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ABSTRACT

Context. We investigate the equilibrium and stability of polytropic spheres in the presence of a non-zero cosmological constant.
Aims. We solve the Newtonian gravitational equilibrium equation for a system with a polytropic equation of state of the matter
P = Kργ introducing a non-zero cosmological constant Λ.
Methods. We consider the cases of n = 1, 1.5, 3 and construct series of solutions with a fixed value of Λ. For each value of n, the
non-dimensional equilibrium equation has a family of solutions, instead of the unique solution of the Lane-Emden equation at Λ = 0.
Results. The equilibrium state exists only for central densities ρ0 higher than the critical value ρc. There are no static solutions at
ρ0 < ρc. We investigate the stability of equilibrium solutions in the presence of a non-zero Λ and show that dark energy reduces the
dynamic stability of the configuration. We apply our results to the analysis of the properties of the equilibrium states of clusters of
galaxies in the present universe with non-zero Λ.
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1. Introduction

Detailed analysis of the observations of distant SN Ia (Riess et al.
1998; Perlmutter et al. 1999) and the spectrum of fluctuations
in the cosmic microwave background radiation (CMB) (see e.g.
Spergel et al. 2003) have lead to the conclusion that the term rep-
resenting “dark energy” (DE) contains about 70% of the average
energy density in the present universe and its properties are very
close (identical) to the properties of the Einstein cosmological
Λ term. In the papers of Chernin (see review 2008), the ques-
tion was raised about the possible influence of any cosmological
constant on the properties of the Hubble flow in the local galaxy
cluster (LC) and whether the LC can exist in the equilibrium
state, at present values of the DE density, where the LC densities
of matter consist of the baryonic and dark matter.

Here, we construct Newtonian self-gravitating models with
a polytropic equation of state in the presence of DE. In this case,
we have a family instead of the single model for each polytropic
index n. The additional parameter β represents the ratio of the
density of DE to the matter central density of the configuration.
For values of n = 1, 1.5, 3, corresponding to the polytropic
powers γ = 2, 5/3, 4/3, we find the limiting values of βc, such
that at β > βc there are no equilibrium configurations but only
an expanding cluster, possibly affected by the Hubble flow.

We derive a virial theorem and analyze the influence of DE
on the dynamic stability of the equilibrium models, by using an
approximate energetic method. It is shown that DE produces an

effect that counteracts the stabilizing influence of the cold dark
matter (McLaughlin & Fuller 1996; Bisnovatyi-Kogan 1998).

2. Main equations

We consider a spherically symmetric equilibrium configuration
in Newtonian gravity, in the presence of DE, represented by the
cosmological constant Λ. In this case, the gravitational force Fg
that a unit mass undergoes in a spherically symmetric body is
written as Fg = −Gm

r2 +
Λr
3 , where m = m(r) is the mass inside

the radius r. Its connections with the matter density ρ and the
equilibrium equation are written respectively as

dm
dr
= 4πρr2,

1
ρ

dP
dr
= −Gm

r2
+
Λr
3
, (1)

and the DE density ρv is connected with Λ as ρv = Λ
8πG . We

consider a polytropic equation of state P = Kργ, with γ = 1+ 1
n .

By introducing the non-dimensional variables ξ and θn such that

r = αξ and ρ = ρ0θn
n, α2 =

(n + 1)K
4πG

ρ
1
n−1
0 , (2)

we obtain the Lane-Emden equation for polytropic models with
DE (see also Balaguera-Antolínez et al. 2007)

1
ξ2

d
dξ

(
ξ2

dθn
dξ

)
= −θnn + β, (3)
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where ρ0 is the matter central density, α is the characteristic ra-
dius, and β = Λ/4πGρ0 = 2ρv/ρ0 is twice the ratio of the DE
density to the central density of the configuration.

