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ABSTRACT

The human transcriptome contains thousands of
long non-coding RNAs (IncRNAs). Characterizing
their function is a current challenge. An emerging
concept is that IncRNAs serve as protein scaffolds,
forming ribonucleoproteins and bringing proteins in
proximity. However, only few scaffolding IncRNAs
have been characterized and the prevalence of this
function is unknown. Here, we propose the first com-
putational approach aimed at predicting scaffolding
IncRNAs at large scale. We predicted the largest hu-
man IncRNA-protein interaction network to date us-
ing the catRAPID omics algorithm. In combination
with tissue expression and statistical approaches,
we identified 847 IncRNAs (~5% of the long non-
coding transcriptome) predicted to scaffold half of
the known protein complexes and network modules.
Lastly, we show that the association of certain IncR-
NAs to disease may involve their scaffolding abil-
ity. Overall, our results suggest for the first time that
RNA-mediated scaffolding of protein complexes and
modules may be a common mechanism in human
cells.

INTRODUCTION

More than 60% of the human genome is transcribed into
tens of thousands of RNAs with low coding potential (1).
Long non-coding RNAs (IncRNAs) are a subset of those
transcripts longer than 200 nt, transcribed by RNA poly-
merase II, often capped, spliced and polyadenylated (2).
The possible function of most of the > 26 000 GENCODE
annotated IncRNAs is yet to be addressed (3), and many are

thought to be transcription errors or noise. However, thou-
sands of IncRNAs have been found to be differentially ex-
pressed in distinct cell types, with dozens shown to be impli-
cated in transcription regulation (4), stress responses (5) and
disease (6). Indeed, IncRNAs are versatile molecules able to
perform numerous tasks in the cell through binding of pro-
teins, DNA or other RNA molecules (2).

All cellular functions are performed by interactions be-
tween molecules, such as interaction between proteins and
RNAs. These interactions can be stable, leading to ribonu-
cleoprotein (RNP) complexes such as the ribosome, the
spliceosome or the telomerase complex, or transient such as
those involved in transport and degradation of nuclear tran-
scripts. Similarly, components of complexes or pathways
need to be physically close to each other (either transiently
or permanently) in order to perform their function. One
way to achieve this, while attaining selectivity in a crowded
cell, is to employ platform or scaffold molecules that piece
together components of a complex or a pathway (7). Al-
though proteins can and do serve as scaffolds for other pro-
teins (8), the use of RNA scaffolds would present several
advantages, since ‘one protein comprising 100 amino acids
can capture only one or two proteins, whereas one RNA
molecule comprising 100 nt can capture around 5-20 pro-
teins’, simultaneously (9). Moreover, IncRNAs can act im-
mediately after transcription, while protein scaffolds require
at least the step of translation before being functional (2).

Several ncRNAs have been found to function as scaf-
folds for RNP complexes such as TERC (Telomerase RNA
Component), SRP (Signal Recognition Particle RNA) and
LINP1 (LncRNA In Nonhomologous End Joining Path-
way 1) (2,10,11) or found to transiently assemble groups
of proteins as in the case of XIST (X-inactive specific
transcript) and both the granule-forming NEAT1 (Nu-
clear Paraspeckle Assembly Transcript 1) and MALAT1
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(Metastasis Associated Lung Adenocarcinoma Transcript
1) (5,12). Although known scaffolding IncRNAs carry out
important cellular functions, only a few dozen cases have
been uncovered so far (7), many while studying the protein
complexes rather than the IncRNAs. We therefore hypoth-
esize that other yet uncharacterized IncRNAs may act as
scaffolds.

Recently, with the development of RNA interactome cap-
ture methodologies, the repertoire of RNA-binding pro-
teins (RBPs) has greatly expanded (13), leading to the
discovery of hundreds of novel RNA-interacting proteins,
many of which contain no known RNA-binding domain
(RBD). In addition, studies using high-throughput meth-
ods to detect RNAs bound by RBPs including iCLIP,
PAR-CLIP and recently eCLIP (14), demonstrate that most
RBPs bind thousands of different RNA molecules depend-
ing on the cell line. However, these investigations have been
limited to a set of ~140 RBPs containing known RBDs
(14,15) and do not cover the full extent of the protein—
RNA interaction space. Furthermore, only one fraction of
the RNAs targeted by the RBPs are found in common
by independent replicate experiments, suggesting that the
interaction maps of the studied RBPs are far from com-
plete (14). Computational prediction of protein—-RNA in-
teractions can therefore help fill the gap in our knowledge
of protein—-RNA interactions and be applied to large-scale
analyses.

