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Barletti Luigi .................................................................
Professore Associato, Università di Firenze
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Title: On the controllability of the quantum dynamics of closed and open systems
Keywords: Open Quantum System, Lindblad equation, Adiabatic Theory, Geo-
metric Control.
Abstract: We investigate the controllability of quantum systems in two different
settings: the standard “closed” setting, in which a quantum system is seen as iso-
lated and the control problem is formulated on the Schrödinger equation; the open
setting that describes a quantum system in interaction with a larger one, of which
just qualitative parameters are known, by means of the Lindblad equation on states.

In the context of closed systems we focus our attention to an interesting class of
models, namely the spin-boson models. The latter describe the interaction between
a 2-level quantum system and finitely many distinguished modes of a bosonic field.
We discuss two prototypical examples, the Rabi model and the Jaynes-Cummings
model, which despite their age are still very popular in several fields of quantum
physics. Notably, in the context of cavity Quantum Electro Dynamics (C-QED) they
provide an approximate yet accurate description of the dynamics of a 2-level atom in
a resonant microwave cavity, as in recent experiments of S. Haroche. We investigate
the controllability properties of these models, analyzing two different types of control
operators acting on the bosonic part, corresponding -in the application to cavity
QED- to an external electric and magnetic field, respectively. We review some
recent results and prove the approximate controllability of the Jaynes-Cummings
model with these controls. This result is based on a spectral analysis exploiting
the non-resonances of the spectrum. As far as the relation between the Rabi and
the Jaynes-Cummings Hamiltonians concerns, we treat the so called rotating wave
approximation in a rigorous framework. We formulate the problem as an adiabatic
limit in which the detuning frequency and the interaction strength parameter goes to
zero, known as the weak-coupling regime. We prove that, under certain hypothesis
on the ratio between the detuning and the coupling, the Jaynes-Cumming and the
Rabi dynamics exhibit the same behaviour, more precisely the evolution operators
they generate are close in norm.

In the framework of open quantum systems we investigate the controllability of
the Lindblad equation. We consider a control acting adiabatically on the internal
part of the system, which we see as a degree of freedom that can be used to contrast
the action of the environment. The adiabatic action of the control is chosen to
produce a robust transition. We prove, in the prototype case of a two-level system,
that the system approach a set of equilibrium points determined by the environment,
i.e. the parameters that specify the Lindblad operator. On that set the system can
be adiabatically steered choosing a suitable control. The analysis is based on the
application of geometrical singular perturbation methods.
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Titre: Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ou-
verts
Mots clés: Systèmes Quantiques Ouverts, équation de Lindblad, Méthods Adiaba-
tiques, Côntrole Géométrique.
Résumé: on étudie la contrôlabilité des systèmes quantiques dans deux contextes
différents: le cadre standard fermé, ou un système quantique est considéré comme
isolé et le problème de contrôle est formulé sur l’équation de Schrödinger ; le cadre
ouvert qui décrit un système quantique en interaction avec un plus grand, dont seuls
les paramètres qualitatifs sont connus, au moyen de l’équation de Lindblad sur les
états.

Dans le contexte des systèmes fermés on se focalise sur la classe intéressante des
systèmes spin-boson, qui décrivent l’interaction entre un système quantique à deux
niveaux et un nombre fini de modes distingués d’un champ bosonique. On considére
deux exemples prototypiques, le modèle de Rabi et le modèle de Jaynes-Cummings,
qui sont encore très populaires dans plusieurs domaines de la physique quantique.
Notamment, dans le context de la Cavity Quantum Electro Dynamics (C-QED),
ils fournissent une description précise de la dynamique d’un atome à deux niveaux
dans une cavité micro-onde en résonance, comme dans les expériences récentes de
S. Haroche. Nous étudions les propriétés de contrôlabilité de ces modèles avec deux
types différents d’opérateurs de contrôle agissant sur la partie bosonique, correspon-
dant respectivement – dans l’application à la C-QED – à un champ électrique et
magnétique externe. On passe en revue quelques résultats récents et prouvons la
contrôlabilité approximative du modèle de Jaynes-Cummings avec ces contrôles. Ce
résultat est basé sur une analyse spectrale exploitant les non-résonances du spectre.
En ce qui concerne la relation entre l’Hamiltonien de Rabi et Jaynes-Cummings
nous traitons dans un cadre rigoureux l’approximation appeleé d’onde tournante.
On formule le problème comme une limite adiabatique dans lequel la fréquence de
detuning et le paramètre de force d’interaction tombent à zero, ce cas est connu sous
le nom de régime de weak-coupling. On prouve que, sous certaines hypothèses sur le
rapport entre le detuning et le couplage, la dynamique de Jaynes-Cumming et Rabi
montrent le même comportement, plus précisément les opérateurs d’évolution qu’ils
génèrent sont proches à la norme.

Dans le cadre des systèmes quantiques ouverts nous étudions la contrôlabilité
de l’équation de Lindblad. Nous considérons un contrôle agissant adiabatiquement
sur la partie interne du système, que nous voyons comme un degré de liberté qui
peut être utilisé pour contraster l’action de l’environnement. L’action adiabatique
du contrôle est choisie pour produire une transition robuste. On prouve, dans le cas
prototype d’un système à deux niveaux, que le système approche un ensemble de
points d’équilibre déterminés par l’environnement, plus précisément les paramètres
qui spécifient l’opérateur de Lindblad. Sur cet ensemble, le système peut être pi-
loté adiabatiquement en choisissant un contrôle approprié. L’analyse est fondée sur
l’application de méthodes de perturbation géométrique singulière.
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Chapter 1

Introduction

Quantum mechanics deeply changed our understanding of physical phenomena at
atomic scales. The first quantum revolution introduced a theoretical, and mathe-
matically rich, framework that still produces interesting results and new insights in
a lot of physic’s fields.

Nowadays, with the advancement of research and new technologies, quantum
mechanics is revolutionizing (or is about to) our daily lives. As the effective capa-
bilities of manipulating matter and light at atomic scales is steadily growing, in a
lot of experimental contexts new technological tools allow to manipulate the state
of a quantum system during its evolution with great precision. Therefore, a large
number of possibilities are available for daylife applications.

This led to the analysis of quantum systems from a new point of view: the con-
trollability. In this regard, the interest is to develop techniques, both experimental
and theoretical, to efficiently drive the evolution of a quantum system. In the last
decade this approach produced a large number of practical applications, e.g. laser-
driven molecular reactions, pulse sequences design in nuclear magnetic resonance,
stabilization of optical systems, Josephson-junctions, ion traps, etc.

For the purpose of controllability quantum systems are usually considered closed.
This means that the description of a quantum system is given by a self-adjoint op-
erator on a Hilbert space and its evolution is governed by the Schrödinger equation.
Theoretically, numerous approaches were developed to control the Schrödinger dy-
namics. We remark in particular: abstract controllability criteria of geometric con-
trol theory, Lyapunov-based techniques, optimal control methods, spectral analysis
of resonances, adiabatic control techniques.

Newer perspectives of application for quantum systems are related to the theory
of information. The goal is to understand if it is possible to build a new generation of
computers based on quantum phenomena. To achieve this task we must possess the
ability of employing quantum systems to store, manipulate and retrieve information,
and this requires an unprecedented degree of control and stability. Therefore the
actual challenge in quantum control are open systems.

Open quantum systems allow to describe a wide variety of phenomena related to

7



8 CHAPTER 1. INTRODUCTION

stability. The environment in this approach can be seen as the ensemble of factors
that interacting with a system cause the loss of its unitary behaviour. Find strategies
to avoid this process is indispensable to ensure usability of quantum systems in
information theory.

In this thesis we make some contributions in the control of both closed and open
systems.

In Chapter 2 we review the basic geometric control theory and its application
to quantum control. A detailed explanation of the various controllability notions
for quantum system is presented, underlining the problems related to the infinite
dimension of spaces that are used in quantum mechanics.

In Chapter 5 and 6 we treat an interesting class of closed systems, namely the
spin-boson models. These type of systems are of great interest because they describe
the interaction between matter and light. In Chapter 5 our analysis is dedicated to
show the controllability of a fundamental spin-boson model, the Jaynes-Cummings
model. This result is based on a spectral analysis exploiting the non resonances of
the spectrum. In Chapter 6 we present a partial derivation of the Jaynes-Cummings
model from the Rabi model with adiabatic techniques. This is a preliminary result
that we count to improve. Although this might seem not related to control theory,
the approximation leading from the Rabi to the Jaynes-Cummings model, commonly
known as rotating wave approximation, is widely used in the control community for
a large number of models. The difficulty here is that we are in an infinite dimen-
sional context, where this type of approximations have not a rigorous mathematical
justification.

In Chapter 3 we review a formalism that describes the evolution of open quantum
systems, namely the Lindblad equation and the classification of quantum dynamical
semigroups. This is the framework that we will use in Chapter 4 to study the
possibility of adiabatically control finite dimensional open systems. In particular
we will treat the case of a two-level open system. Inspired by the adiabatic control
methods for closed systems, we will show that we can still recover some features of
these results but on a smaller subset of the state space.



Chapter 2

Controllability of dynamical
systems

This chapter wants to be a brief introduction to standard control theory for dynam-
ical systems, as well as a review of recent applications of control theory to quantum
systems, which are the objects of our study. For an extended exposition one can
consult the monographs [Jur],[D’Al], which will be our main references.

In particular in the first sections we will introduce basic concepts and recall some
classic results about controllability of generic nonlinear systems. A special attention
will be given to affine systems, which are often of great interest in the quantum
framework.

When we introduce quantum system we will be forced to consider state spaces
of infinite dimension. In this settings controllability concepts must be redefined,
mainly due the impossibility of having strong forms of control. We will define the
notion of approximate controllability and present a spectral criterion to determine
controllability.

The last part of the chapter will be devoted to adiabatic control methods for
quantum systems.

2.1 Standard geometric control theory

2.1.1 General framework

Consider the system

ẋ = F (x, u), x ∈ Rn, u ∈ U ⊂ Rm (2.1)

where F is assumed to be a smooth function of its arguments. The variable u is
called control and its domain U is called control set. The family of vector fields
generated by F is

F = {F (·, u) | u ∈ U}. (2.2)

9



10 CHAPTER 2. CONTROLLABILITY OF DYNAMICAL SYSTEMS

Here and thereafter we assumed that every element X of F is a complete vector
field, i. e. X generates a one-parameter family of diffeomorphism {exp tX | t ∈ R}.
Remark 2.1. In this discussion we consider systems on Rn. However, one can
assume to deal with a generic smooth manifold M and a smooth field F : M ×U →
TM . All statements of theorems that we will illustrate can be reformulated in this
more general framework. y

A continuous curve x : [0, T ] → Rn is called an integral curve of F if there
exist a partition 0 = t0 < t1 < · · · < tm = T and a vector fields X1, ..., Xm in F
such that u(t) = ui, x(t) is differentiable and d x

dt (t) = Xi(x(t)) = F (x(t), ui) for all
t ∈ [ti−1, ti], for each i = 1, ...,m. Hence x(t) is the solution of (2.1) where F (x, u(t))
is a time-varying vector field given by the piecewise-constant control function u(t).

A basic question in control problems is the following: given a finite time T > 0, an
initial state x0 ∈ Rn and final state xf ∈ Rn find a control function u : [0, T ]→ Rm
such that x(t;u(·)) the solution of (2.1) with input control u(t) satisfies x(0;u(·)) =
x0 and x(T ;u(·)) = xf .

Definition 2.2.

(i) For each T > 0 and each x0 ∈ Rn, the set of points reachable from x0 at
time T , denoted by A(x0, T ), is equal to the set of the terminal points x(T )
of integral curves of F that originates at x0.

(ii) The union
A(x0,≤ T ) = ∪t∈[0,T ]A(x0, t) (2.3)

is called set reachable from x0 in time T .

(iii) The union
A(x0) = ∪t∈[0,∞)A(x0, t) (2.4)

is called set reachable from x0.

There is no particular a priori reason to restrict the class of control function to
piecewise-constant functions. However, such a class is rich enough to characterize
controllability properties of system (2.1) through the vector field family F . Consider
the group of diffeomorphism

G(F) := {Φ = etkXxetk−1Xk−1 · · · et1X1 | k ∈ N, t1, ..., tk ∈ R, X1, ..., Xk ∈ F}.
(2.5)

The action of G on Rn partitions it into orbits. For each x0 ∈ Rn the sets of
reachable point of Def.2.2 are obtained by the action of a particular subgroup or
subset of G(F) on x0:

A(x0) = G+(F).x0 = {etkXx · · · et1X1x0 | k ∈ N, t1, ..., tk ≥ 0, X1, ..., Xk ∈ F};

A(x0, T ) = GT (F).x0 = {etkXx · · · et1X1x0 | k ∈ N, t1, ..., tk ≥ 0,

k∑
1

ti = T, X1, ..., Xk ∈ F};
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while we will refer to G(F).x0 as the orbit of x0. Whenever we want to emphasize
the dependence of A(x0,≤ T ),A(x0),A(x0, T ) from F we will denote them adding
the pedix ·F , respectively with AF (x0,≤ T ),AF (x0),AF (x0, T ).

Given this basic formulation, one can define the notions of controllability as
follow:

Definition 2.3.

(i) The system (2.1) is said to be small time locally controllable at x0 if x0

belongs to the interior of A(x0,≤ T ) for every T > 0.

(ii) The system (2.1) is said to be completely controllable if A(x0) = Rn for
every x0 ∈ Rn.

(iii) The system (2.1) is said to be strongly controllable if A(x0,≤ T ) = Rn for
every x0 ∈ Rn and T > 0.

We shall proceed to analyse these different types of controllability in order of
strength.

The small times local controllability (STLC) is at first sight a condition on the
dimension of sets A(x0,≤ T ) as subsets of Rn but, if analysed in detail, gives a lot of
information about local properties of the trajectories realizable by means of controls.
Roughly speaking STLC at a point x0 guarantees the possibility of steering the
system in any direction starting from x0, with a velocity that generally depends on
the direction as well as the initial point x0. We will not discuss sufficient or necessary
conditions for STLC but we will treat a weaker condition that is accessibility. For
an extended discussion one can consult [Sus] and reference therein.

2.1.2 Orbits and accessibility

The first step to obtain sufficient conditions that guarantee controllability of system
(2.1) is to study topological properties of its orbits. In particular, our main goal
is to show that local orbit structure is determined by local properties of the family
F . The results in this section descend from the so called orbit theorem and the
Frobenius theorem, however a complete explanation of those topics is beyond the
scope of our discussion and we refer to [Jur, Chap. 2] for a detailed exposition.

The crucial object in the study of the controllability of (2.1) is the Lie algebra
generated by its family of vector fields F .

Denote by F∞(Rn) the space of smooth vector fields on Rn. F∞(Rn) is obviously
a vector space on R under the pointwise addiction of vectors. For any smooth vector
fields X,Y on Rn, their Lie bracket is defined by

[X,Y ](x) = DY (x)X(x)−DX(x)Y (x) (2.6)
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where DX(x) = [(∂ Xi/∂xj)(x)]ni,j=1. Notice that [·, ·] is linear in each variable,
antisymmetric i. e. [X,Y ] = −[Y,X], and satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The vector space F∞(Rn) is an algebra with the product given by the bracket (2.6).
Moreover since the bracket is bilinear, antisymmetric and satisfies the Jacobi identity
is a Lie algebra.

Definition 2.4. For any family of vector fields F ⊂ F∞(Rn) we denote Lie(F) the
Lie algebra generated by F , the smallest vector subspace S of F∞(Rn) that also
satisfies [X,S] ⊂ S for any X ∈ F .

Remark 2.5. Lie(F) introduced in the latter definition could be shown to be equiv-
alent to

Lie(F) = span
{

[X1, [X2, [..., [Xk−2, [Xk−1, Xk]]...]]]
∣∣∣ k ∈ N, X1, ..., Xk ∈ F

}
.

y

As vector space Liex(F) := {X(x) | X ∈ Lie(F)}, where x ∈ Rn, has a dimen-
sion.

Definition 2.6. We say that the family F is bracket-generating at point x if
the dimension of Liex(F) is equal to n. We say that the family F is bracket-
generating if this condition is verified for every x ∈ Rn.

The following results state that dimLiex(F) determines the dimension of orbits
of (2.1) as submanifolds of Rn.

Theorem 2.7 ( [Jur, Thm.2.3] ). Suppose that F is bracket-generating at point x ∈
Rn. Then the orbit G(F).x is open in Rn. In addition if F is bracket-generating,
then there exists only one orbit of F equal to Rn.

Theorem 2.8 (the orbit theorem, [Jur, Corollary of Thm.2.5] ). Let F be a
family of smooth vector fields such that the dimension of each vector space Liex(F)
is constant as x varies in Rn. Then for each x ∈ Rn, the tangent space at x of orbit
G(F).x coincide with Liex(F). Consequently, each orbit of F is a k-dimensional
submanifold of Rn.

Remark 2.9. Previous theorems hold for families of smooth vector fields on a
general smooth manifold M . Extensions also hold if the manifold and the vector
families are analytic and for Lie groups (see [Jur, Sect.2.3]). y

Theorems 2.7,2.8 imply that to have the controllability of F , the condition to be
bracket-generating is necessary under the assumption that Liex(F) is constant as x
varies in Rn. However this is not enough, as we will see from topological properties
of reachable sets. We will denote cl(·) and int(·) the topological closure and interior
of a set.
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Theorem 2.10. Suppose that F is a smooth family of vector fields on Rn and F is
bracket-generating at x ∈ Rn. Then for each T > 0 and ε > 0,

(a) A(x,≤ T ) contains non-empty open sets of Rn,

(b) A(x,≤ T ) ⊂ cl(intA(x,≤ T )),

(c) int(clA(x,≤ T )) ⊂ intA(x,≤ T + ε),

(d) int(clA(x)) = intA(x).

Property (a) in Theorem 2.10 is called accessibility. It means that the trajec-
tories starting from a point can reach (in an arbitrarily small time) a set having
non-empty interior. While accessibility guarantees the existence of open reachable
sets from any x initial point, it does not say anything on x belonging to it.

The previous result is crucial for a characterization of orbits that derives from it.
Notice that we can regard a reachable set of type AF (x) or AF (x,≤ T ), as a set with
a topology inherited from Rn (the entire space), or inherited by the submanifold of
the orbit G(F).x, at least under hypothesis of Theorem 2.8. This motivates next
definition.

Definition 2.11. A smooth family of vector fields F is Lie-determined if the
tangent space of each point x in an orbit of F coincides with Liex(F).

Obviously, bracket-generating systems are Lie-determined and, by Theorem 2.8,
every system F such that Liex(F) has constant dimension for every x ∈ Rn is
Lie-determined.

Corollary 2.12. For Lie-determined systems, the reachable sets AF (x) cannot be
dense in an orbit of F without being equal to the entire orbit.

For such systems, each reachable set A(x,≤ T ) has a non-void interior in the
topology of the orbit manifold, and the set of interior points grows regularly with
T. This is equivalent to saying that the system is accessible in each of its orbits.

Thus, the essential property of a Lie-determined system is the one we claimed at
the beginning of the section, its orbit structure is determined by the local properties
of the elements of F and their Lie derivatives.

Moreover, this suggest that different families of vector fields could generate the
same orbits if they differ by ’inessential’ directions. More precisely, the closure of
reachable sets could be taken as invariant to classify families of vector fields that
generate the same orbits.

2.1.3 Compatible vector fields and completions

Definition 2.13. A vector field Y is said to be compatible with the family F
if defining F ′ = F ∪ {Y } we have the following. For every x0, the reachable set
AF ′(x0) ⊂ clAF (x0).
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Clearly this defines an equivalence relation between family of vector fields: F ,F ′
are equivalent if

AF∪F ′(x0) ⊂ clAF (x0), AF∪F ′(x0) ⊂ clAF ′(x0),

for all x0 ∈ Rn. A simple reformulation of Corollary 2.12 states that compatible
fields does not change the orbits of systems.

Proposition 2.14. If F is a bracket-generating family of vector fields, Y is com-
patible with F and F ∪ {Y } is controllable, then F is controllable as well.

Therefore, it is interesting to understand under which operation on a family F ,
the closure of reachable sets remains invariant. Natural candidates are topological
operation on F as subset of the vector space F∞(Rn). Denote as cl(F) the topo-
logical closure of the set F in F∞(Rn). Define also co(F), the convex hull of F , as
the set

co(F) := {
m∑
i=1

λiXi | m ∈ N, λ1, ..., λm ≥ 0,
∑

λi = 1, X1, ..., Xn ∈ F}. (2.7)

Notice that the zero vector field is always compatible with any family F . Hence one
can consider also co(F ∪ {0}), the positive convex ’semi-cone’ through co(F) and
the positive convex cone

cone(F) := {
m∑
i=1

λiXi | m ∈ N, λ1, ..., λm ≥ 0, X1, ..., Xn ∈ F}. (2.8)

Theorem 2.15. Let F be a family of smooth vector fields on Rn. For any x ∈ Rn
and T > 0

(a) Acl(F)(x, T ) ⊂ cl(AF (x, T )),

(b) cl(AF (x, T )) ⊂ cl(Aco(F)(x, T )),

(c) Aco(F∪{0})(x,≤ T ) ⊂ cl(AF (x,≤ T )),

(d) Acone(F)(x) ⊂ cl(AF (x)).

Given the equivalence relation defined in Definition 2.13 and the completion
operations of the latter theorem, each family of smooth vector field F has a largest
extension which is represented by the maximal element of its equivalent class.

Definition 2.16. Let F be a Lie-determined family of vector fields.

(i) The strong Lie saturate of F , denoted LSs(F), is the largest subset F̂ of
Lie(F) such that

cl(AF̂ (x,≤ T )) = cl(AF (x,≤ T ))

for each x ∈ Rn and T > 0.
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(ii) The Lie saturate of F , denoted LS(F), is the largest subset F̂ of Lie(F)
such that

cl(AF̂ (x)) = cl(AF (x))

for each x ∈ Rn.

For such a families it is possible to state an abstract criterion of controllability

Theorem 2.17 ( [Jur, Thm.2.12] ). Suppose that F is a Lie-determined family of
vectors fields. Then F is strongly controllable if and only if LSs(F) = Lie(F) and
Lie(F) is bracket-generating. F is controllable if and only if LS(F) = Lie(F) and
Lie(F) is bracket-generating.

As elegant as the latter criterion is, its applicability is nevertheless restricted to
situations in which there are further symmetries that allow for explicit calculations
of the Lie saturate. For that reason we will illustrate an application of this theorem
in the next subsection, where our objects will be affine systems.

A notable case in which symmetries of the systems implies controllability is
pointed out in the following theorem.

Theorem 2.18 (Chow). Suppose that F is bracket-generating and for each X ∈ F
then −X ∈ F . Then A(x0) = Rn for every x0 ∈ Rn.

2.1.4 Affine systems

An affine system is a differential system on Rn of the form

ẋ = f0(x) +
m∑
i=1

uifi(x), x ∈ Rn, u = (u1, ..., um) ∈ U ⊂ Rm (2.9)

with f0, ..., fm smooth vector fields on Rn, and functions u1, ..., um that are the
controls. The vector field f0 is called the drift, and the remaining vector fields
f1, ..., fm are called controlled vector fields. A control affine system (2.9) defines the
family of vector fields

F(U) = {f0 +
m∑
i=1

uifi | u = (u1, ..., um) ∈ U}. (2.10)

It will be convenient to consider only the constraint subsets U of Rm that contain m
linearly independent points of Rm, in that case the Lie algebra generated by F(U)
is independent of U and is generated by the vector fields f0, ..., fm, i. e.

Lie(F(U)) = Lie{f0, ..., fm}.

Classification of control affine systems is based on properties of the drift.

Definition 2.19. A control affine system is called driftless if f0 = 0.
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Driftless systems are immediately treated with the theory developed in the pre-
vious section.

Theorem 2.20. Assume that the system (2.9) is driftless and bracket-generating,
i. e. dimLiex{f1, ..., fm} = n for all x ∈ Rn. Then,

(a) whenever there are no restrictions on the size of controls the corresponding
control affine system is strongly controllable,

(b) in the presence of constraints U ⊂ Rm, (2.9) remains controllable (but not
necessarily strongly controllable) if int(co(U)) ⊂ Rm contains the origin.

Close to driftless systems are those systems in which the drift generates a dy-
namics that have almost closed orbits.

Definition 2.21. A complete vector field f on Rn is said to be recurrent if for
every point x0 ∈ Rn, every neighborhood V of x0 and every time t > 0 there exists
t∗ > t such that et

∗f (x0) ∈ V .

Notice that every field f that generates periodic trajectories is recurrent. The
following lemma is the key to investigate controllability of affine systems with re-
current drift.

Lemma 2.22. If f is recurrent and compatible with F , then −f is also compatible
with F .

This leads to the following

Theorem 2.23. Assume that the system (2.9) has recurrent drift, is bracket-generating
and int(co(U)) contains the origin of Rm. Then the system is controllable.

When the drift has no particular properties, it is in general an obstacle to con-
trollability. In that case the control field should be strong enough to contrast the
effect of the drift and steer the system in every direction.

Theorem 2.24. Assume that the system (2.9) has unbounded controls, i. e. U = Rm.
If G = {f1, ..., fm} is bracket-generating then the system is controllable.

