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Abstract. Models of spherically symmetric relativistic stellar clusters with anisotropic distribution
functions in relativistic regime are described by using Maxwellian distribution function with energy
cutoff. We consider distributions with different levels ofanisotropy and discuss some general
characteristics of the models. In addition, we analyze dynamic and thermodynamic stability of
isotropic models still described by Maxwellian distribution function with energy cutoff and we
find critical values of the onset of instability.
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INTRODUCTION

One of the possible ways of formation of supermassive black holes in quasars and
galactic nuclei is the collapse of a dense stellar cluster after loss of dynamic stability.
Starting from the pioneering work of Zel’dovich & Podurets [24], the problem of the
structure and stability of relativistic stellar clusters (RSC) was studied by many authors.

In the papers of Ipser [14, 15], Suffern & Fackerell [23] and,more recently, in the
works of Bisnovatyi-Kogan et al. [3, 4], thereafter named BKMRV93 and BKMRV98 re-
spectively (see also references therein), the structure and stability of RSC was studied by
using the solution of general relativistic non-collisional Boltzmann equation (RnCBE),
similar to what introduced in the paper of Zel’dovich & Podurets. Numerical simulations
of RSC consisting of non-collisional point masses in a common gravitational field had
been performed by Rasio et al. [21].

Numerical calculations of the evolution of Newtonian stellar clusters due to close en-
counters among stars are performed by solving directly non-relativistic Fokker-Planck
equation or using Monte-Carlo simulations (see Gürkan et al. [12] and references
therein). The qualitative picture of the evolution of densestellar clusters of different
masses taking into account quite different physical processes had been analyzed by
Bisnovatyi-Kogan [2]: it was shown that, due to star evaporation from the cluster during
its evolution, the mass of relativistically collapsing core does not exceed approximately
0.1% of its whole initial mass.
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In most papers, mentioned above, where solutions of RnCBE had been obtained,
isotropic distribution functionsf (E) had been considered. Nevertheless, already Ein-
stein [11] had constructed a highly relativistic cluster with circular orbits. Analytic
self-similar solutions for RSC with arbitrary level of anisotropy had been found by
Bisnovatyi-Kogan & Zel’dovich [8, 9]: in the former paper all solutions formally had
infinite central densities and infinite radii, so they could not be applied directly to the
reality.

It is also important to mention here papers with solutions for anisotropic stellar
clusters obtained in Newtonian approximation (Bisnovatyi-Kogan & Zel’dovich [9];
Ingrosso et al. [13]). Being a large part of matter in the Universe consisting of “dark”
non-collisional component, we can argue that it forms equilibrium configurations well
described by non-collisional Boltzmann equation. Evolution of dark matter clusters
and formation of a large scale structure can lead to formation of systems with an
arbitrary level of anisotropy which could be described by distribution functions far from
equilibrium isotropic Maxwell-Boltzmann one.

Anisotropic stellar clusters with larger transverse momentum (the extreme case is
a cluster with purely circular orbits) are more stable to relativistic collapse than the
isotropic clusters and loose stability in general relativistic regime at larger mass concen-
tration. Anisotropy in the momentum space appears always onthe stage of a rapid con-
traction of the cluster due to preservation of the angular momentum. Strong anisotropy
in the momentum distribution is expected in dense clusters with a supermassive black
hole in the center, where in the vicinity of the last stable orbit only stars with circular
orbits can survive.

Here, we consider relativistic models with anisotropic distribution in the momen-
tum space. We use the same approach for obtaining the solutions as in BKMRV93,
BKMRV98 and in Bisnovatyi-Kogan & Merafina [5] and restrict ourself to analysis of
equilibrium configurations. Finally, we investigate the stability of isotropic clusters, giv-
ing a brief analysis of the results.

