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Abstract. Turbulent separation in channel flow containing a curved wall is studied using a
generalised form of Kolmogorov equation. The equation successfully accounts for inhomogeneous
effects in both the physical and separation spaces. We investigate the scale-by-scale energy
dynamics in turbulent separated flow induced by a curved wall. The scale and spatial fluxes are
highly dependent on the shear layer dynamics and the recirculation bubble forming behind
the lower curved wall. The intense energy produced in the shear layer is transferred to
the recirculation region, sustaining the turbulent velocity fluctuations. The energy dynamics
radically changes depending on the physical position inside the domain, resembling planar
turbulent channel dynamics downstream.

1. Introduction
Most of the statistical theory of turbulence concerns the mechanisms that sustain turbulent
fluctuations against dissipation, namely production and fluxes of turbulent kinetic energy in
the physical space [1] and across the different scales of motion [2]. In the classical picture, the
energy flux and production are single point statistical observables unable to distinguish between
the different scales of motion. On the other hand, the spectrum of turbulent kinetic energy and
the spectral balance allow to address each scale of motion separately [3]. As a main drawback,
the spectral description does not permit to localise the energy transfer process in space, due to
projection on non-local Fourier modes. Physical and spectral views were already reconciled in
the early stages of turbulent research, when Kolmogorov devised his description of turbulence
in terms of structure functions. The implications of his extremely elegant and beautiful theory
for inhomogeneous and complex flows was not recognised until recently through generalisations
to shear dominated anisotropic flows.

The scale-by-scale approach, originally introduced by Kolmogorov to develop his theory in
homogeneous and isotropic turbulence [5], has been progressively extended to anisotropic and
inhomogeneous conditions, for example, from shear dominated flows, see [6, 7], to channel
flow, see [8], [9] and [10]. Casciola et al. (2003) address the link between the intermittency
and anisotropy in homogeneous shear flows [6]. The generalised Kolmogorov equation is then
employed to distinguish the shear-dominated scales by the small isotropic scales dominated by
dissipation. Numerical data shows that the dissipation scales are independent on the mean shear,
so the intermittency correction is universal. Danaila et al. (2001) provide a generalised form
of the Kolmogorov equation adding additional terms to account for the “large-scale turbulent
diffusion acting from the walls through to the centreline of the channel” [8]. The aim is to apply
the Kolmogorov theory to inhomogeneous turbulent flows with moderate Reynolds number.
Hot-wire measurements allow the prediction of large scale effects on the dissipation rate at the
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channel centre. The scale-by-scale budget in a planar turbulent channel flow is numerically
studied by means the generalised form of Kolmogorov equation, see [9] and [10]. The DNS data
sets are analysed to investigate how the inhomogeneity produced by the wall affects transfer of
energy in physical and scale space at different distances from the wall. Such understanding is
fundamental to tune innovative techniques to control boundary layer transition to turbulence or
to design innovative turbulence models, see the discussion in [11], since it is able to capture the
correct dynamics of the fluctuations for inhomogeneous flows.

The present work investigates, through Direct Numerical Simulation (DNS), the scale-by-
scale energy production, transport and dissipation in a channel with a lower curved wall which
is a relatively more complex geometry with respect to previous studies in homogeneous or shear
flows. The results section shows how the generalised Kolmogorov equation is a viable tool to
characterize the turbulence dynamics in anisotropic and strongly inhomogeneous flows. The
energy can be transferred in the physical space from production regions (mainly the shear layer
behind the bump) to regions where it is dissipated or alternatively, the energy produced in
some specific region of the flow domain gives rise to an energy cascade in the separation spaces,
depending on the distance from the wall.