2.2 Controllability of quantum systems

Let H be an Hilbert space. A quantum system on H is given by a self-adjoint
operator H0 which governs its dynamics, namely the evolution of the wavefunctions
ψ ∈ H, by means of the Schrödinger equation

i~
d

dt
ψ = H0ψ, ψ ∈ H. (2.11)

Let H1, ...,Hm be linear operators on H, we will call them control operators, and
u1, ..., um piecewise-constant control functions with the constraint u = (u1, ..., um) ∈



2.2. CONTROLLABILITY OF QUANTUM SYSTEMS 17

U ⊂ Rm. A bilinear Schrödinger equation (sometimes called bilinear systems) is an
affine control system of the form (2.9) that reads

i~
d

dt
ψ = H(u)ψ =

(
H0 +

m∑
k=1

ukHk

)
ψ, ψ ∈ H, u ∈ U (2.12)

Remark 2.25. For the moment we will not assume anything on operatorsH1, ...,Hm

but we recall that the operator H0+
∑
ukHk must be a self-adjoint operator to repre-

sent the Hamiltonian of a quantum system. To ensure this, different assumptions are
needed depending whether the dimension of H is finite or infinite. In the following
discussion we will clarify these hypothesis. y

2.2.1 Finite dimensional quantum systems

Suppose that dimCH = N <∞, then H0, ...,Hm belongs to the set of linear bounded
operators on H, denoted B(H). Assume moreover that H0, ...,Hm are Hermitian

operators, i. e. H†k = Hk, k = 0, ...,m, hence every real linear combination of them
is Hermitian. Therefore, for every u1, ..., um piecewise-constant control functions
(assume them right-continuous) the solution of (2.12) with initial datum ψ0 reads

Uu(t)ψ0

with

Uu(t) := e−i(t−
∑j
i=1 ti)(H0+

∑
uk(tj)Hk)/~ e−itj(H0+

∑
uk(tj−1)Hk)/~ · · · e−it1(H0+

∑
uk(0)Hk)/~

(2.13)
where t ∈ [tj , tj+1] and the sequence of times 0 = t0 < t1 < · · · < tn < · · · is taken
such that uk(t) is constant on [tj , tj+1] for all k = 1, ...,m and n ∈ N.

Identifying the Hilbert space H with R2N , the whole theory on controlled affine
systems developed in the previous section can be applied in this case. However
this approach is deceitful from a physical viewpoint. In fact, a (pure) state of a
quantum system H is an equivalent class in the complex projective space on H (see
Sect.3.3). So, if two vectors ψ1, ψ2 ∈ H differ by a non zero complex number, namely
ψ1 = zψ2, z ∈ C∗, they represent the same state. Moreover, being −iH0− i

∑
ukHk

skew-adjoint, the propagator Uu(t) defined in (2.13) is a unitary operator (see Stone
theorem [RS1]), hence the norm of vectors ψ ∈ H is preserved during the evolution.

For those reasons it is useful to state a notion of controllability specific for quan-
tum systems

Definition 2.26. (Equivalent State Controllability)
The quantum system (2.12) is equivalent state controllable if for every pair
ψ0, ψ1 ∈ H with ‖ψ0‖ = ‖ψ1‖ = 1, there exists T > 0 and piecewise-constant
functions uk : [0, T ]→ Rm k = 1, ...,m such that the solution ψ(t) of (2.12) satisfies
ψ(0) = ψ0 and ψ(T ) = eiθψ1 for some θ ∈ [0, 2π).
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Nevertheless, we can exploit in a useful way the control theory of affine systems
considering system (2.12) at the propagator level, i. e. as an equation for Uu(t).

Set Ak = −iHk/~, k = 0, ...,m, then matrices Ak are skew-Hermitian, i. e. A†k =
−Ak. The set of skew-Hermitian N ×N matrices, denoted u(N), is a Lie algebra of
dimension N2 with respect to the usual bracket [A,B] = AB − BA. The subset of
skew-Hermitian N ×N matrices with zero trace, denoted su(n), is a Lie subalgebra
of u(n) of dimension n2 − 1. With those notations the equation for U reads

d

dt
U =

(
A0 +

m∑
k=1

uk(t)Ak

)
U, (2.14)

U(0) = 1.

This system is an affine control system on the Lie group of unitary matrix N ×N ,
denoted U(N), or if trAk = 0 for all k = 0, ...,m, then U has determinant 1 and
belong to the Lie subgroup SU(N).

Definition 2.27. (Operator controllability)
The quantum system (2.12) is operator controllable if AG(1) = U(N) where G =
{A0, A1, ..., Am}. In case trAk = 0 for every k = 0, ...,m is operator controllable
if AG(1) = SU(N).

Criteria of controllability for affine systems on compact Lie groups are in some
sense analogs to the ones we stated for Rn. In particular, the hypothesis of be-
ing bracket-generating must be reformulated accordingly to the characterization of
tangent space of a Lie group, for a complete treatment see [D’Al]. However, the
controllability of the system (2.14) still relies on the fact that G must generate the
whole tangent space.

Theorem 2.28 ( Lie algebra rank condition ). The system (2.12) is operator con-
trollable if and only if Lie{A0, ..., Am} is equal to u(n) or, respectively, su(n) in case
that trAk = 0 for every k = 0, ...,m.

Remark 2.29. In the special case of system (2.14) the bracket-generating condition
is also known as the Lie algebra rank condition, the theorem rephrase this condition
for affine systems on U(N) or SU(N). The crucial point in the proof of the latter
theorem is that there exists a one-to-one correspondence between Lie subalgebras of
u(n) and connected Lie subgroups of U(n). The theorem is based on the fact that
AG(1) is the Lie group corresponding to the subalgebra Lie{A0, ..., Am}. y

Remark 2.30. The notion of operator controllabilty is obviously stronger than
the notion of equivalent state controllability. Results on compact and effective Lie
groups acting transitively on SN−1

C , the unit sphere of CN and also the projective
complex space, allow to characterize the equivalent state controllability in terms of
Lie(G) [AD’A]. y

We conclude this section with an explicit example.
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Example 2.31. Consider the Lie algebra su(2) with basis {iσ1, iσ2, iσ3} where

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(2.15)

are the Pauli matrices. A natural choice for the (uncontrolled) Hamiltonian of a
two-level quantum system is

H0 =
ωeg
2
σ3. (2.16)

Consider the control operator H1 = σ1, then (2.12) reads

i~
d

dt
ψ =

(
ωeg
2
σ3 +

u(t)

2
σ1

)
ψ

where ψ ∈ C2. If ωeg 6= 0 one immediately obtains

[iσ3, iσ1] = −2iσ2

then Lie(iσ3, iσ1) = su(2) and by Theorem 2.28 the system is controllable. y

2.2.2 Infinite dimensional quantum systems

We now introduce the controllability problem for an affine system in a general infinite
dimensional setting. Let H be a separable Hilbert space endowed with an Hermitian
product 〈· , ·〉, let ΦI be an Hilbert basis for H and consider the equation

d

dt
ψ = (A+ uB)ψ, ψ ∈ H (2.17)

where A,B are skew-adjoint linear operator on H with domain D(A) and D(B)
respectively, u is a time depending function with values in U ⊂ R.

Assumption 2.32. The system (A,B,U,ΦI) is such that:

(A1) ΦI = {φk}k∈I is a Hilbert basis of eigenvectors for A associated to the eigen-
values {iλk}k∈I ;

(A2) φk ∈ D(B) for every k ∈ I;

(A3) A+ wB : Spank∈I{φk} → H is essentially skew-adjoint1 for every w ∈ U ;

(A4) if j 6= k and λj = λk, then 〈φj , Bφk〉 = 0.

1A skew-symmetric operator X on D(X) is essentially skew-adjoint if iX admits a unique self-
adjoint extension [RS2, Chap.X]
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Under these assumptions A + wB generates a unitary group t 7→ e(A+wB)t for
every constant w ∈ U . Hence we can define for every piecewise constant function
u(t) =

∑
i=1

uiχ[ti−1,ti](t) with 0 = t0 < t1 < ... < tn < .., the propagator

Υu(t) := e(t−tj)(A+uj+1B) ◦ e(tj−tj−1)(A+ujB) ◦ · · · ◦ et1(A+u1B) for tj < t ≤ tj+1.
(2.18)

The solution of (2.17) with initial datum ψ(0) = ψ0 ∈ H is ψ(t) = Υu(t)(ψ0).

Although in this framework it is possible to define a notion of operator controlla-
bility, since we already saw that the progator of the dynamics is well defined under
Assumption 2.32, this type of controllability is in general too strong for bilinear
infinite dimensional systems. This issue about the infinite dimension case is well
known and studied in a more general context in a series of paper of Ball, Marsden e
Slemrod [BMS]. Applications of this result to quantum system was given in [Tur],
and reviewed in [ILT],[BCS].

Proposition 2.33 ([Tur, Theorem 1] ). Let (A,B,U,ΦI) satisfy Assumption 2.32
and let B bounded. Then for every r > 1 and for all ψ0 ∈ D(A), the set of reachable
states from ψ0 with control functions in Lr, {Υu(t)ψ0 |u ∈ Lr(R,R)} is a countable
union of closes sets with empty interior in D(A). In particular this attainable set
has empty interior in D(A).

Remark 2.34. The proposition implies that, under its hypothesis, the set of at-
tainable states can’t be the whole domain D(A), therefore we can’t have equivalent
state controllability or operator controllability for the system (A,B,U,ΦI). This
does not mean that we can’t recover strong forms of controllability under different
hypothesis but clearly a general equivalent state controllability criteria for systems
of type (A,B,U,ΦI) cannot exist under Assumption 2.32. y

Example 2.35. A notable non-controllable quantum system is the harmonic oscil-
lator. In [MiRo], Mirrahimi e Rouchon proved the non-controllability of system

i~
d

dt
ψ =

1

2
(P 2 +X2)ψ − u(t)Xψ, ψ ∈ L2(R) (2.19)

where the position operator X : D(X) ⊂ L2(R)→ L2(R) is defined

(Xψ)(x) := xψ(x) (2.20)

on the domain

D(X) =

{
ψ ∈ H |

∫
R
‖xψ(x)‖2 dx <∞

}
, (2.21)

and the pulse operator P : D(P ) ⊂ L2(R)→ L2(R) is the derivative

(Pψ)(x) := −i ∂
∂x
ψ(x) (2.22)
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with domain D(P ) = H1(R). The main idea is the following. System (2.19) can be
decomposed in two parts, one of dimension two which is controllable, and the other
infinite dimensional and uncontrollable. From Ehrenfest theorem (see [Mor, 12.2.2])
we obtain equations for average position and pulse

〈X〉t := 〈ψ(t) , Xψ(t)〉 , 〈P 〉t := 〈ψ(t) , Pψ(t)〉 ,

where ψ(t) is the solution to (2.19). The equations are

d

dt
〈X〉t = 〈P 〉t

d

dt
〈P 〉t = −〈X〉t + u (2.23)

and this bidimensional system is controllable.

Performing the change of coordinates ψ(t, x) = ei〈P 〉zφ(t, z) with (t, x) 7→ (t, z =
x− 〈X〉t), the Schrödinger equation becomes

i~
d

dt
φ =

1

2
(P̃ 2 + Z2)φ+

1

2
(〈X〉2 − 〈P 〉2 − 2u 〈X〉)φ

where Z is the multiplication operator by z and P̃ = ∂/∂z. Applying another
unitary transformation

φ(t, z) = e
−i

t∫
0

(〈X〉2−〈P 〉2−2u〈X〉)
ϕ(t, z)

one obtains

i~
d

dt
ϕ =

1

2
(P̃ 2 + Z2)ϕ. (2.24)

From equation (2.24) together with (2.23) one sees that (2.19) decomposes in two
independent parts. One part is controllable while the other one is not because it does
not depend on the control function u. Therefore the quantum harmonic oscillator
is non-controllable. y

As explained before, we need to introduce a weaker notion of controllability for
infinite dimensional quantum systems. The natural way to proceed is to ask that
reachable sets must be dense subsets of the state space.

Definition 2.36. Let (A,B,U,ΦI) satisfy Assumption 2.32. We say that (2.17) is
approximately controllable if for every ψ0, ψ1 ∈ H with ‖ψ0‖ = ‖ψ1‖ = 1 and
for every ε > 0 there exist a finite Tε > 0 and a piecewise constant control function
u : [0, Tε]→ U such that

‖ψ1 −Υu(Tε)(ψ0)‖ < ε.

Remark 2.37. The definition says that to have approximate controllability the set
of attainable state from ψ0, namelyA(ψ0) = {Υu(t)ψ0 | u piecewice-const. function}
must be dense in the unit sphere of H for every ψ0 ∈ H. y
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The notion of approximate controllability is clearly weaker that the exact con-
trollability but one may search conditions under which the two coincides. We recall
that an analogous result holds on orbits of Lie-determined systems (see Corollary
2.12), where reachable sets cannot be dense in an orbit without being equal to the
entire orbit. For finite dimensional systems the two notions coincides.

Theorem 2.38 ([BGRS, Theorem 17] ). Suppose dimH = N < ∞. System (2.12)
is approximately controllable if and only if is exactly controllable.

Notable works on approximately controllable quantum systems concern spin-
boson systems. In particular we mention the paper of Puel [ErPu], inspired to the
work of Eberly and Law [EbLa].

An alternative to the introduction of a weak notion of controllability as in Defini-
tion (2.36) is to investigate controllability of infinite dimensional systems on smaller
functional spaces. More precisely, consider a system (A,B,U,ΦI) satisfying As-
sumption 2.32. The idea is to choose a functional space S contained in D(A) such
that B is unbounded on S and prove exact controllability on this space. That
method is carried out in [Be],[BeC],[BeL].

2.2.3 A spectral condition for controllability

In this section we present a criterion for approximate controllability which will be
useful later in this thesis. This general result gives a sufficient condition for ap-
proximate controllability based on the spectrum of A and the action of the control
operator B. More precisely, if σ(A) has a sufficiently large number of non-resonant
transitions, i. e. pairs of levels (i, j) such that their energy difference |λi − λj | is not
replicated by any other pair, and B is able to activate these transitions, then the
system is approximately controllable.

This idea is made precise in the following definition

Definition 2.39. Let (A,B,U,ΦI) satisfy Assumption 2.32. A subset S of I2 con-
nects a pair (j, k) ∈ I2, if there exists a finite sequence s0, ..., sp such that

(i) s0 = j and sp = k;

(ii) (si, si+1) ∈ S for every 0 ≤ i ≤ p− 1;

(iii)
〈
φsi , Bφsi+1

〉
6= 0 for every 0 ≤ i ≤ p− 1.

S is called a chain of connectedness for (A,B,U,ΦI) if it connects every pair in
I2.
A chain of connectedness is called non-resonant if for every (s1, s2) ∈ S it
holds

|λs1 − λs2 | 6= |λt1 − λt2 |

for every (t1, t2) ∈ I2 \ {(s1, s2), (s2, s1)} such that 〈φt1 , Bφt2〉 6= 0
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Intuitively, if two levels of the spectrum are non-resonant and the control oper-
ator B couples them, one can tune the control function u in such a way to arrange
arbitrarily the wavefunction’s components on these levels, without modifying any
other component. Therefore, having a non-resonant connectedness chain allow us
to reach the target state by sequentially modifying the wavefunction. This idea is
crucial to the proof of the following criterion by Boscain et al.

Theorem 2.40. [BCCS, Theorem 2.6] Let c > 0 and let (A,B, [0, c],ΦI) sat-
isfy Assumption 2.32. If there exists a non-resonant chain of connectedness for
(A,B, [0, c],ΦI) then the system (2.17) is approximately controllable.

Theorem 2.40 gives also an estimate on the norm of control functions.

Proposition 2.41. [BCCS, Proposition 2.8] Let c > 0. Let (A,B, [0, c],ΦI) satisfy
Assumption 2.32 and S be a non-resonant chain of connectedness. Then for every
ε > 0 and (j, k) ∈ S there exists a piecewice-constant control function u : [0, Tu] 7→
[0, δ] and θ ∈ R such that

∥∥Υu(Tu)φj − eiθφk
∥∥ < ε and

‖u‖L1 ≤
5π

4 ‖〈φk , Bφj〉‖
.

2.2.4 Adiabatic control of quantum systems

Our previous analysis of controllability of quantum systems is entirely non con-
structive, in the sense that we studied criteria to determine abstractly the control-
lability of the system without producing control functions. In this section we will
present a constructive method that relies on adiabatic theory. Consider the general
Schrödinger equation

i~
d

dt
ψ = H(u(t))ψ, ψ ∈ H, (2.25)

where u : [0, T ]→ U ⊂ Rm. The starting point is a spectral analysis of the operator
family H(u).

Assumption 2.42. Assume that {H(u) | u ∈ U} is a family of compact resolvent
operators and that eigenfunctions and eigenvalues of the family are analytic functions
of the variable u.

Assumption 2.42 holds for a wide range of quantum systems, e. g. bilinear sys-
tems (2.12) on a finite dimensional Hilbert space, bilinear system on L2(Rn) with
H0 = −∆ and Hi = Vi with Vi ∈ L2 + L∞ or any system (A,B,U,ΦI) satisfying
Assumption 2.32.

For the sake of clarity we will consider from here throughout the section a bilinear
system (2.12) on H with two controls

i~
d

dt
ψ = H(u(t))ψ = (H0 + u1(t)H1 + u2(t)H2)ψ (2.26)
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where u = (u1, u2) ∈ U ⊂ R2 and U is assumed connected. However, what we
explain can be generalized to the case U ⊂ Rm m ≥ 2.

Assumption 2.43. Suppose that Σ(u) = {λ1(u), ..., λn(u)} with λ1(u) ≤ λ2(u) ≤
... ≤ λn(u) is a portion of the spectrum of H(u) isolated from the rest, i. e. there
exists C > 0 such that

inf
u∈U

inf
λ∈σ(H(u)\Σ(u))

dist(λ,Σ(u)) > C. (2.27)

Moreover, suppose that λi are non degenerate and Φ(u) = {φ1(u), ..., φn(u)} are the
corrisponding eigenvectors.

Definition 2.44. We will call ū ∈ U a conical intersection between the eigenval-
ues λj and λj+1 if λj(ū) = λj+1(ū) has multiplicity two and there exists c > 0 such
that

λj(ū+ tv)− λj+1(ū+ tv) > ct

We will say that Σ(u) is conically connected if for every j = 1, ..., n − 1 there
exists ūj conical intersection between λj and λj+1.

Remark 2.45. Under Assumption 2.42 the intersections between the eigenvalues
of H(u) are generically conical if m = 2, 3 [BGRS]. y

In this framework the adiabatic theorem gives a lot of qualitative informations
about the dynamics of the system:

a) Suppose that u = (u1, u2) : [0, 1] → U is a path such that λj(u(t)) is simple
for every t ∈ [0, 1]. For every ε > 0 let us consider the reparametrization
uε = (uε1, u

ε
2) : [0, 1/ε] → U defined as (uε1(t), uε2(t)) := (u1(εt), u2(εt)). Then,

the solution ψε of the equation

i~
d

dt
ψ = H(uε(t))ψ = (H0 + uε1(t)H1 + uε2(t)H2)ψ (2.28)

with initial state ψε(0) = φj(u(0)) satisfies∥∥∥ψε(1/ε)− eiθφj(u(1/ε))
∥∥∥ < Cjε.

So, if the control u is slowly varying, the system follows the eigenvector φj(u) of
eigenvalue λj(u) with an error of order ε. This is a classical result in quantum
mechanics that goes back to Kato [Ka][Teu]. The constant Cj depends on the
distance between λj and the closest of the remaining eigenvalues.

b) Now suppose to design a path u = (u1, u2) : [0, 1]→ U passing once through a
conical intersection ūj = u(t∗). The qualitative behavior of the system under-
going this dynamics is the following: starting from the eigenspace of eigenvalue
λj and treading adiabatically the path, the system follows the eigenstate φj(u)
until time t∗. During the passage through the conical intersection there is a
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non zero probability that the system jumps in the eigenspace of eiganvalue
λj+1, i. e. a population transfer between two energy level of the system is re-
alized. So, conical intersections could be used as ”stairs” to move population
between energy level of the spectrum. In particular the population transferred
on the higher level depends on the angle between the ingoing and outgoing
velocity vector of the path in the point of conical intersection [BCMS].

α

Passing through the intersection with zero angle cause a complete transfer of
population at the higher level, i. e. if u ∈ C1 for every ε > 0 the solution ψε of
the equation (2.28) with initial state ψε(0) = φj(u(0)) satisfies∥∥∥ψε(1/ε)− eiθφj+1(u(1/ε))

∥∥∥ < Cj
√
ε.

Choosing special paths we can improve the latter estimate obtaining an error
estimate of higher order, Cjε.

Combining together these different behaviours we are able to steer the state of a
conically connected closed quantum system from an eigenstate of eigenvalue λ0 to
an eigenstate of eigenvalue λn with an error of order ε. More generally, we are able to
steer the dynamics from an eigenstate of eigenvalue λj to an arbitrary superposition
of eigenstates. The main theorem is the following.

Theorem 2.46 ([BCMS]). Let Σ(u) = {λ1(u), ..., λn(u)} be an isolated portion of
the spectrum of H(u). For every j = 1, ..., n− 1 let uj ∈ U be a conical intersection
between λj and λj+1 and assume λj(u) simple for u 6= ūj−1, ūj. Given u0, u1 ∈ U
such that Σ(u0),Σ(u1) are non degenerates, ψ0 ∈ Φ(u0) and ψ1 =

∑n piφj(u1)
with ‖ψ1‖ = 1, then there exist C > 0 and a continuous path γ : [0, 1] → U with
γ(0) = u0, γ(1) = u1 such that for every ε > 0∥∥∥∥∥ψε(1/ε)−

n∑
pje

iθjφj(u1)

∥∥∥∥∥ < Cε

where ψε is the solution of (2.28) with uε(t) = γ(εt) and initial state ψε(0) = ψ0.

The latter results implies exact controllability in case of a finite dimensional
Hilbert space and approximate controllability otherwise (see Lemma 9,14 [BGRS]).





Chapter 3

General theory of open
quantum systems

This Chapter is an introduction to the formalism that describes the evolution of open
quantum systems. The crucial point is to view the dynamics at the level of states,
which are a particular class of observables. After a brief review of the Heisenberg
picture of quantum mechanics, we will discuss the fundamental properties of maps
between state spaces. This will led finally to the definition of quantum dynamical
semigroup, whose generator are the object that we will use to treat open quantum
systems.

3.1 One-parameter groups on Hilbert spaces

The Schrödinger equation (2.11), as we have seen in the previous chapter, deter-
mines the evolution of the wavefunctions ψ ∈ H. The operator valued function
U : t→ eiHt/~ is a strongly continuous one-parameter group of unitary transforma-
tion accordingly to the following definition.

Definition 3.1. If B is a Banach space a one-parameter group on B is a family
{Tt}t∈R of bounded linear operators on B satisfying T0 = 1 and TtTs = Tt+s for
every t, s ∈ R. The group is called strongly continuous if

lim
t→0
‖Ttφ− φ‖ = 0, ∀φ ∈ D

with D dense linear subspace in B.

Given a strongly continuous group Tt the generator of the group is defined as

Aψ = lim
t→0

t−1(Ttψ − ψ) (3.1)

and the domain D(A) of A is the set of all ψ ∈ B such that the above limit exists.
The strongly continuous property implies that A is a densely defined closed linear
operator.

27
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In Hilbert spaces there exists a correspondence between self-adjoint operators
and strongly continuous one-parameter unitary group. This correspondence is given
by the functional calculus and the Stone’s theorem [RS1, Chap.VIII]. Let us recall
briefly the main results.

Theorem 3.2 ( [RS1] Thm VIII.7 ). Let H be a self-adjoint operator on H and
define U(t) = eitH by means of the functional calculus [RS1, Thm.VIII.5]. Then
U(t) is a strongly continuous one-parameter unitary group. Moreover,

a) For ψ ∈ D(H), t−1(U(t)ψ − ψ)→ iH as t→ 0.

b) If limt→0 t
−1(U(t)ψ − ψ) exists then ψ ∈ D(H).

The converse result is the following.

Theorem 3.3 ( [RS1] Thm VIII.8 ). Let U(t) be a strongly continuous one-parameter
unitary group on a Hilbert space H. Then, there is a self-adjoint operator H on H
so that U(t) = eitH .

3.2 Observables and Heisenberg picture

Let A be a self-adjoint operator on an Hilbert space H endowed with an Hermitian
product 〈· , ·〉. We will refer to such an operator as an observable. The spectrum
σ(A) represents the values that the operator can assume. Given an Hamiltonian
H on H (also an operator itself) and the evolution generated by the Schrödinger
equation, the expected values of the observable A at time t ∈ R is defined as the real
value

〈A〉t = 〈ψ(t) , Aψ(t)〉 =
〈
e−itH/~ψ0 , Ae

−itH/~ψ0

〉
, (3.2)

where ψ0 is the initial datum. Consider now a family of self-adjoint operators A(t),
t ∈ R (to avoid technicalities we refer to [Ka] for the minimal assumptions that one
should assume on an operator valued function A : t ∈ At). Let us define the operator

AH(t) := eitH/~A(t)e−itH/~ (3.3)

to which we will refer as Heisenberg representation of A at time t. It immediately
follows that

〈A(t)〉t = 〈AH(t)〉0.

This suggests that instead of considering the evolution of wavefunctions one can
alternatively consider the evolution of operators. In fact, at least formally, the
operator AH(t) satisfies

d

dt
AH(t) =

(
∂A

∂t

)
H

+
1

i~
[AH(t), HH(t)]. (3.4)
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known as Heisenberg equation [Co2][Hall]. Observe that if the operator A does not
depend on t, the previous eq.(3.4) reads

d

dt
A =

1

i~
[A,H]. (3.5)

It is easy to verify that the solution to the previous equation is

A(t) = eitH/~Ae−itH/~. (3.6)

3.3 States

A special class of observables is of particular importance. Let us recall some prelim-
inary definitions in order to introduce this class.

Let A be a positive linear operator on a separable Hilbert space H. We define
tr(A) as the possibly infinite series

tr(A) :=
∑
n∈N
〈ψn , Aψn〉 (3.7)

where {ψn}n∈N is an orthonormal basis of H. The definition define a linear map
tr : B(H) → R ∪ {+∞} and is well posed because does not depend on the chosen
basis [RS1, Sect.V.I].

Definition 3.4. An operator A ∈ B(H) is called trace-class if and only if tr |A| <
∞. We will denote the set of trace-class operator by T (H) (also denoted T1).

The set T (H) is a subset of the set of compact operators Com(H) and is a
Banach space with the norm

‖A‖1 = tr |A| , (3.8)

which satisfies the relation ‖A‖ ≤ ‖A‖1 [RS1, Thm.VI.20]. We recall that a sequence
{An} ⊂ B(H) is said to be weakly convergent to A if limn→∞ 〈φ , Anψ〉 = 〈φ , Aψ〉
for all φ, ψ ∈ H and will denote the weak limit w. limn→∞An = A. Similarly, we say
that {An} ⊂ B(H) converges ultraweakly to A if limn→∞ tr(Anρ) = tr(Aρ) for every
ρ ∈ T (H). Ultraweak convergence implies weak convergence but on norm-bounded
sequences they coincide. In particular they coincide if An → A ∈ B(H).

