
Real-Time Pursuit-Evasion with Humanoid Robots

Marco Cognetti, Daniele De Simone, Federico Patota, Nicola Scianca, Leonardo Lanari, Giuseppe Oriolo

Abstract— In our pursuit-evasion problem between hu-
manoid robots, a control scheme is designed so that the pursuer
changes its direction of motion and points towards the evader,
whereas the evader tries to move in a direction orthogonal to
the line-of-sight to the pursuer. A real-time maneuver planning
module implements a sequential procedure. From the desired
direction of motion a Cartesian trajectory is generated and
footsteps are placed; a stable trajectory for the humanoid
CoM is then computed. The whole planning procedure uses
closed-form expressions, thus making real-time implementation
possible, and is repeated upon completion of each step to
account for the motion of the other robot. An interesting
outcome of our study is that the pursuer and the evader
converge to a circular limit cycle along which they travel
at the same speed. This property has been first observed
on unicycles, which have been used as template models for
Cartesian trajectory generation, and then fully confirmed on
NAO humanoids, both in simulations and experiments.

I. INTRODUCTION

Humanoid robots should be moving in the presence a
humans and therefore it is imperative to investigate the
safety-related issues arising from the simultaneous presence
of humans and humanoids in the same ambient. Topics
like human-robot interaction and navigation in the presence
of moving obstacles, as humans, should be specialized for
humanoid robots. Human-aware navigation [1], defined as
the combination of human-robot interaction and robot motion
planning is becoming an essential aspect also for humanoids.

For fixed-base robots, the safe and reliable interaction
with humans has been studied, for example in [2], through
an integrated control framework based on a hierarchy of
consistent behaviors. While the detection and avoidance of
moving obstacles has a long history (e.g., see [3]), for
humanoids it has been addressed only recently [4], [5].

It should be reminded that humanoids have distinctive pe-
culiarities w.r.t. mobile robots since the motion is generated
through steps and these not only need to be feasible but
should also be executed while maintaining balance (see, e.g.,
[6], [7]). Important results on humanoid locomotion have
been achieved by the Honda ASIMO humanoid which can
autonomously walk in an environment with moving obstacles
combining real-time vision and replanning [8]. More re-
cently, a walking pattern generator based on nonlinear MPC
allows the avoidance of convex obstacles [9] or safe walking
in a crowd [10].

In our previous work [11], we presented a method for
performing evasive motions with a humanoid robot, the

The authors are with the Dipartimento di Ingegneria Informatica, Auto-
matica e Gestionale, Sapienza Università di Roma, via Ariosto 25, 00185
Roma, Italy. E-mail: lastname@diag.uniroma1.it. This work is supported by
the EU H2020 project COMANOID.

evader, when an incoming obstacle, with constant direction,
enters the robot safety area. The scenario originates from
the research project COMANOID1 whose goal is to employ
humanoid robots in aeronautical shop floors where human
workers also operate.

In this paper, we consider a worst-case scenario where the
obstacle, defined as the pursuer, is actively trying to reach
and collide with the evader. Simultaneously the evader per-
forms a continuous evasion maneuver in real time following
the step-aside strategy firstly introduced in [11]. In order for
the malicious pursuer not to have any structural advantage,
its characteristics are chosen to be similar to the evader’s.

We adopt the unicycle as a template for the path gener-
ation and then design a simple feedback control law which
allows the determination of the Cartesian path analytically.
It is well known that the pursuit-evasion problem heavily
depends on the chosen models and characteristics of the two
actors (e.g., see [12], [13]). After choosing consequently
the footsteps, we compute the associated stable center of
mass (CoM) trajectory of the humanoid through an analytical
approach [14]. Real-time implementation and replanning is
made possible by the closed-forms expressions of all the
necessary trajectories.

An interesting feature, observed in simulation and during
the experiments with two NAO humanoids, is that both the
pursuer and the evader converge to a circular limit cycle
which they travel at the same speed and with constant relative
orientation.

The paper is organized as follows. In Section II, the
pursuit-evasion problem between unicycle robots is discussed
and the feedback controller is defined. Section III extends
the pursuit-evasion problem to the humanoids and describes
the control schemes that drive the robots. In particular,
we analyze the maneuver planning modules for both the
pursuer and the evader, and discuss their use in a replanning
framework. Simulations and experiments are presented in
Sect. IV. Possible future work is mentioned in the concluding
section.

