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Summary. Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response
variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden
Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an
event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which
one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is
referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the
different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of
the proposed model by the expectation–maximization algorithm, we extend the usual forward-backward recursions of Baum
and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate
the proposed approach through simulations and an application based on data coming from a medical study about primary
biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary.
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1. Introduction
In longitudinal studies, subjects may be lost to follow-up due
to events, such as death, which are associated with the out-
come of interest. In these cases an informative drop-out arises
that must be properly modeled. From the reverse perspective,
the time trend of a longitudinal measurement may predict the
risk of an event (e.g., a steadily decreasing CD4 count is pre-
dictive of adverse events in HIV patients); see, for instance,
Follmann and Wu (1995) for a general account of related lon-
gitudinal and survival processes.

A common approach to deal with informative drop-out
is via shared-parameter models (e.g., Wu and Carrol, 1988;
Follmann and Wu, 1995), where both longitudinal and
survival mechanisms are assumed to share a latent Gaussian
variable. Random effects corresponding to latent variables
having a discrete distribution, along the lines of this work,
are adopted by Roy (2003) to deal with an ordinal latent class
model. Another approach to model informative drop-out is
that of Wulfsohn and Tsiatis (1997) and Rizopoulos (2010),
where the risk of an event at a time is influenced by the
expected value of the longitudinal response at the same time.
The resulting Joint Model (JM) uses both fixed and random
effects in the hazard function. There are very few generaliza-
tions of JMs to the case of discrete longitudinal outcomes.
Notable exceptions are those of Rizopoulos and Ghosh
(2011), who propose generalized linear models in a Bayesian
framework, and Viviani, Alfó, and Rizopoulos (2014), who
rely on a classical maximum likelihood framework.

A limitation of shared-parameter models and JMs is that
latent variables, in the form of subject-specific parameters,

are time constant. The effect of time is usually captured by
a fixed function of time (usually, polynomial) that must be
pre-specified and the deviation of the behavior of a subject
with respect to the average behavior may not change during
the period of observation. For an exception see Henderson,
Diggle, and Dobson (2000).

Latent Markov (LM) models represent a flexible and con-
venient way of modeling outcomes of a different nature which
are repeatedly measured over time; see Bartolucci, Farcomeni,
and Pennoni (2013) for an overview. The basic assumption of
these models is that the response variables, which are lon-
gitudinally observed, are conditionally independent given a
hidden first-order Markov chain which accounts for the pos-
sibly time-varying unobserved heterogeneity. This approach
is extended by also including time-constant individual effects
having a discrete distribution, giving rise to the class of mixed
latent (or hidden) Markov (MLM) models as originally pro-
posed by Altman (2007); for a review see Maruotti (2011).

Despite the relevance of LM and MLM models, there are
very few extensions of these models that can deal with in-
formative drop-out. We consider, in particular, that of Albert
(2000), which jointly models the outcome and missing mecha-
nisms. The latter is assumed to follow a manifest (not latent)
first-order Markov chain, and the two processes are linked
because the outcome is used to model the missingness indica-
tors.

In this article, we propose a different approach with
respect to the ones mentioned above to extend MLM models
for informative drop-out, in which the manifest distribution
is jointly referred to the longitudinal and drop-out processes;
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the corresponding time-varying unobserved heterogeneity
structure evolves according to the same initial and tran-
sition distributions. Our approach falls into the class of
non-ignorable random-coefficient-based drop-out models
as defined in Little (1995). The proposed model can be
characterized as a selection model, where instead of directly
modeling the drop-out mechanism as a function of unob-
served responses as in Diggle and Kenward (1994), we do this
indirectly as in the seminal article of Wu and Carrol (1988).
Note that some authors (e.g., Creemers et al., 2010; Viviani,
Rizopoulos, and Alfó, 2014) consider shared-parameter
models as a separate framework. Selection models for dis-
crete longitudinal data have been proposed, among others,
by Molenberghs, Kenward, and Lesaffre (1997) and Ten Have
et al. (1998). The advantages of shared-parameter models
like the one we propose are that a directly interpretable
marginal model is obtained for the observed outcomes, even if
at the price of a heavier estimation procedure. In contrast, a
pattern mixture model (e.g. Wu and Bailey, 1989; Little and
Wang, 1996) is simpler to estimate but specifies the outcome
distribution only conditionally on the time of drop-out.

As a motivation, we consider an example where patients
with primary biliary cirrhosis were randomized either to a
placebo or a treatment based on D-penicillamine. Outcomes
were repeatedly measured after randomization but only 1%
of patients have a complete record. In this application it is
reasonable to expect drop-out to be informative when it is
due to death related to the illness or to transplant. As in
the MLM formulation, we account for two different types of
unobserved heterogeneity. The first is time-constant and is
represented by a latent variable having a discrete distribution
with a suitable number of support points. The second is time-
variant and is represented by a hidden Markov chain with a
suitable number of states.

In the proposed Missing Not at Random (MNAR) ap-
proach, the longitudinal outcomes are modeled through
a generalized linear mixed effects parametrization (e.g.,
Fitzmaurice, Laird, and Ware, 2004) and a discrete event-
history (EH) model (see Steele, 2011, and references therein)
is used for the drop-out process. We also allow for multivari-
ate longitudinal data, so that more than one outcome, and
of a different nature, can be considered at each time occa-
sion. In the application, a continuous and a binary variable
were observed at each time occasion. These outcomes are as-
sumed to be conditionally independent given the latent vari-
ables, even if we outline how to relax this assumption. A flex-
ible dependence structure is obtained as the random effects
are distributed according to a single first-order latent Markov
chain with a finite number of states, additionally to the dis-
crete latent variable for the time-constant unobserved hetero-
geneity. Subjects in the same latent group share class-specific
intercepts for the longitudinal models, and a class-specific in-
tercept for the EH model, and they share common regression
coefficients for the covariates. The resulting estimates are eas-
ily interpretable, and the model is reasonable as it is natural
to expect that longitudinal outcomes and drop-out share the
same sources of unobserved heterogeneity, which can have dif-
ferent effects on each of them.