As vector space, T (H) is stable under the composition with linear bounded op-
erators and under the adjunction, i. e. if A ∈ T (H), B ∈ B(H) then AB, BA, A∗ ∈
T (H), namely T (H) is a ∗-ideal of B(H). Moreover,

‖AB‖1 ≤ ‖A‖1 ‖B‖ , ‖BA‖1 ≤ ‖B‖ ‖A‖1

This allows one to define for every A ∈ T (H) a map

φA : B 7→ tr(AB), (3.9)
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which is a bounded linear functional on B(H). Or analogously, for every B ∈ B(H)
the map

%B : A 7→ tr(AB) (3.10)

is a bounded linear functional on T (H). These types of maps represent special
classes of functionals as stated by the next theorem.

Theorem 3.5 ( [RS1] Thm.VIII.26 ). The map φ is an isometric isomorphism of
T (H) in Com(H)∗. The map % is an isometric isomorphism of B(H) into T (H)∗.

It is also possible to define subspaces of B(H),T (H) and Com(H) between which
the above dualities still hold. We will denote Bs(H),Ts(H) and Coms(H) the set of
linear bounded, trace-class and compact set of self-adjoint operators. It is still true
that Ts(H) = Coms(H)∗ and Bs(H) = Ts(H)∗. We will denote Bs(H)+, Ts(H)+ the
sets of self-adjoint non-negative linear and trace-class operators. Observe that

A ∈ Ts(H)+ ⇔ tr(AB) ≥ 0 ∀B ∈ Bs(H)+,

and conversely

B ∈ Bs(H)+ ⇔ tr(AB) ≥ 0 ∀A ∈ Ts(H)+. (3.11)

Definition 3.6. The state space of an Hilbert space H is defined as the Banach
space Ts(H) with the norm ‖·‖1. The states are defined as self-adjoint non-negative
trace-class operators of trace one. The states are also called mixed states or density
matrices.

By the spectral theorem each state ρ admits a decomposition

ρ =
∑
n∈N

λn |ψn〉 〈ψn| 1, λn ≥ 0 for all n ∈ N,
∑
n∈N

λn = 1. (3.12)

where ψn ∈ H have norm one (it is always possible to find a decomposition in which
{ψn}n∈N is an orthonormal basis). A state is said to be pure if tr(ρ) = tr(ρ2),
therefore if and only if ρ = |ψ〉 〈ψ| for some ψ ∈ H.

The definition of state generalizes the concept of wavefunction in the following
sense. For each initial state ψ0 ∈ H its evolution is given by the solution of the

1We make use hereafter of the standard Dirac notation for elements of an Hilbert space H
endowed with an Hermitian product S : H × H → C [Co1, Sect.II.B][Hall, Sect.3.12]. We denote
an element ψ ∈ H with the symbol |ψ〉 (ket). We denote with the symbol 〈φ| (bra) the element of
the dual space H∗ defined by 〈φ| : H −→ C

ψ 7→ S(φ, ψ)
namely the dual element of |φ〉 through the natural isomorphism between H and his dual space H∗.

Therefore we choose to adopt the notation 〈·|·〉 for the Hermitian product. In this way given two
elements |ψ〉 , |φ〉 ∈ H the complex number S(φ, ψ) is obtained by the evaluation of the functional
〈φ| on |ψ〉, i. e. 〈φ|ψ〉 = S(φ, ψ). Conversely, the “exterior product” |ψ〉 〈φ| denotes the linear
operator |ψ〉 〈φ| : H −→ H

|ξ〉 7→ |ψ〉 〈φ|ξ〉 .
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Schrödinger equation, i. e. by the action of the one-parameter group eitH/~ on ψ0. If
we consider the pure state ρ0 = |ψ0〉 〈ψ0|, it evolves accordingly to eq.(3.5)

ρ(t) = eiHt/~ρ0e
−iHt/~ = eiHt/~ |ψ0〉 〈ψ0| e−iHt/~ = |e−iHt/~ψ0〉 〈e−iHt/~ψ0| (3.13)

which is exactly the pure state associated with ψ(t) = e−iHt/~ψ0. Moreover, each
expected value of an observable A can be computed by means of ρ(t)

〈A〉t = 〈ψ(t) , Aψ(t)〉 = tr(ρ(t)A). (3.14)

Instead, if the system is prepared in a statistical mixture of states ψk ∈ H, each
one with probability pk ∈ [0, 1] such that

∑
k pk = 1, its initial state is described by

ρ0 =
∑
k

pk |ψk〉 〈ψk| . (3.15)

In fact the expected value of the observable Pk := |ψk〉 〈ψk| on ρ0 is

〈Pk〉0 = tr(ρ0Pk) = pk,

which means that the system has probability pk of being in the state ψk. Even if
this state is not pure its evolution is still given by eq. (3.6) and the expectation of
observables by

〈A〉t = tr(ρ(t)A) =
∑
k

pk tr(Pk(t)A) =
∑
k

pk tr(eiHt/~ |ψk〉 〈ψk| e−iHt/~A). (3.16)

Thus the expectation of an observable A on the state ρ(t) is an average of the
expectations of A on the wavefunctions ψk(t), weighted as the initial mixture was.

3.4 Operations on state spaces

As pointed out in the previous section, the evolution of the state space of an Hilbert
spaceH is sufficient to recover all the information about observable quantities, what-
ever the initial state of the system is. For this reason we are interested in studying
general maps between state spaces, or elsewhere known as operations.

The map
Tt : ρ 7→ e−iHt/~ρeiHt/~, (3.17)

that we already encountered, is a linear bounded map on Ts(H) which is also trace
preserving, i. e. tr(Tt(ρ)) = tr(ρ) (by the ciclicity of the trace), and positive according
to the following definition.

Definition 3.7. Let S : B(H2) → B(H1) be a linear map. We will say that S is
positive if A ≥ 0 implies S(A) ≥ 0.

Moreover, a positive linear map is called normal if for each sequence {An}n∈N ⊂
B(H2) such that w. limn→∞An = A ∈ B(H2) then w. limn→∞ S(An) = S(A).
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Moreover, a series of measurements on a quantum system with Hilbert space
H can be seen as a positive linear bounded map T on Ts(H) (see [Da, Sect 2.2.1])
which generally satisfies

0 ≤ tr(T (ρ)) ≤ tr(ρ), ∀ρ ∈ Ts(H)+. (3.18)

For these reasons we are interested in classifying linear bounded maps on state spaces
which satisfies also (3.18). The following results goes in that direction.

Lemma 3.8 ( [Da, Lemma 2.2.2] ). If T : Ts(H1)→ Ts(H2) is a positive linear map
then the adjoint T ∗ : Bs(H2)→ Bs(H1) is a positive linear normal map.

Moreover,
0 ≤ T ∗(1) ≤ 1 (3.19)

if and only if
0 ≤ tr(T (ρ)) ≤ tr(ρ), ∀ρ ∈ Ts(H1)+.

Every normal positive linear map S : Bs(H2)→ Bs(H1) is the adjoint of a unique
positive linear map T : Ts(H1)→ Ts(H2).

Proof. If A ∈ Bs(H2) and ρ ∈ Ts(H1), by Thm.3.5 T ∗(A) is the unique element of
Bs(H1) representing φA = ρ 7→ tr(AT (ρ)), i. e. such that

tr(T ∗(A)ρ) = tr(AT (ρ)), ∀A ∈ Bs(H2), ρ ∈ Ts(H1).

Moreover, since

tr(T ∗(A)ρ) = tr(AT (ρ)) ≥ 0, ∀A ∈ Bs(H2)+, ρ ∈ Ts(H1)+,

then T ∗(A) ≥ 0 by (3.11), so T ∗ is positive. Observe that

tr(ρ)− tr(T (ρ)) = tr((1− T ∗(1))ρ), ∀ρ ∈ Ts(H1)+

from which we have the equivalence between (3.18) and (3.19). If {An}n∈N ⊂ B(H)
converge to A ∈ B(H) weakly, then An converge to A ultraweakly, so

tr(T ∗(An)ρ) = tr(AnT (ρ))→ tr(AT (ρ)) = tr(T ∗(A)ρ),

which means that T ∗(An) converges to T ∗(A) ultraweakly, then T ∗(An) → T ∗(A)
weakly and T ∗ is normal.

This proves one implication of the one to one correspondence stated above. The
converse descends again from Thm.3.5.

Remark 3.9. The condition (3.19) must be understood in the following sense. The
operation T : Ts(H1)→ Ts(H2) acts on density matrices ρ which represent ensembles
according to (3.15). So T (ρ) contains information about the new distribution of the
mixture as well as the form of the new state. In fact, from (3.15) we get

T (ρ) =
∑
k

pkT (|ψk〉 〈ψk|),
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and normalizing each state of the new mixture

T (ρ) =
∑
k

pk tr(T (|ψk〉 〈ψk|))
T (|ψk〉 〈ψk|)

tr(T (|ψk〉 〈ψk|))
,

from which we see that

tr(T (ρ)) =
∑
k

pk tr(T (|ψk〉 〈ψk|)1) =
∑
k

pk tr(|ψk〉 〈ψk|T ∗(1)).

Thus the map T ∗(1), commonly called effect, determines the probability of trasmis-
sion of a given state but not its form, given by T . Since 0 ≤ T ∗(1) ≤ 1 then
0 ≤ pk tr(T (|ψk〉 〈ψk|)) ≤ pk ‖T ∗(1)‖ ≤ pk. y

An interesting case is when a linear positive map transforms pure states in pure
states.

Definition 3.10. Let T : Ts(H1) → Ts(H2) be a positive linear map. We say that
T is pure if T (ρ) ∈ Ts(H2)+ is a pure element whenever ρ ∈ Ts(H1)+ is pure.

Those type of maps admit a simple classification.

Theorem 3.11 ( [Da, Thm 3.1] ). Every pure positive linear map T : Ts(H1) →
Ts(H2) is of one of the following form:

(i)
T (ρ) = BρB∗ (3.20)

where B : H1 → H2 is bounded and linear;

(ii)
T (ρ) = Bρ∗B∗ (3.21)

where B : H1 → H2 is bounded and conjugate linear;

(iii)
T (ρ) = tr(ρB) |ψ〉 〈ψ| (3.22)

where B ∈ B(H1)+ and ψ ∈ H2.

In cases (i) and (ii) the operator B is uniquely determined up to a constant of
modulus one.

This results gives a lot of information about invertible linear positive maps. In
fact, if T : Ts(H1)→ Ts(H2) has a positive inverse T−1, then both T ,T−1 are pure.
Moreover since T is pure T (ρ) = T (ρ)∗. Thus the following corollary is immediate.

Corollary 3.12. Let T : Ts(H)→ Ts(H) a positive linear map with positive inverse.
Let also T be trace preserving. Then there exists a unitary or antiunitary map U
on H such that

T (ρ) = UρU∗.
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By duality a similar results holds for linear positive maps S : Bs(H)→ Bs(H).

Corollary 3.13. Let S : Bs(H)→ Bs(H) a positive linear map with positive inverse.
Let also S be unital, i. e. S(1) = 1. Then there exists a unitary or antiunitary map
U on H such that

S(A) = UAU∗, A ∈ Bs(H).

There is a complex linear extension of S to B(H) which is either an algebra auto-
morphism or an algebra antiautomorphism.

To conclude the section we recall that the map (3.17) happens to be a linear
positive map with positive inverse, so {Tt}t∈R is a strongly continuous one-parameter
group of those maps. The following theorem states that there are no other type of
such groups.

Theorem 3.14. Let Tt : Ts(H)→ Ts(H) a strongly continuous one-parameter group
of positive linear map such that

tr(Tt(ρ)) = tr(ρ), ∀ρ ∈ Ts(H).

Then there exists a self-adjoint operator H on H such that

Tt(ρ) = e−iHt/~ρeiHt/~, ∀t ∈ R.

3.5 Dynamical semigroups

The assumption of having a closed system, namely an Hilbert space H with a state
dynamics Tt : Ts(H) → Ts(H) that posses the group properties and moreover pre-
serves probabilities, lead us to evolutions of Hamiltonian type (Thm 3.14). That
means that the self-adjoint operator H on H, which determines the state evoltution
through (3.17), is completely determined by H and Tt and does not depend of any
parameter or external factor.

For these reasons, one is induced to ask whether an evolution on the state space
can in principle be related to an Hamiltonian on a larger Hilbert space. This Hilbert
space should take into account all the part of the environment that affect the dy-
namics of the system, as an ideal quantization of the external world. We will call
such a type of system an open quantum system.

LetH be the Hilbert space of the system,Hε the Hilbert space of the environment
and consider the tensor product H ⊗ Hε, the total space. Let H be a self-adjoint
operator onH⊗Hε and suppose that the initial state of the total system is factorized,
namely ρ⊗ ρε ∈ T (H)⊗ T (Hε). Therefore the evolution of the total system is

e−iHt/~(ρ⊗ ρε)eiHt/~,

and generally this is no more a factorized state (except in absence of interaction
which is a trivial case). However, there exists a map on T (H ⊗ Hε) that act as a
projection onto T (H), which means it gives a sort of reduced state in the following
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sense. Let us define a map trε : T (H⊗Hε)→ T (H) such that on factorized states
trε(ρ⊗ σ) = trHε(σ)ρ, then

trH(A trε(ρ⊗ σ)) = trH⊗Hε [(A⊗ 1)(ρ⊗ σ)] , (3.23)

for each A ∈ B(H), where trH is the trace on the Hilbert space H. Observe that
eq. (3.23) shows that trε acts naturally on factorized states, reducing a state on
trH⊗Hε to a partial one which is compatible with the composition with trH. That
map could be extended by duality. The application A 7→ A⊗ 1 is a positive normal
linear map from B(H) to B(H⊗Hε), then by Lemma 3.8

trH(A trε(ρ̄)) = trH⊗Hε [(A⊗ 1)ρ̄]

defines a positive normal linear map for every ρ̄ ∈ T (H⊗Hε), which coincides with
the one defined above for factorized states. We will call trε partial trace on Hε.
According to the argument above, we set

Λt(ρ) := trε

(
e−iHt/~(ρ⊗ ρε)eiHt/~

)
(3.24)

which is a map on T (H) that describes the partial evolution of the subsystem H
given an initial environment state ρε.

The concept of partial trace can be translated into a similar one for observables.
Given an environment state ρε the map ρ 7→ ρ⊗ρε is positive linear from T (H) into
T (H⊗Hε). Therefore by Lemma 3.8

trH(Eρε(B)ρ) = trH⊗Hε [B(ρ⊗ ρε)] , ρ ∈ T (H) (3.25)

defines a linear map Eρε : B(H ⊗Hε) → B(H) which is positive, normal and such
that

Eρε(A⊗ 1) = A tr(ρε).

We are now able to define the evolution of observables X ∈ B(H) given the initial
environment state ρε,

Λ′t(X) := Eρε

(
eiHt/~(X ⊗ 1)e−iHt/~

)
. (3.26)

Remark 3.15. The map Λt : T (H) → T (H) and Λ′t : B(H) → B(H) defined in
(3.24) and (3.26) are dual. In fact

trH

(
Eρε

(
eiHt/~(X ⊗ 1)e−iHt/~

)
ρ
)

= trH⊗Hε

[
eiHt/~(X ⊗ 1)e−iHt/~ρ⊗ ρε

]
= trH⊗Hε

[
(X ⊗ 1)e−iHt/~ρ⊗ ρεeiHt/~

]
= trH

(
X trε

(
e−iHt/~ρ⊗ ρεeiHt/~

))
= trH(X Λt(ρ)).

The map Λt is trace preserving if and only if tr ρε = 1. The map Λ′t is unital if and
only if tr ρε = 1, in fact Λ′t(1) = 1 tr ρε (as Lemma 3.8 stated). y
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In conclusion, given an Hilbert space H⊗Hε and a self-adjoint operator H acting
on this space, there exists a way to define state’s and observable’s evolution of H
coherently, which means by maps that: reduce the total dynamics on T (H⊗Hε) and
B(H ⊗ Hε) to T (H) and B(H) preserving fundamental properties (positivity, nor-
mality, etc...); are compatible with the composition with (3.9),(3.10). This reduction
maps suggest that the dynamics we defined cannot be reversible.

Those reasons lead us to the following

Definition 3.16. Given an Hilbert space H we define a dynamical semigroup to
be a one-parameter family of linear operators Tt : T (H) → T (H) for each t ≥ 0,
satisfying

(i) Tt positive for each t ≥ 0;

(ii) Tt trace preserving for each t ≥ 0;

(iii) T0 = 1T (H), TsTtρ = Tt+sρ for all s, t ≥ 0;

(iv) limt→0 ‖Ttρ− ρ‖1 = 0 for all ρ ∈ T (H).

Remark 3.17. The Hamiltonian evolution law (3.17) is a dynamical semigroup.
The one-parameter family Λt defined in (3.24) satisfies (i),(ii) and is continue but
it is not generally a semigroup (see [Da, Sect. 10.4]). y

It is useful to state an equivalent definition for the dual semigroup,

Definition 3.18 ( [Li],[Pa, Sect. III.30] ). Given an Hilbert space H we will call
dynamical semigroup (in the Heisenberg picture) a one-parameter family of linear
operators St : B(H)→ B(H), t ≥ 0 satisfying

(a) St(X) ≥ 0 for all X ≥ 0 and t ≥ 0;

(b) for all t ≥ 0 St(1) = 1, ‖St(X)‖ ≤ ‖X‖, St(X)∗ = St(X
∗) and w. limn→∞ St(Xn) =

St(X) whenever w. limn→∞Xn = X;

(c) S0 = 1B(H), StSs = St+s for all t, s ≥ 0;

(d) lim
t→0
‖St(X)−X‖1 = 0 for all X ∈ B(H);

We will call the dynamical semigroup uniformly continuous if

lim
t→0

sup
‖X‖≤1

‖St(X)−X‖ = 0

for all X ∈ B(H).

For a dynamical semigroup there exists a (generically unbounded) linear operator
L : B(H)→ B(H) defined on a ultraweakly dense domain D(L) such that

lim
t→0

∥∥L(X)− t−1(St(X)−X)
∥∥ = 0, X ∈ D(L).
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L is called the generator of the semigroup. If the dynamical semigroup is uniformly
continuous the generator L is a bounded linear operator on H and

lim
t→0

∥∥L− t−1(St − 1)
∥∥ = 0.

Remark 3.19. If S is identity preserving its dual semigroup S∗ conserves prob-
ability i. e. tr(S∗t (ρ0)) = tr(S∗t (ρ0)I) = tr(ρ0St(I)) = tr(ρ0) = 1. The definition
of normal map (b) is slightly different because we are considering maps on B(H)
instead of Bs(H). y

The map (3.24) satisfies (a),(b),(d) but is generally not a semigroup. For other
examples we refer to [Pa, Ex. 30.1-5]. Nevertheless, one could try to understand
under which conditions a dynamical semigroup S on B(H) admit a representation
of type (3.26). It turns out that a condition stronger than the positivity is needed,
as it will be discussed in the next Section.

3.6 Complete positivity

Consider a quantum system, whose pure states are described by H, in a well defined
region of space. Suppose that there exists a particle with n degrees of freedom
localized very far away from the first system, such that they have no interaction
with each other. The Hilbert space of the total system is H ⊗ Cn and if S is an
operation on the system H that does not affect the distant particle, on factorized
observables one has

S(n)(A⊗B) = S(A)⊗B, A ∈ B(H), B ∈ B(Cn) (3.27)

and S(n) extends to a linear map on B(H ⊗ Cn). The physical meaning of this
map is clear, it is the trivial extension of an operation S on H to any larger system
that includes H, but in which it is still isolate. This inclusion must not change
the physical meaning of our description, so S(n) should be a positive linear map
on B(H ⊗ Cn) if S is positive linear on B(H). However, this is not true. If S is a
positive linear map, S(n) is not necessarily positive.

Example 3.20. Consider an Hamiltonian H0 on H, the one-parameter unitary
group eiH0t/~ and the dynamical semigroup St(A) = eiH0t/~Ae−iH0t/~. Then, for

every n ∈ N the map S
(n)
t on B(H⊗ Cn) defined on factorized states

S
(n)
t (A⊗B) = St(A)⊗B = ei(H0⊗1)t/~(A⊗B)e−i(H0⊗1)t/~,

extends to the map S
(n)
t (X) = ei(H0⊗1)t/~Xe−i(H0⊗1)t/~. Therefore S

(n)
t is positive

for all n ∈ N.

To see that not every positive map is completely positive consider the transpo-
sition map X 7→ XT acting on B(Cn). y
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The above considerations should convince us that the positivity is not enough
for an operation to have physical meaning.

Definition 3.21. We will call a positive linear map S : B(H)→ B(H) completely
positive if for every n ∈ N the map S(n) : B(H)⊗ B(Cn)→ B(H)⊗ B(Cn) defined
by

(Xi,j)
n
i,j=1 7→ (S(Xi,j))

n
i,j=1 , Xi,j ∈ B(H), (3.28)

is positive.

Remark 3.22. The definition of S(n) given in (3.27),(3.28) are equivalent given the
isomorphism B(H⊗ Cn) ∼= B(H)⊗ B(Cn). y

Two fundamental results about completely positive maps are crucial to answer
the question we asked at the end of previous section.

Theorem 3.23 (Stinespring, [Pa] Thm. III.29.6 ). Let H1, H2 be Hilbert spaces
and let S : H2 → H1 be a linear operator satisfying the following conditions:

(a) S is complete positive;

(b) S(1) = 1, S(X)∗ = S(X∗), ‖S(X)‖ ≤ ‖X‖ and w. limn→∞ S(Xn) = S(X)
whenever
w. limn→∞Xn = X;

Then there exists a Hilbert space K, an isometry V : H1 → H2 ⊗K such that:

(·) S(X) = V ∗(X ⊗ 1)V for all X ∈ B(H2);

(··) {(X ⊗ 1)V ψ |X ∈ B(H2), ψ ∈ H1} is dense in H2 ⊗K;

Conversely, if V : H1 → H2 ⊗ K is an isometry where K is any Hilbert space then
the map S : H2 → H1 defined by S(X) = V ∗(X ⊗ 1)V satisfies condition (a),(b).

Theorem 3.24 (Kraus, [Pa] Thm. III.29.6 ). An operator S : B(H2) → B(H1)
satisfies conditions (a),(b) of Thm 3.23 if and only if there exist operators Lj :
H1 → H2, j = 1, 2... such that

∑
j L
∗
jLj = 1 is a strongly convergent sum and

S(X) =
∑
j

L∗jXLj , for all X ∈ B(H2). (3.29)

If dimHj = nj <∞, j = 1, 2, then the number of L′js can be restricted to be lesser
or equal than n1n2.

Example 3.25. Consider the map Λt defined in (3.24) and let ρε = |Ω〉 〈Ω|, Ω ∈ Hε.
Given {φn}n∈N basis of Hε define the maps En = 1⊗ |Ω〉 〈φn|. Notice that∑

n∈N
Enρ̄E

∗
n = trε(ρ̄)⊗ |Ω〉 〈Ω| (3.30)
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for each ρ̄ = ρ⊗ σ ∈ T (H)⊗T (Hε), therefore it extends, by a density argument, to
all T (H⊗Hε). Observe that the linear map π : H → H⊗Hε, π(ψ) = ψ ⊗Ω has as
dual map π∗ : H⊗Hε → H, π∗(ψ ⊗ φ) = 〈Ω , φ〉ψ and they are such that

π∗π = 1, πρπ∗ = ρ⊗ |Ω〉 〈Ω| (3.31)

for each ρ ∈ T (H). From (3.30),(3.31) we obtain that∑
n∈N

Enρ̄E
∗
n = trε(ρ̄)⊗ |Ω〉 〈Ω| = π trε(ρ̄)π∗

then

trε(ρ̄) = π∗
∑
n∈N

Enρ̄E
∗
nπ.

By the latter equality we can write

Λt(ρ) = trε

(
e−iHt/~(ρ⊗ |Ω〉 〈Ω|)eiHt/~

)
= π∗

∑
n∈N

Ene
−iHt/~(ρ⊗ |Ω〉 〈Ω|)eiHt/~E∗nπ

= π∗
∑
n∈N

Ene
−iHt/~πρπ∗eiHt/~E∗nπ

=
∑
n∈N

KnρK
∗
n

where Kn = π∗Ene
−iHt/~π. Its dual map Λ′t is obtained by duality

Λ′t(X) =
∑
n∈N

K∗nXKn.

It is easy to verify that
∑

n∈NK
∗
nKn = 1 strongly, so by the Kraus theorem Λ′t is a

completely positive map in case ρε = |Ω〉 〈Ω| is a pure state. y

3.7 Quantum dynamical semigroups

In this section we conclude the discussion begun in Sect. 3.5 about open quantum
systems. We will see that an observable evolution of type (3.26) is peculiar to a
special group of dynamical semigroup.

Definition 3.26. Given an Hilbert space H we will call quantum dynamical
semigroup (in the Heisenberg picture) a one-parameter family of linear operators
St : B(H)→ B(H), t ≥ 0 satisfying (b),(c),(d) of Definition 3.18 and

(a’) St is completely positive for all t ≥ 0.
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As we noticed before, the uniform continuity of the semigroup implies the exis-
tence of the generator, which is a linear bounded operator on B(H). Then St(X) =
etL(X) for all t ≥ 0. Our first goal in this section is to find a general form for the
generators of uniformly continuous quantum dynamical semigroups. Then we will
see that each one of them is of the form (3.26).

Generators of uniformly continuous quantum dynamical semigroups were classi-
fied by Lindblad and Gorini, Kossakowski, Sudarshan in the 70’. Here we will state
first a more general formulation of these results.

Theorem 3.27 ( [Pa] Thm. III.30.12 ). An operator L on B(H) is the generator of
a uniformly continuous quantum dynamical semigroup if and only if there exists: a
Hilbert space K, a bounded linear operator V : H → H⊗K and a bounded self-adjoint
linear operator H on H satisfying

(i) L(X) = i[H,X] + 1
2{2V

∗(X ⊗ 1)V − V ∗V X −XV ∗V };

(ii) the set {(V X − (X ⊗ 1)V )ψ | X ∈ B(H), ψ ∈ H} is dense in H⊗K.

From this statement one could recover the results of [Li] and [GKS] in their
original (and often more useful) form.