In this paper, we study for the first time the prevalence
of protein complex scaffolding as a function of IncRNAs.
By exploiting a computed protein—-RNA interaction net-
work, we developed and applied an original large-scale ap-
proach to identify candidate IncRNAs possibly acting as
scaffolding molecules for protein complexes and network
functional modules. We discovered hundreds of scaffolding
IncRNA candidates, suggesting that RNA scaffolding is a
prevalent and widespread mechanism in the cell. In addi-
tion, we found that more than half of the protein complexes
and network modules in the cell may be scaffolded by IncR-
NAs, reinforcing the widespread nature of their action.

MATERIALS AND METHODS
LncRNA—protein interaction predictions

The catRAPID omics protein—-RNA interaction predictor
(16) was used to predict interactions between the human
long non-coding RNA transcriptome (Ensembl v82) and
the human canonical proteome, leading to ~243 million
predictions. Predictions with interaction propensity score
>50 were kept for further analyses (~30.8 million interac-
tions). See Supplementary Material for details.

Tissue expression filtering

To create a set of high confidence protein—RNA interaction
predictions, we restricted the analysis to pairs of IncRNA-
proteins that are likely to be found together in at least one
tissue. Human tissue expression data from the GTEx v6.0
project (17) was used. We downloaded RPKM (Reads Per
Kilobase of transcript per Million mapped reads) informa-
tion from 8555 samples across 53 tissues, already mapped
to human transcripts (GENCODE v19). RPKM values of

samples coming from the same tissue were averaged af-
ter a step of removing outlier values (below or above 1.5-
times the interquartile range). Protein expression was de-
rived from their coding mRNA expression, by selecting
the highest RPKM value among the protein’s mRNAs for
each tissue. Only protein—RNA interactions where both the
RNA and the protein have a minimum RPKM value of 1.58
in at least one of the 53 tissues, were retained. This cutoff
was determined as the optimal expression cutoff (maximiz-
ing the sum of specificity and sensitivity) in a ROC curve
experiment between the pre-filtering IncR NA—protein inter-
action prediction dataset (~243 million interaction predic-
tions) and a set of 2438 experimentally detected CLIP in-
teractions taken from StarBase v2.0 (18) with at least 100
mapped reads (area under the ROC = 0.71). The expression
metric used (‘paired expression’) was calculated for each
protein—RNA pair as the lowest RPKM expression between
the protein and RNA for each tissue, to which the maximum
RPKM value among tissues for that protein—RNA pair is
then withdrawn, i.e.

E (Protein, RNA) = max (min(E, (Protein), E; (RNA)))

1 € tissues
where E(Protein, RNA) denotes the ‘paired expression’ for
each protein—RNA pair and E; denotes the RPKM expres-
sion in tissue 7 (RPKM values were logjo-transformed).

Protein complex and network module datasets

We collected protein complex information from the (i) Bio-
Plex publication (19) Supplementary Table S3, which in-
cludes 354 complexes; (ii) list of conserved protein com-
plexes from Wan et al. (20), Supplementary Table S4, which
includes 981 complexes; (iii) list of non-redundant CORUM
(21) complexes from Havugimana et al. (22), Supplemen-
tary Table S3, which includes 324 complexes, referred to
as ‘non-redundant CORUM complexes’. Protein network
modules were extracted from a human interactome as de-
scribed in (23). See Supplementary Material for details.

LncRNA-protein complex enrichment analysis

Using the set of predicted interactions between IncRNA
and proteins filtered by (i) interaction propensity and (ii)
minimum RPKM expression, we performed the following
enrichment analysis: for each IncRNA and protein group,
we assessed the enrichment of the IncRNA's interacting-
proteins among the proteins in the group using a hyper-
geometric test (one-tailed test; FDR = 5%, multiple test
corrected with the Benjamini—-Hochberg procedure; Figure
1B), using as background the set of proteins in complexes
or modules retaining at least one interaction after interac-
tion filters. We considered only enrichments where: (i) the
IncRNA is interacting with at least two proteins of the pro-
tein group and (ii) all the proteins in the complex or the
module are expressed in a same tissue as the IncRNA with
at least 1.58 RPKM. To exclude IncRNAs with high back-
ground levels of enrichments, we built a null hypothesis dis-
tribution by performing 10 000 hypergeometric tests for
each IncRNA, each time randomly shuffling the proteins
labels between the protein groups. We excluded IncRNAs
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with (i) enrichments not significant in respect to the null hy-
pothesis (empirical P-value > 0.01); (ii) an enrichment ratio
lower than 2-fold.