Note that our proposal operates in discrete time, and not in
continuous time, and therefore it should be used for longitudi-

nal data where the missingness pattern consists of informative
drop-out, or when the time-to-event is interval censored be-
tween two measurement occasions. The model can in principle
be used also with right-censored data, but at the price of a
loss of information and efficiency. The discrete time approach
is simpler than the joint modeling one. Its interpretation is
rather different given that joint longitudinal survival models
are typically formulated in terms of hazard rate.

For the proposed model we perform maximum likeli-
hood estimation by an expectation–maximization (EM) al-
gorithm (Baum et al., 1970; Dempster, Laird, and Rubin,
1977). This requires an extension of the forward–backward
recursions (Baum et al., 1970; Welch, 2003; Bartolucci et al.,
2013) to account for informative drop-out. We also pay atten-
tion to the computation of the standard errors for the param-
eter estimates by employing a method proposed in Bartolucci
and Farcomeni (2009).

The remainder of the article is organized as follows. In Sec-
tion 2 we illustrate the proposed class of models. In Section 3
we describe likelihood inference for these models. Finally, the
approach is illustrated in Section 4 through the analysis of
primary biliary cirrhosis data and we provide some conclud-
ing remarks in Section 5. R code with the methods developed
in this article, and the results of a brief simulation study, are
available as Supplementary Material.

2. MLM Models with Informative Drop-Out

We consider a longitudinal study on a sample of n subjects,
or more generally sample units, in which si follow-up time
occasions are scheduled for i = 1, . . . , n. We assume that si is
known in advance for each subject, while if it is not known
in advance all proposed inference can be thought of as being
conditional on the number of follow-up times as is clarified in
the following.

For each subject i and occasion j we observe r response
variables, denoted by Yhij, h = 1, . . . , r; we also denote by Ji

the last time occasion of observation for subject i, so that
drop-out occurs before occasion Ji + 1. Also Ji is a random
variable, the distribution of which depends on observable co-
variates and latent variables for the unobserved heterogeneity.
A realization of the hth response variable is denoted by yhij

and, accordingly, a realization of Ji is denoted by ji. The ob-
served outcomes for the same subject i and occasion j are
collected in the column vector yij = (y1ij, . . . , yrij)

′. Also note
that if there is drop-out, then ji < si, whereas ji = si indicates
that a complete record of outcomes is observed for the ith
subject. Then, if si is not known in advance we fix si equal to
ji for those subjects that do not drop out, whereas we can fix
si equal to an arbitrary value greater than ji for those sub-
jects characterized by drop-out. This drop-out is informative,
as it is assumed to depend on the latent variables affecting
the responses.

Let Dij, i = 1, . . . , n, j = 1, . . . , si, denote a binary random
variable equal to 1 if subject i drops out from the study after
occasion j and before occasion j + 1, that is, Ji = j, and to 0
otherwise, with Dij = 1 implying that Di,j+1 = · · · = Di,si = 1
for j < si. The basic assumption of the proposed model is that,
given the discrete latent variable Ui with k1 support points,
the discrete latent variable Vij with k2 support points, and
the available covariates, the response variables Y1ij, . . . , Yrij are
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conditionally independent and they are also independent of
Dij. We denote by xhij the column vector of covariates affecting
Yhij and by μhij(u, v) the conditional expected value of this
response variable given these covariates, Ui = u, and Vij = v.
Similarly, we denote by zij the column vector of covariates
affecting Dij and by pij(u, v) the conditional probability that
Dij = 1 given these covariates, Ui = u, and Vij = v. Then, for
u = 1, . . . , k1 and v = 1, . . . , k2, we assume that⎧⎪⎨⎪⎩

gh{μhij(u, v)} = α
(1)
hu + α

(2)
hv + x′

hijβh, h = 1, . . . , r, j = 1, . . . , si,

logit{pij(u, v)} = γ
(1)
u + γ

(2)
v + z′

ijδ, h = 1, . . . , ji − 1,

pij(u, v) = 1, j = ji + 1, . . . , si,

where gh(·), h = 1, . . . , r, are appropriate link functions and
each Yhij is assumed to follow a conditional distribution
belonging to the regular exponential family. The reason why
pisi(u, v) = 1 is that the follow-up surely stops after occasion
si for all subjects. Note that the covariates in xhij and zij

are considered as given and fixed and then these vectors
will be not explicitly indicated when we express conditional
probability and density functions given the covariates.

The marginal model for Dij based on the above assumptions
represents the missing data mechanism, which is therefore
specified conditionally on observed covariates and indirectly
on unobserved outcomes. The underlying assumption is that
all information about unobserved outcomes is summarized
by the random effects, as usual in shared-parameter models
approaches. The assumption that outcomes are conditionally
independent given the latent variables and covariates is
typically not restrictive given that we formulate an MLM
model; see for instance Ip et al. (2013). In any case, this
assumption can be easily relaxed when all outcomes are
categorical (Bartolucci and Farcomeni, 2009), using a
marginal parameterization based on logits and log-odds
ratios. When all outcomes are continuous, one could simply
model them with a multivariate normal distribution, possibly
with structural assumptions on the covariance matrix. These
extensions are straightforward and involve minor changes to
the EM algorithm outlined in the following section.