II. PURSUIT-EVASION WITH UNICYCLES

Our method for pursuit-evasion with humanoids is based
on the use of the unicycle2 as a template model for real-
time trajectory generation. We shall therefore discuss first
pursuit-evasion with unicycles.

1www.comanoid.eu
2The main rationale for this choice is that biomechanical studies (see,

e.g., [15]) have shown that the human sagittal axis is almost invariably
tangent to the Cartesian path during fast locomotion. The consequence of
this approach, which we already adopted successfully in [11], [16], is that
the generated humanoid gaits will not include lateral steps.

leo
Typewritten Text
Presented at the2017 IEEE International Conference on Robotics and Automation (ICRA) Singapore, May 29 - June 3, 2017pp. 4090-4095.

x

y

evader

pursuer

yp

ye

xe xp

p

e

naim
eva

aim

neva

Fig. 1. Pursuit-evasion with unicycles: geometry of the problem

We have two unicycle robots, one of which acts as a
pursuer and the other as an evader (see Fig. 1). Each robot
performs computations in its own moving frame consisting
of the sagittal and the coronal axes, and only uses local
information made available by its own sensory system. We
take the following assumptions:

A1 The evader is not performing any particular task,
or is ready to abort it immediately.

A2 Each robot can determine (and measure the orien-
tation of) the line-of-sight to the other.

A3 The robots can freely move in the workspace (no
obstacles).

In our framework, both the pursuer and the evader are
controlled in pure feedback mode; that is, there is no an-
ticipative action based on an estimate of the other robot’s
intention of motion. At any instant of time, the pursuer
determines the line-of-sight to the evader, represented in the
following by the unit vector naim, and steers its course so as
to align with naim. The evader determines the line-of-sight
to the pursuer, represented3 by −naim, computes from this
an evasion direction neva, and steers its course so as to align
with neva.

Below, we discuss the two robots separately.

A. Pursuer

The pursuer unicycle is represented by

ẋp = vp cos θp

ẏp = vp sin θp

θ̇p = ωp,

where (xp, yp, θp) is the robot configuration and vp, ωp are
its driving and steering velocity inputs.

3Although the direction of the two lines-of-sight is the same, each robot
will obviously obtain and express the corresponding measurement in its own
moving frame.

The pursuer moves under the action of the following
control law4

vp = v̄ (1)
ωp = k (θaim − θp) (2)

where v̄ > 0, k > 0 and θaim = 6 naim is the phase angle of
naim. The constant driving velocity v̄ sustains a continued
pursuing behavior, while the angular velocity forces the robot
to align its sagittal axis with naim, i.e., with the line-of-sight
to the evader. Note that the pursuer directly measures the
angular error θaim − θp, so that no absolute measurements
are actually needed.

B. Evader

The equations of the evader unicycle are

ẋe = ve cos θe

ẏe = ve sin θe

θ̇e = ωe,

where (xe, ye, θe) is the robot configuration and ve, ωe are
the driving and steering velocity inputs.

The control law for the evader is structurally the same of
the pursuer’s:

ve = −v̄ (3)
ωe = k (θeva − θe). (4)

where5 θeva = 6 neva− π, and neva is the unit vector repre-
senting the chosen direction for evasion. Note the following
important points.

• The driving velocity of the evader is chosen to be
equal in magnitude to that of the pursuer to consider
a fair situation where neither robot has an advantage.
However, its sign is opposite because the evader moves
backwards in order to keep the pursuer in its field
of view. The backward motion is the reason for the
presence of a −π offset in the definition of θeva.

• The choice of neva encodes the chosen evasion strategy.
In [11] we have discussed two possibilities, i.e., move
back and move aside. In this paper we will consider
only the second, which is more effective in confined
spaces. With this strategy, the evader moves backwards
so as to align with a direction that is orthogonal to the
line-of-sight to the pursuer. This corresponds to setting
neva = n⊥aim, where n⊥aim is the normal unit vector to
naim in the half-plane behind the robot; equivalently,
we have

θeva = θaim − π/2. (5)

4This control law is inspired to the Cartesian regulator described in [17,
Section 11.6.2]. The main difference is that here we want to track a moving
target (the evader) while the Cartesian regulator aimed at reaching a fixed
point. For this reason, the driving velocity in eq. (1) is constant rather than
modulated by the distance to the target.