MAIN EQUATIONS

Let us consider spherically symmetric equilibrium configurations with a Schwarzschild-
like metric (see Landau & Lifshitz [16])

ds2 = eνc2dt2−eλ dr2− r2(

dθ2 +sin2θdϕ2) . (1)

The exact solution of RnCBE must depend on integrals of motion which are represented
by energyE and angular momentumL, here expressed by the following relations

E = eν/2(p2c2+m2c4)1/2 and L = ptr, (2)

wherem is the stellar mass andp =
√

p2
r + p2

t is the stellar momentum, beingpr and
pt the radial and transversal components, respectively. We search a solution depending
only onE andL in the form (Bisnovatyi-Kogan et al. [6, 7])
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f = A

(

1+
L2

L2
c

)l

e−E/T for E ≤ Ec, (3)

f = 0 for E > Ec,

whereT (constant) is the temperature in energy units measured by aninfinitely remote
observer andLc = mcra is a constant depending on anisotropy radiusra that represents
the value of the radius beyond which the orbits begin to be tangential in prevalence. The
cutoff energy is chosen, following Zel’dovich & Podurets [24], in the form

Ec = mc2−αT/2. (4)

In order to find the equilibrium configurations representingdifferent models of RSC,
we solve the relativistic equilibrium equations (see e.g. Bisnovatyi-Kogan & Zel’dovich
[8]) which generalize the well known Oppenheimer-Volkoff equations in presence of an
anisotropic pressure tensor withPrr 6= Pt . The equations are

dPrr

dr
= − G

rc2

(Prr +ρc2)(Mrc2 +4πPrr r3)

rc2−2GMr
− 2

r
(Prr −Pt), (5)

dMr

dr
= 4πr2ρ, (6)

with boundary conditionsPrr (0) = P0 andMr(0) = 0. The metric coefficients are deter-
mined by relations

eλ =

(

1− 2GMr

rc2

)−1

, (7)

dν
dr

=
2G
c2

Mrc2 +4πPrr r3

r (rc2−2GMr)
, (8)

eνR = e−λR = 1− 2GM
Rc2 , (9)

whereMr is the mass inside a given Lagrangian radiusr. The solutions of equilibrium
equations describing RSC have density and both components of pressure vanishing at
the outer boundaryr = R.

THERMODYNAMIC QUANTITIES

Thermodynamic quantities as the concentrationn, connected with the rest mass density
ρ0 = nm, the total energy densityρc2 and the components of the stress tensor(Prr ,Pt)
are expressed by integrals containing the distribution function f of Eq. (3). Introducing
the angleθ in the plane(pr , pt), so that

pr = pcosθ , pt = psinθ , with 0≤ θ ≤ π (10)
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and taking into account thatL = rpt = rpsinθ and the Newton binomial relation

(

1+
L2

L2
c

)l

=
l

∑
k=0

(

l
k

)(

L2

L2
c

)k

, (11)

we have

n = 2πA
l

∑
k=0

(

l
k

)(

r
Lc

)2k∫ π

0
(sinθ)2k+1dθ

∫ pc

0
p2k+2e−E/Tdp

ρc2 = 2πA
l

∑
k=0

(

l
k

)(

r
Lc

)2k∫ π

0
(sinθ)2k+1dθ

∫ pc

0
p2k+2(p2c2 +m2c4)1/2e−E/Tdp

(12)

Prr = 2πAc2
l

∑
k=0

(

l
k

)(

r
Lc

)2k∫ π

0
(sinθ)2k+1cos2θdθ

×
∫ pc

0
p2k+4(p2c2+m2c4)−1/2e−E/Tdp

Pt = πAc2
l

∑
k=0

(

l
k

)(

r
Lc

)2k∫ π

0
(sinθ)2k+3dθ

∫ pc

0
p2k+4(p2c2 +m2c4)−1/2e−E/Tdp

For solving equations (5)-(6) with thermodynamic functions (12) it is convenient to
introduce the following variables (see Merafina & Ruffini [19, 20])

ε = (p2c2 +m2c4)1/2−mc2 (current “particle” kinetic energy),

εc = (p2
cc2 +m2c4)1/2−mc2 (maximal kinetic energy at a given radiusr),

Tr = Te−ν/2 (local temperature at a given radiusr), (13)

β =
TR

mc2 (nondimensional temperature, in energy units, at the edge of the cluster),

W =
εc

Tr
(nondimensional ratio of maximal kinetic energy to the localtemperature),

W0 =
εc(0)

T0
(the value of W at the center of the cluster).