RESULTS

A predicted human interaction network between the non-
coding transcriptome and the proteome

Aiming to extensively identify IncRNA molecules interact-
ing with protein complexes and potentially acting as pro-
tein scaffolds, we first computed the protein—-RNA interac-
tion potential between most of the human proteome and
the long non-coding transcriptome (79% and 81%, respec-
tively; Supplementary Material) using the catRAPID omics
algorithm (16) (Figure 1A). The catRAPID algorithm is
a protein—-RNA interaction predictor based on the physic-
ochemical features of the molecules that has been exten-

sively used and tested on IncRNAs with good performances
(16,24,25). With this method we produced 243 million pre-
dicted interactions, of which 30.8 million display high in-
teraction propensity scores (catRAPID score > 50). Since
many IncRNAs have only been found to be expressed at very
low levels and often in a tissue-specific manner (26), we only
retained 6.02 million protein—IncRNA interactions between
molecules co-present in at least one out of the 53 human tis-
sues from the GTEx RNA-seq dataset (17) (see Materials
and Methods). Globally, the 6.02 million predicted inter-
actions occur between 12629 proteins and 2799 IncRNAs
(Figure 2), i.e. between 80% of the tested proteins and 18%
of our initial set of IncRNAs. Individual proteins are pre-
dicted to interact with up to 2.5% of the IncRNAs on av-
erage (Supplementary Figure S1). When considering only
RBPs (Supplementary Material), we predict them to inter-
act with 4.14% of the IncRNAs on average, in the same
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Figure 2. A global IncRNA-protein interaction network. Predicted
protein-IncRNA interaction network composed by more than 6 millions
interactions (grey circle) between 12629 proteins (pink circle) and 2799
IncRNAs (blue circle). The size of the network is compared to the human
binary protein-protein interaction network (see Supplementary Methods).
All circles are proportional to their components.

range as eCLIP results on 82 RBPs (14), which interact
with 7.98% of the IncRNAs from the same dataset. On the
IncRNA side, their median number of protein interactions
is 1267 (Supplementary Figure S1), a higher number than
suggested by current RNA pull-down studies that report be-
tween 126 and 852 interacting proteins per IncRNA (27,28).

As evident in recent high-throughput screenings, the
complexity of biological systems challenges interpretation
of experimental results due to the specific interactions oc-
curring in different contexts (12,14). Yet our predictions,
based on molecular physicochemical properties, represent
a set of possible interactions between co-expressed proteins
and RNA, independent of the cellular sub-localization and
the cellular states. Our predictions therefore cover a larger
spectrum of conditions in which protein—-RNA interactions
may occur, compared to the ones assessed in specific in vivo
studies. This allows us to detect, for example, IncRNAs act-
ing exclusively upon DNA damage and other stress condi-
tions, or interactions restricted to a few cell types. Despite
all this, 9414 of our predicted interactions are found in the
relatively small set of eCLIP experiments, a highly signif-
icant overlap considering the 82 proteins and 7381 tran-
scripts present in both eCLIP and catRAPID datasets (P-
value < 2.2¢-271, OR = 1.85, two-tailed Fisher’s exact test),
therefore increasing our confidence in the predicted net-
work.

Overall, to the best of our knowledge, we have predicted
the largest human IncRNA—protein interaction network to
date.

Interactions between IncRNAs and protein complexes or net-
work modules

To assess our capacity to computationally predict IncRNA
interactions with protein complexes, we studied the possible
association between a recently discovered evolutionarily-
conserved and muscle-restricted IncRNA, /nc-405 (29), and
the Pura—Purp—YBXI1 protein complex, implicated in gene
regulation of muscle cells (30). The catRAPID omics algo-
rithm predicts the interaction of human /nc-405 with Pura,
PurP and YBX1 with moderate to high scores (38.56, 44.05,
67.84, respectively).

To determine if catRAPID correctly predicted the inter-
actions of the IncRNA to the protein complex in a cellular
context, we performed endogenous /nc-405 RNA pull-down
from nuclear extracts of C2C12 mouse myotubes followed
by a mass spectrometry (MS) analysis. Murine cells were
used since Inc-405 is highly conserved in mouse and very
abundant in differentiated C2C12 cells, allowing the easy
production of the large amounts of nuclear extracts which
are required for the pull-down. Efficient enrichment of /nc-
405 was detected in both odd and even RNA pull-down
samples, while no recovery was observed with lacZ control
(Supplementary Figure S2A).