3. The virial theorem

We first calculate the Newtonian gravitational energy of the con-
figuration in the presence of the cosmological constant. The
spherically symmetric Poisson equation for the gravitational po-
tential ϕ∗ in the presence of DE is given by

Δϕ∗ =
1
r2

d
dr

(
r2 dϕ∗

dr

)
= 4πG(ρ − 2ρv), ϕ∗ = ϕ + ϕΛ. (4)

The gravitational energy of a spherical body εg is given by

εg = −G
∫ M

0

mdm
r
, m = 4π

∫ r

0
ρr2dr, M = m(R), (5)

where R is the total radius. For ϕΛ with uniform density ρv the
normalization ϕ = 0 at r = ∞ is impossible. We can then choose
ϕΛ = 0 at r = 0 as the most convenient normalization. This
choice, using Eq. (4), leads to the potential ϕΛ = −4πGρvr2/3.
Consequently, the energy εΛ, representing the interaction of the
matter with DE, is given by

εΛ =

∫ M

0
ϕΛdm = −4πGρv

3

∫ M

0
r2dm. (6)

We find the relations between the gravitational εg and thermal
εth energies, and the energy εΛ. For the gravitational energy, we
have

εg = −G
∫ M

0

mdm
r
, m = − r2

G

(
1
ρ

dP
dr
− Λr

3

)
, (7)

where M = m(R), and m is written using Eq. (1). For adiabatic
systems with a polytropic equation of state, we have ρE = nP
and I = E + P

ρ
= n+1

n E, where E and I are thermal energy and
enthalpy per mass unit. After some transformations, we obtain

εg = −3
n
εth + 2εΛ, εtot =

3 − n
3
εg +

2n + 3
3
εΛ, (8)

where εtot = εth + εg + εΛ, εth =
∫ M

0
E dm, while εΛ =

− 4πGρv
3

∫ M

0
r2dm = −Λ6

∫ M

0
r2dm is defined by Eq. (6), and the

additive constant in the energy definition of εΛ is chosen so that
εΛ = 0 at Λ = 0 or M = 0. The gravitational energy may also be
written as

εg = −G
∫ M

0

mdm
r
= −GM2

2R
− G

2

∫ R

0

m2

r2
dr. (9)

We can transform the last integral for polytropic matter by using
Eq. (7) and making partial integrations. We have

G
2

∫ R

0

m2

r2
dr = −1

2

∫ R

0
r2

(
1
ρ

dP
dr
− Λr

3

)
m
r2

dr

= −1
2

∫ R

0

m
ρ

dP
dr

dr +
Λ

6

∫ R

0
mr dr =

1
2

∫ M

0
I dm

+
Λ

12
MR2 − Λ

12

∫ M

0
r2 dm =

n + 1
2n
εth +

Λ

12
MR2 +

εΛ
2
· (10)

Then, by using Eqs. (8) and (10), we obtain from Eq. (9) the
relations

εg = − 3
5 − n

GM2

R
− Λ

2(5 − n)
MR2 − 2n + 5

5 − n
εΛ, (11)

εth =
n

5 − n
GM2

R
+

nΛ
6(5 − n)

MR2 +
5n

5 − n
εΛ. (12)

Finally, by inserting Eq. (12) into (8), we get

εtot =
n − 3
5 − n

GM2

R
+

(n − 3)Λ
6(5 − n)

MR2 +
2n

5 − n
εΛ. (13)

We can calculate εtot for some particular cases. For n =

3, 1, and 0, we have, respectively, εtot = 3εΛ, εtot = − 1
2

GM2

R −
1
12ΛMR2 + 1

2εΛ, and εtot = − 3
5

GM2

R − 1
10ΛMR2. The Lane-Emden

model with n = 5 has an analytical solution with finite mass
M, finite values of the energies, and an infinite radius R, so that
must be (5−n)R→ constant (const.) at n→ 5. In the presence of
DE, the finiteness of values of all kinds of energies requires that
(5−n)R → const. and εΛ → − Λ30 MR2 at n→ 5. The Lane-
Emden solution (without DE) at n = 3 has zero total energy
at any given radius and corresponds to a neutral equilibrium.
Hence, the knowledge of the total energy of the configuration
permits us to identify the boundary between dynamically stable
(n < 3, εtot < 0) and unstable (n > 3, εtot > 0) configurations.
In our case, the virial theorem does not permit us to do this, be-
cause the value of εΛ is not properly defined, while the presence
of DE in the whole space does not permit us to choose, in a sim-
ple way, a universal additive constant of the energy. Therefore,
in spite of εtot = 3εΛ < 0 at n = 3 and in accordance with
the stability analysis made in Sect. 4, the polytropic solution at
n = 3 in the presence of DE becomes unstable. Some aspects
of the virial theorem in the presence of Λ were investigated by
Balaguera-Antolínez et al. (2007).