5Do not confuse θe, the orientation of the evader, with θeva, the
orientation associated to the evasion direction.

Fig. 2. Pursuit-evasion with unicycles: simulation under control (1–2) for
the pursuer (red) and (3–4) for the evader (blue). Axis ticks are 0.5 m apart.

A possible modification of the orientation control law for
the evader is

ωe = k sign(θeva − θe). (6)

The rationale behind this choice would be to perform the
evasion maneuver as fast as possible in the interest of safety.

C. Simulations

The pursuit-evasion system with unicycles has been simu-
lated in MATLAB. A typical result obtained using (1–2) for
the pursuer (red) and (3–4) for the evader (blue) is shown
in Fig. 2; the control parameters were chosen as v̄ = 1 m/s,
k = 0.5. The first snapshot shows the initial configuration of
the two robots. In the second, the pursuer moves towards the
evader, while the latter starts the evasion maneuver. The last
two snapshots show the robots approaching and settling on
a circular limit cycle, along which they travel at the same
speed; note that their relative orientation is π/2 (a fact that
can easily be proven analytically).

We have also simulated the case in which the evader robot
is controlled using the saturated control (6); plots are not
shown for brevity. We have found that the robots tend again
to a circular limit cycle, whose radius is v̄/k. For the same
values of v̄ and k, this radius is always smaller than the
radius of the limit cycle observed in the previous case. Also,
the relative orientation between the two robots at steady-state
is less than π/2.

An interesting generalization of the move aside evasion
strategy is obtained by substituting π/2 in eq. (5) with a
generic angle α ∈ (0, π/2). With this choice, simulations run
using the proportional control (2) for the evader show that the
relative orientation of the two robots at steady-state becomes
exactly α. Moreover, the radius monotonically increases as α

neva

naimpursuer

evader

Fig. 3. Pursuit-Evasion with humanoids. The pursuer humanoid enters the
safety area of the evader humanoid and heads towards it. The latter must
plan and execute a fast evasive motion. Each robot must continuously replan
its motion on the basis of the other’s. Note the moving frame associated to
each humanoid.

is decreased, and tends to infinity when α approaches zero.
Note that α = 0 corresponds to move back, which can then
be seen as a limit case of this generalized evasion strategy.

The above observations suggest that the pursuit-evasion
system with unicycles possesses strong asymptotic properties
which should be further investigated.

III. PURSUIT-EVASION WITH HUMANOIDS

We now proceed to the problem at the center of this paper,
i.e., pursuit-evasion with humanoids. The situation of interest
is shown in Fig. 3. There are two humanoid robots, one of
which acts as a pursuer and the other as an evader. The
pursuer is always aware of the presence of the evader, and
steers its course trying to intercept it. The evader detects
the pursuer when this enters its safety area, triggering the
execution of an evasive maneuver.

We shall take the same assumptions A1-A3 of the unicycle
case. Since evasion is now a reaction to intrusions in the
safety area, A2 must be reinforced by assuming that the
evader can also measure the distance to the pursuer.

There is, however, a more fundamental difference: a pure
feedback scheme cannot be used, because in humanoids it
is necessary to address the problem of gait generation. The
proposed solution is to adopt a replanning approach: each
robot computes a motion plan in real time based on its
current perception of the other, and updates this plan at a fast
rate to adapt to new perceptions. At its core, the real-time
planning procedure still uses a feedback-controlled unicycle
for Cartesian trajectory generation.

A. Control schemes

The control schemes for the two robots, outlined in
Fig. 4, are structurally the same, although their objectives are
obviously different. As with unicycles, each robot performs
computations in its own moving frame consisting of the
sagittal and the coronal axes, and only uses local information
made available by its sensory system.

pursuer

evader

evader detection
pursuit maneuver

planning
joint motion
generation

image
flow qpnaim

naim

xpCoM

ypCoM
(
)

Cartesian trajectory
generation

naim

naim

pursuer detection
evasion maneuver

planning
joint motion
generation

footsteps generation
CoM trajectory

generation

pursuer
footsteps

xpCoM

ypCoM
(
)xp

yp

(
)

qe
image
flow

xeCoM

yeCoM
(
)

move aside

evader
footstepsneva

xe
ye

(
) xeCoM

yeCoM
(
)

Cartesian trajectory
generation footsteps generation

CoM trajectory
generation

Fig. 4. The control schemes for the pursuer (above) and the evader (below), with the corresponding maneuver planning modules exploded (red box). The
only difference between the two robots is that the pursuer tries to align with the line-of-sight to the evader, whose direction is naim; whereas the evader
tries to align with direction neva, which is orthogonal to the line-of-sight to the pursuer (whose direction is −naim).