Theorem 3.28 (Lindblad, [Li], [Pa] Thm. III.30.16 ). An operator L on B(H) is
the generator of a uniformly continuous quantum dynamical semigroup if and only if
there exists a sequence {Lj} of bounded operators on H such that

∑
L∗jLj is strongly

convergent and a bounded self-adjoint operator H on H satisfying

L(X) = i[H,X] +
1

2

∑
j

{2L∗jXLj − L∗jLjX −XL∗jLj}. (3.32)

Moreover the sequence {Lj} could be chosen such that

(i) The set {
⊕
j

[Lj , X]ψ | X ∈ B(H), ψ ∈ H} is dense in
⊕
j
H;

(ii) tr(ρLj) = 0 for each j, given a fixed state ρ ∈ T (H);

(iii) If
∑
j
|cj |2 <∞ and c0 +

∑
j
cjLj = 0 then cj = 0 for each j.

Theorem 3.29 (Gorini, Kossakoswki, Sudarshan [GKS]). An operator L∗ on
B(CN ) is the generator of a continuous quantum dynamical semigroup if and only
if can be expressed in the following form

L∗(ρ) = −i[H, ρ] +
1

2

N2−1∑
i,j=1

cij{2LiρL∗j − L∗jLiρ− ρL∗jLi} (3.33)

where: {Lj}, j = 1, ..., N2 − 1, is a sequence of bounded operator on H such that
tr(Lj) = 0, tr(L∗iLj) = δij; H is a bounded self-adjoint operators on H such that

tr(H) = 0; C = {cij}N
2−1

i,j=1 is a positive semidefinite complex matrix.
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Remark 3.30. Here we stated the result for the dual generator. By duality one
can recover the same form of the dual generator from equation (3.32) (observe that
just one ∗ moved). In this statement the operators {Lj} are required to form an
orthonormal basis of the space of trace zero operators in B(CN ). y

Remark 3.31. The result of Gorini, Kossakowski and Sudarshan is the finite di-
mensional equivalent of Lindblad theorem. Given a unitary matrix U = {uij}N

2−1
i,j=1

consider the base change

L′j = (UL̄)j =
N2−1∑
k=1

ujkLk,

then

−i[H, ρ] +
1

2

N2−1∑
i,j=1

cij{2LiρL∗j − L∗jLiρ− ρL∗jLi} =

=− i[H, ρ] +
1

2

∑
i,j

cij{2(
∑
k

U∗ikL
′
k)ρ(

∑
h

U∗jhL
′
h)∗

− (
∑
h

uhjL
′
h)∗(

∑
k

ukiL
′
k)ρ− ρ(

∑
h

uhjL
′∗
h )(
∑
k

ukiL
′
k)}

=− i[H, ρ] +
1

2

∑
k,h

(∑
i,j

ukicijuhj

)
{2L′kρL′

∗
h − L′

∗
hL
′
kρ− ρL′

∗
hL
′
k}

=− i[H, ρ] +
1

2

∑
k,h

(∑
j

(UC)kjuhj

)
{2L′kρL′

∗
h − L′

∗
hL
′
kρ− ρL′

∗
hL
′
k}

=− i[H, ρ] +
1

2

∑
k,h

(UCUT )kh{2L′kρL′
∗
h − L′

∗
hL
′
kρ− ρL′

∗
hL
′
k}

=− i[H, ρ] +
1

2

∑
k,h

(UCU∗)kh{2L
′
kρL

′∗
h − L′

∗
hL
′
kρ− ρL′

∗
hL
′
k}

By the positivity of the matrix C it is always possible to find a unitary matrix U
such that UCU∗ is a diagonal matrix D = {dii}N

2−1
i=1 and every coefficient dii is non

negative. Of course in this case
∑

(
√
djjL

′
j)
∗(
√
djjL

′
j) is strongly convergent and

one obtain the Lindblad form of the generator.

Conversely, Theorem (3.28) says that it is possible to choose the operators Lj
with trace zero (choosing ρ = I/N in (ii)). Condition (iii) guarantees that at most
N2 − 1 operators Lj are different from zero and that they are linearly independent
i. e. tr(L∗iLj) = δij . Then normalizing the Lj ’s, i. e. L

′
j = tr(L∗jLj)

−1/2Lj we recall

the GKS form of the generator with the diagonal matrix {tr(L∗jLj)}
N2−1
i=1 (as usual, by

adding a constant to H one could obtain a traceless and equivalent Hamiltonian). y
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The equation that generators of a quantum dynamical semigroups solve is called
Lindblad equation and reads

Ẋ = L(X) = i[H,X] +
1

2

∑
j

{2L∗jXLj − L∗jLjX −XL∗jLj} (3.34)

for observables X ∈ B(H) and

ρ̇ = −i[H,X] +
1

2

∑
j

{2LjρL∗j − L∗jLjρ− ρL∗jLj} (3.35)

for states ρ ∈ T (H).

We conclude with a theorem of Davies that classifies the form of finite dimen-
sional uniformly continuous quantum dynamical semigroups.

Theorem 3.32 (Davies, [Da] Thm. 9.4.3 ). Let H be a finite-dimensional Hilbert
space and St a uniformly continuous quantum dynamical semigroup on B(H). Then
there exist an Hilbert space K, a state ρ = |Ω〉 〈Ω| on K and a strongly continuous
one-parameter semigroup Vt of isometries on H⊗K such that

St(X) = Eρ (V ∗t X ⊗ 1Vt)

for all X ∈ B(H) and all t ≥ 0.

Example 3.33 (Damped harmonic oscillator). As example of infinite dimensional
quantum system we would illustrate the damped harmonic oscillator, namely a quan-
tum harmonic oscillator coupled with an environment that stabilizes the average
number of excitation of the system.

Consider the quantum harmonic oscillator H = ~ω(a†a+ 1
2), where the annihi-

lator a and the creator a† are defined as

a† =
1√
2

(X − iP ) a =
1√
2

(X + iP ). (3.36)

Consider the Lindblad operators

L1 =
(γ

2
(η + 1)

) 1
2
a† L2 =

(γ
2
η
) 1

2
a

where

η =
1

e~ωβ − 1
.

A general density operator for that system reads

ρ =
1

2

∑
n≤m

cnm |n〉 〈m|+ c∗nm |m〉 〈n|
∑
n

cnn = 1.
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If ρ is a stationary state for the system it must satisfy 0 = ρ̇ = L(ρ) where L is
given by (3.35). Notice that by going to the interaction picture, i. e. performing the
coordinate change eiHt/~, we can consider H = 0. Then

0 =
γ

2
(η + 1)

2a
1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]
a† − a†a1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]

−1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]
a†a


+
γ

2
η

2a†
1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]
a− aa† 1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]

−1

2

∑
n≤m

[
cnm |n〉 〈m|+ c∗nm |m〉 〈n|

]
aa†


=

γ

4
(η + 1)

2
∑
n≤m

[
cnm(a |n〉)(a |m〉)∗ + c∗nm

√
m |m− 1〉 〈n− 1|

√
n
]

−
∑
n≤m

[
cnmn |n〉 〈m|+ c∗nmm |m〉 〈n|

]
−
∑
n≤m

[
cnm |n〉 〈m|m+ c∗nm |m〉 〈n|n

]
+
γ

4
η

2
∑
n≤m

[
cnm
√
n+ 1

√
m+ 1 |n+ 1〉 〈m+ 1|+ c∗nm

√
n+ 1

√
m+ 1 |m+ 1〉 〈n+ 1|

]

−
∑
n≤m

[
cnm(n+ 1) |n〉 〈m|+ c∗nm(m+ 1) |m〉 〈n|

]
−
∑
n≤m

[
cnm(m+ 1) |n〉 〈m|+ c∗nm(n+ 1) |m〉 〈n|

]

=
γ

2
(η + 1)

∑
n≤m
|n〉 〈m|

(
cn+1,m+1

√
(n+ 1)(m+ 1)− n

2
cn,m −

m

2
cn,m

)
|m〉 〈n|

(
c∗n+1,m+1

√
(n+ 1)(m+ 1)− n

2
c∗n,m −

m

2
c∗n,m

)
+
γ

2
η

∑
n≤m,n≥1

|n〉 〈m|
(
cn−1,m−1

√
nm− n+ 1

2
cn,m −

m+ 1

2
cn,m

)

|m〉 〈n|
(
c∗n−1,m−1

√
nm− n+ 1

2
c∗n,m −

m+ 1

2
c∗n,m

)
+
γ

4
η

∑
n=0,m≥0

c0,m |0〉 〈m|+ c∗0,m |m〉 〈0| (m+ 1) + c0,m(m+ 1) |0〉 〈m|+ c∗0,m |m〉 〈0|
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=
γ

2

∑
1≤n≤m

|n〉 〈m|
[
(η + 1)

(
cn+1,m+1

√
(n+ 1)(m+ 1)− n

2
cn,m −

m

2
cn,m

)
+η

(
cn−1,m−1

√
nm− n+ 1

2
cn,m −

m+ 1

2
cn,m

)]
+
γ

2

∑
1≤n≤m

|m〉 〈n|
[
(η + 1)

(
c∗n+1,m+1

√
(n+ 1)(m+ 1)− n

2
c∗n,m −

m

2
c∗n,m

)
+η

(
c∗n−1,m−1

√
nm− n+ 1

2
c∗n,m −

m+ 1

2
c∗n,m

)]
+
γ

2

∑
0=n≤m

|0〉 〈m|
[
(η + 1)

(
c1,m+1

√
m+ 1− m

2
c0,m

)
− 1

2
η
(
c0,m

√
nm(m+ 1)c0,m

)]
+
γ

2

∑
0=n≤m

|m〉 〈0|
[
(η + 1)

(
c∗1,m+1

√
m+ 1 +

m

2
c∗0,m

)
− 1

2
η

(
(m+ 1)c∗0,m−1 −

n+ 1

2
c∗n,m + c∗0,m

)]
The solution of the previous equation could be found componentwise by induction on
the indices m,n. More precisely, for each pair n,m we project the latter expression
on the subspace |n〉 〈m| and we impose that is null, i. e.

|n〉 〈n|L(ρ) |m〉 〈m| = 0

We begin by n = m = 0. The coefficient of the term |0〉 〈0| is zero if and only if

(η + 1)(c1,1

√
1 + 0− 0

2
c0,0)− η

2
(c0,0 + c0,0) = 0

which implies

c1,1 =
η

η + 1
c0,0.

For n = 0,m ≥ 1 we obtain the condition

(η + 1)c1,m+1

√
m+ 1− m(η + 1)

2
c0,m −

(m+ 2)η

2
c0,m = 0

that lead to the recursive relation

c1,m+1 =
(η + 1

2)m+ η
√
m+ 1

c0,m.

For n = m ≥ 1

(η + 1)(cn+1,n+1(n+ 1)− ncn,n) + η(cn−1,n−1n− (n+ 1)cn,n) = 0

which is

cn+1,n+1 =
(2η + 1)n+ η

(η + 1)(n+ 1)
cn,n −

ηn

(η + 1)(n+ 1)
cn−1,n−1. (3.37)

It can be easily shown by induction that the latter eq. is satisfied by

cn,n =

(
η

η + 1

)n
c0,0.
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Then given that
∑

n cn,n = 1, one obtains

c0,0 =
1

η + 1
= 1− e−~ωβ cn,n = e−~ωβn(1− e−~ωβ).

Thus, the population of each level, i. e. cn,n = Tr(ρ |n〉 〈n|), of a stationary state for
the damped harmonic oscillator is given by the Boltzmann distribution.

The mean number of quanta in this state is the expectation of the number of
particle N = a†a

〈a†a〉 =
∑

ncn,n = η,

which is the thermal average. If we define N(t) := Tr(a†aρ(t)), i. e. the average
number of quanta in the state ρ, then it satisfies the equation

Ṅ(t) = Tr(a†aL(ρ(t)))

which reads
Ṅ(t) = −γN(t) + γη.

The solution is

N(t) =e−γt
(
N(0) +

∫ t

0
ds eγsγη

)
=e−γtN(0) + η(1− e−γt).

Thus the average number of quanta of the system approaches, for γt � 1 (which
means on the scale of the inverse damping rate), the thermal average η. This happens
for every initial data. y





Chapter 4

Two-level closed and open
quantum systems

In this chapter we will present our approach to the adiabatic controllability problem
for an open quantum system. We will focus our attention to the case of a two-level
system to illustrate the techniques used in our analysis. First we will introduce
a set of coordinates for the state space of a finite dimensional quantum system.
This allows to have a vectorial representation of the density matrix called vector of
coherence. In these coordinates the Lindblad equation (an operator valued equation)
translates into a set of ODEs that we can study as a classical dynamical system.

4.1 Vector of coherence

In this section we discuss the Bloch vector representation of density matrices for
finite dimensional quantum systems. If H = CN it is always possible to choose
a basis of B(CN ), {Fi}N

2−1
i=0 with F0 = 1, tr(Fj) = 0 and tr(F ∗i Fj) = Nδij (the

generalized Pauli basis). Then every state ρ on CN admits the decomposition

ρ =
tr(ρ1)

tr(1)
1+

N2−1∑
j=1

tr(F ∗j ρ)

tr(F ∗j Fj)
Fj =

1

N
+
N2−1∑
j=1

xj
N
Fj ,

where

xj := tr(F ∗j ρ), j = 0, ..., N2 − 1. (4.1)

With respect to the previous decomposition we will call the coordinate vector
x = (x0, ..., xN2−1) the vector of coherence of ρ.

Then, by the spectral properties of density operators, namely σ(ρ) ⊂ [0, 1]

1

N2
tr(1)+

N2−1∑
j=1

|xj |2

N2
tr(F ∗j Fj) = tr(ρ2) ≤ 1 ⇒

N2−1∑
j=1

|xj |2 ≤ N(1− 1

N
) = N −1.

47
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The ball BN = {x ∈ RN | ‖x‖2 ≤ N − 1} is called in this context Bloch ball. We
choose not to normalize the elements Fj ’s, but obviously by defining F ′j = Fj/

√
N

the relation tr(F ′i
∗F ′j) = δij holds, and

ρ =
1

N
+
N2−1∑
j=1

x′jF
′
j , x′j = tr(F ′j

∗
ρ), j = 0, ..., N2 − 1.

Then

1

N2
tr(1) +

N2−1∑
j=1

∣∣x′j∣∣2 = tr(ρ2) ≤ 1 ⇒
N2−1∑
j=1

∣∣x′j∣∣2 ≤ (1− 1

N
).

For simplicity of notation, in the following we will make use of the non normalized
base. Notice that in the case N = 2, B2 is the unit ball.

4.2 Two-level closed systems

In this section we briefly discuss the evolution of the density operator for a closed
two-level quantum system in the Bloch representation. Let H = C2 and H ∈ B(C2)
be a self-adjoint operator, then H can be written

H =

(
h00 h01

h10 h11

)
,

{
h00, h11 ∈ R,
h10 =h01

then it decomposes on the Pauli basis as

H =
1

2

(
tr(H)1+ 2 Re(h01)σ1 − 2 Im(h01)σ2 + (h00 − h11)σ3

)
. (4.2)

Analogously, a density matrix ρ on C2, namely a self-adjoint positive matrix such
that tr(ρ) = 1 and ρ2 < ρ, i. e.

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
,


ρ00, ρ11 ≥ 0,
ρ10 = ρ01,

ρ00ρ11 ≥ |ρ01|2

can be decomposed as

ρ =
1

2

(
1+ 2 Re(ρ01)σ1 − 2 Im(ρ01)σ2 + (ρ00 − ρ11)σ3

)
,

therefore its vector of coherence x = (x0, x1, x2, x3) is defined as in (4.1), i. e.
x0 = tr(1ρ) = 1
x1 = tr(σ1ρ) = ρ01 + ρ10

x2 = tr(σ2ρ) = −i(ρ01 − ρ10)
x3 = tr(σ3ρ) = ρ00 − ρ11

(4.3)
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We observe that

x2
1 + x2

2 + x2
3 = 4 Re(ρ01)2 + 4 Im(ρ01)2 + (ρ00 − ρ11)2 = 4 |ρ01|2 + (ρ00 − ρ11)2

≤ 4ρ00ρ11 + (ρ00 − ρ11)2 = (ρ00 + ρ11)2 = 1,

and moreover

tr(ρ2) =
1

2
(1 + x2

1 + x2
2 + x2

3),

so tr(ρ) = tr(ρ2) = 1 if and only if x2
1 + x2

2 + x2
3 = 1, i. e. a state ρ is a pure state if

and only if its vector of coherence is on the Bloch sphere of radius 1.

In Bloch coordinates the Heisenberg equation in Hartree units (so that in par-
ticular ~ = 1 hereafter)

ρ̇ = −i[H, ρ] (4.4)

translates into the following system of ODEs
ẋ1 = −(h00 − h11)x2 − 2 Im(h01)x3

ẋ2 = (h00 − h11)x1 − 2 Re(h01)x3

ẋ3 = 2 Im(h01)x1 + 2 Re(h01)x2

, (4.5)

which shortly reads

ẋ = A(h)x where h =

(
2 Re(h01),−2 Im(h01), h00 − h11

)
(4.6)

is the vector of coordinates of H − tr(H) in the basis {σ1, σ2, σ3} (see (4.2)) and
A : R3 → B(R3) is defined

A(u) =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (4.7)

Observe that ẋ = A(h)x = h∧x and the matrix A(h) is skew-symmetric i. e. A(h)T =
−A(h), so the exponential matrix etA(h) corresponds to a rotation around a fixed
axis. Then the trajectory of a vector of coherence x in the Bloch ball is a circumfer-
ence of fixed radius. Thus the purity of each state, namely tr(ρ2) = (1 + ‖x‖2)/2,
remains invariant during the dynamics. This is in agreement with equation (3.17).

When we consider a controlled system, we assume that the Hamiltonian H =
H(u) is affine with respect to the control variable u ∈ Rm, m ≤ dim(H).

Assumption 4.1. Assume that the Hamiltonian of a two-level system has the form

H(u) =
1

2

(
Eσ3 + u1σ1 + u2σ2

)
, u = (u1, u2) ∈ R2 (4.8)

where E > 0.
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Remark 4.2. We choose to consider a system with a drift H(0) = (E/2)σ3, because
this uncontrolled Hamiltonian represents a standard two-level system with gap E
between energy levels. The drift is chosen traceless, however this is not restrictive
since two Hamiltonians which differ by c1 generate the same state evolution, see
eq.(3.17). We choose to have two control parameters to ensure that the system
can be controlled by means of slowly varying controls. If fact, as seen in Example
2.31, one control is sufficient to achieve controllability, but in general this could have
unbounded derivatives. y

The Heisenberg equation in Bloch coordinates for this choice of H reads

ẋ = A(uE)x (4.9)

where
uE = (u1, u2, E). (4.10)

Equations (4.9) generates the rotation around the axis uE , therefore the system has
a set of equilibrium points, namely {cuE | c ∈ R}. Let us denote ûE = uE/ ‖uE‖.

4.2.1 Slowly driven closed systems

The control law (4.8) allow to choose the rotation axis for the dynamics in Bloch
coordinates. If we are able to change adiabatically the axis of rotation uE , i. e. we
can choose a control law such that ‖u̇E‖ < ε� 1, then we can ask if the equilibria
of the system remain stable. More precisely, given a control function u : [0, 1]→ R2

and an initial state x0 such that

‖x0 − 〈x0 , ûE(0)〉 ûE(0)‖ < δ,

we would prove that there exists ε small enough such that the solution x(t) of

ẋ = A(uE(εt))x, t ∈ [0, 1/ε] (4.11)

with initial condition x(0) = x0 satisfies

‖x(t)− 〈x(t) , ûE(εt)〉 ûE(εt)‖ < δ, ∀t ∈ [0, 1/ε].

Notice that with two controls uE cannot span every unit vector n̂ ∈ S2
R. Assuming

(u1, u2) ∈ R2, i. e. unbounded controls, ûE ∈ S2
R ∩ {x3 > 0}. However we remark

again that the we are interested in preserving the stability of equilibria.

To simplify the problem it is convenient to perform changes of coordinates on
the system

iψ̇ = H(u(t))ψ, ψ ∈ C2

where H(u) has the form (4.8). Set

u1(t)− iu2(t) = v1(t)e−2i(Et−
∫ t
0 v3(τ)dτ), v1(t), v3(t) ∈ R (4.12)
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and consider the time dependent transformation

V (t) =

(
e2i(Et−

∫ t
0 v3(τ)dτ) 0

0 e−2i(Et−
∫ t
0 v3(τ)dτ)

)
. (4.13)

Then φ = V (t)−1ψ satisfies

iφ̇ =

[
V −1(t)H(u(t))V (t)− iV −1(t)

d V

dt
(t)

]
φ = Hrw(v1(t), 0, v3(t))φ

where the Hamiltonian Hrw is defined

Hrw(v1, v2, v3) =
1

2

(
v1σ1 + v2σ2 + v3σ3

)
. (4.14)

In these new coordinates, the system become driftless. Notice that if v1(0) = 0 the
initial point of the control u is u(0) = (0, 0) or uE(0) = (0, 0, E). When view in
Bloch coordinates Hrw(v(t)) corresponds to the generator A(v(t)) where A(·) was
defined above.

Example 4.3. Now choose the particular control

v(t) = (v1(t), 0, v3(t)) = (2 sin θ(t), 0, 2 cos θ(t)), t ∈ [0, 1] (4.15)

which means that the time dependent Hamiltonian of the system is

Hrw(v(t)) = sin θ(t)σ1 + cos θ(t)σ3. (4.16)

If θ(t) is linear in time, the Schrödinger equation is integrable because there exists
a time dependent change of coordinates U(t) = cos[θ(t)/2]σ3 + sin[θ(t)/2]σ1 such
that in the new coordinates the dynamics is given by the Schrödinger equation of
constant Hamiltonian

H ′rw = σ3 −
θ̇

2
σ2.

Therefore the exponential of H ′rw is computed by the use of

ei(γ/2)[v1σ1+v2σ2+v3σ3] = cos(γ ‖v‖ /2)1+ i
sin(γ ‖v‖ /2)

‖v‖
(v1σ1 + v2σ2 + v3σ3). (4.17)

Choosing θ(t) = εt, the solution φ(t) to the slowly driven Schrödinger equation

iφ̇ = Hrw(v(εt))φ = [sin(εt)σ1 + cos(εt)σ3]φ, t ∈ [0, ϑ/ε] (4.18)

with initial datum φ(0) = φ0 and ϑ ∈ (0, 2π] is

φ(t) = U(t)e−iH
′
rwtU(t)−1φ0 = U(t)

[
cos(ω(ε)t)1− isin(ω(ε)t)

ω(ε)
σ3 − i

ε sin(ω(ε)t)

2ω(ε)
σ2

]
φ0
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Figure 4.1

(a) In blue a trajectory of system (4.16) with
ϑ = π, ε = 0.01. In green the vector v/ ‖v‖
where v is the control function (4.15). The
trajectory remains stable around the slowly
varying equilibrium point v/ ‖v‖.

(b) In green the vector uE/ ‖uE‖ where uE is
the control function (4.15) seen in the origi-
nal coordinates. In orange the same control
function multiplied by a constant factor of
20.

where ω(ε) =
√

1 + ε2/4. Bloch coordinates x(t) = (x1(t), x2(t), x3(t)) of ρ(t) =
|φ(t)〉 〈φ(t)| can now be computed by means of last equation and formula (3.13).
Choosing as initial data ρ0 = σ3, i. e. x(0) = (0, 0, 1), after some straightforward
computation one obtains

x1(t) =− εω

2
cos(εt) sin(2ωt) +

(
1

ω2
− ε2

8

(
ω2 − 1

ω2

))
sin(εt) +

ε2

8

(
ω2 +

1

ω2

)
sin(εt) cos(2ωt)

x2(t) = ε sin(ωt)2

x3(t) =− εω

2
sin(εt) sin(2ωt) +

(
1

ω2
− ε2

8

(
ω2 − 1

ω2

))
cos(εt) +

ε2

8

(
ω2 +

1

ω2

)
cos(εt) cos(2ωt)

which is immediately recognized as (v1(εt), 0, v3(εt)) +O(ε) (see Fig.4.1).
More generally if the initial state’s coordinates are x(0) = (x1(0), x2(0), x3(0))

with ‖x(0)‖ = 1 and ‖(0, 0, 1)− x(0)‖ < δ we can compute its evolution using the
above argument. We arrive to

x1(t) =x1(0)

[
−εω

2
sin(εt) sin(2ωt)−

(
1

ω2
+
ε2

8

(
ω2− 1

ω2

))
cos(εt) cos(2ωt) +

ε4

32

(
1+

1

ω2

)
cos(εt)

]
+x2(0)

[
1

ω
cos(εt) sin(2ωt) + ε sin(εt) sin(ωt)2

]
+x3(0)

[
−εω

2
cos(εt) sin(2ωt) +

(
1

ω2
− ε

2

8

(
ω2− 1

ω2

))
sin(εt) +

ε2

8

(
ω2+

1

ω2

)
sin(εt) cos(2ωt)

]
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x2(t) = x1(0)
1

ω
sin(2ωt) + x2(0)

ε2

8

(
ω2− 1

ω2

)
+ x2(0)

(
1

ω2
− ε

4

32

(
1+

1

ω2

))
cos(2ωt) + x3(0)ε sin(ωt)2

x3(t) =x1(0)

[
−εω

2
cos(εt) sin(2ωt) +

(
1

ω2
+
ε2

8

(
ω2− 1

ω2

))
sin(εt) cos(2ωt)− ε

4

32

(
1+

1

ω2

)
sin(εt)

]
+x2(0)

[
− 1

ω
sin(εt) sin(2ωt) + ε cos(εt) sin(ωt)2

]
+x3(0)

[
−εω

2
sin(εt) sin(2ωt) +

(
1

ω2
− ε

2

8

(
ω2− 1

ω2

))
cos(εt) +

ε2

8

(
ω2+

1

ω2

)
cos(εt) cos(2ωt)

]
from which we can see that

‖(v1(εt), 0, v3(εt))− x(t)‖ ≤ ‖(0, 0, 1)− x(0)‖+O(ε) < δ, t ∈ [0, ϑ/ε]

for 0 < ε small enough. y

It is possible to generalize the result of the previous example to control functions
v : [0, 1]→ R3 \ {(0, 0, 0)}.

Theorem 4.4. Let v : [0, 1]→ R3, v ∈ C2([0, 1]) be a control function satisfying

min
t∈[0,1]

‖v(t)‖ > 0.