4. Equilibrium solutions

The equilibrium mass Mn for a generic polytropic configuration
that is a solution of the Lane-Emden equation is written as

Mn = 4π
∫ R

0
ρr2dr=4π

[
(n+1)K

4πG

]3/2

ρ
3
2n− 1

2
0

∫ ξout

0
θn

nξ2dξ. (14)

Using Eq. (3), the integral on the right side may be calculated by
partial integration, giving the relation for the mass of the config-
uration

Mn = 4πρ0α
3

[
−ξ2out

(
dθn
dξ

)
out

+
βξ3out

3

]
, (15)

where θn(ξ) is not a unique function, but depends on the param-
eter β, according to Eq. (3). For the limiting configuration, with
β = βc, we have on the outer boundary θn(ξout) = 0, dθn

dξ |ξout =

0, and the mass Mn,lim of the limiting configuration is written as

Mn,lim = 4πρ0cα
3 βcξ

3
out

3
=

4π
3

rout
3βcρ0c =

4π
3

rout
3ρ̄c, (16)

such that the limiting value βc is exactly equal to the ratio of
the average matter density ρ̄c of the limiting configuration to
its central density ρ0c: βc = ρ̄c/ρ0c. For the Lane-Emden so-
lution (with β = 0), we have ρ0/ρ̄ = 3.290, 5.99, 54.18 for
n = 1, 1.5, 3, respectively. We consider the curve M(ρ0) for
a constant DE density ρv = Λ/8πG. In order to plot this curve
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Fig. 1. Non-dimensional mass M̂1 of the equilibrium polytropic config-
urations at n = 1 as a function of the non-dimensional central density
ρ̂0, for different values of βin. The cosmological constant Λ is the same
along each curve. The curves at βin � 0 are limited by the configuration
with β = βc.

in the non-dimensional form, we introduce an arbitrary scaling
constant ρch and write the expression for the mass in the form

Mn = 4π
[

(n+1)K
4πG

]3/2
ρ

3
2n− 1

2

ch M̂n, with

M̂n = ρ̂
3

2n− 1
2

0

[
βξ3out

3
− ξ2out

(
dθn
dξ

)
out

]
, (17)

where ρ̂0 = ρ0/ρch is the non-dimensional central density. We
also introduced the non-dimensional mass M̂n.

At n = 1, Eq. (3) is linear and has an analytic solution
(Chandrasekhar 1939). The solution satisfying the boundary
conditions at the center, θ1(0) = 1, θ1′(0) = 0, is written as
θ1 = (1 − β) sin ξ

ξ
+ β. The radius of the configuration is deter-

mined by the transcendental equation (1 − β) sin ξout

ξout
+ β = 0. This

equation only has real solutions at β < βc, such that at the outer
boundary not only does θ1 = 0, but also θ1′ = 0 for β = βc. We
have θ1′ = (1−β)

(
cos ξ
ξ
− sin ξ
ξ2

)
. Therefore, the parameters βc and

ξout,c of the limiting equilibrium solution in the presence of DE
are determined by the algebraic equations (1−βc)

sin ξout,c

ξout,c
+βc = 0

and tan ξout,c = ξout,c, where π < ξout,c < 3π/2. At large ξ,
the solutions asymptotically approach the horizontal line θ1 = β.
Our numerical analysis indicates that ξout = π, 3.490, 4.493, for
β = 0, β = 0.5βc = 0.089, and β = βc = 0.178, respectively. We
plot the non-dimensional curve M̂n(ρ̂0), at constant ρv = βρ0/2.
We construct the curve starting from the model with ρ̂0 = 1 at
different β, and then following the sequence by varying the cen-
tral density ρ̂0 assuming that β ∝ 1/ρ̂0, at β ≤ βc. For n = 1, we
have

M̂1 = ρ̂0

[
(1 − β)(sin ξout − ξout cos ξout) +

βξ3out

3

]
, (18)

where ρ̂0β = βin = const. The behavior of M̂1(ρ̂0)|Λ is given
in Fig. 1 for βin = 0, βin = 0.5βc, and βin = βc, for which
M̂1 = π, 3.941, 5.397 at ρ̂0 = 1. We note that for βin = βc
there are equilibrium models only for ρ̂0 > 1.