Using the above variables we obtain the following relations

E
T

=
ε +mc2

Tr
,

Ec

T
=

εc(R)+mc2

TR
=

mc2

TR
=

1
β

,

Ec = mc2−αT/2 = mc2eνR/2 = mc2
(

1− 2GM
Rc2

)1/2

,
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W ≡ εc

Tr
=

mc2

TR
− mc2

Tr
=

1
β
− mc2

Tr
, x =

ε
Tr

, (14)

where we have taken into account that the ratioEc/T is a constant all over the cluster
and the stellar velocities at the outer boundary are zero, sothatεc(R) = 0. In addition,
from Eqs. (14) we have also

e−E/T = e−(ε+mc2)/Tr = e−(x−W+1/β ) = eW−xe−1/β (15)

and therefore, from considerations of statistical mechanics, we can define the constant
B = Ae−1/β . Finally, due to these transformations, we obtain the following form of the
integrals of Eqs. (12)

n = πB
l

∑
k=0

(

l
k

)

(
√

2mc)2k+3
(

r
Lc

)2k

Ak

(

β
1−βW

)k+3/2

(16)

×
∫ W

0
eW−x

(

1+
βx/2

1−βW

)k+1/2(

1+
βx

1−βW

)

xk+1/2dx,

ρc2 = πB
l

∑
k=0

(

l
k

)

mc2(
√

2mc)2k+3
(

r
Lc

)2k

Ak

(

β
1−βW

)k+3/2

(17)

×
∫ W

0
eW−x

(

1+
βx/2

1−βW

)k+1/2(

1+
βx

1−βW

)2

xk+1/2dx,

Prr = πB
l

∑
k=0

(

l
k

)

2mc2(
√

2mc)2k+3
(

r
Lc

)2k

(Ak−Ak+1)

(

β
1−βW

)k+5/2

(18)

×
∫ W

0
eW−x

(

1+
βx/2

1−βW

)k+3/2

xk+3/2dx,

Pt = πB
l

∑
k=0

(

l
k

)

mc2(
√

2mc)2k+3
(

r
Lc

)2k

Ak+1

(

β
1−βW

)k+5/2

(19)

×
∫ W

0
eW−x

(

1+
βx/2

1−βW

)k+3/2

xk+3/2dx.

The coefficientsAk are represented by integrals over the trigonometric functions, which
lead to analytic expressions (Bronstein & Semendyaev [10])

Ak ≡
∫ π

0
(sinθ)2k+1dθ = 2

k

∑
i=0

(

k
i

)

(−1)i

2i +1
,

(

k
i

)

=
k!

i!(k− i)!
, 0! = 1 (20)

and

403

Downloaded 13 Nov 2012 to 141.108.20.27. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



10-12 10-9 10-6 10-3 100 103 106 109
10-7

10-6

10-5

10-4

10-3

10-2

10-1

~

~

> 1

 =10-2

=10-3

=10-4

 

 

M

=10-5

_

FIGURE 1. Mass of the cluster as a function of the central density at different values ofβ , for l = 1
anda = 10−2. Increasing values of the central density correspond to larger values of the parameterW0.
The quantities are dimensionless.

∫ π

0
(sinθ)2k+1cos2 θdθ = Ak−Ak+1.

In particular, the first four values ofAk are given by

A0 = 2, A1 =
4
3
, A2 =

16
15

, A3 =
32
35

. (21)

In order to quantitatively evaluate the effects of anisotropy on RSC, it may be useful
to introduce the local anisotropy level, defined asη = Prr/Pt (see also Bisnovatyi-Kogan
et al. [6, 7]). Due to the form of the distribution function (3), the value ofη is equal to
unity (isotropic function) in the center and at the edge of the cluster, like the Newtonian
case. Except these two points,η < 1 al lover the cluster, since we have considered only
positive values ofl .

