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1Dipartimento di Farmacia, Università “G. d’Annunzio” di Chieti, Via dei Vestini 31, 66013 Chieti, Italy
2Guglielmo Marconi University, Via Plinio 44, 00193 Roma, Italy
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Via del Castro Laurenziano 9, 00161 Roma, Italy

Correspondence should be addressed to Raimondo Manca; raimondo.manca@uniroma1.it

Received 19 March 2015; Revised 1 June 2015; Accepted 11 June 2015

Academic Editor: Babak Shotorban

Copyright © 2015 Guglielmo D’Amico et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Discrete time alternating renewal process is a very simple tool that permits solving many real life problems. This paper, after the
presentation of this tool, introduces the compound environment in the alternating process giving a systematization to this important
tool. The claim costs for a temporary disability insurance contract are presented. The algorithm and an example of application are
also provided.

1. Introduction

It is possible to assert that the roots of renewal processes
are in actuarial science. Indeed, the seminal paper Lundberg
[1] introduced this theory and was written by an actuary.
Other two seminal papers [2, 3] were written by a really
important probability researcher that did many applications
in insurance.

For a complete introduction to the renewal processes, we
refer to the book Cox [4].

As well known, renewal processes work in this way.
We have a phenomenon that will be verified but we do
not know when. When the studied phenomenon happens,
then the system is renewed and, in homogeneous case, it
restarts with the same initial characteristics (for first results in
nonhomogeneous renewal processes, see Gismondi et al. [5]).
It is clear that a simple actuarial model can be well simulated
by this kind of stochastic process.

Suppose that we have to study a system that can assume
two different values that cannot be verified together and that

when one of them is not verified then the other is verified and
vice versa. In this case, the consideration of only the renewal
is not sufficient for the study of the problem. The random
evolution of these processes can be studied by means of the
alternating renewal processes that are a generalization of the
renewal process (see Figure 6). These processes were applied
inmany fields (see, e.g., Zacks [6], Di Crescenzo et al. [7], and
Elsayed [8]).

The renewal processes had and have a great relevance
in Actuarial Sciences, but there were few applications of the
alternating renewal processes.

In health insurance models, there are two kinds of
randomness: one is given by the state of the insured (healthy
or ill) and the other by the duration inside the states.
This phenomenon can be well simulated by the alternating
renewal processes. Both the transitions between the two states
are possible. An ordinary renewal process cannot model this
insurance contract. Ramsay [9] and more recently Adekambi
and Mamane [10] proposed the alternating renewal process
for the study of health insurance problems. The used tool
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fits well in the problem. However, the continuous time
environment used in both the papers is really difficult to
apply. Indeed, renewal processes in most cases should be
solvednumerically. For example,Adekambi andMamane [10]
constructed an interesting model in which they derive the
first two moments of the aggregate claim amount of benefit
paid out up to a given time 𝑡.The problem is that although the
mathematical apparatus is adequate, the applicationwas done
in a very simple case with negative exponential probability
distribution functions. D’Amico et al. [11] showed how the
application of discrete time alternating renewal processes is
simple.

For a general reference on the discrete time renewal
processes, we recall Feller [12].

This paper will generalize the results presented in
D’Amico et al. [11] applying the alternating compound
renewal process for the study of insurance contracts in a
discrete time environment.

Discrete time alternating compound renewal processes
were described in Tijms [13] and in Beichelt [14]. In both
of these books, the alternating compound processes were
introduced as exercises. In Beichelt, the exercise was only
described but not solved and no hints were given for
solving it. In the Tijms book, an asymptotic solution was
proposed not a solution that could give the time evolution
for a given time interval. We think that, in general, the
applications should present the time evolution of the studied
phenomenon. In particular, in the study of a mechanical
system where usually the lifetime of the studied apparatus
is shorter than 20, or at most 30 years, the study of the
evolution in time of the mechanical system should be by far
more important. Furthermore, in the chapter on advanced
renewal theory of the Tijms book at page 326, the following is
written:

“in many applied probability problems, asymp-
totic expansions provide a simple alternative to
computationally intractable solutions.”

We would outline that, in this paper, it is shown that the
numerical solution of alternating compound renewal can be
obtained in a simple way although the process is a strong
generalization of the simple renewal process.

Only the paper Zacks [6] presented an application of
alternating compound processes in telegraph problem, but in
the particular framework of the Poisson processes not in the
general environment of the renewal processes.

In Alvarez [15], a theoretical paper on the alternat-
ing renewal processes, in which how to solve the evolu-
tion equation analytically but always in a Poisson envi-
ronment is shown, was presented. The possibility to apply
to an engineering problem this tool was also described.
But without it any example of this application was not
given.