Let us look at the pursuer first. The pursuer detects the
evader and measures the corresponding line-of-sight (i.e., the
current direction of the evader relative to itself) represented
in the following by the unit vector naim. Based on this
information, the robot plans in real time a pursuit maneuver,
expressed in terms of a reference motion for its own Center
of Mass (CoM). This is obtained through a sequential proce-
dure: (1) a Cartesian pursuit trajectory is generated using a
unicycle robot as a template model and an orientation control
law aimed at aligning the robot with naim (2) footsteps are
placed around the pursuit trajectory (3) a suitable trajectory
for the CoM is accordingly generated. Once the CoM plan
is ready, it is sent to a kinematic controller for computing
appropriate joint motions.

The evader detects the pursuer and measures the cor-
responding line-of-sight, represented by −naim. Based on
this information, an evasion direction neva is computed and
an evasion maneuver is planned in real time, expressed as
a reference motion for the robot CoM. This is done by
following the same sequential procedure outlined above, with
the only difference that the evasion trajectory is generated
by a unicycle robot subject to an orientation control law
aimed at aligning the robot with neva. From this point on,
the planning module of the evader is an exact replica of that
of the pursuer.

In the following, we will describe in some depth the
structure of the maneuver planning module for both the
evader and the pursuer6. In conclusion of this section, we
discuss when and how replanning is performed.

6For brevity, we will not provide details on the structure of the detection
and joint motion generation modules; in particular, the latter can use
standard pseudoinverse-based kinematic control (see, e.g., [18])

B. Cartesian trajectory generation

For each humanoid, the Cartesian trajectory generation
submodule computes a Cartesian reference trajectory using
the controlled unicycle models of Sect. II as a template. To
allow a unified treatment, we write the control laws (1–2)
(pursuer) and (3–4) (evader) as follows

v = ± v̄ (7)
ω = k (θ∗ − θ). (8)

The pursuer is obtained by taking the positive determination
of v and θ∗ = θaim; while for the evader one should take
the negative determination of v and θ∗ = θeva.

At the start of each maneuver planning phase, the template
unicycle is initialized at the origin of the current humanoid
frame, with the same orientation; i.e., we let xini = yini = 0
and θini = 0. To generate trajectories in real-time, we will
assume that the angular velocity is computed using in (2)
the initial orientation error θ∗ini − θini = θ∗ini, and is kept
constant for the whole planning horizon. Under this premise7,
the unicycle equations can be easily integrated to obtain a
closed-form expression for the Cartesian trajectory:

x(t) = ± v̄ sin k θ∗ini t

k θ∗ini
(9)

y(t) = ± v̄ sign(θ∗ini)
1− cos k θ∗ini t

k θ∗ini
(10)

θ(t) = k sign(θ∗ini) t (11)

for t ≤ ts and

x(t) = x(ts)± v̄(t− ts) cos θ∗ini (12)
y(t) = y(ts)± v̄(t− ts) sin θ∗ini (13)
θ(t) = θ∗ini (14)

7Since we are operating in a fast replanning framework, this is an
acceptable assumption.

for t > ts, with ts = 1/k. The Cartesian part of this
trajectory consists of an arc of circle of radius v̄/k |θ∗ini|
(until ts, where the tangent to the arc has exactly the desired
orientation θ∗ini), followed by a straight line.

C. Footstep generation

The footstep generation submodule generates a sequence
of footsteps around the Cartesian trajectory. The idea is
simply to use a constant stepsize ∆ along the trajectory itself.
This is realized by sampling (9–10) using a constant time
interval ∆t = ∆/v̄ and displacing the samples alternatively
to the right and to the left of the trajectory. The orientation
of each of these footsteps is that of the tangent to the
Cartesian trajectory at the sample point, and is given by the
corresponding sample of (11).

D. CoM trajectory generation

The CoM trajectory generation submodule is in charge of
computing a stable CoM trajectory for the humanoid robot.
It receives in input the footstep sequence, from which a
reference trajectory for the ZMP is generated by polyno-
mial interpolation. Computation of a stable CoM trajectory
associated to the ZMP reference is performed using the same
LIP-based method described in [14], [11], to which we refer
for further details.