Notably, MS analysis applied on the odd, even and lacZ
(control) samples allowed the identification of 19 /nc-405
interactors, including two components of the Pura-Purf-
YBXI1 complex (Supplementary Table S1; Supplementary
Material). RIP assays performed in mouse and human my-
otubes, using an antibody against Purf, allowed to validate
the specificity of the interaction with /nc-405 and to con-
firm the evolutionary conservation of such interaction (Sup-
plementary Figure S2B and C). Moreover, a GSEA exper-
iment shows that the top interactors of /nc-405 predicted
by catRAPID are enriched in proteins identified in the MS
experiment (Figure 3, P-value = 0.017). These results re-
markably show that catRAPID is able to correctly predict
interactions between IncRNAs and proteins (whether in a
complex or not), in line with good catR APID performances
observed for other ncRNAs and reported in previous arti-
cles (24,25,31).

We thus proceeded with the exploration of our
catRAPID predicted IncRNA-protein interaction net-
work, aiming to test the hypothesis that IncRNAs
frequently scaffold known protein complexes through
protein—-RNA interaction. For this, we investigated three
public datasets of human macromolecular complexes.
Briefly, we used the (i) non-redundant dataset of 326
CORUM complexes (21) collected by Havugimana et al.
(22) (hereafter referred to as ‘non-redundant CORUM”),
(1) a set of 981 metazoan-conserved complexes produced
by Wan et al. (20) through biochemical fractionation with
quantitative MS (hereafter referred to as ‘Wan 2015’),
as well as (iii) the BioPlex dataset (19) of 354 complexes
detected through affinity purification, MS experiments and
interaction network analysis. Moreover, the human cell
contains groups of functionally-related proteins that in-
teract more transiently but may nevertheless be assembled
or gathered together by IncRNA scaffolds to participate
in metabolic or signaling pathways. For these reasons, we
also used a dataset of 874 functional modules identified
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in the human interactome using OCG, an algorithm that
decomposes a network into overlapping modules, based on
modularity optimization (32). These modules (hereafter
referred to as ‘Network modules’) are groups of highly
interacting proteins, which tend to be involved in the same
cellular processes, metabolic or signalling pathways (33)
(Supplementary Table S2).

Using these datasets of protein groups and our protein-
IncRNA interaction predictions, we identified IncRNAs
that may scaffold complexes or modules by assessing first,
for each IncRNA, the enrichment of the IncRNA’s interact-
ing proteins among those proteins composing each com-
plex or network module (hypergeometric test, Benjamini-
Hochberg corrected FDR 5%) (Figure 1B). Second, be-
cause some IncRNAs are predicted to bind a large number
of proteins, we estimated the number of protein groups we
would expect to find enriched by chance for each IncRNA,
as a control, by shuffling the protein labels between pro-
tein groups (10 000 times). Only IncRNAs predicted to bind
significantly more (empirical P-value < 0.01), and at least
twice as many, protein groups than expected by chance were
considered candidates for scaffolding function.

After filtering using the randomised control, we obtained
a total of 27 090 statistically significant enrichments be-
tween 1517 protein groups and 847 distinct IncRNA tran-
scripts, encoded by 820 IncRNA genes (Supplementary Ta-
ble S3). These 847 IncRNAs, ~5% of our 15 230 tested
transcripts, are hereafter referred to as ‘scaffolding IncRINA
candidates’ and constitute a set of IncRNAs predicted to
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be involved in a scaffolding function (Supplementary Table
S4). Remarkably, we also predict that ~56% of the known
protein complexes and 66% of the network modules are
scaffolded by at least one IncRNA (Supplementary Table
S3). These results suggest that IncRNAs scaffolding com-
plexes and modules are highly prevalent. Moreover, as the
set of predicted complexes and modules found to be scaf-
folded by IncRNAs are involved in most cellular biological
processes (Supplementary Figure S3), the scaffolding func-
tion of IncRNAs appears therefore to be a general feature
and not restricted to specific cellular processes.

Although current experimental protein-IncRNA inter-
action datasets are largely incomplete and limited to 148
RBPs (14,15,18), we find that 832 out of 6186 IncRNA-
protein-group interactions including at least one of the 148
RBPs contain one or more known experimental interac-
tions (Supplementary Table S4). Importantly, as a control,
when restricting our scaffolding IncRNA candidate detec-
tion method to protein—RNA interactions involving only
RNA-binding proteins (1459 RBPs; Supplementary Mate-
rial), instead of the whole proteome, we identify 788 scaf-
folding IncRNA candidates among which 572 (72.5%) were
also found by our proteome-wide approach. This highly sig-
nificant overlap (P-value < 2.2e-16, OR = 158, Fisher’s ex-
act test; Supplementary Figure S4) reinforces the confidence
of our predictions.