Another paper, Vlasiou [16], gives a very short presen-
tation of alternating compound processes asserting that the
total rewards earned are equal to the percentage of the time
spent in the UP state with respect to the total time 𝑡. This
result holds in very particular cases and not in a general

framework where the rewards, for example, are given by sum
of money.

Furthermore, to authors’ knowledge, and in any database
consulted, never was a paper presented where the costs
and the revenues for each period of the time horizon were
calculated.

In the previous paper (D’Amico et al. [11]), the authors
proposed the application of a discrete time of the simple
alternating renewal process in disability insurance, where the
rewards were not considered.

The main purpose of this paper is to show how it is
possible to apply discrete time alternating compound renewal
processes in insurance problems. More specifically, the appli-
cation will be presented in temporary disability insurance
problem generalizing the previous results.

The obtained results are general and can be applied in any
other field.

The paper will develop in the followingway. In the second
section, the discrete time alternating processes in a homoge-
neous environment will be presented recalling some results
obtained inD’Amico et al. [11]. Furthermore, in that paper, the
discrete time approach was justified by discussing the strict
relation between continuous and discrete time alternating
renewal processes. This relation was proved adapting the
results obtained in Corradi et al. [17] for homogeneous semi-
Markov processes.

In Section 3, the discrete time compound renewal pro-
cesses will be reported.

In Section 4, the discrete time alternating compound
renewal model for the calculation of the mean values (MV),
in nondiscounted case, and the mean present values (MPV),
in discounted case, is presented. In this way, all the total
rewards paid by the insurers for the premiums and by the
insurance company for the reported claims in temporary
disability insurance will be calculated. In Section 5, examples
of the application of the model will be presented. In the last
section, some concluding remark will be given.

In this paper, we will follow the notation given in Beichelt
[14].

2. Discrete Time Homogeneous
Alternating Processes

In renewal theory, usually, it is supposed that renewals start
as soon as they happen. In real world, it is possible that this
condition is not satisfied; that is, renewals can start after a
nonnegligible random time. It is possible to take into account
this phenomenon, defining a renewal process in which the
renewal time after the failure is assumed being an integer
nonnegative random variable.

Definition 1. Let {𝑌1, 𝑌2, . . .} and {𝑍1, 𝑍2, . . .} be two random
variables (one will denote r.vs. in this way in singular
or plural case) that are supposed to be two independent
sequences of independent nonnegative r.v. In this way,
the sequence of two-dimensional random vectors X =

{(𝑌1, 𝑍1), (𝑌2, 𝑍2), . . . , (𝑌𝑘, 𝑍𝑘), . . .} 𝑌𝑖, 𝑍𝑖 ∈ N is defined to be
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Figure 1: A trajectory of r.v. 𝐼(𝑡).

a discrete time alternating renewal process. 𝑌𝑖 denotes the 𝑖th
working period and 𝑍𝑖 denotes the 𝑖th nonworking period.

It is posed that at time 0+ the system is working and this
is the reason why 𝑌𝑖 precedes 𝑍𝑖.

Remark 2. It is important to outline that the working state
depends on the application. In a reliability of an engineer-
ing system, then UP state corresponds to the working of
the system. In a temporary disability insurance contract,
then for the insurance, the UP state is the absence of
disability.

The two integer random variables,

𝑆1 = 𝑌1,

𝑆𝑛 =

𝑛−1
∑

𝑖=1
(𝑌𝑖 +𝑍𝑖) +𝑌𝑛, 𝑛 = 2, 3, . . . ; 𝑆𝑛 ∈ N,

𝑇𝑛 =

𝑛

∑

𝑖=1
(𝑌𝑖 +𝑍𝑖) , 𝑛 = 1, 2, . . . ; 𝑇𝑛 ∈ N,

(1)

represent the times at which the failures happen and the
renewed system starts working, respectively.

From (1), it results in

𝑆𝑛 = 𝑇𝑛−1 +𝑌𝑛;

𝑇𝑛 = 𝑆𝑛 +𝑍𝑛;

𝐸 [𝑇𝑛] = 𝑛𝐸 [𝑌] + 𝑛𝐸 [𝑍] ;

𝐸 [𝑆𝑛] = 𝑛𝐸 [𝑌] + (𝑛 − 1) 𝐸 [𝑍] .

(2)

Now, it is possible to define a state system indicator variable,
more precisely,

𝐼 (𝑡) =

{

{

{

0 if 𝑡 ∈ [𝑆𝑛, 𝑇𝑛)

1 if 𝑡 ∈ ((0, 𝑆1) ∨ [𝑇𝑛, 𝑆𝑛+1)) .
(3)

In Figure 1, a trajectory of the r.v. (3) is reported.
𝑌𝑖 are i.i.d. r.v. and𝑍𝑖 too.The distribution functions (d.f.)

