) is always distinguished. One can prove
this fact by noticing that ∆(X) is the subset of colors ∆G corresponding to the
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inclusion H ⊆ G. A combinatorial proof, due to P. Bravi, goes as follows. Thanks to
Proposition 5.6, the convex cone E corresponding to ∆(X) contains the restrictions
α∨|Ξ(X) for all α ∈ S r Sp(X). Therefore there exists an element x of E that is
strictly positive on all simple roots not in Sp(X). As one can check in Table 1, this
implies that x is strictly positive on all elements of Σ(X).

As discussed in details in [Lu01], some subgroups K ⊇ H (such that K/H
is connected) are such that G/K admit a wonderful completion Y . A necessary
condition recalled in Theorem 4.3 is that K has finite index in its normalizer, and a
remarkable theorem by Bravi (see [B13]) implies that this condition is also sufficient.

We end this section reporting on this result, and on the determination of the
spherical roots of Y done by Luna in [Lu01].

Definition 7.8. A distinguished subset of colors ∆′ ⊆ ∆(X) is good if the monoid

{σ ∈ spanNΣ(X) | c(D,σ) = 0 for all D ∈ ∆′}
is free. If this is the case, we denote by Σ(X)/∆′ the basis of this monoid.

Proposition 7.9 ([Lu01]). Let ∆′ ⊆ ∆(X) be a good distinguished subset of colors,
and K ⊇ H the corresponding subgroup of G. Then G/K admits a wonderful com-
pletion Y . Moreover, the natural morphism G/H → G/K extends to a surjective
equivariant map X → Y with connected fibers, and we have

Σ(Y ) = Σ(X)/∆′

The set of colors of Y in the above proposition is also denoted by ∆(X)/∆′.

Theorem 7.10 ([B13]). All distinguished subsets of colors are good.

We may collect the above results in the following.

Corollary 7.11. Let X be a wonderful G-variety. The map defined in Theorem 7.3
induces a bijection between the set of surjective, equivariant morphisms with con-
nected fibers from X to another wonderful variety and the set of distinguished sub-
sets of ∆(X).

Example 7.12. (1) The Luna diagram

q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp
for G = SL(4) with simple roots α1, α2, α3, represents the spherical roots
Σ(X) = {α1 + α2, α2 + α3} and the colors ∆(X) = {D1, D2, D3} with
Di = α∨i |Ξ(X) for all i ∈ {1, 2, 3}. The Cartan pairing is therefore

α1 + α2 α2 + α3

D1 1 −1
D2 1 1
D3 −1 1

Let us choose Sp(4) ⊂ SL(4) in such a way that Sp(4)∩B is a Borel subgroup
of Sp(4). Then the above Luna diagram corresponds to the wonderful
completion X of the homogeneous space SL(4)/H, where H is the parabolic
subgroup of Sp(4) ·Z(SL(4)) containing Sp(4)∩B and corresponding to the
long simple root. The subset ∆′ = {D1, D3} is distinguished, and the
monoid {σ ∈ spanNΣ(X) | c(D,σ) = 0 for all D ∈ ∆′} is free, with basis
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the sum α1 + 2α2 + α3 of the two spherical roots of X. The corresponding
surjective equivariant morphism X → Y corresponds to the inclusion H ⊂
K = Sp(4) · Z(SL(4)), and Y has Luna diagram

eppp p pp p p pp p pp p p pp p pp pq qq q
(2) The Luna diagram

q qq qq qqee qee qeee
corresponds to the subgroup H ⊆ SL(5) of the matrices of the form λ1A 0 ∗

0 λ2 ∗
0 0 λ3A


where A ∈ SL(2) and λ1, λ2, λ3 ∈ C∗ satisfy λ2

1λ2λ
2
3 = 1. The subset

of colors ∆1 = {D−α1
, D+

α2
} is distinguished. The quotients Σ(X)/∆1 and

∆(X)/∆1 are represented by the Luna diagram

q qq qq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e
and correspond to K1 ⊃ H of the matrices of the form λ1A 0 ∗

0 λ2 ∗
0 0 λ3B


where B ∈ SL(2). Also the subset of colors ∆2 = {D+

α1
, D+

α2
} is distin-

guished, and gives

q qq qq qe e e e
which corresponds to K2 ⊃ H of the matrices of the form λ1A ∗ ∗

0 λ2 ∗
0 0 λ3A


8. Minimal morphisms

Let X be a wonderful G-variety with open G-orbit G/H. Minimal non-empty
distinguished subsets of ∆(X) correspond to subgroups K ⊆ G such that K ) H
and K/H is connected, G/K has a wonderful completion Y , and K is minimal
with respect to these properties. We may assume that it has a Levi subgroup LK
containing a Levi subgroup LH of H.