In the dataset used to illustrate the proposed approach
(see Section 4) there are r = 2 response variables. The first
of these variables is continuous, modeled by a Normal dis-
tribution, and the second is binary, modeled by a Bernoulli
distribution. Hence, for this application we choose g1(·) as
the identity function and g2(·) as the logit link function; for
the distribution of the first variable we also introduce a dis-
persion parameter indicated, in general, by σ2

1 . The model
for each longitudinal outcome is a classical generalized linear
mixed effects model, while the time to drop-out follows an
inhomogeneous geometric distribution as in classical discrete
time EH models (e.g., Steele, 2011).

We regard drop-out as a trial within each time interval. The
resulting likelihood is that of a Bernoulli model; consequently,
we have

Pr(Ji = ji | Ui = u, Vi1 = v1, . . . , Viji = vji)

= piji(u, vji)

ji−1∏
j=1

{1 − pij(u, vj)},

where, since pisi(u, v) = 1, the probability piji(u, vji) disap-
pears when there is no drop-out until the end of the study
(ji = si). This recovers the truncated inhomogeneous geomet-
ric distribution given that si is finite. In order to derive the
results in Section 3 it is also important to note that

Pr(Ji > j | Ui = u, Vi1 = v1, . . . , Vij = vj)

=
j∏

l=1

{1 − pil(u, vl)}, j = 1, . . . , si,

and that

Pr(Ji = ji | Ji > j, Ui = u, Vi,j+1 = vj+1, . . . , Viji = vji)

= piji(u, vji)

ji−1∏
l=j+1

{1 − pil(u, vl)}

for j = 1, . . . , ji − 1. Note that the only information that is
used in the model is the interval censored event time (i.e.,
that drop-out occurs between occasion ji and ji+1). This is a
limitation of the proposed approach when exact event times
are known, as some information is disregarded. The use of
exact (right-censored) event times would anyway lead to a
more complex inferential strategy.

When continuous-time durations are grouped into dis-
crete intervals, a continuous-time hazard model (with con-
stant hazard within each interval) would lead to the com-
plementary log–log link: g{pij(u, v)} = log[− log{1 − pij(u, v)}];
see Kalbfleisch and Prentice (2002). In our application we
use a logit link, which we find more convenient. Regard-
ing the latent structure of the model, we assume that, for
i = 1, . . . , n, Ui is independent of the sequence Vi1, . . . , Visi .
In particular, the first variable has a distribution based on
the mass probabilities λu = Pr(Ui = u), u = 1, . . . , k1, which
are collected in the column vector λ. Moreover, the sequence
Vi1, . . . , Visi follows a Markov chain with initial probabilities
πv = Pr(Vi1 = v), v = 1, . . . , k2, which are collected in the col-
umn vector π, and time-homogeneous transition probabilities
πvv = Pr(Vij = v | Vi,j−1 = v), v, v = 1, . . . , k2, which are col-
lected in the transition matrix �.

Non-homogeneous distributions can be considered by repa-
rameterizing also the latent variables. A very general formu-
lation is as follows:

log
λiu

λi1

= τu,λ + x′
i1,λψu,λ, u = 2, . . . , k1, (1)

log
πiv

πi1

= τv,π + x′
i1,πψv,π, v = 2, . . . , k2, (2)

log
π

(t)

i vv

π
(t)

i v v

= τvv,� + x′
ij,�ψvv,�, v = 1, . . . , k2, v �= v, t > 1,

(3)

where τu,λ, τv,π, and τvv,� are class and state specific inter-
cepts, ψu,λ, ψv,π, and ψvv,� are vectors of parameters, and
xi1,λ, xi1,π, and xij,� are corresponding vectors of covariates.
The parameterization above is particularly useful when (i)
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measurement times are irregularly spaced, so that xij,� can
include the time difference between the jth and (j − 1)th oc-
casion (Bartolucci, Lupparelli, and Montanari, 2009) and (ii)
when the hidden distribution is of main interest. In this sec-
ond case it is not common to include covariates in the manifest
distribution for ease of interpretation. On the other hand, in
the proposed application we include covariates in the mea-
surement model, that is, in the conditional distribution of
the response variables given the latent variables; this is be-
cause we want to evaluate the direct effect of these covari-
ates on the outcomes (see Section 4). Among these covariates
we also include the time interval between consecutive occa-
sions of observation, and then we rely on a time-homogeneous
hidden Markov chain with initial distribution constrained to
be equal to the stationary distribution. This gives rise to a
more parsimonious model and estimation results which are
easier to interpret with respect to the case of free initial
probabilities.

The degree of dependence between the longitudinal and the

survival processes is measured by the total variation of γ
(1)
u

and γ
(2)
v . Accordingly, one can perform a sensitivity analysis

by comparing estimates for increasing values of k1 and k2,
where larger values are approximately associated with more
sensitivity to dropout within the model class. In this analysis
we also consider MAR versions of the proposed approach,
hence a direct comparison between results under NMAR and
under MAR is obtained within the class of models. It shall
be noted that suitable analyses are often performed to assess
sensitivity to untestable assumptions (e.g., Creemers et al.,
2010); this is slightly different with respect to our sensitivity
analysis. However, in our experience when k1 and k2 are too

large the likelihood becomes near flat, and hence γ
(1)
u and γ

(2)
v

are weakly identifiable.
The link between the random effects in the different out-

comes and the indicator for missingness is based on the as-
sumption that they follow the same latent Markov chain. This
is similar in spirit to situations in which a copula is used to
model the dependence of random effects in the longitudinal
and survival processes, as in Rizopoulos, Verbeke, and Molen-
berghs (2008).