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) and 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) are, respectively,
d.f. of 𝑌𝑖 and 𝑍𝑖.

𝑁𝑌(𝑡) and𝑁𝑍(𝑡) are the random numbers of failures and
renewals that happened in (0, 𝑡], respectively. Given that 𝑆𝑛
and 𝑇𝑛 are sums of independent r.v., it results in

𝐹𝑆
𝑛

(𝑡) = 𝑃 (𝑆𝑛 ≤ 𝑡) = 𝑃 (𝑁1 (𝑡) ≥ 𝑛)

= 𝐹𝑌 ∗ (𝐹𝑍 ∗ 𝐹𝑌)
(𝑛−1)

(𝑡) ,

𝐹𝑇
𝑛

(𝑡) = 𝑃 (𝑇𝑛 ≤ 𝑡) = 𝑃 (𝑁2 (𝑡) ≥ 𝑛)

= (𝐹𝑌 ∗ 𝐹𝑍)
(𝑛)

(𝑡) .

(4)

Remark 3. From now on, we will denote the cumulative dis-
tribution functions (CDF) 𝐹𝑌 ∗ 𝐹𝑍 by 𝐹𝑌𝑍 and its probability
distribution by 𝑓𝑌𝑍:

(i) 𝐻𝑌(𝑡) and 𝐻𝑍(𝑡) represent the renewal functions of
the discrete time alternating renewal process; 𝐻𝑌(𝑡)
can be seen as a discrete time delayed renewal process
in which the first waiting time d.f. is distributed as 𝑌
and the other waiting time d.f. are distributed as𝑌+𝑍.

In the sameway,𝐻𝑍(𝑡) can be seen as an ordinary discrete
time renewal process whose waiting time d.f. are distributed
as 𝑌 + 𝑍.

Proposition 4. It results in the fact that

𝐸 (𝑁𝑍 (𝑡)) = 𝐻𝑍 (𝑡) =

∞

∑

𝑛=1
𝐹𝑌𝑍
(𝑛)

(𝑡) = 𝐹𝑌𝑍 (𝑡) +𝐻𝑍 (𝑡) , (5)

𝐸 (𝑁𝑌 (𝑡)) = 𝐻𝑌 (𝑡) = 𝐹𝑌 (𝑡) + (𝐹𝑌,𝑍
) ∗ 𝐻𝑌 (𝑡) ,

𝑡 = 1, . . . , 𝑇.
(6)

The proofs of (5) are well known (see Beichelt [14]).

Remark 5. In renewal processes, the time scale can be
months, years, or other time intervals depending on the
problem that should be studied. In the alternating processes,
the time scale length of the 𝑌 and 𝑍 periods and their means
𝐸(𝑌) and 𝐸(𝑍) are of fundamental relevance. Usually, these
mean values do not correspond to the time scale interval or
to its multiple.

Remark 6. As proved in Janssen and Manca [18], the dis-
cretization of the continuous time homogeneous renewal
processes bymeans of the simplest generalizedNewton Cotes
formula (rectangle formula) gives the discrete time renewal
process. In the same time, starting from the ordinary discrete
time renewal process with ℎ as discretization step, it is
possible with ℎ → 0 to obtain the corresponding continuous
time renewal process. These properties allow us to ignore
the continuous time environment that can be analytically
solved only in particular cases and in a very tortuous way
(see Adekambi and Mamane [10]). In the most cases, it must
be solved numerically which means discretizing the model.
We think that the best way is working directly in a discrete
time environment. In D’Amico et al. [11], the results given in
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Janssen and Manca [18] were generalized to the alternating
renewal process:

𝐻𝑍 (𝑡) = 𝐹𝑌𝑍 (𝑡) +𝐻𝑍 ∗ 𝐹𝑌𝑍 (𝑡) ,

𝐻𝑌 (𝑡) = 𝐹𝑌 (𝑡) +𝐻𝑌 ∗ 𝐹𝑌𝑍 (𝑡) .

(7)

Remark 7. Thedifference between the renewal function of the
ordinary renewal process and that of delayed renewal process
is given by the known terms of the two integral equations.