2. Computational Approach
Direct numerical simulations are used to solve the incompressible Navier-Stokes equations,

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

+ fi
∂ui
∂xi

= 0, (1)

where ui is the ith velocity component, p is the hydrodynamic pressure and fi is the body force
sustaining the flow inside the channel. Re = h0Ub/ν is the bulk Reynolds number, where h0 is
half the nominal channel height, Ub is the bulk velocity and ν is the kinematic viscosity. All
length scales are made dimensionless with the nominal channel half-height, time with h0/Ub and
pressures with ρU2

b . When needed, the adoption of wall units will be explicitly highlighted by
the customary superscript +, and the index i = 1, 2, 3 will be replaced with the corresponding
label, x, y or z. Angular brackets denote the temporal and z-direction averaging. The setup was
simulated for enough time to reach steady state conditions before time-uncorrelated data sets
were extracted for statistical analysis. The mesh contains approximately 120 million grid points.
Large computational power was required for the simulation and therefore the simulation was run
on the FERMI BlueGene/Q supercomputer located in Bologna, Italy. The computational fluid
dynamics solver used is Nek5000 [12], which is based on the spectral element method (SEM),
see [13].

Figure 1 shows a sketch of the simulated geometry. The curved wall inside the channel on the
lower wall is commonly referred to as a “bump”. The domain dimensions are (Lx ×Ly ×Lz) =
(26× 2× 2π)× h0 where x, y, and z directions are the stream-wise, wall-normal and span-wise

Figure 1. Sketch of the geometry of the channel with the curved lower wall.
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directions respectively. Flow is from left to right in the x direction with periodic boundary
conditions in both the streamwise, x, and spanwise, z, directions. No slip boundary conditions
are enforced at the top and bottom walls. The simulation has a bulk Reynolds number equal to
Re = 2500 and the maximum friction Reynolds number equal to Reτ = uτh0/ν = 300.

3. The Generalised Kolmogorov Equation
The Kolmogorov equation follows directly from the equations of motion and describes all the
dynamical effects occurring at each scale of the turbulent flow, see [14] and [15]. The generalised
form of the Kolmogorov equation, in order to account for inhomogeneous conditions, is derived
by [4], see also [16] and [17] for a different approach, and reads

∂〈δu2δuj〉
∂rj

+
∂〈δu2δUj〉

∂rj
+
∂〈δu2u∗j 〉
∂Xcj

+
∂〈δu2U∗j 〉
∂Xcj

+

2〈δuiδuj〉
∂δUi
∂rj

+ 2〈u∗jδui〉
∂δUi
∂Xcj

=

− 4 ε∗ + 2ν
∂2〈δu2〉
∂rj∂rj

+
ν

2

∂2〈δu2〉
∂Xcj

2 +
2

ρ

∂〈δpδui〉
∂Xci

. (2)

Hereafter, any quantity denoted by an apostrophe indicates that is taken at x′i which is a position
separated by the vector ri = x′i−xi with respect to xi. The coordinate of the mid-point between
points x′i and xi is defined by Xci = (xi + x′i)/2. Lower-case letters refer to fluctuations whilst
upper-case letters refer to averaged quantities. The asterisk denotes the mid-point average, e.g.
u∗i = (u′i + ui)/2, whilst the δ denotes an increment, e.g. δUi = U ′i − Ui.

Since the present domain has only one homogeneous direction, the span-wise one, the
generalised Kolmogorov equation is defined in a five dimensions space where the independent
coordinates are the two physical Xc and Yc and the three separation rx, ry and rz coordinates.
In the simplified case of homogeneous turbulent flow, equation (2) reduces to the von Kármán
equation, defined in the three dimensional separation space,

∂〈δu2δui〉
∂ri

= −4 ε∗ + 2ν
∂〈δu2〉
∂ri∂ri

. (3)

In order to highlight the physical description of each single term of equation (2), the generalised
Kolmogorov equation can be recast as follow,(

∂Φr,j

∂rj
+
∂Φc,j

∂Xcj

)
= −4 ε∗ − (Πr + Πc) , (4)

where ε is the turbulent kinetic energy dissipation, Πr and Πc are the energy production in the
separation and physical spaces respectively,