At n = 3, the mass of the configuration is given by M3 =

4π
[

K
πG

]3/2
M̂3, where M̂3 is derived by Eq. (17). The Lane-

Emden model (β = 0) has a unique value of the mass that is

Fig. 2. The density distribution for configurations at n = 3 with β =
0, β = 0.5βc, and β = βc. The curves are marked with the values of β.
The non-physical solution at β = 1.5βc, which does not have an outer
boundary, is given by the dash-dot line. The non-physical parts of the
solutions at β ≤ βc, behind the outer boundary, are given by the dash
lines. The solutions asymptotically approach, at large ξ, the horizontal
line θ3 = β1/3.

Fig. 3. Same as in Fig. 1, for n = 3.

independent of the density (equilibrium configuration with neu-
tral dynamical stability). At β � 0, the model’s dependence on
the density appears because the function θ3 is different for dif-
ferent values of β and, along the curve M̂3(ρ̂0)|Λ, the value of β
is inversely proportional to ρ̂0.

The density distribution for equilibrium configurations with
β = 0, β = 0.5βc, and β = βc is shown in Fig. 2. At large
ξ, these solutions asymptotically approach the horizontal line
θ3 = β

1/3, with damping oscillations around this value. The
numerical solution of the equilibrium equation gives ξout =
6.897, 7.489, 9.889, for β = 0, β = 0.5βc = 0.003, and
β = βc = 0.006, respectively. In Fig. 3, we show the behav-
ior of M̂3(ρ̂0)|Λ, for different values of βin = 0, βin = 0.5βc,
and βin = βc, for which M̂3 = 2.018, 2.060, 2.109, at ρ̂0 = 1,
respectively.

The behavior of M̂3(ρ̂0)|Λ in Fig. 3, showing a decreasing
mass with increasing central density, corresponds, for an adia-
batic index equal to the polytropic one, to dynamically unstable
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configurations, according to the static criterion of stability
(Zel’dovich 1963). When the vacuum influence is small, it is
possible to investigate the stability of the adiabatic configuration
by the approximate energetic method (Zeldovich & Novikov
1966; Bisnovatyi-Kogan 2001). For n = 3, at ρ0 	 ρv, the den-
sity in the configuration is distributed according to the Lane-
Emden solution ρ = ρ0 θ

3
3(ξ). In this case, we may investigate

the stability to homologous perturbations by changing only the
central density at fixed density distribution, given by the func-
tion θ3.

We consider configurations close to the polytropic (adia-
batic) equilibrium solution at n = 3 (and β = 0), where the
turning point of stability is expected. In this case, the presence
of DE does not affect significantly the gravitational equilibrium,
thus the unperturbed polytropic solution at n = 3 can be used to
calculate the gravitational energy εg. The energy ε∗ will then be
given by

ε∗ = εg + εΛ = −G
∫ M

0

m dm
r
− 4πGρv

3

∫ M

0
r2dm, (19)

thus ε∗ = − 3
2

GM2

R − Λ6
∫ M

0
r2dm, where, taking into account the

non-dimensional variables in Eq. (2), the energy εΛ can be writ-
ten as

εΛ = −Λ6
∫ M

0
r2dm = −2

3
πρ0α

5Λ

∫ ξout

0
θ3

3ξ4dξ, (20)

where
∫ ξout

0
θ3

3ξ4dξ = 10.85 (see Bisnovatyi-Kogan 2001). In the
analysis of the dynamical stability, we consider the total energy
ε of the configuration, taking into account a small correction εGR
due to general relativistic effects. We have

ε = εth + εg + εΛ + εGR =

∫ M

0
E dm − 0.639GM5/3ρ1/3

0

− 0.104ΛM5/3ρ−2/3
0 − 0.918

G2M7/3

c2
ρ2/3

0 , (21)

where we used the relations for the polytropic configuration with

n = 3, ξout = 6.897, and R = αξout =
M1/3ρ−1/3

0
0.426 . The equilibrium

configuration is determined by the zero of the first derivative of ε
over ρ0, at constant entropy S and mass M, while the stability of
the configuration is analyzed in terms of the sign of the second
derivative: if positive, the configuration is dynamically stable, if
negative, the configuration is unstable. It is more convenient to
take derivatives over ρ1/3