Overall, our large-scale approach predicted tens of thou-
sands of IncRNA-protein-group interactions between hun-
dreds of IncRNAs and protein groups, many of which con-
taining experimentally determined interactions, suggesting
an abundant presence of IncRNA scaffolds.

Global analysis of scaffolded complexes and modules

In order to analyse the patterns of predicted interactions
between IncRNAs and protein groups, we represent them
as a clustered matrix (Figure 4). Clusters of protein groups
with similar enrichment profiles often share proteins, while
clusters of IncRNAs with similar enrichment profiles are
largely composed of transcript isoforms from the same
or paralog genes. While some protein groups and IncR-
NAs interact specifically, others—protein groups as well as
IncRNAs—do so more promiscuously, and this occurs for
each of the four protein group datasets used. Indeed, we ob-
serve that some IncRNAs are predicted to interact with 1
to 98 protein groups, according to the dataset, i.e. at most
54 (16.7% of total) non-redundant CORUM complexes, 35
(9.9%) in BioPlex, 98 (10.0%) in Wan 2015, 68 (7.8%) in
network modules (Figure 4; Supplementary Figure S5A).
Likewise, protein complexes are predicted to interact with
1 to 401 IncRNAs i.e. at most 401 IncRNAs (2.6% of total
tested) in non-redundant CORUM, 17 (0.1%) in BioPlex,
248 (1.6%) in Wan 2015, 115 (0.7%) in network modules
(Figure 4; Supplementary Figure S5B).

Interestingly, some of our predictions corroborate and
further extend the current knowledge of protein-RNA
complexes. For instance, the polycomb repressive complex
2 (PRC2 complex), previously found associated with IncR-
NAs (4), is predicted to be scaffolded by 101 different IncR-
NAs in our analysis. Indeed, the PRC2 complex and some of
its constituent proteins have previously been found to bind
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hundreds of IncRNAs, presumably as a part of its targeted
gene repression mechanism or its regulation by decoy IncR-
NAs (4,34).

Overall, we find that some IncRNA candidates may act
as general scaffolds for several protein groups, while others
are specific to one or a few protein groups. Likewise, some
protein groups are predicted to interact with many different
IncRNAs, perhaps reflecting their function, exemplified by
the PRC2 complex.

Scaffolding IncRNA candidates display functional features

To determine if our scaffolding IncRNA candidates are
likely to be functional, we gathered several orthogonal
datasets of IncRNAs displaying functional features. To-
gether these include IncRNAs (i) displaying a metabolism
profile characteristic of functional transcripts (35), (ii) over-
lapping eQTLs (36); (iii) that alter cell-growth when sub-
jected to inactivation by CRISPRi (37); (iv) involved in dis-
ease (38,39), as well as IncRNAs (v) conserved in tetrapods
(40) or (vi) possessing structurally conserved elements (41).
Strikingly, even though these functional IncRNAs have
been found to act not only through protein-binding but also
RNA- and DNA-binding, many were successfully identified
by our protein—RNA interaction-based approach (Figure

5A). Indeed, we observe a significant (P-value < 0.05, one-
tailed Fisher’s exact test) and often strong overlap (OR >
2) between our scaffolding IncRNA candidate dataset and
every functional or conserved IncRNA dataset analysed ex-
cept therian-conserved IncRNAs. This latter result suggests
that most human scaffolding IncRNAs may have appeared
later in evolution or may be highly species-specific.

Additionally, when considering the different sets of scaf-
folding IncRNA candidates identified using our four dif-
ferent protein group datasets separately, they are all found
significantly enriched in functional or conserved IncRNAs
from all tested orthogonal datasets (P-value < 0.05, OR
from 1.73 to 1.96, one-tailed Fisher’s exact test; Supplemen-
tary Figure S6A). Different pertinent IncRNA candidates
can therefore be detected from each protein group dataset,
consistent with the relatively low overlap observed between
IncRNAs candidates found from each dataset (Supplemen-
tary Figure S6B).

In agreement with our findings, we observe that muta-
tions in exons of scaffolding long non-coding intergenic
RNA (lincRNAs) candidates have a higher predicted con-
sequence on fitness than mutations in other lincRNAs, by
measuring their fitCons scores (Figure 5B; Supplementary
Material), a metric that takes into account sequence poly-
morphisms in human and sequence divergence in primates
(42).