Below, we quickly recall the computation of the sagittal
coordinate xCoM of the CoM; equivalent formulas for the
coronal motion can be easily obtained. Let η =

√
g/zCoM,

with zCoM the height of the CoM (assumed to be constant in
the LIP model), and denote by x∗ZMP the sagittal coordinate
of the ZMP reference. We have

xCoM(t) = e−ηtxCoM(0) +
xs(t)− e−ηtxu(0) + xu(t)

2
,

(15)
where

xu(t) = η

∫ ∞
0

e−ητx∗ZMP(t+ τ)dτ (16)

xs(t) = η

∫ t

0

e−η(t−τ)x∗ZMP(τ)dτ. (17)

The integrals in xu(t) and xs(t) can be easily computed for
polynomial ZMP profiles, ultimately leading to a closed-form
computation of xCoM(t).

E. Replanning

Once a robot has planned a (pursuit or evasion) maneuver
based on its current perception of the other as explained
above, it executes a short portion of it and then recomputes
a new plan to adapt to new sensor information.

The maneuver planning procedure makes use of closed-
form expressions exclusively, and is therefore suitable for
real-time implementation. In principle, then, we could per-
form replanning at the same rate at which visual data is
updated. However, we have chosen to allow the robot to
compute a new plan only upon completion of a step, and
more precisely at the end of each double support phase. The
rationale for this is to guarantee that the reference profile for

t = 0.0 t = 10.2 t = 27.6

t = 37.4 t = 55.1 t = 87.3

t = 0.0

Fig. 5. Pursuit-evasion with humanoids: snapshots from a simulation. The
trajectories of the CoMs are shown in red (pursuer) and blue (evader).

the CoM is updated only when the robot has both feet on
the ground, so as to avoid any destabilizing effect.

As soon as the new plan is available, it replaces the
remaining part of the previous plan. In practice, this implies
that the straight line part (12–13) of the Cartesian trajectory
is never traveled, at least as long as the line-of-sight to the
other robot keeps changing.

IV. SIMULATIONS AND EXPERIMENTS

The proposed approach was validated using two NAO
humanoids. One of them, acting as evader, has a depth
camera (ASUS Xtion) mounted on its head. This camera
provides also the distance to the closest obstacle, making it
possible to detect intrusions into the safety area. The pursuer
does not need a measurement of the distance to the evader,
and therefore only uses the built-in monocular camera.

For simulations, we have used the V-REP environment.
The evader safety area is assumed to have a radius of 0.8 m.
Cartesian trajectories for the pursuer and the evader are
generated as explained in Sect. III-B, with v̄ = 0.1 m/s and
k = 0.2. Footsteps are distributed around these trajectories
using ∆ = 0.04 m, a value consistent with the NAO
gait capabilities. A ZMP trajectory is computed from the
footsteps using a single and double support duration of
0.122 s and 0.425 s, respectively. The value of zCoM used
for CoM trajectory generation is 0.268 m.

A typical simulation is summarized in Fig. 5 (see the
accompanying video for a clip), where each frame contains
a side view and a top view for a given time instant. In spite
of the adaptations needed for the humanoid case, the results
fully confirm the pursuit-evasion behavior observed for the
unicycle case: the two robots converge to a circular limit
cycle, along which they travel at the same speed with a
relative orientation of π/2.

t = 0.0

t = 20.4 t = 25.7 t = 36.8

t = 13.8t = 7.3

Fig. 6. Pursuit-evasion with humanoids: snapshots from an experiment.

For the experiments, the various control parameters have
been set to exactly the same values of the simulations. In
spite of the rather limited processing capabilities (each NAO
is equipped with an Intel Atom running at 1.6 GHz) we were
able to perform all computations on-board; in particular, each
call to the maneuver planning module takes less than 10 ms.

Figure 6 shows some snapshots taken during an experi-
ment (see the accompanying video for a clip). The expected
limit cycle behavior is observed again, although its radius
is slightly reduced with respect to the simulation. This is
mainly due to the fact that the actual robot speed is less
than 0.1 m/s due to significant feet slippage on the smooth
floor.