Let x(0) ∈ R3 \ {(0, 0, 0)} be such that ‖x0 − 〈x0 , v̂(0)〉 v̂(0)‖ < δ. There exist ε > 0
such that the solution x(t) of the equation

ẋ = A(v(εt))x, t ∈ [0, 1/ε]

satisfies

‖x(t)− 〈x(t) , v̂(εt)〉 v̂(εt)‖ < δ, ∀t ∈ [0, 1/ε].

Remark 4.5 (Sketch of the proof of Thm.4.4). The previous result follows from
a generalization to evolutions on Banach spaces of standard quantum adiabatic
results [AvFG]. In the hypothesis of the theorem 0 is eigenvalue of A(v(t)) for
each t and is protected by a gap. Therefore, the projection P on the instantaneous
eigenvector of eigenvalue 0 is well defined and kerA(v)⊕RanA(v) = R3. Notice that
P (t)x = 〈x , v̂(t)〉 v̂(t). We define propagator by parallel transport1 the collection of
the maps {T (s, s′)}s,s′∈R ⊂ Aut(R3), which are solution to the equation

∂

∂s
T (s, s′) = [Ṗ (s), P (s)]T (s, s′), T (s′, s′) = 1. (4.19)

1The definition above has a geometric counterpart in terms of an Ehresmann connection on the
trivial vector bundle over R with fiber R3. The Ehresmann connection is a generalization of the
Levi-Civita connection in Riemannian geometry, and defines parallel transport on general vector
bundles [vWes, Part IV][Spi, Chap. 8].
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In particular, they satisfy the intertwining property P (s)T (s, s′) = T (s, s′)P (s′). By
[AvFG, Theorem 9]

‖(1− P (t))x(t)‖ ≤ ‖(1− P (t))(x(t)− T (t, 0)x(0))‖+ ‖(1− P (t))T (t, 0)x(0)‖
= ‖(1− P (t))x(t)− T (t, 0)(1− P (0))x(0)‖+ ‖T (t, 0)(1− P (0))x(0)‖
≤ Cε ‖x(0)‖+ ‖(1− P (0))x(0)‖

which is the claim of the theorem. y

In the case of system (4.8) we can state a corollary of the previous theorem.

Corollary 4.6. Let u : [0, 1] → R2, u ∈ C2([0, 1]) be a control function for the
Hamiltonian (4.8). Let x(0) ∈ R3\{(0, 0, 0)} be such that ‖x(0)− 〈x(0) , ûE(0)〉 ûE(0)‖ <
δ. There exist ε > 0 such that the solution x(t) of the equation

ẋ = A(uE(εt))x, t ∈ [0, 1/ε]

satisfies

‖x(t)− 〈x(t) , ûE(εt)〉 ûE(εt)‖ < δ, ∀t ∈ [0, 1/ε].

4.3 Two-level open systems

We will now obtain the general form of the equation ρ̇ = L∗(ρ) in the Bloch coordi-
nates where L∗ is the generator in the form (3.33).

Given a generic matrix C = {cij} which is assumed positive semidefinite (then
Hermitian), and the standard Pauli basis {I, σ1, σ2, σ3}, (3.33) reads

L∗(ρ) =− i[H, ρ] +
1

2

3∑
i,j=1

cij [2σiρσ
∗
j − ρσ∗jσi − σ∗jσiρ]

=− i[H, ρ] +
1

2

3∑
j=1

cjj [2σjρσj − ρσjσj − (1)ρ] +
1

2

3∑
i,j=1,i 6=j

cij [2σiρσj − ρσjσi − σjσiρ].

From the elementary relation

σiσj = iεijkσk (4.20)

where εijk is the completely antisymmetric symbol2, one obtains that if k, h ∈
{1, 2, 3} and k 6= h then σkσhσk = −σh. Thus, this implies

2σjρσj − 2ρ = −2
∑
i

(1− δji)xiσi

2εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation, and 0 if
any index is repeated.
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and so

L∗(ρ) =− i[H, ρ] +

3∑
i,j=1

cjj(δji − 1)xiσi +
1

2

3∑
i,j=1,i 6=j

cij [2σiρσj − ρ(iεjikσk)− (iεjikσk)ρ].

Another elementary calculation based on (4.20) gives us σiρ + ρσi = σi + xi1,
i = 1, 2, 3, from which

L∗(ρ) =− i[H, ρ] +
3∑

i,j=1

cjj(δji − 1)xiσi +
1

2

3∑
i,j=1,i 6=j

cij [2σiρσj + iεijk(σk + xk1)].

Finally using

σiρσj =
1

2
(iεijkσk + xiσj + xjσi + ixkεikj) =

1

2
iεijk(σk − xk1) +

1

2
(xiσj + xjσi),

we arrive at

L∗(ρ) =− i[H, ρ] +

3∑
i,j=1

cjj(δji − 1)xiσi +
1

2

3∑
i,j=1,i 6=j

cij [(xiσj + xjσi) + iεijk(σk − xk1)

+ iεijk(σk + xk1)]

=− i[H, ρ] +
3∑

i,j=1

cjj(δji − 1)xiσi +
1

2

3∑
i,j=1,i 6=j

cij [(xiσj + xjσi) + 2iεijkσk].

The latter equation in Bloch coordinates reads

ẋ = (A(h) + Γ)x+ k (4.21)

where A(h) was obtained in (4.6) and

Γ =

 −2(c22 + c33) c12 + c21 c13 + c31

c12 + c21 −2(c11 + c33) c32 + c23

c13 + c31 c32 + c23 −2(c11 + c22)

 , (4.22)

k =2i(c23 − c32, c31 − c13, c12 − c21)T = 4(− Im(c23), Im(c13), − Im(c12))T .
(4.23)

Explicitly the equations are
ẋ1 = −2(c22 + c33)x1 − (h00 − h11)x2 + 2 Re(c12)x2 − 2 Im(h01)x3 + 2 Re(c13)x3 − 4 Im(c23)
ẋ2 = (h00 − h11)x1 + 2 Re(c12)x1 − 2(c11 + c33)x2 − 2 Re(h01)x3 + 2 Re(c23)x3 + 4 Im(c13)
ẋ3 = 2 Im(h01)x1 + 2 Re(c13)x1 + 2 Re(h01)x2 + 2 Re(c23)x2 − 2(c22 + c33)x3 − 4 Im(c12).

Observe that

Γ = (C + CT )− 2tr(C)1 = 2 Re(C)− 2tr(C)1.



56 CHAPTER 4. TWO-LEVEL CLOSED AND OPEN QUANTUM SYSTEMS

Thus, the positivity of C translates to a compatibility condition between Γ and k.
In fact, let us write C as

C = Re(C) + i Im(C),

then the condition 〈z , Cz〉 ≥ 0 reads

〈z , (Re(C) + i Im(C))z〉 = 〈z , Re(C)z〉+
i

4
〈z , k ∧ z〉 ≥ 0 ∀ z ∈ C3. (4.24)

Given that
tr(Γ) = 2tr(C)− 2tr(C)tr(1) = −4tr(C),

in terms of Γ and k, condition (4.24) reads

〈z , Γz〉 − 1

2
tr(Γ) ‖z‖2 +

i

2
〈z , k ∧ z〉 ≥ 0 ∀ z ∈ C3, (4.25)

which we observe is invariant under rotations

〈z , Γz〉 − 1

2
tr(Γ) ‖z‖2 +

i

2
〈z , k ∧ z〉 =

=
〈
Rz , RΓ(RTR)z

〉
− 1

2
tr(RTRΓ) ‖Rz‖2 +

i

2
〈Rz , R(k ∧ z)〉

=
〈
Rz , (RΓRT )Rz

〉
− 1

2
tr(RΓRT ) ‖Rz‖2 +

i

2
〈Rz , Rk ∧Rz〉 .

Remark 4.7. The map

C = Re(C) + i Im(C) 7→ (Γ, k)

is invertible from the subset of positive semidefinite matrices into the subset of
elements (Γ, k) ∈M3×3(R)× R3 that satisfy (4.25) and such that Γ ≤ 0.
In fact C ≥ 0 implies that Re(C) is real symmetric and Im(C) is real antisymmetric
as one can see from

Re(C) =
1

2
(C + C) =

1

2
(C + CT ), Im(C) =

1

2i
(C − C) =

1

2i
(C − CT ).

So first one notice from (4.23) that the map Im(C) 7→ k is one to one. Then observe
that Γij = 2 Re(cij) for i < j and Γii = −2

∑
j 6=i

cjj , so

2cii = 2tr(C) + Γii = −1

2
tr(Γ) + Γii.

y

From the discussion above we conclude that Re(C) is a symmetric non-negative
matrix, hence it diagonalizes (the fact that Γ is symmetric for each C is true only
in dimension 2, in general Γ has a mixed symmetry [AL, Sect. 2.4]). Moreover, it
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diagonalizes simultaneously with Γ. Performing the change of coordinates y = Rx
that diagonalize Γ, equation (4.21) become

ẏ = R(A(h) + Γ)RT y +Rk

where A(h)′ = RA(h)RT is skew-symmetric Γ′ = RΓRT is diagonal and the pair
(Γ′, Rk) satisfies (4.25). So, without loss of generality we can always assume Re(C)
diagonal .

In conclusion, the evolution of a generic two-level open system is completely
determined by a positive matrix C that we can assume in the form

C =

 c11 −ik3
4 ik2

4

ik3
4 c22 −ik1

4

−ik2
4 ik1

4 c33

 (4.26)

and a skew-symmetric matrix A(u)

A(u) =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (4.27)

which corresponds to the generic (traceless) HamiltonianH(u) = (1/2)(u1σ1+u2σ2+
u3σ3). Given this choice the Lindblad equation in Bloch coordinates reads

ẋ = (A(u) + Γ)x+ k (4.28)

where k = (k1, k2, k3) and Γ is the diagonal matrix −γ1 0 0
0 −γ2 0
0 0 −γ3

 , whose elements are


γ1 := 2(c22 + c33)
γ2 := 2(c11 + c33)
γ3 := 2(c11 + c22).

(4.29)
It is important to notice that, with these choices, equation (4.25) translates into the
following set of inequalities (see [AL, Sect. 2.3.1])

γ1 + γ2 ≥ γ3

γ2 + γ3 ≥ γ1

γ3 + γ1 ≥ γ2

γi ≥ |ki| i = 1, 2, 3

γ2
1 − (γ2 − γ3)2 ≥ 4k2

3

γ2
2 − (γ1 − γ3)2 ≥ 4k2

2

γ2
3 − (γ1 − γ2)2 ≥ 4k2

1.

In particular these inequalities imply that if γ1γ2γ3 = 0 then k = 0. This gives us
a classification of open systems in two types. We will characterize each subcase in
the following sections.
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Remark 4.8 (Equilibrium points of the control system). We consider the system
(4.28) where u is treated as control parameter. Let E be the set of points x such
that 0 = 〈x , ẋ〉, i. e.

E := {x | 〈x , Γx+ k〉 = 0} (4.30)

Case 1 : γ1γ2γ3 6= 0
The set E is an ellipsoid. In fact

0 = 〈x , Γx+ k〉 =
〈
x , −Γ(x+ Γ−1k)

〉
,

which can be written as∥∥∥∥√−Γx+
1

2
(−Γ)−

1
2k

∥∥∥∥2

=

∥∥∥∥1

2
(−Γ)−

1
2k

∥∥∥∥2

(4.31)

where
√
−Γ = diag(

√
γ1,
√
γ2,
√
γ3). The origin always belong to E. Moreover,

if x ∈ E \ {0} then there exists ux ∈ R3 such that (A(ux) + Γ)x+ k = 0. Last
equation is in fact equivalent to

〈y , (A(ux) + Γ)x〉 = 〈y , −k〉 ∀y ∈ R3, (4.32)

but it is enough to satisfy (4.32) for y = ei, i = 1, 2, 3, where {e1, e2, e3} is an
orthonormal basis. If we choose e3 = Γx/ ‖Γx‖ and e1, e2 such that e1∧e2 = e3

we obtain the following equations for ux〈
Γx

‖Γx‖
, A(ux)x

〉
=

〈
Γx

‖Γx‖
, −k

〉
− ‖Γx‖

〈e1 , A(ux)x〉 = 〈e1 , −k〉
〈e2 , A(ux)x〉 = 〈e2 , −k〉

which admit always at least one solution.

Case 2 : γ1γ2γ3 = 0
The set E is a line. Assume without loss of generality that γ3 = 0 and
γ := γ1 = γ2 (if γi = γj = 0 then γk = 0 for every triple of different indexes
i, j, k).

0 = 〈x , Γx〉 = −γx2
1 − γx2

2 ⇔ x = (0, 0, x3).

y

Remark 4.9 (Invariance of the Bloch ball). If γ1γ2γ3 = 0 then

〈x , ẋ〉 = 〈x , (A(u) + Γ)x+ k〉 = 〈x , Γx〉 ≤ 0.

On the other hand, if γ1γ2γ3 6= 0 from the previous Remark we can see that 0 ≤
〈x , ẋ〉 = 〈x , Γx+ k〉 if and only if∥∥∥∥√−Γx+

1

2
(−Γ)−

1
2k

∥∥∥∥2

≤
∥∥∥∥1

2
(−Γ)−

1
2k

∥∥∥∥2

,
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which means for x inside the ellipsoid E. Therefore we will show that if x is such
that 〈x , ẋ〉 = 0 then ‖x‖ ≤ 1, this implies E ⊂ B1(0) and that the ball is invari-
ant. Observe that from the inequality (4.25), choosing z = e1(x) + ie2(x) where
e1(x), e2(x) ∈ R3 are orthonormal vectors such that x/ ‖x‖ = e1(x) ∧ e2(x), we get〈
e1(x) ,

(
Γ− 1

2
trΓ

)
e1(x)

〉
+

〈
e2(x) ,

(
Γ− 1

2
trΓ

)
e2(x)

〉
+ 〈e1(x) ∧ e2(x) , k〉 ≥ 0

−trΓ +

〈
x

‖x‖
, k

〉
≥ 〈e1(x) , −Γe1(x)〉+ 〈e2(x) , −Γe2(x)〉 .

Similarly we could choose z′ = e2(x) + ie1(x) and this leads to

−trΓ−
〈

x

‖x‖
, k

〉
≥ 〈e1(x) , −Γe1(x)〉+ 〈e2(x) , −Γe2(x)〉 .

Since 〈x , Γx+ k〉 = 0

−trΓ− 1

‖x‖
〈x , −Γx〉 ≥ 〈e1(x) , −Γe1(x)〉+ 〈e2(x) , −Γe2(x)〉

−trΓ ≥ 〈e1(x) , −Γe1(x)〉+ 〈e2(x) , −Γe2(x)〉+
1

‖x‖
〈x , −Γx〉

−trΓ ≥ −trΓ−
〈

x

‖x‖
, −Γ

x

‖x‖

〉
+

1

‖x‖
〈x , −Γx〉

therefore 〈
x

‖x‖
, −Γ

x

‖x‖

〉
≥
〈

x

‖x‖
, −Γ

x

‖x‖

〉
‖x‖ ⇔ 1 ≥ ‖x‖ .

y

Remark 4.10 (Bloch equations). Following [GKS], we want to show that there
exists an abstract characterization of the vectors k compatible with each matrix Γ
in the form (4.29).

Let k = −(A(u) + Γ)k0 where k0 ∈ KΓ, a subset of R3 defined as follows

KΓ =

{
y ∈ R3 | inf

‖x‖=1
〈x , −Γ(x− y) + y ∧ u〉 ≥ 0

}
,

Then equation (4.28) writes

ẋ = (A(u) + Γ)x+ k = (A(u) + Γ)(x− k0) = u ∧ (x− k0) + Γ(x− k0),

which is commonly known as Bloch equation. One observes immediately that if
k0 ∈ KΓ then the unit ball is invariant under the dynamics, in fact

0 ≤ inf
‖x‖=1

〈x , −Γ(x− k0) + k0 ∧ u〉 = inf
‖x‖=1

−〈x , (A(u) + Γ)(x− k0)〉 = inf
‖x‖=1

−〈x , ẋ〉 .

Moreover, if k ∈ KΓ then (Γ, k) satisfy the inequality (4.25). y
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To conclude this section we illustrate some examples of open systems which are
physically interesting.

Example 4.11 (Lindblad eq. rotationally symmetric around the axis of the mag-
netic field). Let us consider the equation (3.35) with

H(0) =
1

2
Eσ3, L1 =

√
b+σ+, L2 =

√
b−σ−, L3 =

√
aσ3, a, b+, b− ≥ 0

where σ± = 1/2(σ1 ± iσ2), then

ρ̇ =
1

2
E(−yσ1+xσ2)+a(−xσ1−yσ2)+b+(σ3−

1

2
xσ1−

1

2
yσ2−zσ3)+b−(−σ3−

1

2
yσ1−

1

2
yσ2−zσ3)

that in Bloch coordinates reads

ẋ1 = −(4a+ b+ + b−)x1 − Ex2

ẋ2 = Ex1 − (4a+ b+ + b−)x2

ẋ3 = −2(b+ + b−)x3 + 2(b+ − b−) (4.33)

which corresponds to

C =

 b+ + b− −i b+−b−2 0

i b+−b−2 b+ + b− 0
0 0 4a

 .

Define
Γ = 4a+ b+ + b− γ+ = 2(b+ + b−) γ− = 2(b+ − b−),

then
2Γ ≥ γ+ ≥ |γ−| .

Observe that if γ+ 6= 0

ẋ3 = −γ+

(
x3 −

γ−
γ+

)
,

so the system has a unique fixed point xc = (0, 0, γ−γ+
) with γ−

γ+
∈ [−1, 1] (see Fig.4.2a).

Otherwise, if γ+ = 0 the entire x3-axis consist of fixed points. The term L3 causes
a contraction on the x1x2-plane, the term L1 induces a transition toward the point
(0, 0, 1) i. e. if b+ > 0 and b− = 0 then γ−/γ+ = 1. Conversely, L2 induces a
transition toward the point (0, 0,−1). If we add to the Hamiltonian the control
operators σ1, σ2

H(u1, u2) =
1

2

(
Eσ3 + u1σ1 + u2σ2

)
the equations becomes

ẋ1 = −(4a+ b+ + b−)x1 − Ex2 + u2x3

ẋ2 = Ex1 − (4a+ b+ + b−)x2 − u1x3

ẋ3 = −u2x1 + u1x2 − 2(b+ + b−)x3 + 2(b+ − b−). (4.34)
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Figure 4.2

(a) Two trajectories of system (4.33) with
different initial points converging towards
(0, 0, γ−/γ+). Parameters are a = 0, b+ =
1, b− = 4, E = 5. In trasparency the ellip-
soid (4.36).

(b) Two trajectories of system (4.34) with
different initial points converging towards a
point of the ellipsoid (4.36). The coordinates
of the equilibrium point are given by (4.35)
where parameters are a = 0, b+ = 1, b− =
4, E = 5 and u1 = 3, u2 = 1.5.

The coordinates of the fixed point are

x1 =
γ−

γ+ + ΓcE,Γ(u2
1 + u2

2)
cE,Γ(Eu1 + Γu2)

x2 =
γ−

γ+ + ΓcE,Γ(u2
1 + u2

2)
cE,Γ(Eu2 − Γu1) (4.35)

x3 =
γ−

γ+ + ΓcE,Γ(u2
1 + u2

2)
where cE,Γ =

1

E2 + Γ2
,

which corresponds to a point of the surface

Γ(x2
1 + x2

2) + γ+

(
x3 −

γ−
2γ+

)2

=
γ2
−

4γ+
, (4.36)

see Fig.4.2a,4.2b. Notice that the drift term does not affect the set of equilibrium
point of the system.

With this notation of a two-level system spontaneously decaying from the excited
state |1〉 to the ground state |0〉 while emitting a photon is given by

H(0) =
1

2
Eσ3, L1 =

√
b−σ−.

In fact, the evolution of |1〉 〈1|, which corresponds to (0, 0, 1) in Bloch coordinates is
x1(t) = x2(t) = 0, x3(t) = 2e−2b−−1. As noticed before every initial state converges
toward |0〉 〈0| (see Fig.4.3). y
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Figure 4.3: Decaying system.
Two different trajectories of
system (4.33) with E =
1, a = 0, b+ = 0, b− = 1.
In transparency the ellipsoid
(4.36).

4.3.1 Results of geometric control theory for open quantum sys-
tems

Geometric control tools for affine systems, presented in Section 2.1.4 were applied
to finite dimensional open quantum system in the vector of coherence formulation.
In particular in the work of Altafini [Alt], the case of two-level quantum system is
considered in detail. We state here the main result of that paper.

Theorem 4.12 ( [Alt, Thm. 5] ). Assume that the system

i
d

dt
ψ = H(u)ψ =

(
H(0) +

m∑
k=1

ukHk

)
ψ, ψ ∈ C2

with u ∈ U ⊂ Rm and −iHk ∈ su(2) is controllable. Then for a two-level system
(4.28) we have:

(a) the system (4.28) is accessible in B1(0),

(b) the system (4.28) is never small-time nor finite-time controllable in B1(0) for
Γ 6= 0.

Under Assumption 4.8 the system

i
d

dt
ψ = H(u)ψ =

1

2
(Eσ3 + u1σ1 + u2σ2)ψ

is controllable by Theorem 2.24, so the previous results applies to our analysis. The
result is partially negative, because controllability cannot be achieved on the whole
Bloch ball. However, as in the case of closed system we want to see if adiabatic
theory can be useful to produce robust controllability technique (on a smaller set).

4.4 Geometric Singular Perturbation

In this section we will recall briefly the main technique used in our analysis.
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For closed systems the dynamics preserve the purity of the states, which also
means that the equilibrium points of the system are stable but not asymptotically
stable and every state follows a periodic orbit. In fact, by choosing a suitable control,
one is able to modify these orbits in order to steer the system between states with
equal purity. Similarly, for open systems, we saw in Remark 4.8 that exists a set of
equilibrium points which depends on the Hamiltonian H(u), and so on the control u.
However, in contrast with the closed systems, we will show that every state converge
towards the equilibrium set. Moreover, if we control the system adiabatically, once
the state approaches the surface (4.30) it will follow the instantaneous critical point.
We will show this by means of geometric singular perturbation techniques.

Consider the control equation

ẏ = g(y, u) y ∈ Rn, u ∈ Rm (4.37)

and suppose that there exists a submanifold E of Rn such that

0 = g(y, u) ∀y ∈ E .

If rank(∂g∂y ) = n and rank( ∂g∂u) = k ≤ m the manifold E admits a parametrization
in terms of the control variable u given by the Implicit Function Theorem. We will
denote this parametrization h = h(u), so

0 = g(h(u), u) ∀u ∈ Rm.

Now choose a path in the control space u∗ : [0, 1] → Rm and consider the slowed
system

y′ = g(y, u∗(ετ)) ε� 1. (4.38)

This time dependent problem could be seen as a multiscale system in which the time
plays the role of the slow variable.

Introducing the variable x := ετ , we can rewrite (4.38){
x′ = ε x(0) = 0
y′ = g(y, u∗(x)) y(0) = y0,

(4.39)

we should also consider the time scaling t = ετ and the system{
ẋ = 1 x(0) = 0
εẏ = g(y, u∗(x)) y(0) = y0,

(4.40)

where we denoted with ˙ the derivative with respect to t and with ′ the derivative
with respect to τ .

In the following we will use the notation (4.39.ε0),(4.40.ε0) to denote (4.39),(4.40)
for fixed ε = ε0. We define also yc(x) := h(u∗(x)) to not overweight the notation.
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Remark 4.13. Observe that the manifold E ′ =
{(
x, h(u∗(x))

)
, x ∈ [0, 1]

}
consists

entirely of critical points for the system (4.39.0), while (4.39.ε) has no critical point
for ε 6= 0. This singularity in the nature of the dynamics of (4.39) is the charac-
terizing feature of the singular perturbations problems. Instead, E ′ is the support
of

(t, yc(t)) =
(
t, h(u∗(t))

)
t ∈ [0, 1],

which is the unique solution of (4.40.0) with initial condition y0 = h(u∗(0)) =
yc(0). y

We want to show that for ε sufficiently small and for y0 ∈ Bρ(yc(0)), with ρ
small enough, the solution y(t, ε) of (4.40.ε) with initial condition y0 is definitively
near the solution yc(t), i. e.

y(t, ε)− yc(t) = O(ε) t ∈ [tb, 1],

with 0 < tb < 1.

It is more convenient to study the system after the change of coordinates η =
y − h(u∗(x)).{

x′ = ε x(0) = 0

η′ = g(η + h(u∗(x)), u∗(x))− ε∂h∂u(u∗(x))u′∗(x) η(0) = y0 − h(u∗(0))
(4.41){

ẋ = 1 x(0) = 0

εη̇ = g(η + h(u∗(x)), u∗(x))− ε∂h∂u(u∗(x))u̇∗(x) η(0) = y0 − h(u∗(0))
(4.42)

where u̇∗, u
′
∗ denote the same function which is the time derivative of u∗. The path

of critical points is now {(x, 0), x ∈ [0, 1]}.

Theorem 4.14 (Tychonoff). Consider the singular perturbation problem

ẋ = f(t, x, y, ε), x(t0) = µ(ε) (4.43)

εẏ = g(t, x, y, ε), y(t0) = ν(ε) (4.44)

and let y = h(t, x) be an isolated root of 0 = g(t, x, y, 0). Assume that the following
conditions are satisfied for all

(t, x, y − h(t, x), ε) ∈ [0, t1]×Dx ×Dy × [0, ε0]

for some domains Dx ⊂ Rq and Dy ⊂ Rn, in which Dx is convex and contains the
origin:

i) The functions f, g, ∂f/∂(x, y, ε), ∂g/∂(t, x, y, ε) are continuous; the func-
tions h(t, x) and ∂g(t, x, y, 0)/∂y have continuous first partial derivatives with
respect to their arguments; the initial data µ(ε) and ν(ε) are smooth functions
of ε.
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ii) The reduced problem

ẋ = f(t, x, h(t, x), 0), x(t0) = µ(0) (4.45)

has a unique solution x̄(t) ∈ S, for t ∈ [t0, t1], where S is a compact subset of
Dx.

iii) The origin is an exponentially stable equilibrium point of the boundary-layer
model

∂η

∂τ
= g(t̂, x̂, η + h(t̂, x̂), 0), (t̂, x̂) ∈ [0, t1]×Dx (4.46)

uniformly in (t̂, x̂); let Ry ⊂ Dy be the region of attraction of

∂η

∂τ
= g(t0, µ(0), η + h(t0, µ(0)), 0), η(0) = ν(0)− h(t0, µ(0)) (4.47)

and Ωy ⊂ Ry a compact set.