Altogether, these results suggest that our candidates gen-
erally possess the features of functional transcripts, there-
fore lending further weight to our predictions.

LncRNA-associated disease mechanisms could involve
IncRNA scaffolding function

Hundreds of IncRNA genes have been associated with sev-
eral human diseases and conditions including cancer, dia-
betes and neurodegenerative diseases. As most of these as-
sociations were identified through the analysis of IncRNA
differential expression in disease states (38,39), knowledge
on the molecular role of these IncRNAs in disease is lack-
ing.

We have found 30 scaffolding IncRNA candidate genes
associated with disease in Inc2cancer (38) and LncRNADis-
ease (39) databases (Figure 5A; Supplementary Material).
We then assessed whether these IncRNA-disease associa-
tions could occur through the predicted protein group scaf-
folding functions of the IncRNAs. For this, we mapped pro-
teins involved in disease from the OMIM database (43)
to protein groups and found that 15 out of 30 scaffolding
IncRNA candidate genes associated with disease are pos-
sibly interacting with a protein group that includes at least
one protein associated with the same or similar disease (Fig-
ure 6; Supplementary Table S5).

In several cases (e.g. IncRNA genes SNHGI1, SOX2-
CT and RP11-35612.4), IncRNAs and diseases are linked
through different protein complexes, and involving different
proteins, which provides further evidence of the association.

For instance, the SNHG15 IncRNA gene has been asso-
ciated to Hereditary Haemorrhagic Telangiectasia (HHT)
(44), a disease known to be caused by mutations in genes
that modulate the TGF-B superfamily (45). Here, we find
that two of its transcripts possibly interact with a com-
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of protein-coding genes.

plex containing 11 components and regulators of the TGF-
B pathway out of 23 proteins (ENST00000585030, non-
redundant CORUM complex 81), and with a module
composed of signalling proteins and transcription factors
(ENST00000578968, network module 686, Supplementary
Table S5). Notably, whereas these SNHGI15-interacting
protein groups are largely composed of different sets of pro-
teins, both contain the SMAD4 protein, a TGF-B pathway
component mutated in HHT (46). Overall, further credibil-
ity is given to an involvement of SNHGI1S5 in this disease
through its predicted scaffolding function.

Moreover, the MEG3 IncRNA gene has been linked
to colorectal cancer (47), and has been shown to
bind chromatin-remodeling complexes (4). Interest-
ingly, we detected a short MEG3 IncRNA isoform
(ENST00000524131, 721 nucleotides) possibly interacting
with a complex containing DNA polymerase epsilon
subunits as well as chromatin-remodeling proteins (Wan
2015 complex 79), including POLEI, also associated to
colorectal cancer.

Finally, the SNHG1 gene is associated to hepatocellular
carcinoma (HCC) (48) and non-small cell lung cancer (49).
Here we find one of its transcripts (ENST00000539975) in-
teracting with 18 different protein groups associated with
one or both of those diseases. Moreover, the interaction
of SNHG1 IncRNA with 6 of those protein groups is cor-
roborated by experimental interactions (14,15,18) through
five distinct RBPs. Several pathway components of the

TNFa/NF-kB signaling pathway have been associated with
both lung cancer and HCC, as well as other cancers
(50,51). The SNHG1 IncRNA is predicted to interact with
the TNFa/NF-kB signaling complex (non-redundant CO-
RUM complex 10) through PAPOLA (poly(A) polymerase
o) and CHUK (inhibitor of nuclear factor k-B kinase sub-
unit o). Notably, the IncRNA interaction with the pro-
tein complex is further corroborated by two experimen-
tal interactions with two RBPs of the complex, DDX3X
and AKAPSL (Supplementary Table S5). Additionally, the
SNHGTI IncRNA has been associated with HCC through
suppression of miR-195 (52), a microRNA known to tar-
get the TNFa/NF-kB pathway by repressing the CHUK
protein, and thus suppressing HCC (53) (Figure 7). Given
our predictions, we can thus propose that beyond its known
effect through miR-195, SNHG1 may regulate elements of
the TNFa/NF-kB pathway and therefore directly affect
HCC through its possible protein group scaffolding func-
tion.

Globally, we propose that the association of 15 IncRNA
genes to 22 diseases is due to protein-IncRNA interaction-
based mechanisms, notably through the scaffolding of pro-
tein complexes and modules by IncRNAs.