NUMERICAL RESULTS

The calculations have been performed for valuesl = 1, 2 of the index of the distribution
function (3). The physical implications on the choice of other values ofl , also negative
ones, will be considered in a future paper, in which the main characteristics of such
models will be described.

In Figs. 1-4 we represent nondimensional mass of the clusteras a function of its
central density, at different values of the temperature parameterβ , for indexesl =
1, 2 and anisotropy parametersa = 10−2, 10−5. Herea is the dimensionless quantity
corresponding to anisotropy radiusra. In these figures it is simple to note that the effects
of the presence of anisotropy (at increasingl and/or decreasinga) manifest a general

404

Downloaded 13 Nov 2012 to 141.108.20.27. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



10-11 10-8 10-5 10-2 101 104 107 1010
10-7

10-6

10-5

10-4

10-3

10-2

10-1

 

 

~
M

~

> 1_

 =10-2

=10-3

=10-4

=10-5

FIGURE 2. Same as in Fig. 1 forl = 2 anda = 10−2.
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FIGURE 3. Same as in Fig. 1 forl = 1 anda = 10−5.

decreasing of masses of the equilibrium configurations. We can also note that the curves
converge forβ ≥ 1.

By considering a different point of view, in Fig. 5 we have represented the same curves
described in the first four figures by varying the anisotropy parameter froma = 10−1

to a = 10−5, for fixed valuesl = 1 andβ = 1. The effects of anisotropy on masses of
equilibrium configurations previously indicated are well explicited; moreover, at smaller
levels of anisotropy (a ≥ 0.1), the curves approach to the ones describing isotropic
clusters, shown in the diagram (b) of Fig. 5 in BKMRV98. Note that, differently from
the figure in BKMRV98, we have chosen to fix the parameterβ instead ofT.

The level of the anisotropy in the distribution function (3)depends on the value of
the parametera. The local anisotropy level may be represented by the ratio between the
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FIGURE 4. Same as in Fig. 1 forl = 2 anda = 10−5.
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FIGURE 5. Mass of the cluster as a function of the central density at different values ofa, for l = 1 and
β = 1. The quantities are dimensionless.

components of the stress tensor (see Bisnovatyi-Kogan et al. [6, 7])

η =
2〈v2

r 〉
〈v2

t 〉
=

Prr

Pt
. (22)

The quantities〈v2
r 〉 and〈v2

t 〉 are the radial and tangential mean square velocity of stars,
respectively. The value ofη approaches to unity for isotropic functions.

In Figs. 6-9 we have represented the quantityη as a function of the relative radius
r/R for l = 1 and selected values of the parametersa, β andW0. Due to the choice of
a positive value of indexl in the distribution function (3), the anisotropy evidencesa
prevalence of tangential motion over the radial one, which is increasing with decreasing
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FIGURE 6. Values of the ratio of the pressure componentsη = Prr /Pt as a function of the relative radius
r/Ralong the cluster, forl = 1, a = 10−1, β = 1 andW0 = 0.001; 0.216; 0.4.
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FIGURE 7. Same as in Fig. 6, forl = 1, a = 10−2, β = 10−5 andW0 = 1; 2.50; 5.

of the parametera. The triad of values ofW0 chosen in each figure refers to the equilib-
rium configuration which mass corresponds to the maximum value inM vs ρ0 diagrams
of Figs. 1-5 and to values before and after this maximum.

It follows from the calculations that clusters described bythe distribution (3) are
isotropic not only in the center, but also at the edge of the configuration: in fact, it is easy
to see from the expressions of the components of pressure (18) and (19) thatPrr/Pt → 1
at the boundary of the cluster whereW → 0 andr → R. As we may see in Figs. 6-9,
the thickness of the external isotropic region is rapidly decreasing with decreasing of the
anisotropy parametera which corresponds to higher levels of anisotropy. Moreover, we
can express the quantityη in the following way
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FIGURE 8. Same as in Fig. 6, forl = 1, a = 10−3, β = 1 andW0 = 0.001; 0.176; 0.4.
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FIGURE 9. Same as in Fig. 6, forl = 1, a = 10−3, β = 10−5 andW0 = 1; 3.12; 5.