3. Likelihood Inference

In this section, we illustrate how to perform likelihood in-
ference for the proposed class of models. The presentation is
for the case in which the hidden Markov chain is time ho-
mogeneous and with parameters common to all sample units.
However, the extension to the case in which covariates also
affect the time-varying and/or the time-constant latent dis-
tribution, possibly based on (1), (2), and (3), may be im-
plemented in a rather simple way following the methods de-
scribed in Bartolucci et al. (2013), Chapter 5.

We start from considering the observed likelihood L(θ) =∏n

i=1
f (yi1, . . . , yiji

, ji), where θ is a short-hand notation for
all the model parameters and f (yi1, . . . , yiji

, ji) is the den-
sity or probability of the observed outcomes. Note that we
omit, for ease of notation, to indicate the dependence of
f (yi1, . . . , yiji

, ji) on θ and on the covariates which are consid-
ered as fixed. The joint distribution of the observed outcomes

is given by

f (yi1, . . . , yiji
, ji) =

k1∑
u=1

λuf (yi1, . . . , yiji
, ji | Ui = u),

(4)

f (yi1, . . . , yiji
, ji | Ui = u) =

k2∑
v1=1

· · ·
k2∑

vji
=1

(
πv1

ji∏
j=2

πvj−1vj

)

×
{

r∏
h=1

ji∏
j=1

f (yhij | u, vj)

}

×
[
piji(u, vji)

ji−1∏
j=1

{1 − pij(u, vj)}
]
,

(5)

where f (yhij | u, v) refers to the conditional density or prob-
ability of Yhij evaluated at yhij, given Ui = u, Vij = v, and the
corresponding covariates, and

pij(u, v) = exp(γ
(1)
u + γ

(2)
v + z′

ijδ)

1 + exp(γ
(1)
u + γ

(2)
v + z′

ijδ)

for j = 1, . . . , ji − 1 with pij(u, v) = 1 for j = ji + 1, . . . , si.
Similarly, we can also express the distribution of the miss-
ing outcomes given the observed outcomes when a subject
drops out before the end of the study. More precisely, consider
the case ji < si and, in order to stress the difference between
observed and missing outcomes, let yo

ij = yij for j = 1, . . . , ji

(observed outcomes) and ym
ij = yij for j = ji + 1, . . . , si (miss-

ing outcomes). We have that

p(ym
ij | yo

i1, . . . , yo
iji

, ji) = f (yo
i1, . . . , yo

iji
, ym

ij , ji)

f (yo
i1, . . . , yo

iji
, ji)

, j = ji + 1, . . . , si,

where f (yo
i1, . . . , y

o
iji

, ji) at the denominator is defined as in
(4), whereas

f (yo
i1, . . . , y

o
iji

, ym
ij , ji)

=
k1∑

u=1

λuf (yo
i1, . . . , y

o
iji

, ym
ij , ji | Ui = u),

f (yi1, . . . , yiji
, ym

ij , ji | Ui = u)

=
k2∑

v1=1

· · ·
k2∑

vj=1

(
πv1

j∏
l=2

πvl−1vl

){
r∏

h=1

ji∏
l=1

f (yhil | u, vl)

}

×
{

r∏
h=1

f (yhij | u, vj)

}[
piji(u, vji)

ji−1∏
l=1

{1 − pil(u, vl)}
]

.

This result confirms that the dependence between missing
and observed outcomes is due to common latent variables,
as already noted in Section 2.
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Expression (5) can be efficiently computed by an extension
of the forward recursion (Baum et al., 1970; Zucchini and
MacDonald, 2009; Bartolucci et al., 2013) that we here pro-
pose. First of all, ruling out the trivial case in which si = 1, we
consider the following density or probability for j = 1, . . . , ji

and u = 1, . . . , k:

aij(v | u) =
{

f (yi1, . . . , yij, Ji > j, Vij = v | Ui = u) if j < ji,

f (yi1, . . . , yij, Ji = j, Vij = v | Ui = u) if j = ji.

Then, for j = 1 we have that

ai1(v | u) =
{

πv

{∏r

h=1
f (yhi1 | u, v)

} {1 − pij(u, v)} if ji > 1,

πv

{∏r

h=1
f (yhi1 | u, v)

}
pij(u, v) if ji = 1,

whereas, provided that ji > 1, for j = 2, . . . , ji we have

aij(v | u) =
{∑k

u=1
ai,j−1(v | u)πvv

{∏r

h=1
f (yhij | u, v)

} {1 − pij(u, v)} if j < ji,∑k

u=1
ai,j−1(v | u)πvv

{∏r

h=1
f (yhij | u, v)

}
pij(u, v) if j = ji,

where v = 1, . . . , k. At the end of the recursion (j = ji), we
have that

f (yi1, . . . , yiji
, ji | Ui = u) =

k∑
v=1

aiji(v | u).

In order to maximize the likelihood L(θ), we use a version
of the EM algorithm (Dempster et al., 1977), which is based
on the complete data likelihood. Let wi(u) denote an indicator
variable equal to 1 if the ith subject is in latent class u (Ui = u)
and let zij(v) denote an indicator variable equal to 1 if, at the
jth occasion, the same subject is in latent state v (Vij = v);
also let zij(v, v) = zi,j−1(v)zij(v) be a dummy variable equal to
1 if there is a transition from latent state v to latent state v

at occasion j. The logarithm of the complete likelihood has
the following expression:

	c(θ) =
n∑

i=1

k1∑
u=1

wi(u){log(λu) + mi(θ | u)},

mi(θ | u) =
k∑

v=1

zi1(v) log πv +
ji∑

j=2

k2∑
v=1

k2∑
v=1

zij(v, v) log πvv

+
r∑

h=1

ji∑
j=1

k2∑
v=1

zij(v) log f (yhij | u, v)

+
k2∑

v=1

[
ji−1∑
j=1

zij(v) log{1 − pij(u, v)}

+ ziji(v) log piji(u, v)

]
,

where the second sum in mi(θ | u), which involves zij(v, v),
disappears if ji = 1.