DISCUSSION

The current scarcity of experimentally determined
IncRNA-protein interaction data hinders the inves-
tigation of IncRNA function at large-scale. We thus
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computationally predicted a comprehensive IncRNA-
protein interaction network in order to better cover the
IncRNA-protein interaction space. For this, we used
catRAPID, a protein—RNA interaction predictor based on
the physicochemical features of the molecules, which can
be used large-scale and has been initially validated on a
large collection of protein associations with IncRNA (24).
Indeed, catRAPID performed well against the NPInter
database (area under the receiver operating characteristic
(ROC) of 0.88), as well as on the non-nucleic-acid-binding

Some disease names have been abbreviated for simplicity.

database (area under the ROC curve of 0.92) (31). In addi-
tion, we showed herein that catRAPID predictions provide
relevant information about IncRNA-protein-complex
interactions by experimentally validating that part of the
Pura-PurB-YBX1 complex — predicted here to interact
with the /nc-405 IncRNA — effectively binds the IncRNA
in vivo.

Noticeably, as the catRAPID predicted interaction net-
work contains the set of biophysically possible interactions
between co-expressed molecules, which may differ from in-
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through interaction with the TNFa/NF-kB signaling complex. Red nodes
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teractions occurring in particular biological contexts, exper-
imentally assessing the quality of the predicted interactions
in our network is a desirable goal. However, issues relative
to the fraction of interactions to be tested, the sensitivity of
the chosen experimental assay, the fraction of interactions
identifiable by the chosen assay, and its precision have to
be solved beforehand as proposed in the case of the assess-
ment of large-scale binary protein interactomes (54). More-
over, validating the predicted protein complex scaffolding
function of IncRNAs is yet another challenge that should
involve a wealth of experimental work — e.g., knocking-
down of the IncRNA, determination of the localization of
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the predicted associated complex, its effect on the cell, as
well as analysis of binding sites involved in the binding of
each protein by the IncRNA (55) — which is beyond the
scope of our analysis. Overall, these reasons justify our in-
tegration of several orthologous functional datasets to val-
idate our interaction predictions and the possibility of the
IncRNA to be indeed functional in the cell.

A growing body of evidence suggests that a significant
fraction of IncRNAs has a function (36,37). Large-scale ef-
forts to determine or predict IncRNA function have used
their metabolic properties (35,36), sequence or structural
conservation (40,41), differential expression in disease (56),
IncRNA and protein-coding gene co-expression profiles
(57), variant analysis (58), as well as combinations thereof
(59). Methods to understand the function of individual
IncRNAs through direct interaction with proteins have been
exploited to a lesser extent, and are generally restricted to
the limited number of known RBPs assessed to date. Hence,
there is a clear need for novel large-scale methods to investi-
gate the functions of ncRNAs acting through protein—-RNA
interactions, such as their ability to scaffold protein groups.

Although protein—-RNA interactions are usually per-
ceived as a protein-centric mechanism, they are now also
envisioned as a RNA-centric question, where the interac-
tions are driven by the RNA (13). However, even for RNA-
centric experiments where the RNA is precipitated and its
interacting proteins are identified with MS, each experiment
seems to underestimate the number of proteins interacting
with IncRNAs. This was observed for the XIST IncRNA,
where five independent studies found > 600 proteins in total
associated with XIST, of which only one is in common be-
tween the five studies (12). Hence, we used a method based
on proteome-wide and transcriptome-wide interaction pre-
dictions combined with tissue-expression information, and
predict the presence of millions of protein—-RNA interac-
tions in human cells.

As our knowledge of proteins with RNA-binding capa-
bilities is still incomplete (13), we produced proteome-wide
protein—RNA interaction predictions to explore the action
of IncRNAs at a wider level, going beyond the current
knowledge. Indeed, using the catR APID algorithm, we find
that many proteins not yet identified as RBPs have a high
propensity to interact with several IncRNAs, as RBPs do.
However, with increasingly stringent interaction-propensity
cutoffs, we observe a significant increase in the proportion
of proteins that are annotated as RBPs (e.g. Spearman’s
rank correlation coefficient = 0.985, P-value < 2.2e-16, for
proteins with at least five interaction partners; Supplemen-
tary Figure S7), even though many RBPs display milder
binding propensities (e.g. we retain only 79.3% of RBPs
with at least 10 interactions above score = 100; 6.6% for
score = 200). As RBPs are predicted to interact with IncR-
NAs with different interaction propensities, we selected an
interaction-propensity score cutoff (>50) that would ensure
that we capture biological information, as applied in previ-
ous studies (60), while allowing for a large number of pos-
sible interactions to be detected.