There exists a positive constant ε∗ such that for all ν(0)− h(t0, µ(0)) ∈ Ωy and 0 <
ε < ε∗, the singular perturbation problem (4.43) has a unique solution x(t, ε), y(t, ε)
on [t0, t1], and

x(t, ε)− x̄(t) = O(ε)

y(t, ε)− h(t, x̄(t))− η̂(t/ε) = O(ε)

hold uniformly for t ∈ [t0, t1], where η̂ is the solution of the boundary-layer model
(4.46).

Moreover, given any tb > t0, there is ε∗∗ ≤ ε∗ such that

y(t, ε)− h(t, x̄(t)) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever ε < ε∗∗.

4.5 Slowly driven two-level open systems

In this Section we apply the geometric singular perturbation theory to the specific
case of a two-level quantum open system, obtaining a result (Prop. 4.15) in the
generic case γ1γ2γ3 6= 0. The idea is to obtain a result analogous to Theorem 4.4 or
Corollary 4.6 for open systems.

Consider equation (4.28) where u : [0, 1]→ R3 is a fixed time dependent control
function which varies slowly, i. e.

y′ = (A(u(ετ)) + Γ)y + k, τ ∈ [0, 1/ε], ε� 1. (4.48)

As we saw before in Section 4.3 this equation describes the dynamics of a two-level
open quantum system which is slowly driven. Equivalently, we can consider the
equation

εẏ = (A(u(t)) + Γ)y + k, t ∈ [0, 1], ε� 1. (4.49)



66 CHAPTER 4. TWO-LEVEL CLOSED AND OPEN QUANTUM SYSTEMS

Case 1 : γ1γ2γ3 6= 0
Γ is negative definite and so is A(u) + Γ. In fact,

〈y , (A(u) + Γ)y〉 = 〈y , Γy〉 ≤ 0,

then 0 /∈ σ(A(u) + Γ). Therefore for each u ∈ R3 exists a unique fixed point of
the dynamics which is yc(u) = −(A(u) + Γ)−1k. Linearizing around this point
and performing the coordinates change η = y − yc(u) the system reads

η′ = (A(u) + Γ)η − ε∂yc
∂u

(u(ετ))u′(ετ).

We observe that the origin is uniformly exponentially stable for

η′ = (A(û) + Γ)η, ∀û ∈ {u(t) | t ∈ [0, 1]}

because, since û varies in a compact set

sup
û

sup
‖y‖=1

〈y , (A(û) + Γ)y〉 = max
‖y‖=1

〈y , Γy〉 < 0.

In conclusion Tychonoff theorem holds for this system (see Fig.4.4).

Proposition 4.15. Consider the system (4.49) in the case Γ < 0. Let u : [0, 1]→ R3

be a C1 control function and y0 ∈ B1(0) an arbitrarily initial data. For each tb ∈ [0, 1]
there exists ε∗∗ > 0 such that for all ε < ε∗∗ the solution yε(t) of equation (4.49) is
such that

‖yε(t)− yc(u(t))‖ = O(ε)

for all t ∈ [tb, 1], where

yc(u) = −(A(u) + Γ)−1k.

Case 2 : γ1γ2γ3 = 0
Assume without loss of generality that γ3 = 0 and γ := γ1 = γ2 (if γi = γj = 0
then γk = 0 for every triple of different indexes i, j, k). We observe that
(A(u) + Γ)y = 0 has only the trivial solution iff

0 /∈ σ(A(u) + Γ) ⇔ det(A(u) + Γ) 6= 0 ⇔ 4γ(u2
1 + u2

2) 6= 0,

moreover

det(A(u) + Γ− λ1) ≥ 4γ(u2
1 + u2

2) if λ ≥ 0.

Therefore if u2
1 + u2

2 6= 0 the system has 0 as unique fixed point and σ(A(u) +
Γ) ⊂ {z | Re(z) < 0}, then it converges toward the origin. If u1 = u2 = 0 the
entire y3-axis consists of fixed points and the equation for y3 decouples, so the
system converges toward the point (0, 0, y3(0)).
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Figure 4.4: Trajectory of system (4.34) (blue line) with control u1(t) = −t sin(t)/ϑ,
u2(t) = −t sin(t)/ϑ. Parameters are a = 0, b+ = 0, b− = 0.01, E = 2, ϑ = π and
ε = 0.001. In green the trace of uE/ ‖uE‖. In red the instantaneous equilibrium
yc(uE(t)) given by (4.35). Below the plot of the distance between the blue and red
trajectories.
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In this case we can prove that the set of reachable points for t→∞ coincides
with a compact subinterval of the segment {(0, 0, s) | s ∈ [0, 1]}. Indeed,
assume (without lost of generality) that the initial state of the system lies in
the plane {y = 0}, namely y0 = (y1(0), 0, y3(0)), than we choose to apply a
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control of the form u = (0, u2, 0). Therefore the system reduces to

ẏ1 =− γy1 + 2u2y3

ẏ2 = 0

ẏ3 =− 2u2y1.

Solving the equations for y1, y3 under the constraint 4 |u2| > γ, we obtain(
y1(t)
y3(t)

)
= e−γt/2

(
cos(ωt) + γ

2ω sin(ωt) −2u2
ω sin(ωt)

2u2
ω sin(ωt) cos(ωt)− γ

2ω sin(ωt)

)(
y1(0)
y3(0)

)
(4.50)

where the angular velocity ω :=
√

4u2
2 − γ2/4. So, one can see that

z+ := sup
t≥0

y3(t) = sup
t≥0

e−γt/2
(

2u2

ω
sin(ωt)y1(0) + cos(ωt)y3(0)− γ

2ω
sin(ωt)y3(0)

)
(4.51)

and

z− := max
t≥0

y3(t) = max
t≥0

e−γt/2
(

2u2

ω
sin(ωt)y1(0) + cos(ωt)y3(0)− γ

2ω
sin(ωt)y3(0)

)
(4.52)

are assumed for some finite value of t, namely t+ and t− (the function in
the above parenthesis is periodic, so y3(t) assume is max and min value in
[0, 2π/ω]). Observe that for γ = 0 one has ‖y0‖ = supt≥0 y3(t) = − inft≥0 y3(t).

Thus for every value yf3 ∈ [z−, z+] exists a time tf ∈ [0,max{t−, t+}] such that

y3(tf ) = yf3 if u(t) = (0, u2, 0) for t ∈ [0, tf ]. Now defining u(t) = (0, 0, E) for

t > tf the systems converges exponentially fast to (0, 0, yf3 ).

The result we obtained is partially satisfying. However, it could be a first step to
study more general models of open quantum system. In particular, the main issue
of our approach is the effectiveness of the Lindblad equation in the description of
adiabatic open quantum systems. As we have seen in our analysis, the dynamics
described by (4.28) is almost always a motion that converges exponentially fast to
a unique equilibrium. In this framework the adiabatic theory cannot be effective
because the convergence rate is accelerated when the time is slowed.

In literature, between the approaches to adiabatic open quantum systems, we
are interested in the works of Lidar et al. [Lid1],[Lid2].In those papers the authors
develop a physical model where to any variation of the Hamiltonian it corresponds
a variation of the Lindblad operators. This is due to the fact that the dissipa-
tion/decoherence of the system occurs in the instantaneous energy eigenbasis.



Chapter 5

Controllability of spin-boson
models

5.1 Introduction

In quantum mechanics one names spin-boson model an Hamiltonian that describe
the interaction of a finite dimensional system, usually called spin, with one bosonic
mode of a field. These type of models, arise in many different physical contexts,
such as cavity QED, quantum optics and magnetic resonance. Two important spin
boson models are the Rabi model and the Jaynes-Cummings model, which are also
some of firsts ever introduced [Ra1][Ra2][JaCu].

In the field of quantum control the study of these models has recently begun.
Their interest lies in the fact that are some of the simplest infinite dimensional
systems. More precisely, their simplicity could be seen at the level of symmetries.
In general, symmetries are an obstacle to controllability, because they imply the
existence of invariant subspaces for the system dynamics. Therefore, the external
control must necessarily break all the symmetries of the unperturbed system in
order to achieve controllability. There are highly symmetric systems that cannot be
controlled, e. g. the harmonic oscillator, which was proved to be uncontrollable by
Mirrahimi and Rouchon [MiRo]. On the other hand, controllability was proved for
the trapped ion model [EbLa][ErPu] and more recently for the Rabi Hamiltonian
[BMPS]. So, one may wonder whether more symmetric models are controllable. The
Jaynes-Cummings model in particular, has an additional conserved quantity than
the Rabi model, namely the total number of excitations, and his controllability is
an interesting matter. The question was posed by Rouchon [Ro] some years ago.

In this chapter we provide an answer to this question. In Theorem 5.1 we prove
that the Jaynes-Cummings model is controllable for almost every value of the in-
teraction parameter, i. e. up to a set S of measure zero. Then, in Theorem 5.2 we
characterize the points of S as solutions to explicit equations. Our technique exploits
three ingredients: the integrability of the model [JaCu]; a study of the resonances
of the spectrum which allows to invoke the controllability criterion 2.40 presented

69
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in Sect. 2.2.3; a detailed analysis of the resonance condition.
As for the future perspective, an interesting task would be provide a constructive

control method for the Jaynes-Cummings model. In this chapter, we make an explicit
contruction of a non-resonant chain of connectedness (see Def.2.39). However, as far
as we know, this fact implies the approximate controllability of the system only via a
theorem [BCCS] whose proof is not constructive. As for a related problem, is known
that the Jaynes-Cummings Hamiltonian (JCH) could be seen as an approximation
of the Rabi Hamiltonian in an appropriate regime, as discussed by [Ro]. A rigorous
mathematical proof of the latter claim could provide a deeper understanding of these
two models.

5.2 The Jaynes-Cummings model

5.2.1 Definition of the model

In the Hilbert space H = L2(R)⊗ C2 we consider the Schrödinger equation

i~ ∂tψ = HJCψ

with Hamiltonian operator (JC Hamiltonian)

HJC ≡ HJC(g) =
~ω
2

(X2 + P 2)⊗ 1+
~Ω

2
1⊗ σz +

~g√
2

(X ⊗ σx − P ⊗ σy) (5.1)

where ω,Ω ∈ R+ and g ∈ R are constants, X is the position operator, i. e. Xψ(x) =
xψ(x), and P = −i∂x. The operators σx, σy, σz acting on C2 are given by the Pauli
matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

The quantity ∆ := Ω − ω is called detuning and measures the difference between
the energy quanta of the two subsystems corresponding to the factorization of the
Hilbert space.

By introducing the creation and annihilation operators for the harmonic oscil-
lator, defined as usual by

a† =
1√
2

(X − iP ) a =
1√
2

(X + iP ), (5.2)

and the lowering and raising operators

σ =
1

2
(σx − iσy) =

(
0 0
1 0

)
σ† =

1

2
(σx + iσy) =

(
0 1
0 0

)
, (5.3)

the JC Hamiltonian (omitting tensors) reads

HJC = ~ω
(
a†a+

1

2

)
+

~Ω

2
σz +

~g
2

(
aσ† + a†σ

)
.
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The popularity of this model relies on the fact that it is presumably the simplest
model describing a two-level system interacting with a distinguished mode of a
quantized bosonic field (the harmonic oscillator). It was introduced by Jaynes and
Cummings in 1963 as an approximation to the Rabi Hamitonian

HR = HR(g) = ~ω
(
a†a+

1

2

)
+

~Ω

2
σz +

~g
2

(a+ a†)(σ + σ†). (5.4)

The latter traces back to the early works of Rabi on spin-boson interactions [Ra1,
Ra2], while in [JaCu] Jaynes and Cummings derived both (5.1) and (5.4) from a
more fundamental model of non-relativistic Quantum Electro Dynamics (QED).

Nowadays, both Hamiltonians (5.1) and (5.4) are widely used in several fields of
physics. Among them, one of the most interesting is cavity QED. In typical cavity
QED experiments, atoms move across a cavity that stores a mode of a quantized
electromagnetic field. During their passage in the cavity the atoms interact with
the field: the Hamiltonians (5.1) and (5.4) aim to describe the interaction between
the atom and the cavity, in different regimes [BRH, HaRa]. More precisely, (5.1)
and (5.4) can be heuristically derived from a mathematical model of non-relativistic
QED, the Pauli-Fierz model [Sp]; we refer to [Co1] and the more recent [BMPS] for
a discussion of this derivation.

The approximation consisting in replacing (5.4) with (5.1) is commonly known
as the rotating wave approximation (or secular approximation), and is valid under
the assumptions [Ro]

|∆| � ω,Ω g � ω,Ω (5.5)

which mean that the harmonic oscillator and the two-level system are almost in
resonance and the coupling strength is small compared to the typical energy scale.
Heuristically, in this regime the probability of creating or destroying two excitations
is negligible, thus one can remove the so-called counter-rotating terms a†σ† and aσ
in (5.4) to obtain (5.1). More precisely, the justification of this approximation relies
on separation of time scales, a well-know phenomenon in several areas of physics
[PST1, PST2, PSpT]. Indeed, by rewriting the dynamics generated by (5.4) in the
interaction picture with respect to

H0 := HJC(0) = HR(0) = ~ω
(
a†a+

1

2

)
+

~Ω

2
σz, (5.6)

one gets

eiH0t/~(HR −H0)e−iH0t/~ =
g

2

(
e−i(Ω−ω)ta†σ + ei(Ω−ω)taσ†

)
+
g

2

(
e−i(Ω+ω)taσ + ei(Ω+ω)ta†σ†

)
. (5.7)

One notices that the terms a†σ, aσ† oscillate with frequency |ω − Ω|, while a†σ†, aσ
oscillate on the faster scale ω+Ω, so that the latter average to zero on the long time
scale |ω − Ω|−1. While the physical principles leading from (5.4) to (5.1) are clear,
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as we mentioned in the Introduction a rigorous mathematical justification for this
approximation seems absent from the literature, as recently remarked in [Ro].

We use hereafter Hartree units, so that in particular ~ = 1.

5.2.2 Spectrum of the JC Hamiltonian

While apparently similar, the JC Hamiltonian (5.1) and the Rabi Hamiltonian (5.4)
are considerably different from the viewpoint of symmetries.

As operators, they are both infinitesimally small perturbation, in the sense of
Kato [Ka], of the free Hamiltonian H0 (defined in (5.6)), which has compact re-
solvent. Eigenvalues and eigenvectors of H0 are easily obtained by tensorization,
starting from the eigenvectors {e1, e−1} of σz and the standard basis of L2(R) given
by real eigenfunctions of a†a, namely the Hermite functions

|n〉 =
1√

2nn!
√
π
hn(x) e−

x2

2 , n ∈ N, (5.8)

where hn is the n-th Hermite polynomial. As well known, they satisfy

a†a |n〉 = n |n〉 , a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 . (5.9)

Then
H0 |n〉 ⊗ e1 = E0

(n,1) |n〉 ⊗ e1, H0 |n〉 ⊗ e−1 = E0
(n,−1) |n〉 ⊗ e−1

with

E0
(n,s) = ω(n+

1

2
) + s

Ω

2
, n ∈ N, s ∈ {−1, 1}.

Since (a+ a†)σx and (aσ† + a†σ) are infinitesimally H0-bounded, by standard per-
turbation theory {HJC(g)}g∈C and {HR(g)}g∈C are analytic families (of type A) of
operators with compact resolvent [Ka, Section VII.2]. Therefore, by Kato-Rellich
theorem, the eingenvalues and eigenvectors of HJC(g) and HR(g) are analytic func-
tions of the parameter g. Coefficients of the series expansion of eingenvalues and
eigenvectors can be explicitly computed [RS4].

From the viewpoint of symmetries, it is crucial to notice that, as compared to
the Rabi Hamiltonian, the JC Hamiltonian has an additional conserved quantity,
namely the total number of excitations, represented by the operator C = a†a+σ†σ.
As a consequence, the JC Hamiltonian reduces to the invariant subspaces

Hn = Span{|n〉 ⊗ e1, |n+ 1〉 ⊗ e−1} n ≥ 0, H−1 = Span{|0〉 ⊗ e−1}, (5.10)

which are the subspaces corresponding to a fixed number of total excitations, i. e.
C �Hn= n+ 1. Indeed, HJC restricted to these subspaces reads

Hn(g) := HJC(g) �Hn=

(
E0

(n,1) g
√
n+ 1

g
√
n+ 1 E0

(n+1,−1)

)

= ω(n+ 1)1+

(
∆/2 g

√
n+ 1

g
√
n+ 1 −∆/2

)
. (5.11)
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Eigenvalues and eigenvectors of Hn are easily computed to be

HJC(g) |n, ν〉 = E(n,ν) |n, ν〉 , n ∈ N, ν ∈ {−,+} (5.12)

where

E(n,ν)(g) = ω(n+ 1) + ν
1

2

√
∆2 + 4g2(n+ 1) (5.13)

|n,+〉 (g) = cos(θn/2) |n〉 ⊗ e1 + sin(θn/2) |n+ 1〉 ⊗ e−1 (5.14)

|n,−〉 (g) = − sin(θn/2) |n〉 ⊗ e1 + cos(θn/2) |n+ 1〉 ⊗ e−1 (5.15)

and the mixing angle θn(g) ∈ [−π/2, π/2] is defined through the relation

tan θn :=
2g
√
n+ 1

ω − Ω
. (5.16)

Hereafter, we will omit the g-dependence of the eigenvectors |n, ν〉 for the sake of
a lighter notation. Observe that in the resonant case, i. e. ∆ = 0, equation (5.16)
implies |θn| = π/2 for every n ∈ N, hence the eigenvectors |n, ν〉 are independent
from g, while the eigenvalues still depend on it.

Moreover, depending on the sign of ∆, one has

E(n,+)(0) = E0
(n,1) E(n,−)(0) = E0

(n+1,−1), for ∆ > 0

E(n,+)(0) = E0
(n+1,−1) E(n,−)(0) = E0

(n,1), for ∆ < 0

E(n,ν)(0) = E0
(n+1,−1) = E0

(n,1), for ∆ = 0

.

As we mentioned before, in view of Kato-Rellich theorem, the eigenvalues of HJC(g)
are analytic in g if a convenient labeling is chosen. The table above shows which
function, among g 7→ E(n,+)(g) and g 7→ E(n,−)(g), provides the analytic continua-
tions of the spectrum at the points E0

(n,1) or E0
(n+1,−1). When ∆ = 0, in order to have

analytic eigenvalues and eigenfunctions we must choose E(n,ν) = ω(n+1)+ν
√
n+ 1g.

The spurious eigenvector |0〉 ⊗ e−1 with eigenvalue E0
(0,−1) = ∆/2 completes the

spectrum of the JCH. Let us define

δ ≡δ(∆) :=

{
+ if ∆ ≥ 0
− if ∆ < 0

.

Throughout the paper we will use the notation |−1, δ〉 := |0〉 ⊗ e−1 and E(−1,δ) :=
E0

(0,−1). We will denote a pair (n, ν) with a bold letter n, meaning that the first
component of n is the same not-bold letter while the second component is the
corresponding Greek letter, namely

n = (n, ν), n(1) = n, n(2) = ν.

Let also us define

fn(g) :=
1

2

√
∆2 + 4g2(n+ 1). (5.17)
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With this notation, we can write the spectrum of the JC Hamiltonian in a synthetic
way as

σ
(
HJC(g)

)
= {En}n∈N , En(g) = ω(n+ 1) + νfn(g) (5.18)

where

N := (N× {−,+}) ∪ {(−1, δ(∆))}. (5.19)

Notice that the notation is coherent since

E(−1,δ) = δ(∆)f−1(g) = δ(∆)
|∆|
2

=
∆

2
= E0

(0,−1),

in agreement with the definition above. It will be also useful introduce the following
sets

N± := N ∪ {∓δ(∆)1} (5.20)

which are copies of the natural numbers with {−1 } added to the set with the index
δ(∆).

5.3 General setting and main result

In most of the physically relevant applications, the external control does not act on
the spin part [BMPS, Sp]. Hence, we consider the JC dynamics with two different
control terms acting only on the bosonic part, namely

H1 = X ⊗ 1 H2 = P ⊗ 1. (5.21)

To motivate our choice, we notice that – for example – in the cavity QED context
the experimenters can only act on the electromagnetic field stored in the cavity. In
this context the control terms H1, H2 correspond, respectively, to an external electric
field and a magnetic field in the dipole approximation, see [BMPS, Section I.A], and
the control functions u1(t), u2(t) model the amplitudes of this external fields.

With the previous choice, the complete controlled Schrödinger dynamics reads

i∂tψ =
(
HJC(g) + u1(t)H1 + u2(t)H2

)
ψ

ψ(0) = Ψin ∈ H, Ψfin ∈ H s.t. ‖Ψin‖ = ‖Ψfin‖

u1, u2 ∈ [0, c]

ω,Ω > 0

|∆| � ω,Ω

(5.22)

Notice that the control functions u1, u2 are independent from each other so, as
subcases, one can consider the system in which just one control is active. Obviously,
controllability of the system in one of these two subcases implies controllability in
the general case. This is exactly what we are going to prove. We consider the system
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(5.22) in the subcases u1 ≡ 0 or u2 ≡ 0 and we prove that in each subcase the system
is approximately controllable.

The following theorems are the main results of the paper.

Theorem 5.1 (Approximate controllability of JC dynamics). The system
(5.22) with u1 ≡ 0 or u2 ≡ 0 is approximately controllable for every g ∈ R\S∗ where
S∗ is a countable set.

Theorem 5.2 (Characterization of the singular set). The set S∗, mentioned
in Theorem 5.1, consists of the value g = 0 and those g ∈ R that satisfy one of the
following equations:

E(n+1,−)(g) = E(n,ν)(g), (n, ν) ∈ N (5.23)

2ω = fm+1(g) + fm(g)− fn+1(g) + fn(g), n,m ∈ N+ (5.24)

2ω = fm+1(g)− fm(g)− fn+1(g) + fn(g), n,m ∈ N−, m < n (5.25)

2ω = fm+1(g) + fm(g)− fn+1(g)− fn(g), n,m ∈ N−, m > n (5.26)

where N , N± and fn are defined in (5.19),(5.20) and (5.17), respectively.

The proof of Theorem 5.1 follows two main steps: we introduce a Hilbert basis
of eigenvectors of HJC, namely {|n〉}n∈N , and analyze the action of the control
operators on it in order to show that all levels are coupled for every value of the
parameter g except a countable set (see Section 5.4.1). We then construct a subset
C0 of N 2 and prove that it is a non-resonant chain of connectedness (see Section
5.4.2). The claim then follows from the application of the general result by Boscain
et al., namely Theorem 2.40.

To prove Theorem 5.2 we carefully analyze the resonances of the system, which
are solution to the forthcoming equation (5.33). By proving that the latter has
a countable number of solutions, we conclude that relevant pairs of energies are
not resonant for every g ∈ R except the values in a countable set which will be
characterized in the proof.

5.4 Proof of Theorem 5.1

5.4.0 Preliminaries

Preliminarily, we have to show that Assumption 2.32 is satisfied by

(iHJC(g), iHj , R, {|n〉}n∈N ), for g ∈ R \ S0, j ∈ { 1, 2 } ,

where S0 is a countable set. Notice that the index set N plays the role of the
countable set I in Definition 2.39.

We have already shown that {|n〉}n∈N is a Hilbert basis of eigenfunctions for
HJC(g). Since Hj is infinitesimally H0-bounded (Hj � H0 for short) for j ∈ { 1, 2 },
then Hj � HJC(g) for j ∈ { 1, 2 } (see [RS4, Exercise XII.11]). Hence (A2) holds.
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Moreover, this implies that HJC(g) + wHj is self-adjoint on D(HJC) = D(H0) for
every w ∈ R (see [RS2, Theorem X.12]) and so (A3) is satisfied.

As for assumption (A4), we observe that in view of the analyticity of the eigen-
values, there are just countable many values of g which correspond to eigenvalue
intersections. With the only exception of these values, the eigenvalues are simple,
so (A4) and Assumption 2.32 hold automatically for every g ∈ R \ S0, where S0 is
the countable set corresponding to the eigenvalue intersections.

On the other hand, we can further restrict the set of singular points from S0 to
S1 ⊂ S0. Indeed, if two eigenvalues intersect in a point g∗, say En(g∗) = Em(g∗),
property (A4) is still satisfied (by the same orthonormal system) provided that
〈m|Hj |n〉 (g∗) = 0, j ∈ { 1, 2 }.

Observe that, given n ∈ N,

|m− n| > 2 ⇒ 〈m|Hj |n〉 (g) = 0 ∀g ∈ R, j ∈ { 1, 2 } . (5.27)

Hence, a priori the only possibly problematic points are solutions to the following
equations

Em(g) = En(g) m,n ∈ N , m 6= n, |m− n| ≤ 2. (5.28)

By direct investigation, and using (5.18), one notices that there are solutions only
in the following cases (for n = (n, ν) ∈ N ):

En(g) = E(n+1,−)(g) which is satisfied if and only if (5.29)

|g| = G
(1)
n :=

√
ω2(2n+ 3)− ν

√
4ω4(n2 + 3n+ 2) + ω2∆2;

En(g) = E(n+2,−)(g) which is satisfied if and only if (5.30)

|g| = G
(2)
n :=

√
2ω2(n+ 2)− ν

√
4ω4(n2 + 4n+ 3) + ω2∆2;

E(n,+)(g) = E(n,−)(g) which is satisfied if and only if (5.31)

g = 0 and ∆ = 0.

We will establish a posteriori whether we have indeed to exclude those points by the
analysis in the next subsection, after looking at the action of the control operators.

5.4.1 Coupling of energy levels

To apply Theorem 2.40 to our case we need to build a non resonant chain of con-
nectedness. As observed before in (5.27), the control operators do not couple most
of the pairs.