V. CONCLUSIONS

We have considered a pursuit-evasion problem between
humanoids. This is an evolution of the setting considered in
our previous work [11], where a humanoid had to avoid an
incoming intruder which was initially headed for collision
but did not alter its course to pursue the evader.

We have designed control schemes for both the pursuer
and the evader. They are structurally identical, although the
objectives are different: the pursuer tries to align its direction
of motion with the line-of-sight to the evader, whereas the
evader tries to move in a direction orthogonal to the line-of-
sight to the pursuer.

At the core of the control scheme is a real-time maneuver
planning module that implements a sequential procedure.
From the desired direction of motion, a corresponding Carte-
sian trajectory is generated, around which footsteps are
placed; from these, a stable trajectory for the humanoid CoM
is computed. The whole planning procedure makes use of
closed-form expressions, thus making real-time implementa-
tion possible, and is repeated upon completion of each step
to account for the motion of the other robot.

An interesting outcome of our study is that the pursuer
and the evader converge to a circular limit cycle along which
they travel at the same speed. This property has been first
observed on unicycles, which have been used as template
models for Cartesian trajectory generation, and then fully
confirmed on NAO humanoids, both in simulations and
experiments.

Future work will address several points, among which:

• asymptotic properties of pursuit-evasion with unicycles;
• design and validation of more sophisticated evasion

strategies;
• how to perform evasion maneuvers in the presence of

obstacles in the workspace;
• the use of MPC to compute robust, stable trajectory for

the robot CoMs [19].

REFERENCES

[1] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726 – 1743, 2013.

[2] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in 2012 4th IEEE
RAS EMBS Int. Conf. on Biomedical Robotics and Biomechatronics,
2012, pp. 288–295.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in 1985 IEEE Int. Conf. on Robotics and Automation, 1985,
pp. 500–505.

[4] J. Chestnutt, Navigation and Gait Planning. Springer London, 2010,
pp. 1–28.

[5] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[6] M. Morisawa, K. Harada, S. Kajita, K. Kaneko, J. Sola, E. Yoshida,
N. Mansard, K. Yokoi, and J.-P. Laumond, “Reactive stepping to
prevent falling for humanoids,” in 2009 IEEE Int. Conf. on Robotics
and Automation, 2009, pp. 528–534.

[7] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to
Humanoid Robotics. Springer, 2014.

[8] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided
humanoid footstep planning for dynamic environments,” in 2005
IEEE-RAS Int. Conf. on Humanoid Robots, 2005, pp. 13–18.

[9] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and
P. Souères, “A reactive walking pattern generator based on nonlinear
model predictive control,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 10–17, 2017.

[10] N. Bohorquez, A. Sherikov, D. Dimitrov, and P. B. Wieber, “Safe
navigation strategies for a biped robot walking in a crowd,” in 2016
IEEE-RAS Int. Conf. on Humanoid Robots, 2016, pp. 379–386.

[11] M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo, “Real-time
planning and execution of evasive motions for a humanoid robot,” in
2016 IEEE Int. Conf. on Robotics and Automation, 2016, pp. 4200–
4206.

[12] A. W. Merz, “The game of two identical cars,” Journal of Optimization
Theory and Applications, vol. 9, no. 5, pp. 324–343, 1972.

[13] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316,
2011.

[14] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in
planning of locomotion trajectories for biped robots,” in 2014 IEEE-
RAS Int. Conf. on Humanoid Robots, 2014, pp. 951–958.

[15] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion – an inverse optimal control approach,” Au-
tonomous Robots, vol. 28, no. 3, pp. 369–383, 2010.

[16] A. Faragasso, G. Oriolo, A. Paolillo, and M. Vendittelli, “Vision-based
corridor navigation for humanoid robots,” in 2013 IEEE Int. Conf. on
Robotics and Automation, 2013, pp. 3190–3195.

[17] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics.
Springer, 2009.

[18] M. Cognetti, P. Mohammadi, and G. Oriolo, “Humanoid whole-body
planning based on com movement primitives with an application to
composite tasks,” in 2015 IEEE-RAS Int. Conf. on Humanoid Robots,
2015, pp. 1090–1095.

[19] N. Scianca, M. Cognetti, D. De Simone, L. Lanari, and G. Oriolo,
“Intrinsically stable MPC for humanoid gait generation,” in 2016
IEEE-RAS Int. Conf. on Humanoid Robots, 2016, pp. 101–108.