Due to computational constraints, we have restricted our
analysis to IncRNAs of up to 1200 nucleotides, thus exclud-
ing well characterized moderately long or very long scaf-
folding molecules such as MALAT1, NEATI1 and XIST,
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that are known to bind dozens to hundreds of proteins
(61,62). In addition, IncRNA identification studies have
found from tens- to hundreds-of-thousands of novel IncR-
NAs (63) that are shown to vary according to the method-
ology used and experimental conditions. This suggests the
identification of human IncRNAs is far from complete,
but also that IncRNA identification methods are not yet
convergent (64). In our study, we therefore restricted our
analysis to IncRNAs from the curated dataset of GEN-
CODE, widely considered as the human gene annotation
reference standard. However, this also means that several re-
cently found IncRNA scaffolds such as the LUNAR-1 (65),
linc-RAM (66) and PARTICLE (67) IncRNAs are not yet
present in the GENCODE dataset.

Importantly, we identified for the first time 847 IncR-
NAs, accounting for ~5% of the human long non-coding
transcriptome, that potentially act as RNA scaffolding
molecules for a total of 1517 protein complexes or mod-
ules, roughly half of the human protein complexes known
to date. As for protein—-RNA interactions, knowledge of
the human protein complexome is not yet comprehensive.
Therefore, we used several datasets of protein complexes
to better cover the protein complex space. Indeed, these
datasets are largely non-redundant, with 0 to 12.4% of com-
plexes sharing > = 50% of their constituent proteins with
another complex of the same dataset (Supplementary Table
S6). In addition, the three datasets are largely complemen-
tary, with at the most 20.4% of complexes sharing >50% of
their proteins between datasets (Supplementary Table S7),
and none of the complexes being entirely shared between
datasets. A slightly higher inter-dataset overlap (26.2%) is
found for network modules, mostly due to the higher mod-
ule size compared to the protein complexes. As expected,
we found that each protein group dataset used allows iden-
tifying a different set of scaffolding IncRNA candidates and
the majority of the candidates (57%) are detected exclusively
with one dataset of protein groups (Supplementary Figure
S6B). Overall, this reveals the necessity of considering sev-
eral datasets for a global analysis of human cellular com-
plexes, as performed in this study.

Notably, our study indicates that RNA scaffolding may
be an important regulatory mechanism, not limited to the
few well-known cases. We indeed greatly expand the cur-
rent knowledge on RNA-mediated scaffolding, by propos-
ing that scaffolding occurs with a high prevalence and for
most cellular processes. Even though major cellular func-
tions such as telomere repair, signal peptide recognition and
translation are known to closely involve RNA components,
usual methods to identify cellular macromolecular com-
plexes routinely use an RNA nuclease step before protein
purification (2), thereby hindering the possible detection
of RNA components in protein complexes. It is therefore
likely that many ribonucleoprotein (RNP) complexes have
previously been overlooked. These can possibly be retraced
with a computational approach, as suggested by our results.
Moreover, cellular functions are not only performed via sta-
ble macromolecular complexes, but also through stepwise
reactions performed by molecules whose temporal and spa-
tial proximity may be mediated by other molecules, as exem-
plified by the MAYA IncRNA, which links two pathways re-
lated to cancer metastasis through protein interaction (68).

Such situations are also taken into account by our analy-
ses when investigating interaction enrichment of IncRNAs
to functional network modules. Indeed, our data revealed
hundreds of modules which may be organized by RNA scaf-
folding.

Several IncRNAs have been shown to bind protein com-
plexes by interacting with a single protein of the complex.
Examples include HOTAIR, MEG3 and Linc-RAM which
have been shown to regulate gene expression through their
binding to only one component of chromatin-remodeling
complexes (PRC2 (4), LSD1 (10), and MyoD-Baf60c—Brgl
complexes (66)). As our enrichment-based approach only
allows identification of IncRNAs that bind at least two pro-
teins of the same complex or module, single-protein-binding
IncRNAs are beyond the scope of our approach. However,
we report a short isoform of the MEG?3 gene predicted to
interact with several proteins of a chromatin-remodeling-
related complex, suggesting that here again, some func-
tional protein—RNA interactions may have been missed by
experimental approaches, therefore emphasizing the power
of predictive computational analyses.

Overall, our findings suggest the widespread prevalence
of scaffolding function for IncRNAs. By proposing that
IncRNAs perform such a scaffolding function for a large
fraction of protein complexes and functional modules, we
further characterize their function and open new questions
regarding the importance and essential nature of RNA-
mediated scaffolding in the cell.
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