Such subgroups K have been used crucially in the classification of wonderful
varieties. Indeed, they are involved in one of the key technical steps both of the
uniqueness part of the classification (see [Lo09]), and of the existence part (see
[BP14, Section 5.3]). In both parts, loosely speaking, the approach is to use in-
duction (e.g. on the dimension of G/H), showing existence and uniqueness (up to



20 GUIDO PEZZINI

conjugation) of a subgroup H corresponding to some data Sp(X), Σ(X), ∆(X),
assuming them for K and the data Sp(Y ), Σ(Y ), ∆(Y ).

This approach is effective under an additional fundamental assumption: that
K and L have the same Levi subgroup, possibly up to some C∗-factors, and that
Ku ) Hu (see case (L ) of Proposition 8.1 for a precise statement).

This suggests the importance of distinguishing between different types of inclu-
sions K ) H, according to the behavior of Levi subgroups and of the unipotent
radicals of K and H, and motivates Proposition 8.1 below.

Proposition 8.1 ([BL11]). Under the above assumptions, the groups H and K
satisfy one of the following statements.

(P) We have Hu ) Ku. In this case H is a maximal proper parabolic subgroup
of K, and Z(LH)◦ ) Z(LK)◦.

(R) We have Hu = Ku. In this case Hr = Kr, and H/Hr is very reductive in
K/Kr.

(L ) We have Hu ( Ku. In this case LK = LHZ(H)◦ and Z(LH)◦ ⊆ Z(LK)◦,
and Ku/Hu is LH-equivariantly isomorphic to a simple LH-module.

In the above proposition, we also say that the inclusion H ⊂ K is of type (P),
(R), or (L ), according to which of the statements holds.

The following corollary follows immediately. We recall that the defect d(X) of a
wonderful variety X is defined as d(X) = |∆(X)| − |Σ(X)|.

Corollary 8.2. Denote by Y the wonderful completion of G/K. Then the following
hold.

(1) If d(X) < d(Y ) then the inclusion H ⊂ K is of type (L ).
(2) If the inclusion is of type (R) then d(X) = d(Y ).
(3) The inclusion is of type (P) if and only if d(X) > d(Y ).

Example 8.3. (1) The subset ∆′ of Example 7.12(1) gives an inclusionH ⊂ K
of type (P), and the subset ∆2 of Example 7.12(2) gives an inclusion
H ⊂ K2 of type (R).

(2) The subset ∆1 of Example 7.12(2) gives an inclusion H ⊂ K1 of type (L ).
Notice that here Z(LH)◦ = Z(LK1)◦, showing that parts (1) and (2) of
Corollary 8.2 are not equivalences in general.

(3) An example where Z(LH)◦ ( Z(LK)◦ is the one discussed in Example 5.7.
Let us discuss the case G = SL(4), which has Luna diagram

q qq qqee qee qee
We can describe H as the subgroup of matrices of the form

λ1 a1 ∗ ∗
0 λ2 a2 ∗
0 0 λ3 a3

0 0 0 λ4


where a1, a2, a3 ∈ C satisfy a1 + a2 + a3 = 0, and λ1, . . . , λ4 ∈ C∗ satisfy
λ1 · · ·λ4 = 1 and also λ1/λ2 = λ2/λ3 = λ3/λ4. Notice that one can also
take another linear combination of a1, a2, a3 (with coefficients all non-zero)
instead of a1 + a2 + a3, and obtain a subgroup of SL(4) conjugated to H.
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The subset of colors ∆′ = {D+
1 = D+

2 = D+
3 } is distinguished, and

the corresponding subgroup is K = B. Here the inclusion H ⊂ K is of
type (L ) and we have Z(LH)◦ ( Z(LK)◦. In this situation observe that
Z(LK)◦ does not normalize H, in accordance with Theorem 4.3. More pre-
cisely, the unipotent radical Hu is not stable under conjugation by Z(LK)◦,
because it contains a submodule of Ku that is “diagonal” in a sum of LK-
submodules contained in Ku, all isomorphic as (L◦K , L

◦
K)-modules but not

as LK-modules.
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To the referee

I thank the referee for the careful reading and many remarks. All comments of
the report have been taken into account, here are some details:

(1) I have added some examples where requested.
(2) I have now drawn Luna diagrams always following a common practice,

which is to omit the small “arrows” on the side of colors drawn below a
simple root (I was not consistent on this in the first version). A comment on
this has been added to the description of Luna diagrams before Example 6.1.

(3) I have corrected small errors in Remark 3.10 and Example 3.11.
(4) I have expanded the last statement of the first version of the paper, and

made it into a couple of paragraphs on the proof of the classification, at
the beginning of Section 8.
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