η =
1+ 4

5

(

r
ra

)2 I2
I1

1+ 8
5

(

r
ra

)2
I2
I1

, (23)

where

I1 =

(

β
1−βW

)5/2∫ W

0
eW−x

(

1+
βx/2

1−βW

)3/2

x3/2dx,

I2 =

(

β
1−βW

)7/2∫ W

0
eW−x

(

1+
βx/2

1−βW

)5/2

x5/2dx.
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FIGURE 10. Relative densityρ/ρ0 as a function of the relative radiusr/R along the cluster, for an
indexl = 1. The values of the parameters are:a = 10−1, β = 1 andW0 = 0.001; 0.216; 0.4.

At the edge of the cluster, wherer → R, I2/I1 → 0 so thatη → 1. At large anisotropy,
when a is smaller, the terms withI2/I1 in Eq. (23) are much larger than 1 and the
equilibrium configuration reaches the maximal anisotropy corresponding toηm = 0.5.
This is the same result obtained in Newtonian regime (see Figs. 8-9).

DENSITY PROFILES OF THE EQUILIBRIUM
CONFIGURATIONS

It is interesting to note that density profiles of equilibrium configurations, described by
the distribution function (3), have an increasing behaviorin the central region, due to the
presence of sufficiently large level of anisotropy, and therefore the maximum density is
achieved out of the center. Thus, also in relativistic regime, the existence of “hollow”
configurations is clearly a feature of anisotropy and confirms the results obtained by
Ralston & Smith [22] with a different anisotropic distribution function. In Figs. 10-15
we have represented the behavior of density in clusters withdifferent values ofa, β and
W0, for an indexl = 1. The triads of values ofW0 in such figures are chosen with the
same criterion considered in Figs. 6-9.

At very large level of anisotropy, the central density may beseveral orders of magni-
tude smaller than the maximum value and the maximal density is situated far from the
central region of the configuration, especially for decreasing values ofW0 (see, in par-
ticular, Figs. 12 and 15). Moreover, fora→ 0, the cluster is approaching a structure of a
thick shell. This situation becomes different at larger values of the anisotropy parameter
a, when the configuration begins to be more close to the isotropic one: in these cases the
maxima of density disappear and the profiles recover the usual monotonic decreasing
behavior from the center to the boundary of the equilibrium configuration.

The presence of the maxima of density in a region different from the center of the
configuration is clearly related with behavior of the parameter η as a function of the
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FIGURE 11. Same as in Fig. 10, forl = 1, a = 10−2, β = 1 andW0 = 0.001; 0.184; 0.4.
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FIGURE 12. Same as in Fig. 10, forl = 1, a = 10−5, β = 1 andW0 = 0.001; 0.174; 0.4. Due to large
scale used in the values ofρ/ρ0, it seems that the relative density approaches to zero at thecenter of the
configuration, but the actual value is 1.

relative radiusr/R previously discussed. It seems, in fact, that models withη ≥ 0.6
all over the configuration cannot have an “hollow” structureif β = 10−5. For more
relativistic models (β = 1) the critical value ofη increases to 0.7÷ 0.8, allowing to
obtain hollow configurations at lower levels of anisotropy (see, in particular, Fig. 11).

The results concerning the configurations of Figs. 10-15 aresummarized in Table 1,
where we have represented the relativerm/Rand nondimensional ˜rm radius correspond-
ing to the maximum density for different values ofa, β andW0.
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FIGURE 13. Same as in Fig. 10, forl = 1, a = 10−2, β = 10−5 andW0 = 1; 2.50; 5.
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FIGURE 14. Same as in Fig. 10, forl = 1, a = 10−3, β = 10−5 andW0 = 1; 3.12; 5.

