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Abstract

We discuss the possibility to analyze the problem of gravothermal catastrophe in a new way, by obtaining thermodynamical

equations to apply to a selfgravitating system. By using the King distribution function in the framework of statistical

mechanics we treat the globular clusters evolution as a sequence of quasi-equilibrium thermodynamical states.
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1 Introduction

Globular clusters (GCs) are stellar systems with masses
within the interval 10* — 10 M, containing a number
of stars of the order of 10°. They are considered as
nearly spherical systems due to their low values of ec-
centricity e; at least 50% of GCs have e < 0.1 and there
are no clusters with e > 0.2. The core radius r., namely
the radial coordinate at which the brightness becomes
one half of the corresponding value at the center of the
system, is almost 10 pc, whereas the tidal radius r,
which is the biggest spatial extension of the cluster al-
lowed by the external tidal field, is typically around 50
pc.

For their symmetry and age, there is the possibility
to test the evolution of a GCs studying a classical single
mass King model (King, 1966) in relation to thermody-
namical instability phenomena. In fact, in the analysis
of the evolution of GCs, stellar encounters strongly con-
tribute in phase space mixing of stellar orbits. In this
scenario, thermodynamics plays a centrale role in the
gravitational equilibrium and stability of these clusters,
being the average binary relaxation time shorter than
their old absolute age which ranges between 10 to 13
Gyr.

This means that Fokker-Planck approximation,
which takes into account the nature of collisions in glob-
ular clusters, can determine the distribution function
relevant for obtaining the equilibrium configurations of
these systems, whereas the tidal effects due to the pres-
ence of Galactic gravitational potential are responsible
of the confination of the cluster.

On the other hand, the observations of the lumi-
nosity profiles of different GCs (King, 1962) show sim-
ilar curves depending only on different values of the

star concentration, giving the possibility to fit them by
an empirical law and suggesting a unique distribution
function for the whole sample of clusters (King, 1966).
This effect can be described as a change of the main
parameters of the cluster during the dynamical evolu-
tion (Horwitz & Katz, 1977), which maintains the form
of the distribution like in a sort of reversible trasfor-
mation of a gas in thermodynamic equilibrium, also in
accordance to numerical simulations existing in litera-
ture which result in keeping unchanged the distribution
of velocities of stars for a wide range of values of the
concentration during the time evolution driven by the
Fokker-Planck equation.

Therefore, the evolution of globular clusters can be
studied by considering small thermodynamic transfor-
mations which keep constant the functional form of the
velocity distribution of stars like in the framework of
Boltzmann statistical mechanics. It is important to
note that while the equilibrium is given by the form
of the distribution which depends on the Fokker-Planck
equation and consider the real nature of collisions, ther-
modynamics plays a role in the tidal effects acting on
the confination of the system, due to a two competi-
tive phenomena: one given by stellar encounters which
tend to refresh the tail of high velocities in the distribu-
tion and one due to evaporation of stars which prevents
the formation of it, maintaining the system in a sort
of thermodynamical equilibrium with the same distri-
bution function even if in presence of a cutoff in the
velocity of the stars.

2 The Effective Potential

The King DF characterizing the energy distribution of
stars with the same mass m in a model that describes
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a spherically symmetric system with isotropic velocity
distribution may be written as

f(e)=B [67<e+m«p>/ke _ 67<w+m@>/ke] for £ <1,

f(e)=0 for e > . (1)
Here v = m (pr — ¢) is the energy cutoff, correspond-
ing to the maximum kinetic energy that a star can have
at a given radial coordinate r, while ¢ is the gravita-
tional potential. This energy is sufficient to reach the
border of the equilibrium configuration r = R, being
also the difference between the value of the gravita-
tional potential at the edge of configuration and the
same quantity evaluated at a generic distance r from
the center. The quantity 6 is the thermodynamic tem-
perature of the system while B is a constant of normal-
ization.
The behavior of equilibrium solutions for King mod-
els has been also analyzed by Merafina & Ruffini (1989)
by solving the Poisson equilibrium equation in New-
tonian regime. We can see the presence of a maxi-
mum value of the total mass M at increasing values of
the central gravitational potential Wy, which denotes
the arising of a sort of thermodynamic instability at
Wy = 1.35 (Fig.1).
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Figure 1: Mass in function of Wy for families of solu-
tions at different values of the velocity dispersion (Mer-
afina & Ruffini, 1989).