The coupling between remaining pairs is easily checked by using (5.3), (5.9),
(5.14), and (5.15). For the sake of a shorter notation, we set cn := cos(θn/2) and
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sn := sin(θn/2). Some straightforward calculations for H1 yield the following result:

〈n,−|H1 |n,+〉 = 0

〈n+ 1,+|H1 |n,+〉 =
1√
2

(
√
n+ 1cncn+1 +

√
n+ 2snsn+1) 6= 0

〈n+ 2,+|H1 |n,+〉 = 0

〈n+ 1,−|H1 |n,−〉 =
1√
2

(
√
n+ 1cncn+1 +

√
n+ 2snsn+1) 6= 0

〈n+ 2,−|H1 |n,−〉 = 0

〈n+ 1,−|H1 |n,+〉 =
1√
2

(
√
n+ 2sncn+1 −

√
n+ 1cnsn+1) 6= 0 ⇔ g 6= 0

〈n+ 2,−|H1 |n,+〉 = 0

〈n+ 1,+|H1 |n,−〉 =
1√
2

(
√
n+ 2cnsn+1 −

√
n+ 1sncn+1) 6= 0 ⇔ g 6= 0

〈n+ 2,+|H1 |n,−〉 = 0

〈0,−|H1 |−1, δ〉 =
c0√

2
≥ 1

2

〈0,+|H1 |−1, δ〉 =
s0√

2
6= 0⇔ g 6= 0.

From these computations we see that (compare with (5.29),(5.30)) in the points

{G(2)
n }n∈N the system still satisfies Assumption 2.32, while in the points {G(1)

n }n∈N
does not. The point g = 0 is never solution to (5.29) or (5.30) in view of the
assumption |∆| � ω. Moreover, since 〈n,−|H1 |n,+〉 = 0 for every g ∈ R, the
system still satisfies Assumption 2.32 for g = 0, notwithstanding (5.31).

The same results hold for H2. Moreover, in each of the previous cases one has

〈m|H2 |n〉 = i 〈m|H1 |n〉 .

We conclude that Assumption (A4) is satisfied for every g ∈ R \ S1, where S1 :=

{G(1)
n }n∈N .

5.4.2 Non-resonances of relevant pairs

Knowing exactly the pairs of levels coupled by the control terms, we claim that the
set (illustrated in Figure 1)

C0 =
{[

(n+ 1,+), (n,+)
]
,
[
(n+ 1,+), (n,−)

]
| n ∈ N

}
∪
{[

(0,+), (−1, δ)
]}

(5.32)

is a non-resonant chain of connectedness for every g ∈ R \ S2, where S2 ⊂ R is a
countable set.
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Figure 5.1: Schematic representation of the eigenstates of the JC Hamiltonian and the
chain of connectedness C0, in the case δ(∆) = −. Thick black lines correspond to pairs of
eigenstates in the chain C0. Gray dashed lines correspond instead to pairs of eigenstates
coupled by the control which are not in C0.

|−1, δ〉 |0,−〉

|0,+〉

|1,−〉

|1,+〉

|2,−〉

|2,+〉

|3,−〉

|3,+〉

|4,−〉

|4,+〉

To prove this claim, we have to show that for every g ∈ R \ S2 each pair of
eigenstates in C0 has no resonances with every other pair coupled by the control
term. In view of the computation above, there are just four types of pairs coupled,
as illustrated in Figure 1 and 2. So, we define S2 as the set of the solutions g to the
following equations:

|Ek(g)− El(g)| = |Es(g)− Et(g)| (5.33)

where [k, l] ∈ C0 and

[s, t] ∈ C0 ∪
{[

(n+ 1,−), (n,−)
]
,
[
(n+ 1,−), (n,+)

]
| n ∈ N

}
∪
{[

(0,−), (−1, δ)
]}
. (5.34)

It is enough to prove that the set of solutions to the latter equations is countable.
Observe that, by the analyticity of the functions g 7→ Ek(g)−El(g), equation (5.33)
may have at most countable many solutions unless is identically satisfied. Thus, we
need to show that

Ek(g)− El(g) = ±(Es(g)− Et(g))

is not satisfied for some value g or, equivalently, that the Taylor expansions of r.h.s.
and l.h.s. differ in at least a point. The same argument was used in [BMPS], where
the authors computed the perturbative expansion of the eigenvalues of the Rabi
Hamiltonian up to forth order in g. In our case, the model is exactly solvable,so
that we can compute the series expansions in g = 0 directly from expression (5.13).
An explicit computation yields the Taylor expansion:

En = ω(n+ 1) + ν
(
|Ω−ω|

2 + n+1
|Ω−ω|g

2 − (n+1)2

|Ω−ω|3 g
4 + o

(
g4
))

for ∆ 6= 0

En = ω(n+ 1) + ν
√
n+ 1g for ∆ = 0.

It is now easy to check, mimicking Step 2 in the proof of [BMPS], that for every
choice of the indices in equation (5.33) the r.h.s. and l.h.s. have different series
expansion at g = 0. We are not going to detail this calculation, since in the next
Section we will analyze in full detail equations (5.33), in order to characterize the
set S2. By setting S∗ = S1 ∪ S2, the proof of Theorem 5.1 is concluded.
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Figure 5.2: Classification of the arcs representing pairs of eigenstates coupled by the control

operator. On the left-hand panel, red arcs and labels show the classification of generic arcs

in four different types {A,B,C,D }. On the right-hand panel, black arcs of the set C0 are

classified in two types { 1, 2 }. Labels correspond to the cases enumerated in the proof of

Theorem 5.2.

1

2

A

D

B
C

|m,+〉 |m+1,+〉 |n,+〉 |n+1,+〉

|m,−〉 |m+1,−〉 |n,−〉 |n+1,−〉

5.5 Proof of Theorem 5.2

In this proof we will discuss the resonances of the pairs of eigenstates in the chain
C0, defined in (5.32). Our aim is to provide conditions to determine whether, for a
particular value of g, resonances are present or not. This requires a direct investi-
gation of equation (5.33). Since these computations are rather long, we prefer to
collect them in this section, not to obscure the simplicity of the proof of Theorem
5.1 with the details on the characterization of the set S∗.

Let us recall that the sets N± defined in (5.20) include both the natural numbers,
and −1 is added to the one, among N+ and N−, whose label equals δ(∆).

In each of the following subcases the existence of solutions to equation (5.33) is
discussed, for every choice of the indices compatible with the constraints (5.34). The
mathematical arguments are based on elementary properties of functions fn(g) =
1
2

√
∆2 + 4g2(n+ 1), which are summarized in Lemma 5.3 in the Appendix.

Case 1: Assume [k, l] = [(n+ 1,+), (n,+)], n ∈ N+. This assumption corre-
spond to select the black arc labeled by 1 in the graph in Figure 5.2. We investigate
the possible resonances between the selected arc and the other arcs, classified ac-
cording to their qualitative type (see the labels in the left-hand panel of Figure
5.2). This analysis amounts to consider, with the help of Lemma 5.3 (properties
(F.1)-(F.3)), the following subcases:

(1.A) [s, t] =
[
(m+ 1,+), (m,+)

]
, m ∈ N+, m 6= n. Equation (5.33) reads

fn+1(g)− fn(g) = fm+1(g)− fm(g)

which is satisfied if and only if g = 0, because fn+1(g) − fn(g) is strictly
decreasing in n for g 6= 0 in view of (F.3).

(1.B) [s, t] =
[
(m+ 1,+), (m,−)

]
, m ∈ N−. Equation (5.33) reads

fn+1(g)− fn(g) = fm+1(g) + fm(g)
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which is satisfied if and only if g = 0 and ∆ = 0.
Indeed, by (F.2) one has

fn+1(g)− fn(g) ≤ 2 |g|
(√
n+ 2−

√
n+ 1

)
=

2 |g|√
n+ 2 +

√
n+ 1

.

For ∆ < 0, one has n ∈ N+ = N and m ∈ N− = N ∪ {−1}, as illustrated in
Figure 1. Hence, for g 6= 0,

fn+1(g)− fn(g) ≤ 2 |g|√
2 + 1

< |g| ≤ |g| (
√
m+ 2 +

√
m+ 1)

≤ fm+1(g)+fm(g),

and the last inequality is strict whenever ∆ 6= 0.
Analogously, for ∆ > 0 one has n ∈ N+ = N∪{−1} and m ∈ N− = N. Hence,
for g 6= 0,

fn+1(g)− fn(g) ≤ 2 |g| < |g| (
√
m+ 2 +

√
m+ 1)

≤ fm+1(g)+fm(g).

As above, the last inequality is strict whenever ∆ 6= 0.

(1.C) [s, t] =
[
(m+ 1,−), (m,+)

]
, m ∈ N+. Equation (5.33) reads

ω + fn+1(g)− fn(g) = |ω − fm+1(g)− fm(g)| .

If |g| < G
(1)
m,+ one has

fn+1(g)− fn(g) = −fm+1(g)− fm(g),

which implies g = 0 and ∆ = 0 because −fm+1(g) − fm(g) ≤ 0 ≤ fn+1(g) −
fn(g), and the first inequality is strict whenever ∆ 6= 0, while the second
inequality is strict whenever g 6= 0.

On the other hand, if |g| ≥ G(1)
m,+ the equation above reads

2ω = fm+1(g) + fm(g)− fn+1(g) + fn(g) (5.24)

which has two solutions because the r.h.s. is equal to |∆| in zero (and |∆| � ω
in view of (5.22)) and is strictly increasing in |g|. Indeed, one easily sees that

∂g (fm+1(g) + fm(g)− fn+1(g) + fn(g)) =

g

(
m+ 2

fm+2(g)
+
m+ 1

fm(g)
− n+ 2

fn+1(g)
+
n+ 1

fn(g)

)
=: gCm,n(g)

where Cm,n(g) > 0 for every choice of indices n,m ∈ N+ and ∆ 6= 0. For
∆ = 0 the r.h.s. of (5.24) is |g| (

√
m+ 2 +

√
m+ 1−

√
n+ 2 +

√
n+ 1) which

is clearly strictly increasing in |g|.
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(1.D) [s, t] =
[
(m+ 1,−), (m,−)

]
, m ∈ N−. Equation (5.33) reads

ω + fn+1(g)− fn(g) = |ω − fm+1(g) + fm(g)|

Then if |g| < G
(1)
m,−

fn+1(g)− fn(g) = −fm+1(g) + fm(g),

which is satisfied if and only if g = 0 because fn+1(g)−fn(g) ≥ 0 ≥ −fm+1(g)+

fm(g) and the inequalities are strict whenever g 6= 0. If instead |g| ≥ G
(1)
m,−,

the equation reads

2ω = fm+1(g)− fm(g)− fn+1(g) + fn(g) (5.25)

which has two solutions if and only if m < n. Indeed, fn+1(g) − fn(g) is
decreasing in n in view of (F.3) and the derivative of the r.h.s. is

∂g (fm+1(g)− fm(g)− fn+1(g) + fn(g)) =

g

(
m+ 2

fm+2(g)
− m+ 1

fm(g)
− n+ 2

fn+1(g)
+
n+ 1

fn(g)

)
=: gDm,n(g).

The function Dm,n(g) is strictly positive for every ∆ 6= 0 and m ∈ N−, n ∈ N+

with m < n because n+2
fn+1(g) −

n+1
fn(g) is strictly decreasing in n. For ∆ = 0 the

r.h.s. of (5.25) is |g| (
√
m+ 2−

√
m+ 1−

√
n+ 2 +

√
n+ 1) which is positive

if and only if m < n, and is clearly strictly increasing in |g|.

In view of the above analysis, there exist non trivial resonances (for g 6= 0) in cases
(1.C), and (1.D) for m < n. In such circumstances, equations (5.24),(5.25) have two
solutions each.As for the trivial value g = 0, the system exhibits multiple resonances,
as noted in all previous cases. Hence, g = 0 has to be included in the set of resonant
points.

Case 2: Assume [k, l] = [(n+ 1,+), (n,−)], n ∈ N−. This assumption corre-
sponds to select the black arc labeled by 2 in the graph in Figure 5.2. As before, we
proceed by considering the following sub-cases:

(2.A) By symmetry, this case reduces to the subcase (1.B). As already noticed, a
solution exists if and only if g = 0 and ∆ = 0.

(2.B) [s, t] =
[
(m + 1,+), (m,−)

]
, m ∈ N−, m 6= n. The corresponding equation

reads

fn+1(g) + fn(g) = fm+1(g) + fm(g)

which has only the trivial solution g = 0.
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(2.C) [s, t] =
[
(m+ 1,−), (m,+)

]
, m ∈ N+. Equation (5.33) reads

ω + fn+1(g) + fn(g) = |ω − fm+1(g)− fm(g)| .

Then if |g| < G1
m,+ the equation above become

fn+1(g) + fn(g) = −fm+1(g)− fm(g)

which clearly implies that g = 0 and ∆ = 0.
On the other hand, if |g| ≥ G1

m,+ the equation reads

2ω = fm+1(g) + fm(g)− fn+1(g)− fn(g) (5.26)

which has non trivial solutions if and only if m > n because fn is increasing in
n for g 6= 0. Since the r.h.s. is strictly increasing in |g|, as one can see using an
argument similar to case (1.C), the latter equation has two solutions if m > n.

(2.D) [s, t] =
[
(m+ 1,−), (m,−)

]
, m ∈ N−. Equation (5.33) reads

ω + fn+1(g) + fn(g) = |ω − fm+1(g) + fm(g)| .

If |g| < G1
m,− the above equation reads

fn+1(g) + fn(g) = −fm+1(g) + fm(g)

which is satisfied if and only if g = 0 and ∆ = 0, since −fm+1(g) + fm(g) ≤
0 ≤ fn+1(g) + fn(g), and the first inequality is strict whenever g 6= 0, while
the second inequality is strict whenever ∆ 6= 0. If, instead, |g| ≥ G1

m,−, the
above equation becomes

2ω = fm+1(g)− fm(g)− fn+1(g)− fn(g),

which has no solution since the r.h.s. is non-positive for every g,∆ ∈ R and
n,m ∈ N−.

In summary, as far as Case 2 is concerned, there exist non trivial resonances (for
g 6= 0) only in the case (2.C) for m > n, and in such case equation (5.26) has exactly
two solutions.

Recalling the definition of C0 (see (5.32)), one notices that every element of C0

is non-resonant with every other element of C0 except for the trivial value g = 0, in
view of the analysis of the cases (1.A), (1.B), (2.A) and (2.B).

The proof above exhibits equations (5.24), (5.25) and (5.26) appearing in the
statement of Theorem 5.2, as the equations which characterize the values of g in
S2, namely those values such that an arc in C0 is resonant with some arc (not in
C0) non-trivially coupled by the interaction. As we said before, the value g = 0 is
included in S2.
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Figure 5.3: Disconnection of the chain C0 for the value g2.n(m). In red resonant
arcs. In green the possible choices to reconnect the node |n,−〉.

|n−1,+〉 |n,+〉 |n+1,+〉 |m,+〉 |m+1,+〉

|n,−〉 |n+1,−〉 |m,−〉 |m+1,−〉

Finally, one has to include in S∗ those values of g for which some eigenspace has
dimension 2 and the corresponding eigenvectors are coupled. These values, defining
the set S1, have been already characterized by equation (5.23), whose solutions are
exhibited in (5.29).

In view of Theorem 2.40, we conclude that the system is approximately control-
lable for every g ∈ R \ S∗, where S∗ = S1 ∪ S2 is characterized by equations (5.23),
(5.24), (5.25), and (5.26). This concludes the proof of Theorem 5.2.

5.6 Further improvements

We have seen that equations (5.24),(5.25),(5.26) specify points g ∈ R for which
C0 fails to be a non-resonant chain of connectedness. However for each of such
points, we can think of suitably modify C0 to replace resonant arcs and preserve
the connectedness of the chain. Notice that C0 is composed by arcs of type A and
B, thus to replace one of them in case of resonances we must use arcs of type C,D
(see Fig.5.2). Therefore it is necessary to check resonances between arcs of type C,D.

Let us illustrate the problem with an example. Denote with g2.n(m) ∈ R the
positive solution of equation (5.26), i. e. g ≥ 0 such that

2ω = fm+1(g) + fm(g)− fn+1(g)− fn(g), n,m ∈ N−, m > n

is satisfied. Recall that g2.n(m) is a resonant point between the arcs
[
(n,−), (n +

1,+)
]

and
[
(m,+), (m+1,−)

]
(in red in Fig.5.3). In this point we have to remove the

arc
[
(n,−), (n+1,+)

]
from C0 because is resonant, thus the node |n,−〉 disconnects.

We have three possible choices to restore the connectedness: add one arc between[
(n − 1,−), (n,−)

]
,
[
(n,−), (n + 1,−)

]
,
[
(n − 1,+), (n,−)

]
to the chain (in green in

Fig.5.3). One choice seems more natural, since by eq.(5.26)
[
(n − 1,+), (n,−)

]
is

never resonant with
[
(n,−), (n+ 1,+)

]
we can consider

C2.n(m) = C0 ∪ {
[
(n− 1,+), (n,−)

]
} \ {

[
(n,−), (n+ 1,+)

]
}.

Remain to verify that C2.n(m) is non-resonant for g = g2.n(m). This means to check
that every arc of C2.n(m) has no resonances at the value g2.n(m). Therefore to
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ensure that no arc of type A has resonances in g2.n(m) it must not be solution of
the following equations

2ω = ft+1(g) + ft(g)− fs+1(g) + fs(g), ∀s, t ∈ N+

2ω = ft+1(g)− ft(g)− fs+1(g) + fs(g), ∀s, t ∈ N−, t < s

(these are equations (5.24),(5.25) for each possible choice of the indexes). Moreover
we have to check resonances of

[
(n− 1,+), (n,−)

]
which is an arc of type C.

At the moment, we don’t have a general method to solve systems of equations
of type (5.24),(5.25) or (5.26), and to affirm that they have not a common solution.
Notice that the analysis is complicated by the fact that we have general parameters
ω,Ω under the unique assumption (5.5).

The results of this Chapter are collected in [PP].

Appendix 5.A

The following Lemma contains a list of useful elementary properties of the functions
{fn}n∈N, which have been used in the proof of Theorem 5.2 (Section 5.5).

Lemma 5.3. Let fn, n ∈ N, be defined as in (5.17). Then

(F.1) fm(g)− fn(g) ≥ 0 if and only if m ≥ n;

(F.2) fn+1(g)− fn(g) ≤ 2 |g| (
√
n+ 2−

√
n+ 1);

(F.3) fn+1(g)− fn(g) is strictly increasing w.r.to |g|, and strictly decreasing in n;

Proof. Property (F.1) follows from the monotonicity of the square root. As for (F.2),
one notices that

fn+1(g)− fn(g) ≤ 2g2√
∆2 + 4g2(n+ 2)

which is equivalent to

(∆2 + 4g2(n+ 2))−
√

∆2 + 4g2(n+ 2)
√

∆2 + 4g2(n+ 1) ≤ 4g2

which follows from the fact that

(∆2 + 4g2(n+ 1)) ≤
√

∆2 + 4g2(n+ 2)
√

∆2 + 4g2(n+ 1).

Then,

fn+1(g)− fn(g) ≤ 2g2√
∆2 + 4g2(n+ 2)

≤ 2g2

2 |g|
√
n+ 2

≤ 2 |g| (
√
n+ 2−

√
n+ 1).
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Notice that the last inequality is strict whenever g 6= 0.
As for (F.3), one sets

F (x, y) :=
1

2

√
∆2 + 4x2y and G(x, y) := y/

√
∆2 + 4x2y,

so that fn(g) = F (g, n + 1) and ∂gfn(g) = 2g G(g, n + 1). Observe that for y ≥ 0
one has

∂G

∂y
=

1√
∆2 + 4x2y

(
1− 2x2y

∆2 + 4x2y

)
> 0

and also

∂2G

∂y2
=

4x2

(∆2 + 4x2y)3/2

(
−1 +

3y

4

4x2

∆2 + 4x2y

)
≤ 0,

and the latter is equal to 0 if and only if x = 0. Then, one has (with an innocent
abuse of notation concerning ∂nfn(g))

∂g(fn+1 − fn)(g) =2g(G(g, n+ 2)−G(g, n+ 1))

{
> 0 for g > 0
< 0 for g < 0

;

∂n(fn+1 − fn)(g) =
∂F

∂y
(g, n+ 2)− ∂F

∂y
(g, n+ 1)

=g2

(
1√

∆2 + 4g2(n+ 2)
− 1√

∆2 + 4g2(n+ 1)

)
< 0.

The monotonicity properties claimed in the statement follow immediately.





Chapter 6

Towards an adiabatic derivation
of the Jaynes-Cummings model

In this Chapter we present some preliminary results concerning the derivation of
the Jaynes-Cummings Hamiltonian as an approximation of the Rabi Hamiltionian
in a suitable regime. The limit that we investigate is the so called rotating wave
approximation which we will see as an adiabatic limit. The precise meaning of
the approximation is the usual in quantum mechanics: closeness of the evolution
operators in the norm of B(H).

6.1 Time scales identification

In the physics literature, as we briefly mentioned in Sect.5.2, one finds applications
of the Rabi and Jaynes-Cummings models in different fields. What is usually stated
is that those Hamiltonians exhibits different behaviours depending on the range of
the fundamental parameters ω,Ω, g. We are interested in the so called weak-coupling
limit, in which the assumptions are

|∆| � ω,Ω g � ω,Ω (6.1)

and the rotating wave approximation (RWA) is supposed to hold [Ro],[AGJ]. The
heuristic explanation we gave in Sect.5.2 is a way to introduce a time dependence
in the Rabi Hamiltonian and identify the different time scales. Indeed, performing
the time-dependent change of coordinates ψ′ = eiH0tψ, the function ψ′ satisfies the
Schrödinger equation i∂tψ

′ = H ′R(t)ψ′1 where H ′R was obtained in (5.7) and is

H ′R(t) = eiH0t(HR −H0)e−iH0t =
g

2
(e−i(Ω−ω)ta†σ+ei(Ω−ω)taσ†)

+
g

2
(e−i(Ω+ω)taσ + ei(Ω+ω)ta†σ†).

(6.2)

1Throughout the chapter we will make use of Hartree units, so that in particular ~ = 1

87
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From the previous Hamiltonian (HR in the interaction frame) ones notices two dif-
ferent frequencies, namely |ω − Ω| and ω+Ω, which are of different order given (6.1).
To have a dimensionless parameter we choose

ε :=
|ω − Ω|
ω + Ω

(6.3)

instead of |∆| as small parameter. Therefore, terms a†σ, aσ† oscillate with frequency
of O(1) as ε → 02 on the time-scale τ = εt, while a†σ†, aσ oscillate with frequency
O(ε−1) as ε → 03 on the time-scale τ , so they average to zero on time intervals of
O(1) as ε→ 0.

Notice that apparently no relations are assumed between ε and g. In principle
this should mean that the limits ε→ 0 and g → 0 could be performed in any order
and the approximation will hold. Moreover, from equation (6.2) we observe that the
order of oscillations does not depend from g, which seems an argument in favour of
the independence of the two limits. However, observing that

HR = (ω − Ω + Ω)(a†a+
1

2
) +

Ω

2
σ3 + g(a+ a†)(σ + σ†)

we can choose to apply the transformation φ = eiΩt(a
†a+1/2)ei(Ωt/2)σ3ψ (assume ω >

Ω), to obtain another interaction frame

H ′′R(t) = (ω − Ω)(a†a+
1

2
) + g(e−2iΩta+ e2iΩta†)(e−2iΩtσ + e2iΩtσ†)

= ε(ω + Ω)(a†a+
1

2
) + g(a†σ + aσ†) + g(e2iΩta†σ† + e−2iΩtaσ) (6.4)

= H ′′JC + g(e2iΩta†σ† + e−2iΩtaσ),

where the time dependence is all contained in the term e2iΩta†σ†+ e−2iΩtaσ. In our
hypothesis the latter time-dependent term average to zero on every scale τ = φ(ε, g)t
where lim(ε,g)→(0,0) φ(ε, g) = 0 (so ε or g are possible choices) but the order of the
limits seems important. More precisely, spectral properties of H ′′R(t) strongly depend
on the relation between ε and g. For each ε > 0 the operator H ′′R(t) has pure point
spectrum, while for ε = 0 it doesn’t.

To state a rigorous result we must take into account this problem.

2Here and thereafter we make use of the Landau symbols of which we briefly recall the definition.
Let f, φ be two functions: we say that f(x) = o(φ(x)) as x→ x0 if limx→x0 f(x)/φ(x) = 0; we say
that f(x) = O(φ(x)) as x → x0 if there exist constants M, δ > 0 such that |f(x)| ≤ M |φ(x)| for
each x s.t. 0 < |x− x0| < δ.