0 than over ρ0. Thus

∂ε

∂ρ1/3
0

= 3ρ−4/3
0

∫ M

0
P

dm
φ(m/M)

− 0.639GM5/3

+ 0.208ΛM5/3ρ−1
0 − 1.84

G2M7/3

c2
ρ1/3

0 = 0 (22)

for the equilibrium, and the sign of the second derivative

9

ρ5/3
0

∫ M

0

(
γ− 4

3

)
Pdm
φ(m/M)

−0.623ΛM5/3ρ−4/3
0 −1.84

G2M7/3

c2
(23)

for the analysis of the dynamical stability, where γ =
(
ρ
P
∂P
∂ρ

)
S

and ρ = ρ0φ
(

m
M

)
are the adiabatic index γ at constant entropy S

and the non-dimensional function φ, which both remain constant
during homologous perturbations, respectively. It follows from
Eq. (23) that DE input in the stability of the configuration is

Fig. 4. Same as in Fig. 1, for n = 3/2.

negative, as in the general relativistic correction (Chandrasekhar
1964; Merafina & Ruffini 1989). Therefore, an adiabatic star
with a polytropic index of 4/3 becomes unstable in the presence
of DE. The dynamic stability of pure polytropic models was also
investigated by Balaguera-Antolínez et al. (2006, 2007), by us-
ing a static criterion of stability. Our criterion is valid for any
equation of state P(ρ, T ).

At n = 1.5, the mass of the configuration is written as

M3/2 = 4π
[

5K
8πG

]3/2
ρ1/2

ch M̂3/2, where M̂3/2 is derived by Eq. (17).
At large ξ, these solutions asymptotically approach the hori-
zontal line θ3/2 = β2/3. The numerical solution gives ξout =
3.654, 3.984, 5.086, for β = 0, β = 0.5βc = 0.041, β =
βc = 0.082, respectively. In Fig. 4, we show the behavior of
M̂3/2(ρ̂0)|Λ, for different values of βin = 0, βin = 0.5βc, and
βin = βc, for which M̂3/2 = 2.714, 3.081, 3.622, at ρ̂0 = 1,
respectively.

5. Discussion

The question about the importance of DE to the dynamics
of the Local Cluster (LC) was raised by Chernin (2008). For
presently accepted values of the DE density ρv = (0.72±0.03) ×
10−29 g/cm3, the mass of the Local Group, including its dark
matter input, is between MLC ∼ 3.5 × 1012 M�, according to
Chernin et al. (2009), and MLC ∼ 1.3 × 1012 M�, according to
Karachentsev et al. (2006). The radius RLC of the LC is even
more poorly known. It can be estimated by measuring the veloc-
ity dispersion vt of galaxies in the LC and by the application of
the virial theorem, such that RLC ∼ (GMLC/v

2
t ). The estimated

velocity dispersion of galaxies in the LC, which has been found
to equal vt = 63 km s−1, is very close to the value of the lo-
cal Hubble constant H = 68 km s−1 Mpc−1 (Karachentsev et al.
2006). The similarity between these values indicates the great
difficulties in dividing the measured velocities between regular
and chaotic components. The radius of the LC may be estimated
to be RLC = (GMLC/v

2
t ), and to have values between 1.5 Mpc

and 4 Mpc and a very large error box that we cannot estimate
properly. Chernin et al. (2009) identifies the radius RLC with the
radius Rv of the zero-gravity force, which is identical to the one
corresponding to our critical model with β = βc, in which the av-
erage matter density is equal to 2ρv: 1.2 < MLC < 3.7 × 1012 M�
and 1.1 < Rv < 1.6 Mpc. All these estimations show the im-
portance of the presently accepted value of DE density on the
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structure and dynamics of the outer parts of LC, and its vicinity.
Polytropic solutions with DE are inappropriate for describing the
LC, but may be more applicable to rich galactic clusters.
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