Πr = 2〈δuiδuj〉
∂δUi
∂rj

(5)

Πc = 2〈u∗jδui〉
∂δUi
∂Xcj

, (6)

and Φr,j and Φc,j are the energy flux in the separation and physical spaces respectively,

Φr,j = 〈δu2δuj〉+ 〈δu2δUj〉+ 2ν
∂〈δu2〉
∂rj

(7)

Φc,j = 〈δu2u∗j 〉+ 〈δu2U∗j 〉+
ν

2

∂〈δu2〉
∂Xcj

+
2

ρ

∂〈δpδuj〉
∂Xcj

. (8)
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Equation (4) provides a way to distinguish between the transfer of energy from production
to dissipation in both physical and separation spaces as opposed to only observing one-point
statistics, as, for example, in the mean flow kinetic energy and the turbulent kinetic energy
equations, which provide information concerning the transport, production and dissipation only
in physical space.

4. Results

(a) (b)

(c) (d)

Figure 2. Instantaneous streamwise velocity contour plots in y-z planes at the tip of the bump
in panel (a), end of the bump in panel (b), towards the end of the separation bubble in panel
(c) and at x = 24 in panel (d).

Figure 2 shows instantaneous streamwise velocity contour plots in y-z planes at various x
locations inside the domain. Panel (a) shows the flow at the tip of the bump, where the boundary
layer becomes thinner towards the lower wall due to the intense flow acceleration induced by the
decrease in channel section. At the end of the bump, panel (b), the separation induced by the
abrupt change in channel section increase is evident and an intense shear layer detaches from
the bump separating the recirculation bubble from the bulk flow. The shear layer is corrugated
by large scale structures. Effects on the top wall are seen by the thickening of the boundary
layer which is more evident further downstream towards the end of the separation bubble, panel
(c), where the flow reattaches to the bottom wall. The flow stabilises downstream at x = 24,
panel (d), where it resembles a classical planar turbulent channel flow.

Figure 3 shows a vorticity iso-surface which highlights the turbulent structures just behind
the bump. Small three-dimensional structures that fill the recirculation region in the bottom half
of the channel are generated by the shear layer. These structures tend to disappear downstream
and elongated structures, similar to the planar channel streaky structures, appear close to the
walls. Figure 4 shows the contour plots of mean streamwise velocity. The separation bubble
behind the bump is evident and a smaller stagnation region in front of the bump is also present.
Due to the diminished channel section at the bump, the flow accelerates. The contour plot
confirms the existence of a strong shear layer between the bulk flow and the separation bubble.
As anticipated, the bump also affects the flow close to the top wall where boundary layer
thickening occurs.
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Figure 3. Instantaneous vorticity surfaces at constant magnitude.

Figure 4. Contour plot of the streamwise mean velocity. Only a small portion of the flow
domain near the bump is shown.

Energy fluxes, production and dissipation are now discussed following the background
provided in section 3. We recall that the proper phase space involves five dimensions, namely
three separations and two center point positions. The results discussed in the following concern
the two-dimensional sub-spaces (Yc, rz) at fixed streamwise stations Xc with rx = ry = 0, see
figure 5. Figure 6 reports the energy fluxes, Φr and Φc, as vectors and the right-hand side of
equation (4) as background contour plots. All the terms in equation (2) are normalised with
the dissipation −4ε∗ and, for better visualisation, the vectors are shown in arbitrary units.
Proceeding downstream from panel (a) to panel (f) in figure 6, the energy dynamics shows a
substantial dependence on the streamwise position Xc. Three main regions can be distinguished:
the zone before the bump in panel (a), the zone after the bump where the flow is separated in
panels (b)-(d) and the well reattached flow region downstream in panel (f).