The EM algorithm alternates two steps until convergence:
first, the conditional expected value of the complete data log-
likelihood is obtained (E-step). The resulting expression is
then maximized with respect to θ (M-step). These steps are
illustrated in detail in the Supplementary Material to the
present article. The EM algorithm is guaranteed to converge
to a local optimum of the observed likelihood. In order to in-
crease the chances of reaching the global maximum, we use a
multistart strategy.

4. Application to Primary Biliary Cirrhosis Data

We illustrate the proposed approach through an application
to a randomized study for the treatment of primary biliary
cirrhosis. These data regard n = 312 patients and were pre-
viously analyzed by Rizopoulus, Verbeke, and Molenberghs
(2010). These patients were randomized to a placebo or a

treatment based on D-penicillamine. We are interested in eval-
uating the effect of treatment on a continuous outcome (loga-
rithm of serum Bilirubin in mg/dl, Y1) and a binary outcome
(presence of edema, Y2), after adjusting for certain baseline
covariates (drug, age, gender, albumin in gm/dl, logarithm of
alkaline phosphatase in U/L, and logarithm of transaminase
at first visit in U/ml, the last one is abbreviated as SGOT)
and drop-out. Among the covariates, we also include the time
in terms of number of years between enrollment and the visit,
together with its interaction with the treatment. The two out-
comes summarize two aspects of the disease. Serum Bilirubin
is linked to liver and spleen functionality, and it is likely to be
connected with worsening conditions, hence making drop-out
due to death more likely (this enforces the idea that drop-out
must be treated as informative). Edema is a consequence of
accumulation of toxic compounds and fluids. D-penicillamine,
which is a chelant of copper, is now routinely used for the
treatment of primary biliary cirrhosis.

The maximum number of follow-up time occasions is 16 for
these data and only 1% of patients have a complete record;
the median time to drop-out is 5. Table 1 reports the propor-
tion of subjects having a certain number of observations, that
is,

∑n

i=1
I(ji = j)/n, j = 1, . . . , 16, where I(·) is the indicator

function. The table also shows the corresponding Kaplan–
Meier estimates, and the mean of the two outcomes based on
the number of survivors.

We begin the analysis of these data by trying different con-
figurations in terms of number of support points of the time-
constant latent variable (k1) and number of states of the hid-
den Markov chain (k2). For the reasons of model interpretabil-
ity clarified in Section 2, we assume that the initial distribu-
tion corresponds to the stationary distribution of the transi-
tion matrix. Note that, though measurement times are not ex-
actly regularly spaced, the variability of the time intervals be-
tween consecutive visits on the patient is rather small; hence
we decided to use a homogeneous latent chain. In Table 2 we
report the BIC for increasing values of k1 and k2 from 1 to 3.
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Table 1
Observed mean of serum Bilirubin and proportion of subjects
with edema by time for the primary biliary cirrhosis data,

together with the proportion of survivors (
∑n

i=1
I(jj = j)/n)

and corresponding Kaplan–Meier estimates (KMj); nj is
equal to the total number of subjects observed at time point

j, for j = 1, . . . , 16.

Time
∑n

i=1
I(ji = j)/n KMj Mean (Y1) Mean (Y2) nj

1 0.09 0.09 3.22 0.21 312
2 0.08 0.09 3.07 0.21 285
3 0.10 0.10 3.45 0.24 259
4 0.14 0.14 4.26 0.27 227
5 0.10 0.10 3.62 0.28 183
6 0.07 0.07 3.91 0.30 153
7 0.06 0.06 3.77 0.37 130
8 0.07 0.07 3.93 0.36 111
9 0.05 0.05 4.01 0.37 88
10 0.07 0.07 3.49 0.41 71
11 0.05 0.05 5.14 0.40 48
12 0.04 0.04 4.23 0.34 32
13 0.02 0.02 5.06 0.40 20
14 0.02 0.02 4.32 0.43 14
15 0.02 0.02 6.28 0.33 9
16 0.01 0.02 5.17 0.67 3

On the basis of the results in Table 2, we select k1 = 3
and k2 = 3, as the corresponding model has the lowest BIC
of 5451.8; the corresponding log-likelihood value is −2588.1
with 48 free parameters. We also consider the model with
k2 = 1 and k1 = 10 chosen according to BIC. For this model,
which only includes time-fixed latent variables, we have a log-
likelihood value of −2944.3 with 64 parameters, so that BIC =
6256.2, a much higher value than that of the proposed model,
confirming that the inclusion of time-varying latent variables
may considerably improve the fit. On the other hand, for the
model constrained with constant elements in each row of the
transition matrix, with k1 = 3 and k2 = 3, we have maximum
log-likelihood equal to −2635.0 with 45 parameters and then
a higher BIC value, equal to 5528.4. Consequently, we retain

the model with unconstrained transition matrix and initial
distribution equal to the stationary distribution.

It is important to note that in selecting the model, we limit
k1 and k2 to 3 to avoid the uncertainty due to the multimodal-
ity of the model likelihood, despite a model with more classes
would have probably achieved a smaller BIC. Note that mod-
els with larger values of k1 and k2 also result in groups of very

close estimates for γ
(1)
u and γ

(2)
v , indicating that the MNAR

structure has been taken into account within the model class
with the chosen values of k1 and k2.