Over this value, we can think the system can
evolve towards the loss of thermodynamical equilibrium
(gravothermal catastrophe), in accordance to the ex-
pected evolution of Lynden-Bell & Wood (1968).

In order to consider thermodynamic transforma-
tions in the framework of statistical mechanics, it is pos-
sible to describe the King DF like a Maxwell-Boltzmann

one by introducing an effective potential. In this way
the evolution of the King models can be treated as a
succession of quasi-equilibrium stages by a thermody-
namic theory formally equivalent to the classical one.

Then, the expression of the effective potential is
given by

¢=—kOn |1 — e@ﬂ/’)/’ﬂ 2)

and the distribution function can be expressed as

f=Be MK (3)

where H = € + mp + ¢ is the single particle Hamilto-
nian of the system which includes also the gravitational
energy of the single star. The effective potential is a
screen potential which restricts the phase space of the
available velocities for the stars and takes into account
the effect of the tidal forces on the system. In this way,
the kinetic temperature T connected with the average
velocity of the stars, depending on the radial coordi-
nate r, becomes distinguished from the thermodynamic
temperature 6, constant all over the equilibrium config-
uration.

From the modified Boltzmann DF of Eq.3, we can
deduce the generalized thermodynamical quantities, as
the energy U, the thermodynamical pressure II and the
entropy S, related to a shell with radial coordinate r.
We get

N:Av/wfﬁds, (@)
0

U:AV/wa\/Ede, (5)
0

1, (v dH
= 3/2 22
3A/0 fe T de | (6)

P
S:kAV/O f(1—1n f)y/e de (7)

where we have replaced the costant B with A, be-
ing B = Ae®* and now f = Ael@=H)/k0 while
a = pu+ mep is the chemical potential in presence of
the gravitational potential .

In this way we can rewrite the first law of thermody-
namics and obtain a new form for the Eulero expression,
that include the extensive and intensive quantities. We
can get also an equation of state formally equivalent to

classical one which involves the thermodynamical quan-
tities, valid for a shell with radial coordinate r. We have

dU = 0dS — TV + adN + N(dH) (8)

U=0S—TIV +aN , (9)

IV = Nk6 (10)
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and, for kinetic quantities like temperature T and pres-
sure P,
(11)

Finally, by integrating the expression of U containing
the single particle Hamiltonian H (Eq.5) all over the
configuration, we can find an additional term FE.yy in
the expression of the total energy FEy,; of the system,
called effective energy

PV = NET .

Etot = Ekin + Egr + Eeff ) (12)
where FEj;, and Fy, are the total kinetic energy and
the total gravitational energy, respectively. The parte-
cipation of the effective potential in the total energy
corresponds to the account of the tidal potential which
determines a finite radius of the cluster. Moreover, Eq.5
defines the energy of the test shell but, for calculating
Eg., we need to use the expression

1 R
Egr:§/0 ppdV . (13)

2.1 The gravothermal catastrophe

Thermodynamical instability of a selfgravitating spher-
ical system was first studied by Lynden-Bell & Wood
(1968), by considering an isothermal sphere (core) con-
fined in a spherical box. Using the classical form of the
virial theorem, including a boundary term due to spa-
tial truncation of the density prophile, it is possible, for
that system, to calculate the critical value of the central
gravitational potential Wy = 6.55 after that thermody-
namical instability, known as gravothermal catastrophe,
onsets. It is important to note that such instability
takes place only in presence of an external thermal bath
exchanging heat with the core and driving the system
towards the dynamical collapse.

With the introduction of the effective potential, we
can repeat this analysis for King models and get an-
other critical value for the central gravitational poten-
tial Wy = 6.9, which differs from the one obtained by
Katz (1980) Wy = 7.4, due to the additional term in
the total energy Fyo (see Eq.12). The most interesting
results concern the profile of specific heat for different
values of Wy (see Merafina et al., in preparation). By
analyzing the behavior of the specific heat all over the
configuration, we found different results. The expres-
sion of the specific heat Cy = (dQ/df)y arises from
Eq.8, being constant N and V, by using the expression

dQ =dU — N(dH) . (14)

e For Wy < 1.35, we have equilibrium configura-
tions with positive heat capacity all over the sys-
tem. There are not existing conditions for an
evolution of the system towards the critical value

corresponding to the onset of the gravothermal
catastrophe (Wy = 6.9). Further, this particular
value (W, = 1.35) corresponds to one concern-
ing the first maximum mass we found among the
equilibrium solutions (see Fig.1).

e For Wy > 1.35, the system shows an external
halo with negative heat capacity and an inter-
nal core with a positive value. The system can
evolve by increasing the value of W{ until reach-
ing the critical value in which the gravothermal
instability onsets. These evolution can take place
without the necessity of the presence of an exter-
nal thermal bath, differently from the previously
requested condition in the Lynden Bell & Wood
model.