In panel (a), the intense localised production at small scales, r+z ≈ 50, and close to the
wall, y+ ≈ 25, is associated with the small recirculation just ahead of the bump. In this plane,
the wall-normal component of the spatial flux, Φc,y = 〈δu2u∗y〉 + 〈δu2U∗y 〉 + ν

2∂〈δu
2〉/∂Xcy +

2
ρ∂〈δpδuy〉/∂Xcy, is dominated by the contribution arising from the mean flow and overwhelms

the rz-component of the flux, Φr,rz = 〈δu2δuz〉 + 2ν∂〈δu2〉/∂rz. The physical interpretation is
that energy generated near the wall is moved towards the center of the channel. We observe that
the fluxes apparently do not absorb all the energy produced by the localised source, suggesting

Figure 5. Sketch of the stream-wise stations selected for the statistical analysis.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Contour plots of (Π − 4ε∗)/(4ε∗) with vectors representing Φ in the reduced space
(Yc, rz), i.e. in the plane rx = ry = 0, Xc = const. Panels (a) to (f) represent stations I to VI
respectively, see Figure 5. Only the lower half of the channel, where the bump is present, is
shown.

that the excess energy is captured by the other components of the flux acting in directions
orthogonal to the plane.

At the tip of the bump, panel (b), production occurs across all the scales, the qualitative
behaviour of the fluxes is basically unchanged, and again, the energy produced at a given
spanwise separation is moved by the spatial flux towards the center of the channel.

The most interesting behaviour occurs downstream, after the bump, where the interaction
of the main bulk flow and the recirculation bubble produces an intense shear layer. Energy
production is intense over a large range of scale separations, for r+z > 20, and is spatially located
at y+ ' 75 which corresponds to the position of the shear layer away from the wall. Apart from
the intense energy production due to the shear layer, a second, small intensity local peak (light
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blue) of Π − 4ε∗ can be observed close to the bottom wall deep inside the recirculating region.
These two regions of production (the shear layer and the second minor peak) feed energy to
the recirculating region. The absence of a significant rz-component of the flux suggests that the
fluid structures do not change their spanwise size.

Downstream, the most intense energy production peak gradually decreases while the second
peak close to the bottom wall becomes more prominent and stabilises to turbulent channel-like
behaviour in panel (f). The energy behaviour in panel (f) is in accordance with what already
observed in the literature [10]. The downstream evolution from panels (d) to panels (e) shows the
change between fluxes directed towards the wall inside the recirculation bubble below the shear
layer and fluxes directed towards the channel center downstream of the bubble. In particular, in
panel (e), the fluxes take a clockwise orientation as the rz-component rises in intensity, indicating
a transfer of energy to smaller spanwise scales below the nominal position of the shear layer and
to larger scales above.

5. Conclusions
Turbulent separation was addressed by a Direct Numerical Simulation of turbulent channel
flow with a lower curved wall. The presence of the bump produces a stable, fully turbulent
recirculation bubble which is separated from the core flow by a strong shear layer.

This configuration is sufficiently general to reproduce the general features of separated flows,
yet it is simple enough to allow to explore the potential of novel advanced statistical tools for
turbulence dynamics. In particular, new partial results were discussed concerning the generalised
Kolmogorov equation which, up to now, was only used to deal with simpler configurations where
no separation occurs. The Kolmogorov equation allows to study the energy dynamics not only
in the physical space but also in the separation space, i.e. it extends the scale-by-scale budget
originally used by Kolmogorov to characterise the homogeneous and isotropic turbulence.

The channel section variation induced by the lower curved wall greatly affects the energy
transfer across different scales and positions. The most intense peak of energy production is
found in the shear layer where strong velocity fluctuations and intense mean velocity gradients
occur. Production and dissipation of energy are not uniform throughout both physical and
separation spaces. The scale-by-scale analysis is found able to account for the inhomogeneous
effects coming from the recirculation region. It highlights how the turbulent fluctuations
behind the bump are sustained by spatial energy fluxes arising from the shear layer to feed
the recirculation bubble. Although the presented results provide a partial view, the analysis can
be extended to cover all the five components of scale and spatial fluxes and their relationships
with production and dissipation in turbulent flow separation.
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