We recall that the EM algorithm is initialized by a combi-
nation of a deterministic rule and a stochastic rule. Overall,
in estimating a model with certain values of k1 and k2, we
tried a number of random initializations equal to ten times
the difference between the number of free parameters of this
model and the number of parameters of the initial model
without latent variables (k1 = k2 = 1). In Table 2 we also
report the overall number of initializations of the EM algo-
rithm and the number of times that this algorithm reaches
the maximum log-likelihood level among these initializations.
On the basis of these results, we consider the obtained solu-
tions as reliable because, for each fitted model, the best point
at convergence is obtained from a reasonable number of dif-
ferent random initializations. On the other hand, we noted
that for larger values of k1 and k2 it is rather rare to ob-
tain a repetition of the best solution, confirming the appro-
priateness of limiting these quantities to 3. Trying higher val-
ues of k1 and k2 also leads to a higher computing time and
may lead to unstable support point estimates for the binary
outcome.

Under the selected model with k1 = k2 = 3, we obtain
the parameter estimates reported in Table 3. In order to
perform a sensitivity analysis on k1 and k2, we also report
the estimates obtained with k1 = k2 = 1 and k1 = k2 = 2.
For comparison, we report in Table 4 parameter estimates
obtained with a Missing at Random (MAR) version of our
model in which the drop-out is not explicitly modeled for
k1 = k2 = 2 and k1 = k2 = 3 and with the MNAR model with
k1 = 10 and k2 = 1. The last is important as a comparison
for absence of time-varying unobserved heterogeneity.

Table 2
BIC for different values of k1 and k2 for the primary biliary cirrhosis data, together with log-likelihood and number of
parameters. The table also shows the number of initializations of the EM algorithm for each combination of k1 and k2,

together with the number of times the log-likelihood at convergence is equal to the best solution.

Log-lik. # Param. BIC

k1 k2 = 1 k2 = 2 k2 = 3 k2 = 1 k2 = 2 k2 = 3 k2 = 1 k2 = 2 k2 = 3

1 −4176.1 −3356.7 −2990.0 28 33 40 8512.9 6903.0 6209.7
2 −3523.6 −3008.0 −2716.2 32 37 44 7230.9 6228.4 5685.1
3 −3323.0 −2855.7 −2588.1 36 41 48 6852.8 5946.9 5451.8

# Initializations # Best solutions

k1 k2 = 1 k2 = 2 k2 = 3 k2 = 1 k2 = 2 k2 = 3

1 1 51 121 1 48 99
2 41 91 161 40 7 5
3 81 131 201 19 15 11
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Table 3
Parameter estimates for the latent Markov model with informative drop-out for the primary biliary cirrhosis data with

k1 = k2 from 1 to 3

Outcome: log(Serum Bilirubin)

k1 = k2 = 1 (MNAR) k1 = k2 = 2 (MNAR) k1 = k2 = 3 (MNAR)

Parameter Est. S.E. p-value est. S.E. p-value Est. S.E. p-value

Intercept −3.588 — — −1.562 — — −0.591 — —
Treatment −0.032 0.061 0.594 −0.112 0.064 0.079 −0.169 0.043 0.000
Age/10 −0.035 0.022 0.116 −0.006 0.023 0.801 0.013 0.013 0.311
Gender (F) −0.431 0.066 0.000 −0.324 0.047 0.000 −0.485 0.031 0.000
Albumin −0.477 0.058 0.000 −0.193 0.040 0.000 −0.143 0.031 0.000
Log-alkaline ph. 0.225 0.029 0.000 0.135 0.019 0.000 0.095 0.014 0.000
Log-SGOT 0.974 0.051 0.000 0.482 0.043 0.000 0.337 0.030 0.000
Time 0.033 0.010 0.001 0.051 0.006 0.000 0.033 0.005 0.000
Treatment.time 0.005 0.014 0.724 −0.001 0.009 0.902 0.010 0.007 0.173

Outcome: Edema

k1 = k2 = 1 (MNAR) k1 = k2 = 2 (MNAR) k1 = k2 = 3 (MNAR)

Parameter Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

Intercept −1.043 — — −0.039 — — −1.327 — —
Treatment −0.165 0.161 0.305 −0.282 0.185 0.127 −0.062 0.260 0.812
Age/10 0.549 0.060 0.000 0.683 0.070 0.000 0.888 0.108 0.000
Gender (F) 0.533 0.176 0.003 0.737 0.195 0.000 0.269 0.299 0.368
Albumin −1.107 0.149 0.000 −1.037 0.168 0.000 −0.615 0.227 0.007
Log-alkaline ph. 0.047 0.072 0.514 0.027 0.085 0.747 −0.006 0.120 0.962
Log-SGOT 0.591 0.131 0.000 0.291 0.157 0.063 0.176 0.240 0.464
Time 0.167 0.025 0.000 0.246 0.028 0.000 0.394 0.042 0.000
Treatment.time −0.015 0.033 0.647 −0.044 0.037 0.237 −0.093 0.051 0.071

Drop-out

k1 = k2 = 1 (MNAR) k1 = k2 = 2 (MNAR) k1 = k2 = 3 (MNAR)