Results showing the specific heat profiles in function
of the radial coordinate for different values of W, are
summarized in Fig.2.
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Figure 2: Behaviour of the specific heat in function of
the radial coordinate for different values of W.

2.2 Preliminar observational evidences

The stability of the King models was analyzed in detail
by Katz in 1980, with the same investigation carried
out by Lynden-Bell & Wood for the isothermal sphere.
Katz introduced a new parameter K, which corresponds
essentially to the ratio between the escape velocity and
the dispersion velocity, both calculated at the center of
the cluster. This parameter is directly connected with
Wy. Calculations performed by Katz showed that mod-
els become thermodynamically unstable over the value
K = 8.1 (W, = 7.4). But, analyzing the sample of
data coming from Peterson & King (1975) and Peterson
(1976), Katz highlighted an unexplainable gap between
the expected value of the sample, K = 7.8 equivalent
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to Wy = 6.9, and the one corresponding to the onset
of gravothermal instability, resulting at Wy = 7.4 (see
Fig.3).
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Figure 3: Distribution of galactic GCs at different val-
ues of K (Katz, 1980).

We indeed expect that GCs had enough time to un-
dergo the gravothermal catastrophe and, therefore, the
distribution of GCs in terms of K or Wy should peak ex-
actly in correspondence to the critical value. In fact, the
primeval Gaussian distribution, approaching the critical
value during the evolution, deforms in a non-symmetric
Gaussian curve due to the effect of gravothermal catas-
trophe which progressively subtracts the collapsed GCs
with values of Wy larger than the critical value. For
these reasons, the resulting distribution must present a
maximum which corresponds to the critical value.

It is remarkable to note that, with the introduction
of the effective potential in the study of the thermody-
namical instability, we obtain a critical value, Wy = 6.9,
that bridges this gap and corresponds exactly to the
expected value of the sample. This correspondence be-
comes much more evident by considering the sample of
Harris (1996) with 127 clusters (if we exclude the PCC
ones), as well becomes more evident the non-symmetric
form of the distribution. On the other hand, by mak-
ing a z-test in order to verify the statistical significance
of the gap between the stability limit Wy = 7.4 ex-
pected by Katz and the peak value of the distribution
at Wy = 6.9, it can be shown that these two values are
not compatible within a confidence level of 95%.

3 Conclusions

e The additional (positive) contribution of the ef-
fective potential on the total energy, considering
also the virial condition 2FEy;, + Eg4 = 0, implies
that Fiot = —Egin + Eepp. This enables us to
construct models in which the core has a positive
heat capacity, allowing to assume the possibility
of a survival of the system from the gravothermal
cathastrophe which could explain the existence of
post core-collapsed objects (PCC).

e The model is selfconsistent and admits regions
with positive and negative heat capacity which

can exchange energy and produce gravothermal
instability, without the necessity to assume an ex-
ternal bath as in the Lynden-Bell & Wood model.

e We obtain a new critical value for the onset of
gravothermal instability by the presence of the
effective potential. This value coincides with the
value of K (or, equivalently, to Wy) correspond-
ing to the peak of the GCs distribution, remov-
ing the unexplainable difference outlined by Katz.
This is an observational evidence of the effects
due to the presence of the effective potential, con-
firmed in the analysis of data of more than 150
GCs contained in the last version of catalogue re-
cently published by Harris in 2010 (see also Har-
ris, 1996).

Finally, it may be useful to consider some unsolved
problems and perspectives in order to develop the anal-
ysis of thermodynamical instabilities of GCs.

e The model is not a multimass one and does not
take into account the effects in the formation of
binary stars. At moment this is a preliminary
model which has to be improved.

e The new possibility of measuring transverse ve-
locities of the stars in GCs opens important per-
spectives on the knowledge of the distribution of
the star orbits and their eccentricity, in order to
better develop N-body simulations in supporting
the validity of the model.
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