3In the following we will omit the expression “as x→ x0” after o(φ(x)) or O(φ(x)) when is clear
which kind of limit we are considering. In particular, since we consider only limits of variables that
go to zero, o(xα) and O(xα) with α ∈ R will denote respectively “o(xα) as x → 0” and “O(xα) as
x→ 0”.
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6.1.1 Statement of the result

We recall that HJC leaves invariant the subspaces Hn defined in (5.10). Thus a
general invariant subspaces for HJC reads⊕

n∈N
Hin

where {in}n∈N ⊂ N. Denote with Pj the projection operator on Hj , j ∈ N. Then
for each E ∈ N we define ΠE as the sum

ΠE =

E∑
j=−1

Pj . (6.5)

The result we claim is standard in the context of Adiabatic theories (see [Teu]),
in which one consider the difference between the evolution operators generated by
the two Hamiltonian in question (in our case e−iHR

t
ε and e−iHJC

t
ε ), and looks for

an estimate in terms of the small parameter ε. The bounding term must vanish
in the limit ε → 0 to affirm that the two dynamics exhibit the same behaviour in
the adiabatic limit. In many cases this type of bound can be achieved only on a
subspace of the state space (see for example the Born-Oppenheimer approximation
[Teu, Sect.1.2]), therefore it is necessary to evaluate the difference of the two evolu-
tions when projected on that subspace. This subspace is usually identified starting
from physical consideration (for example, in the Born-Oppenheimer case, the kinetic
energy of the nuclei must be bounded to have a uniform estimate). In our setting the
subspace on which evaluate the difference is ⊕En=−1Hn, so that the corresponding
projector is ΠE . In conclusion, the estimate that we want to prove is

∥∥∥(e−iHR
t
ε − e−iHJC

t
ε

)
ΠE

∥∥∥ ≤ M∑
j=1

Cjg
αjεβj (1 + t) (6.6)

for all t ≥ 0 and for some αj , βj ∈ R, 0 < Cj <∞, j = 1, ...,M .
However, to understand if such a bound is achievable one must ensure first that

the subspace ΠE is approximately invariant for the total dynamics, which in our
case is the Rabi dynamics. This estimate is preliminary to (6.6) and for this reason
we prove in this Chapter the following

Theorem 6.1. For each E ∈ N there exists a constant C < ∞ such that for all
t ≥ 0 ∥∥∥(1−ΠE)e−iHR

t
εΠE

∥∥∥ ≤ C g
ε
t. (6.7)

Remark 6.2. The previous estimate says that ΠE is an approximately invariant
subspace for the Rabi dynamics when the ratio g/ε→ 0 as (ε, g)→ (0, 0), i. e. when
g = o(ε). We want to understand if is possible to improve the estimate (6.7) to have
a weaker relation between ε and g. y
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6.2 Proof of Theorem 6.1

6.2.1 Preliminary estimates

With the notation of Chapter 5 (5.6) we write the Hamiltonians (5.4),(5.1) as

HR(g) = H0 +
√

2gX ⊗ σ1 (6.8)

HJC(g) = H0 +
g√
2

(X ⊗ σ1 − P ⊗ σ2). (6.9)

We recall that

X ⊗ σ1, P ⊗ σ2 << H0,

so that HJC, HR are self-adjoint operators on D(H0) and essentially self-adjoint on
each core of H0 (see Sect.5.4.0). More precisely for every α > 0 and ψ ∈ D(H0)

‖X ⊗ σ1ψ‖ ≤ α
1
2 ‖H0ψ‖+

(
2α+

2

α

) 1
2

‖ψ‖

‖P ⊗ σ2ψ‖ ≤ α
1
2 ‖H0ψ‖+

(
2α+

2

α

) 1
2

‖ψ‖ ,

from which the following estimates descend

‖HRψ‖ ≤ (1 +
√

2αg) ‖H0ψ‖+ 2g

(
α+

1

α

) 1
2

‖ψ‖ (6.10)

‖HJCψ‖ ≤ (1 +
√

2αg) ‖H0ψ‖+ 2g

(
α+

1

α

) 1
2

‖ψ‖ (6.11)

‖HRψ‖ ≤

(
1 +

√
2αg

1−
√

2αg

)
‖HJCψ‖+

2g

1−
√

2αg

(
α+

1

α

) 1
2

‖ψ‖ (6.12)

‖HJCψ‖ ≤

(
1 +

√
2αg

1−
√

2αg

)
‖HRψ‖+

2g

1−
√

2αg

(
α+

1

α

) 1
2

‖ψ‖ , (6.13)

(α > 0 small enough) i. e. HJC and HR are bounded with respect to each other
with relative bound 1. Moreover, notice that since D(HR) = D(HJC) = D(H0) it is
obvious that each eigenvector of HJC is in the domain of HR. In addition, as one can
see from (5.8), |n, ν〉 belongs to the Schwartz space S(R), namely the set of rapidly
decreasing functions on R (see [RS1, Sect.V.3]). The Schwartz space S(R) is a core
of HR and is invariant in the sense that Hm

R |n, ν〉 ∈ S(R) for every m ∈ N, thus
|n, ν〉 ∈ D(Hm

R ) for every m,n ∈ N, ν = ±.
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6.2.2 Step 1

We start the proof with a standard argument. Since ΠE is invariant for HJC, i. e.
ΠEHJC = HJCΠE , it commutes with e−iHJC

t
ε . Then∥∥∥(1−ΠE)e−iHR

t
εΠE

∥∥∥ =
∥∥∥(1−ΠE)(e−iHR

t
ε − e−iHJC

t
ε )ΠE

∥∥∥
=

∥∥∥∥(1−ΠE)e−iHJC
t
ε
−i
ε

∫ t

0
dτ
[
eiHJC

τ
ε (HR −HJC)

]
e−iHR

τ
ε ΠE

∥∥∥∥
=

∥∥∥∥e−iHJC
t
ε
−ig
ε

∫ t

0
dτ (1−ΠE)

[
eiHJC

τ
ε

(
a†σ† + aσ

)]
e−iHR

τ
ε ΠE

∥∥∥∥ .
(6.14)

We want to exploit the oscillating terms that are contained in last integral. More
precisely, the operator eiHJC

τ
ε in the basis of the eigenvectors of HJC is a multipli-

cation by an oscillating phase eiEn
τ
ε , n ∈ N . Therefore our next task will be to

rewrite eiHJC
τ
ε

(
a†σ† + aσ

)
on this basis.

Remark 6.3 (Riemann-Lebesgue lemma). The usual method to estimate an integral
that contains an oscillating term is through the Riemann-Lebesgue lemma. Consider
the integral∫ t

0
dτ ei(c+o(ε))

τ
ε f(τ) =

∫ t

0
dτ

d

dτ

(
−i ε

c+ o(ε)
ei(c+o(ε))

τ
ε

)
f(τ)

=

[
−i ε

c+ o(ε)
ei(c+o(ε))

τ
ε f(τ)

]t
0

+ i
ε

c+ o(ε)

∫ t

0
dτ ei(c+o(ε))

τ
ε f ′(τ).

If f is sufficiently regular and has compact support in (0, t) we get the estimate∣∣∣∣∫ t

0
dτ ei(c+o(ε))

τ
ε f(τ)

∣∣∣∣ ≤ ε

|c+ o(ε)|
∥∥f ′∥∥

L1 .

Moreover, if f has n derivatives we can iterate the trick to get∣∣∣∣∫ t

0
dτ ei(c+o(ε))

τ
ε f(τ)

∣∣∣∣ ≤ εn

|c+ o(ε)|n
∥∥∥f (n)

∥∥∥
L1
.

y

For the sake of a lighter notation we denote

θn :=
θn
2

(6.15)
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here and thereafter. We compute a†σ† + aσ on the basis of eigenvectors of HJC,
namely {|n〉}∈N (see (5.8)),

(a†σ† + aσ) |n,+〉 =
√
n cos

θn
2
|n− 1〉 ⊗ e−1 +

√
n+ 2 sin

θn
2
|n〉 ⊗ e1

=
√
n cos θn

(
sin θn−2 |n−2,+〉+ cos θn−2 |n−2,−〉

)
+
√
n+ 2 sin θn

(
cos θn+2 |n+ 2,+〉 − sin θn+2 |n+ 2,−〉

)
(a†σ† + aσ) |n,−〉 = −

√
n sin θn |n− 1〉 ⊗ e−1 +

√
n+ 2 cos θn |n+ 2〉 ⊗ e1

= −
√
n sin θn

(
sin θn−2 |n−2,+〉+ cos θn−2 |n−2,−〉

)
+
√
n+ 2 cos θn

(
cos θn+2 |n+ 2,+〉 − sin θn+2 |n+ 2,−〉

)
.

Notice that a†σ†, aσ act as raising and lowering operators (sometimes called ladder
operators) on the subspaces Hn

Ran
(
a†σ† �Hn

)
⊂ Hn+2, Ran (aσ �Hn) ⊂ Hn−2, (6.16)

thus we denote

A+
n := a†σ† �Hn= a†σ†Pn, A−n := aσ �Hn= aσPn. (6.17)

Then the coefficient matrix of a†σ† + aσ in the basis {|n〉}∈N appears as

0 0 A−1
0 0 0 A−2
A+
−1 0 0 0

A+
0 0 0

A+
1

A−n−1

0 0 A−n
0 0 0 A−n+1

A+
n−2 0 0 0

A+
n−1 0 0

A+
n





(6.18)

where A±n : Hn → Hn±2 acts as

A+
n =
√
n+ 2

(
sin θn cos θn+2 cos θn cos θn+2

− sin θn sin θn+2 − cos θn sin θn+2

)
(6.19)

A−n =
√
n

(
sin θn−2 cos θn − sin θn−2 sin θn
cos θn−2 cos θn − cos θn−2 sin θn

)
. (6.20)
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when seen as linear maps from C2 with basis {|n,+〉 , |n,−〉} onto C2 with basis
{|n± 2,+〉 , |n± 2,−〉}. Observe that (A−n+2)† = A+

n .

The evolutor eiHJC
t
ε assumes in this basis the block form

ei
−ε(Ω+ω)

2
τ
ε

eiH0
τ
ε

eiH1
τ
ε

. . .


therefore

eiHJC
t
ε (a†σ† + aσ) = (6.21)

0 0 Γ−1
0 0 0 Γ−2

Γ+
−1 0 0 0

Γ+
0 0 0

Γ+
1

Γ−n−1

0 0 Γ−n
0 0 0 Γ−n+1

Γ+
n−2 0 0 0

Γ+
n−1 0 0

Γ+
n




where

Γ+
n = eiHn+2

τ
εA+

n =
√
n+ 2

(
eiE(n+2,+)

τ
ε sin θn cos θn+2 eiE(n+2,+)

τ
ε cos θn cos θn+2

−eiEn+2,−
τ
ε sin θn sin θn+2 −eiEn+2,−

τ
ε cos θn sin θn+2

)
(6.22)

Γ−n = eiHn−2
τ
εA−n =

√
n

(
eiE(n−2,+)

τ
ε cos θn sin θn−2 −eiE(n−2,+)

τ
ε sin θn sin θn−2

eiE(n−2,−)
τ
ε cos θn cos θn−2 −eiE(n−2,−)

τ
ε sin θn cos θn−2

)
.

(6.23)

By means of Γ±n , the integrand of (6.14) reads

(1−ΠE)
[
eiHJC

τ
ε

(
a†σ† + aσ

)]
e−iHR

τ
ε ΠE =

= (1−ΠE)

[∑
n≥1

(Γ−n + Γ+
n )Pn + Γ+

0 P0 + Γ+
−1P−1

]
e−iHR

τ
ε ΠE

=

[ ∑
n>E+2

Γ−nPn +
∑

n>E−2

Γ+
nPn

]
e−iHR

τ
ε ΠE
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expanding Pn =
∑

ν=± |n〉 〈n| =
∑

ν=± |n, ν〉 〈n, ν| the latter row is equal to

=

[ ∑
n∈N
n>E+2

Γ−n |n〉 〈n|+
∑
n∈N
n>E−2

Γ+
n |n〉 〈n|

]
e−iHR

τ
ε

∑
m∈N
m≤E

|m〉 〈m| .

We define

pn,m(ε, g, t) := 〈n| e−iHRt |m〉 , (6.24)

and rewriting the latter row once again we arrive at

(1−ΠE)
[
eiHJC

τ
ε

(
a†σ† + aσ

)]
e−iHR

τ
ε ΠE = (6.25)

=
∑
n∈N
n>E+2

∑
m∈N
m≤E

pn,m(ε, g, τ/ε)Γ−n |n〉 〈m| (6.26)

+
∑
n∈N
n>E−2

∑
m∈N
m≤E

pn,m(ε, g, τ/ε)Γ+
n |n〉 〈m| . (6.27)

In the following we will always omit the ε and g dependence of functions pn,m for
the sake of a lighter notation.

To summarize, to estimate (6.14) we decomposed the integrand on subspaces
Hn. Each subspace Hm, m ≤ E evolves under the operator

(
a†σ† + aσ

)
e−iHR

τ
ε and

gives a contribution on Hn which is∑
ν=±

n>E+2

∑
µ=±

pn,ν,m,µ(τ/ε)Γ−n |n, ν〉 〈m,µ|+
∑
ν=±

n>E−2

∑
µ=±

pn,ν,m,µ(τ/ε)Γ+
n |n, ν〉 〈m,µ| .

Each one of these eight terms is proportional to an oscillating phase produced by
the action of Γ±n on |n, ν〉. Consider for example, ν = + in the previous expression,
then

pn,+,m,µ(τ/ε)Γ−n |n,+〉 〈m,µ| =
=
√
n pn,+,m,µ(τ/ε)eiE(n−2,+)

τ
ε cos θn sin θn−2 |n−2,+〉 〈m,µ| .

(6.28)

In the latter term one recognizes: the oscillating phase; the coefficient p which is
ε-dependent; the term cos θn sin θn−2 which depend on ε and g through θn, θn−2 but
are bounded; the rank one operator |n−2,+〉 〈m,µ|. Each other term of (6.26),(6.27)
has the same structure. Therefore to bound (6.14) by means of the Riemann-
Lebesgue lemma we need information about the regularity and the summability
of coefficients pn,m.
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6.2.3 Regularity of p coefficients

From conserved quantities and expectations of certain observables we can recover
regularity and summability properties of coefficients pn,m.

(i) The dynamics is unitary. Observe that for each m ∈ N

e−iHRt |m〉 =
∑
n∈N
〈n| e−iHRt |m〉 |n〉 ,

and being the vector on the left of norm one

1 =
∑
n∈N
|pn,m(t)|2 , (6.29)

then |pn,m(t)| ≤ 1, i. e. pn,m ∈ L∞(R), and pn,m ∈ l2(N ) uniformly in t.

(ii) The energy of the system is conserved, moreover HJC is finite on the evolution
of each initial state |m〉, m ∈ N because∣∣〈m| eiHRtHJCe

−iHRt |m〉
∣∣ ≤∥∥e−iHRt |m〉

∥∥∥∥HJCe
−iHRt |m〉

∥∥
≤A

∥∥HRe
−iHRt |m〉

∥∥+B
∥∥e−iHRt |m〉

∥∥
≤A2 ‖HJC |m〉‖+AB ‖|m〉‖+B

≤A2Em +AB +B

= (1 +O(g))Em +O(g) <∞

where A,B are the constants that appear in the estimates (6.12),(6.13),

A =

(
1 +

√
2αg

1−
√

2αg

)
, B =

2g

1−
√

2αg

(
α+

1

α

) 1
2

.

We compute the following expectation

〈m| eiHRtHJCe
−iHRt |m〉 =

∑
n,n′∈N

〈m| eiHRt |n〉 〈n|HJC |n′〉 〈n′| e−iHRt |m〉

=
∑

n,n′∈N

pm,n(t)Enδn=n′pn′,m(t)

=
∑
n∈N

En |pn,m(t)|2

thus by the previous estimate∑
n∈N

En |pn,m(t)|2 ≤ (1 +O(g))Em +O(g) <∞ (6.30)
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Observe that En is a function of g, but for every fixed values of ĝ only a finite
number of terms in the sum (6.30) are negative. In fact, recall that

En(g) = ω(n+ 1) + ν
1

2

√
∆2 + 4g2(n+ 1), (6.31)

then En,+ ≥ ω(n+ 1) and

En,−(g) = 0 ⇔ g =

√
ω2(n+ 1)− ∆2

4(n+ 1)
→

n→∞
∞. (6.32)

Analogously, for the second power of HJC holds∑
n∈N

E2
n |pn,m(t)|2 = 〈m| eiHRtH2

JCe
−iHRt |m〉

≤
∥∥HJCe

−iHRt |m〉
∥∥∥∥HJCe

−iHRt |m〉
∥∥ <∞

which means that n pn,m ∈ l2(N ) uniformly in t because

2ω(n+ 1) ≥En,+ ≥ ω(n+ 1)

ω(n+ 1) ≥En,− ≥ ω(n+ 1)[1−O(ε)−O(g)]

hold definitively in n ∈ N (see Appendix 6.A).

(iii) We compute the time derivative of pn,m(t),

d pn,m
dt

(t) = 〈n| (−iHR)e−iHRt |m〉 ,

thus ∑
n∈N

∣∣∣∣d pn,mdt
(t)

∣∣∣∣2 =
∑
n∈N

∣∣〈n|HRe
−iHRt |m〉

∣∣2
= tr

(
HRe

−iHRt |m〉 〈m| eiHRtHR

)
= tr

(
H2

R |m〉 〈m|
)

= 〈m|H2
R |m〉 <∞

because of (6.12). So
d pn,m
dt ∈ L∞(R) and e−iHRt |m〉 ∈ L2(R) for every t.

Similarly
dk pn,m
dtk

(t) = 〈n| (−iHR)me−iHRt |m〉 ,

and ∑
n

∣∣∣∣dk pn,mdtk
(t)

∣∣∣∣2 =
∑
n

∣∣∣〈n|Hk
Re
−iHRt |m〉

∣∣∣2
=Tr

(
Hk

Re
−iHRt |m〉 〈m| eiHRtHk

R

)
= 〈m|H2k

R |m〉
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which is bounded because |m〉 ∈ D(Hk
R) for all k ∈ N, as we noticed in

Sect.6.2.1. For the second power, k = 2, we can explicitly compute

HR(HR |m〉) =HR

(
HJC |m〉+ g(a†σ† + aσ) |m〉

)
(6.33)

=HR

(
Em |m〉+ gA+

m |m〉+ gA−m |m〉
)

=E2
m |m〉+ gHJCA

+
m |m〉+ gHJCA

−
m |m〉+ Emg(A+

m +A−m) |m〉
+ g2(A+

m+2 +A−m+2)A+
m |m〉+ g2(A+

m−2 +A−m−2)A−m |m〉 .

One recognize from the latter that

g2A−m−2A
−
m |m〉 ∈ Hm−4

gHJCA
−
m |m〉+ gEmA

−
m |m〉 ∈ Hm−2

E2
m |m〉+ g2A−m+2A

+
m |m〉+ g2A+

m−2A
−
m |m〉 ∈ Hm

gHJCA
+
m |m〉+ gEmA

+
m |m〉 ∈ Hm+2

g2A+
m+2A

+
m |m〉 ∈ Hm+4

and being all operators in the previous expression bounded, is clear that
〈m|H4

R |m〉 <∞.

In summary, for the second derivative k = 2, holds
d2 pn,m
dt2

(t) ∈ L∞(R),
d2 pn,m
dt2

(t) ∈ l2(N ).

6.2.4 Step 2

Consider the summand

S1 :=
∑

n>E+2

∑
m∈N
m≤E

pn,+,m(τ/ε)Γ−n |n,+〉 〈m| (6.34)

in equation (6.26). It has other three analogous terms that complete the integrand
(6.25). We will estimate this sample term in details, since the others can be estimated
in the same way.
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Expanding (6.34) as in (6.28) and integrating as in (6.14) we get

∥∥∥∥∥e−iHJC
t
ε
g

2ε

∫ t

0
dτ

∑
n>E+2
m∈N
m≤E

√
npn,+,m(τ/ε)eiE(n−2,+)

τ
ε cos θn sin θn−2 |n−2,+〉 〈m|

∥∥∥∥∥
≤g
ε

∫ t

0
dτ

∥∥∥∥∥ ∑
n>E+2
m∈N
m≤E

√
npn,+,m(τ/ε)eiE(n−2,+)

τ
ε cos θn sin θn−2 |n−2,+〉 〈m|

∥∥∥∥∥
≤g
ε

∫ t

0
dτ

∑
m∈N
m≤E

∥∥∥∥∥ ∑
n>E+2

√
npn,+,m(τ/ε)eiE(n−2,+)

τ
ε cos θn sin θn−2 |n−2,+〉 〈m|

∥∥∥∥∥
≤g
ε

∫ t

0
dτ

∑
m∈N
m≤E

∥∥∥∥∥ ∑
n>E+2

√
npn,+,m(τ/ε)eiE(n−2,+)

τ
ε cos θn sin θn−2 |n−2,+〉

∥∥∥∥∥‖ |m〉 ‖
≤g
ε

∫ t

0
dτ

∑
m∈N
m≤E

( ∑
n>E+2

n |pn,+,m(τ/ε)|2
) 1

2

.

Since we proved that
∑
n
n |pn,+,m (t)|2 < ∞ uniformly t, then the latter row is

bounded by

g

ε

∫ t

0
dτ

∑
m∈N
m≤E

( ∑
n>E+2

n |pn,+,m(τ/ε)|2
) 1

2

≤ g

ε
Ct (6.35)

which is the bound we stated. As anticipated, the other summands in (6.26) can be
estimated by essentially the same argument, yielding the claim.

To end the proof we illustrate an attempt to improve the previous estimate
exploiting the oscillating phase by means of the Riemann-Lebesgue lemma. Notice
that the sequence

N∑
n>E+2

∑
m∈N
m≤E

pn,+,m(τ/ε)Γ−n |n,+〉 〈m|

is Cauchy in C([0, t];B(H)) and, being the integral continuous in that topology, we
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can move the integral inside the summation getting∥∥∥∥∥e−iHJC
t
ε
g

2ε

∑
n>E+2
m∈N
m≤E

√
n cos θn sin θn−2

∫ t

0
dτ pn,+,m(τ/ε)eiE(n−2,+)

τ
ε |n−2,+〉 〈m|

∥∥∥∥∥
≤ g

∑
n>E+2
m∈N
m≤E

√
n

∣∣∣∣1ε
∫ t

0
dτ pn,+,m(τ/ε)eiE(n−2,+)

τ
ε

∣∣∣∣ ‖ |n−2,+〉 〈m| ‖. (6.36)

Then, the term inside the absolute value can be integrated by parts obtaining

1

ε

∫ t

0
dτ pn,+,m(τ/ε)eiE(n−2,+)

τ
ε

=

[
pn,+,m(τ)eiE(n−2,+)τ

iE(n−2,+)

] t
ε

0

+ i
1

E(n−2,+)

∫ t
ε

0
dτ

d pn,+,m
dτ

(τ) eiE(n−2,+)τ .

Therefore (6.36) is bounded by

g
∑

n>E+2
m∈N
m≤E

√
n∣∣E(n−2,+)

∣∣
(
|pn,+,m(t/ε)|+ |pn,+,m(0)|+

∣∣∣∣∣
∫ t

ε

0
dτ

d pn,+,m
dτ

(τ) eiE(n−2,+)τ

∣∣∣∣∣
)

≤ g
∑

n>E+2
m∈N
m≤E

√
n∣∣E(n−2,+)

∣∣
(
|pn,+,m(t/ε)|+ |pn,+,m(0)|+

∥∥∥∥ ddt (pn,+,m)

∥∥∥∥
∞

t

ε

)
.

Since
∣∣E(n−2,+)

∣∣ ∼ n, to bound the last line is sufficient to prove that
∑
nα |pn,+,m (t)|2 <

∞ for some α > 0, which is satisfied because
√
n pn,+,m ∈ l2(N), and

∥∥ d
dt (pn,+,m)

∥∥
∞ ≤

n−(1/2+δ) for some δ > 0.

However, one can perform another integration by parts to obtain

1

ε

∫ t

0
dτ pn,+,m(τ/ε)eiE(n−2,+)

τ
ε =[

pn,+,m(τ)eiE(n−2,+)τ

iE(n−2,+)

] t
ε

0

+ i

[
d
dτ (pn,+,m) (τ)eiE(n−2,+)τ

iE2
(n−2,+)

] t
ε

0

− 1

E2
(n−2,+)

∫ t
ε

0
dτ

d2 pn,+,m
dτ2

(τ)eiE(n−2,+)τ .



100 CHAPTER 6. TOWARDS JAYNES-CUMMINGS

Then (6.36) is bounded by

g
∑

n>E+2
m∈N
m≤E

√
n∣∣E(n−2,+)

∣∣ (|pn,+,m(t/ε)|+ |pn,+,m(0)|)

+

√
n

E2
(n−2,+)

(∣∣∣∣d pn,+,mdt
(t/ε)

∣∣∣∣+

∣∣∣∣d pn,+,mdt
(0)

∣∣∣∣+

∥∥∥∥d2 pn,+,m
dt2

∥∥∥∥
∞

t

ε

)
. (6.37)

Observe that to have summability is now sufficient that
∑
nα |pn,+,m (t)|2 <∞ for

some α > 0 and
∥∥ d
dt (pn,+,m)

∥∥
∞ , ‖

d2

dt2
(pn,+,m) ‖∞ <∞. Those are weaker conditions

that are satisfied as we have seen in Sect.6.2.3. In conclusion for (6.37) we get an
estimate for the first summand in (6.26), namely

C1g + C2
g

ε
t ≤ max{C1ε, C2}

g

ε
(1 + t).

The latter estimate is not better than (6.35) since the bound we obtained for

‖ d2

dt2
(pn,+,m) ‖∞ is O(1) as ε→ 0 and O(1) as g → 0 (see (6.33)). Therefore, to ren-

der useful this last argument we need to understand if the bound on ‖ d2

dt2
(pn,+,m) ‖∞

could be improved to O(gα) or O(εβ) for some α, β > 0. It is not clear if this kind
of bound can be achieved on the second time derivative or on higher derivatives.

Appendix 6.A

Proposition 6.4. Let n ∈ N and En defined as in (5.13)

En(g) = ω(n+ 1) + ν
ω + Ω

2

√
ε2 +

4g2(n+ 1)

(ω + Ω)2
.

Then

(a) If g = o(ε), i. e. g/ε→ 0

En = ω(n+ 1) + ν
ω + Ω

2
ε+ ν

n+ 1

ω + Ω

g2

ε
+ ε · o

(
g2

ε2

)
(6.38)

(b) If g = εα with 0 ≤ α < 1, i. e. ε/g → 0

En = ω(n+ 1) + ν
√
n+ 1g + ν

(ω + Ω)2

8
√
n+ 1

ε2

g
+ g · o

(
ε2

g2

)
(6.39)

Proof. E(x) =
√

1 + x = 1 + 1
2x+

∑∞
n=2 cnx

n for |x| ≤ 1 with

cn = (−1)n−1 (2n)!

(2n− 1)4n(n!)2

(
= (−1)n−1 1

2n
1 · 3 · 5 · · · (2n− 3)

n!

)
.
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Observe that

cn+1x
n+1 = (−1)n+1−1 (2(n+ 1))!

(2(n+ 1)− 1)4n+1(n+ 1)!(n+ 1)!
xn+1

= (−1)
(2n− 1)2(n+ 1)(2n+ 1)

(2n+ 1)4(n+ 1)(n+ 1)
xcnx

n

so

cnx
n + cn+1x

n+1 = cnx
n(1− 2n− 1

2n+ 2
x)

{
< 0 if cn < 0⇔ n = 2k
> 0 if cn > 0⇔ n = 2k + 1

.

Then

E(x) = 1 +
2k+1∑
n=1

cnx
n +

∞∑
m=2k+2

cmx
m < 1 +

2k+1∑
n=1

cnx
n, ∀k ∈ N, |x| ≤ 1

E(x) = 1 +
1

2
x+

2k∑
n=2

cnx
n +

∞∑
m=2k+1

cmx
m > 1 +

1

2
x+

2k∑
n=2

cnx
n, ∀k ∈ N, |x| ≤ 1
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