Parameter Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

Intercept −1.815 — — 1.713 — — 2.916 — —
Treatment −0.132 0.251 0.600 −0.272 0.283 0.337 −0.257 0.282 0.362
Age/10 0.250 0.092 0.006 0.290 0.102 0.004 0.314 0.103 0.002
Gender (F) −0.290 0.232 0.211 −0.362 0.263 0.170 −0.742 0.269 0.006
Albumin −1.319 0.216 0.000 −1.197 0.247 0.000 −1.070 0.242 0.000
Log-alkaline ph. −0.057 0.114 0.616 −0.199 0.132 0.130 −0.296 0.137 0.031
Log-SGOT 0.936 0.198 0.000 0.245 0.245 0.317 0.096 0.251 0.700
Time 0.150 0.038 0.000 0.197 0.043 0.000 0.175 0.045 0.000
Treatment.time −0.001 0.052 0.992 −0.010 0.059 0.860 −0.014 0.061 0.816

From the results obtained under the chosen model, we con-
clude that the treatment is beneficial on serum Bilirubin, but
it does not seem to be on the time to drop-out or on edema.
Note that Rizopoulus et al. (2010) obtains similar results for
the treatment effect on serum Bilirubin (as the MAR model
does, see below). The treatment is a chelant, which binds
copper and helps therefore the body to get rid of potentially
toxic accumulation of this metal. An effect on edema could
therefore be expected and the lack of significance suggests
that there may be other biochemical or physiological path-
ways involved in the illness other than copper accumulation
in tissues. Concerning the other predictors, it can be observed

that, with respect to age, the probability of edema increases,
that females have lower levels of Bilirubin, and that albumin is
protective. The sensitivity analysis testifies that for these data
there is a large sensitivity to drop-out, as treatment effect es-
timates are sensibly different for different values of k1 and k2.

We finally consider the estimated latent distribution pa-
rameters. In Table 5 we report the differences between the la-
tent intercepts associated with the time-fixed component and
their averages, and the probability mass estimates. In Table 6
we report the differences between the latent intercepts asso-
ciated with the time-varying component and their averages,
the initial parameter vector, and the transition matrix.
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Table 4
Parameter estimates for the latent Markov model with informative drop-out for the primary biliary cirrhosis data with

k1 = 10, k2 = 1 and with ignorable dropout with k1 = k2 = 2 and k1 = k2 = 3

Outcome: log(Serum Bilirubin)

k1 = 10, k2 = 1 (MNAR) k1 = k2 = 2 (MAR) k1 = k2 = 3 (MAR)

Parameter Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

Intercept −1.747 — — −1.785 — — −0.605 — —
Treatment 0.082 0.047 0.084 −0.076 0.054 0.163 −0.184 0.041 0.000
Age/10 0.029 0.019 0.123 −0.017 0.019 0.353 0.013 0.013 0.312
Gender (F) −0.173 0.053 0.001 −0.349 0.049 0.000 −0.501 0.031 0.000
Albumin −0.620 0.058 0.000 −0.152 0.039 0.000 −0.131 0.031 0.000
Log-alkaline ph. 0.171 0.024 0.000 0.119 0.025 0.000 0.095 0.014 0.000
Log-SGOT 0.717 0.041 0.000 0.520 0.044 0.000 0.336 0.028 0.000
Time 0.092 0.006 0.000 0.052 0.006 0.000 0.034 0.005 0.000
Treatment.time 0.011 0.008 0.206 −0.003 0.008 0.758 0.011 0.007 0.107

Outcome: Edema

k1 = 10, k2 = 1 (MNAR) k1 = k2 = 2 (MAR) k1 = k2 = 3 (MAR)

Parameter Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

Intercept −4.846 0.242 −1.223
Treatment 0.641 0.273 0.019 −0.242 0.185 0.190 −0.022 0.254 0.931
Age/10 1.281 0.118 0.000 0.667 0.070 0.000 0.840 0.104 0.000
Gender (F) 0.310 0.262 0.238 0.694 0.199 0.000 0.223 0.286 0.434
Albumin −1.741 0.306 0.000 −1.031 0.178 0.000 −0.611 0.232 0.008
Log-alkaline ph. 0.051 0.138 0.712 −0.002 0.097 0.982 −0.024 0.119 0.842
log-SGOT 1.449 0.239 0.000 0.282 0.156 0.070 0.190 0.236 0.420
Time 0.611 0.051 0.000 0.237 0.031 0.000 0.390 0.042 0.000
Treatment.time −0.094 0.056 0.091 −0.040 0.037 0.275 −0.099 0.051 0.052

Drop − out

k1 = 10, k2 = 1 (MNAR)

Parameter Est. S.E. p-value

Intercept −0.824 — —
Treatment 0.048 0.282 0.864
Age/10 0.423 0.104 0.000
Gender (F) −0.377 0.264 0.153
Albumin −1.647 0.266 0.000
Log-alkaline ph. −0.072 0.136 0.597
Log-SGOT 0.822 0.243 0.001
Time 0.302 0.046 0.000
Treatment.time 0.009 0.058 0.873

We observe that the groups are rather well separated both
with respect to the time-constant and the time-varying la-
tent variables, and that � is far from a diagonal matrix,
which corresponds to a situation of perfect persistence. We
conclude that there are distinct subgroups of patients with
different prognostic expectations (time-fixed unobserved het-
erogeneity), and that patients may move from one subgroup
to another during the follow-up for unforeseen reasons (time-
varying unobserved heterogeneity).