STABILITY ANALYSIS FOR ISOTROPIC RELATIVISTIC
CLUSTERS

To analyze the stability of relativistic isotropic clusters we need to calculate the specific
binding energy of the equilibrium models. We have calculated two families of curves,
which characterize dynamical and thermodynamical stability of relativistic clusters with
different cutoff parameters. The curvesEb(ρ0) of specific binding energy at constant
temperatureT (Fig. 16) characterize the thermodynamical stability, while the curves
Eb(ρ0) at constantW0 (Fig. 17) give information about dynamical stability of thecluster
(Bisnovatyi-Kogan & Merafina [5]). Relativistic expression of specific binding energy
is Eb = (Nm−M)/Nm, whereN is the total number of stars in the cluster given by
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FIGURE 15. Same as in Fig. 10, forl = 1, a = 10−5, β = 10−5 andW0 = 1; 3.64; 5. Like in Fig. 12,
the actual value ofρ/ρ0 at the center of the configuration is 1.
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FIGURE 16. Specific binding energyEb/N of equilibrium configurations in clusters with a cutoff as
a function of central densityρ0 for different values of temperatureT. Each extremum corresponds to
appearance of new thermodynamically unstable modes.

N = 4π
∫ R

0

nr2dr
√

1−2GMr/rc2
(24)

andm is the mass of a single star (all stars have the same mass). Thenumber density
n is expressed as usual by integral in momentum space.

The temperature is increasing along each curve in Fig. 17, tending to a finite constant
value for large values of central densityρ0. The loss of stability, characterized by
the first maximum, takes place only forW0 ≤ 15.5. In correspondence of this critical
valueW0 ≃ 15.5, the temperature, at largeρ0, reaches a limiting value (asymptotic)
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TABLE 1. Some numerical characteristics of the anisotropic clusters with
different values ofa, W0 and β : nondimensional radius of the configuration
R̃, nondimensional radius of maximal density ˜rm, relative radius of maximal
densityrm/R, ratio of the maximal to central densityρm/ρ0. The value of the
index of the distribution function isl = 1.

a W0 β R̃ r̃m rm/R ρm/ρ0

10−5 1 10−5 1.98·10−1 9.40·10−2 4.74·10−1 3.66·102

10−5 3.64 10−5 1.09·10−1 4.10·10−2 3.76·10−1 1.64·102

10−5 5 10−5 9.20·10−2 2.90·10−2 3.15·10−1 9.05·101

10−5 0.001 1 3.67·10−2 1.80·10−2 4.90·10−1 1.61·103

10−5 0.174 1 4.19·10−3 1.89·10−3 4.51·10−1 4.08·103

10−5 0.4 1 2.37·10−3 8.70·10−4 3.67·10−1 3.10·103

10−3 1 10−5 1.95·100 8.40·10−1 4.32·10−1 3.50·100

10−3 3.12 10−5 1.18·100 3.80·10−1 3.21·10−1 1.91·100

10−3 5 10−5 9.75·10−1 9.90·10−2 1.02·10−1 1.02·100

10−3 0.001 1 3.65·10−1 1.80·10−1 4.93·10−1 1.59·101

10−3 0.176 1 4.16·10−2 1.90·10−2 4.57·10−1 4.07·101

10−3 0.4 1 2.38·10−2 8.65·10−3 3.64·10−1 3.09·101

10−2 1 10−5 4.38·100 0 0 1
10−2 2.50 10−5 2.96·100 0 0 1
10−2 5 10−5 2.13·100 0 0 1

10−2 0.001 1 1.07·100 4.30·10−1 4.01·10−1 1.61·100

10−2 0.184 1 1.27·10−1 5.40·10−2 4.26·10−1 3.98·100

10−2 0.4 1 7.53·10−2 2.50·10−2 3.32·10−1 3.09·100

10−1 1 10−5 4.74·100 0 0 1
10−1 2.48 10−5 3.20·100 0 0 1
10−1 5 10−5 2.23·100 0 0 1

10−1 0.001 1 1.66·100 0 0 1
10−1 0.216 1 2.77·10−1 0 0 1
10−1 0.4 1 1.84·10−1 0 0 1

Ta = 0.0635. This means that no dynamic instabilities are present for T ≤ 0.06. At
W0 = 16, for example, the limiting temperature is equal toTa = 0.597 and specific
binding energyEb(ρ0) increases monotonously until the asymptotic valueEb,a = 0.0312
(Bisnovatyi-Kogan & Merafina [5]).

At largeρ0, for models with very large central redshiftzc, there is an asymptotic value
Eb,a of specific binding energy for each value ofW0. Plotting the functionEb,a(W0) from
Fig. 17 we obtain a more precise boundary of the dynamical stability W0,a = 15.8. Due
to monotonic dependence of asymptotic (at largeρ0) values of limiting temperature
Ta on the parameterW0, similar curveEb,a(Ta) from Fig. 16 shows the appearance of
dynamically unstable clusters atTa ≥ 0.06 (Bisnovatyi-Kogan & Merafina [5]). The
limiting curves of specific binding energyEb,a(W0) and Eb,a(Ta) are represented in
Figs. 18a and 18b respectively. A summary of numerical results on dynamical and
thermodynamical stability analysis is given in Figs. 19a and 19b, where different regions
are represented in the planes(T,ρ0) and(T,zc), respectively. The results plotted in the
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FIGURE 17. Specific binding energyEb/N of equilibrium configurations in clusters with a cutoff as a
function of central densityρ0 for different values of parameterW0. First maxima, corresponding to loss of
dynamical stability, are present only on curves withW0 ≤ 15.5. Each extremum corresponds to appearance
of new dynamically unstable modes.
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FIGURE 18. Specific binding energyEb/N of equilibrium configurations in clusters with a cutoff for
very large central densitiesρ0 and central redshiftszc as a function ofW0 (Fig. 18a, left side) andTa
(Fig. 18b, right side). The maximum, indicating the loss of dynamical stability, corresponds toW0 = 15.8
andT ≃ 0.06, respectively. The limiting value of binding energy isEb,a = 0.0312.

plane(T,zc) are analogous to ones of the work of Merafina [18]. It is important to stress
the coincidence of boundaries between dynamically and thermodynamically stable and
unstable configurations at large temperatures. Using approximate criteria of dynamical
stability (see BKMRV93 and BKMRV98) we cannot definitely judge if these boundaries
coincide exactly or there is a small difference between them, however the behavior of
specific binding energyEb/N let us enough confidence in this result.
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(Fig. 19a, left side) and in the plane(T,zc) analogous to results of Merafina in 1999 (Fig. 19b, right side)

CONCLUSIONS

We have constructed models of relativistic anisotropic clusters with a distribution func-
tion which generalize isotropic models with quasi-equilibrium Maxwellian distribution
function with the energy cutoff. The presence of anisotropyleads to density profiles
which can exhibit a maximum laying out of the center. This particular feature, called
“hollowness”, is mainly present in more relativistic configurations and for smaller val-
ues of the anisotropy parametera corresponding to higher levels of anisotropy. Similar
kind of anisotropy is created around supermassive black holes due to the existence of
a loss cone. Selfgravitation of the cluster is important when the mass of the bulge is
comparable to the black hole mass.

By analyzing the behavior of the mass of the equilibrium configurations as a function
of the central density, we have seen that the effect of the presence of anisotropy leads to
a general decreasing of equilibrium mass at fixed values of the parameterβ . The masses
of the equilibrium configurations at increasing values of the central density also show
a non monotonic behavior for fixed values of the parametersβ anda. It was shown by
Antonov [1] and Lynden-Bell & Wood [17] that the first maximumon the curveM(ρ0)
for a Newtonian cluster in a box corresponds to loss of the thermodynamic stability of
the cluster and the beginning of its rapid contraction. In the paper of Bisnovatyi-Kogan
& Merafina [5] it has been concluded that the behavior of a cluster with a cutoff is very
similar to the one in a box, both qualitatively and quantitatively. This result was also
extended to relativistic regime. However, analyzing thermodynamic stability in presence
of anisotropy may be difficult, being the cluster out of localthermodynamic equilibrium.
Nevertheless, conclusions about dynamical and thermodynamical stability of relativistic
clusters in presence of anisotropy can be still drawn and systematically discussed by
defining specific criteria. These topics may be object of future investigations.
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