5. Discussion

We propose an event-history approach to Mixed LM models
with informative drop-out. The model can be used in discrete

time, that is, when it is only known that drop-out has occurred
between two measurement occasions. It can also be applied
in continuous time, but at the price of a loss of efficiency. The
basic assumption is similar to that of classical shared-
parameter models, that is, random effects capture all missing
information due to drop-out and hence missing indicators and
outcomes are conditionally independent given these random
effects. We also relax the usual assumption that random
effects are time constant by adding a second term distributed
according to a hidden Markov chain. In order to derive
inference we extend the usual forward-backward recursions
to informative drop-out and consequently propose an ex-
tended version of the EM algorithm for maximum likelihood
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Table 5
Time-fixed latent distribution parameter estimates for the

latent Markov model with informative drop-out, with
k1 = k2 = 3, for the primary biliary cirrhosis data (support
points ordered according to the first dimension; standard

errors in brackets)

u α̂
(1)
1u α̂

(2)
2u γ̂

(1)
u λ̂u

1 −0.422 3.335 0.192 0.139
(0.038) (0.266) (0.276) (0.023)

2 −0.292 −2.249 −0.600 0.356
(0.027) (0.227) (0.171) (0.034)

3 0.322 0.664 0.369 0.505
(0.027) (0.163) (0.117) (0.036)

estimation in MLM models. The advantages of the proposed
type of modeling are shown by an application based on a
study about primary biliary cirrhosis in which there are two
outcomes of interest, the first is continuous and the second is
binary.

The high flexibility of the proposed model comes at the
price of certain estimation complexity, which is mainly re-
lated to the multimodality of the likelihood function. Taking
this into account, it is important to use a limited number of
support points for the time-constant and for the time-varying
latent variables, especially if the sample size is limited. More-
over, it is important to check if the best solution obtained
from the EM estimation algorithm is also obtained starting
from different points of the parameter space. In the applica-
tion, we show how this task may be simply performed by using
a random starting initialization rule for the EM algorithm.

6. Supplementary Materials

Web Appendix, Tables and code referenced in Sections 1 and
3 are available with this paper at the Biometrics website on
Wiley Online library.
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ernment (FIRB project “Mixture and latent variable models
for causal inference and analysis of socio-economic data”).

References

Albert, P. S. (2000). A transitional model for longitudinal binary
data subject to nonignorable missing data. Biometrics 56,
602–608.

Altman, R. M. (2007). Mixed hidden Markov models: An extension
of the hidden Markov model to the longitudinal data setting.
Journal of the American Statistical Association 102, 201–
210.

Bartolucci, F. and Farcomeni, A. (2009). A multivariate extension
of the dynamic logit model for longitudinal data based on a
latent Markov heterogeneity structure. Journal of the Amer-
ican Statistical Association 104, 816–831.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent
Markov Models for Longitudinal Data. Boca Raton, FL:
Chapman & Hall/CRC Press.

Bartolucci, F., Lupparelli, M., and Montanari, G. E. (2009). Latent
Markov model for longitudinal binary data: An application
to the performance evaluation of nursing homes. Annals of
Applied Statistics 3, 611–636.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A max-
imization technique occurring in the statistical analysis of
probabilistic functions of Markov chains. Annals of Mathe-
matical Statistics 41, 164–171.

Creemers, A., Hens, N., Aerts, M., Molenberghs, G., Verbeke,
G., and Kenward, M. G. (2010). A sensitivity analysis for
shared-parameter models for incomplete longitudinal out-
comes. Biometrical Journal 52, 111–125.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the EM algorithm (with
discussion). Journal of the Royal Statistical Society, Series
B 39, 1–38.

Diggle, P. and Kenward, M. G. (1994). Informative drop-out in lon-
gitudinal data analysis (with discussion). Applied Statistics
43, 49–93.

Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2004). Applied
Longitudinal Analysis. Hoboken, NJ: Wiley-Interscience.

Follmann, D. and Wu, M. (1995). An approximate generalized lin-
ear model with random effects for informative missing data.
Biometrics 51, 151–168.

Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling
of longitudinal measurements and event time data. Biostatis-
tics 1, 465–480.

Ip, E., Zhang, Q., Rejeski, J., Harris, T., and Kritchevsky, S. (2013).
Partially ordered mixed hidden Markov model for the dis-
ablement process of older adults. Journal of the American
Statistical Association 108, 370–384.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Anal-
ysis of Failure Time Data. Hoboken, NJ: Wiley.

Little, R. J. A. (1995). Modeling the drop-out mechanism in
repeated-measures studies. Journal of the American Statis-
tical Association 90, 1112–1121.

Little, R. J. A. and Wang, Y. (1996). Pattern-mixing models for
multivariate incomplete data with covariates. Biometrics 52,
98–111.

Maruotti, A. (2011). Mixed hidden Markov models for longitudinal
data: An overview. International Statistical Review 79, 427–
454.

Molenberghs, G., Kenward, M. G., and Lesaffre, E. (1997). The
analysis of longitudinal data with non-random dropout.
Biometrika 84, 33–44.



10 Biometrics

Rizopoulos, D. (2010). JM: An R package for the joint modelling
of longitudinal and time-to-event data. Journal of Statistical
Software 35.

Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric
multivariate joint model for multiple longitudinal outcomes
and a time-to-event. Statistics in Medicine 30, 1366–1380.

Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared
parameter models under random effects misspecification.
Biometrika 95, 63–74.

Rizopoulus, D., Verbeke, G., and Molenberghs, G. (2010). Multiple-
imputation-based residuals and diagnostic plots for joint
models of longitudinal and survival outcomes. Biometrics
66, 20–29.

Roy, J. (2003). Modeling longitudinal data with nonignorable
dropouts using a latent dropout class model. Biometrics 59,
829–836.

Steele, F. (2011). Multilevel discrete-time event history models with
applications to the analysis of recurrent employment transi-
tions. Australian & New Zealand Journal of Statistics 53,
1–20.

Ten Have, T. R., Kunselman, A. R., Pulkstenis, E. P., and Landis,
J. R. (1998). Mixed effects logistic regression models for lon-
gitudinal binary response data with informative drop-out.
Biometrics 54, 367–383.
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