The system that can solve the evolution equation of𝐻𝑌(𝑡)
is reported in the following relation:

𝐻𝑌 (𝑡) −

𝑡

∑

𝜏=1
𝐻𝑌 (𝑡 − 𝜏) V𝑌𝑍 (𝜏) = 𝐹𝑌 (𝑡) , 𝑡 = 1, . . . , 𝑇,

𝐻𝑌 (1) = 𝐹𝑌 (1) ,

𝐻𝑌 (2) −𝐻𝑌 (1) V𝑌𝑍 (1) = 𝐹𝑌 (2) ,

𝐻𝑌 (3) −𝐻𝑌 (2) V𝑌𝑍 (1) −𝐻𝑌 (1) V𝑌𝑍 (2) = 𝐹𝑌 (3) ,

.

.

.

(8)

where V𝑌𝑍(𝜏) = 𝐹𝑌𝑍(𝜏) − 𝐹𝑌𝑍(𝜏 − 1).
System (8) in matrix form can be written in the following

way:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅

−]𝑌𝑍 (1) 1 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅

−]𝑌𝑍 (2) −]𝑌𝑍 (1) 1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

. d

−]𝑌𝑍 (𝑘 − 2) −]𝑌𝑍 (𝑘 − 3) −]𝑌𝑍 (𝑘 − 4) ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅

−]𝑌𝑍 (𝑘 − 1) −]𝑌𝑍 (𝑘 − 2) −]𝑌𝑍 (𝑘 − 3) ⋅ ⋅ ⋅ −]𝑌𝑍 (1) 1 0 ⋅ ⋅ ⋅

−]𝑌𝑍 (𝑘) −]𝑌𝑍 (𝑘 − 1) −]𝑌𝑍 (𝑘 − 2) ⋅ ⋅ ⋅ −]𝑌𝑍 (2) −]𝑌𝑍 (1) 1 ⋅ ⋅ ⋅

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

. d

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

∗

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐻𝑌 (1)
𝐻𝑌 (2)
𝐻𝑌 (3)

.

.

.

𝐻𝑌 (𝑘 − 1)
𝐻𝑌 (𝑘)

𝐻𝑌 (𝑘 + 1)
.
.
.

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐹𝑌 (1)
𝐹𝑌 (2)
𝐹𝑌 (3)

.

.

.

𝐹𝑌 (𝑘 − 1)
𝐹𝑌 (𝑘)

𝐹𝑌 (𝑘 + 1)
.
.
.

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (9)

Remark 8. The system and related matrix form of the 𝐻𝑍(𝑡)

evolution equation have the same structure; the only differ-
ence is given by the known terms that are 𝐹𝑌𝑍(𝑡).

3. Discrete Time Homogeneous Compound
Renewal Processes

Generally speaking, the compound renewal processes are
a class of stochastic processes. Indeed, depending on the
hypotheses that we need for the model construction, we will
get different evolution equations.

Definition 9. Let {(𝑇1,𝑀1), (𝑇2,𝑀2), . . .} be a random
marked point process (see Beichelt [14]), where {𝑇1, 𝑇2, . . .}
is the sequence of renewal times of a renewal process
X = {𝑋1, 𝑋2, . . .}, and let {𝑁(𝑡), 𝑡 ≥ 0} be the corresponding
renewal counting process and𝐻(𝑡) = 𝐸(𝑁(𝑡)). Furthermore,
{𝐶(𝑡), 𝑡 ≥ 0} in nondiscounted and discounted case,
respectively, defined by

𝐶 (𝑡) =

{{

{{

{

𝑁(𝑡)

∑

𝑖=1
𝑀𝑖 if 𝑡 ≥ 1

0 if 𝑡 = 0,

𝐶 (𝑡) =

{{

{{

{

𝑁(𝑡)

∑

𝑖=1
𝑀𝑖𝑒
−𝛿𝑖 if 𝑡 ≥ 1

0 if 𝑡 = 0,
(10)

is a compound (reward) renewal process and 𝐶(𝑡) is called
a compound (reward) random variable. 𝑉(𝑡) = 𝐸(𝐶(𝑡))

represents the mean total rewards that were given and/or
received in time 𝑡.

Remark 10. The two sequences M = {𝑀1,𝑀2, . . .} and X =

{𝑋1, 𝑋2, . . .} are independent of each other and are n.n.i.i.d.
But𝑀𝑖 and 𝑋𝑗 may depend on each other if 𝑖 = 𝑗.

Remark 11. The two sequences M and X are identically
distributed as 𝑀 and 𝑋. This hypothesis depends on the
homogeneity environment; if a sequence of r.v. is not i.i.d.,
it cannot be homogeneous (see Gismondi et al. [5]). Under
these conditions, we suppose that each element of them will
be constant in the time.

The next step is the calculation of the means 𝐸(𝑋) and
𝐸(𝑀). Regarding the first, there are no problems because
it is the mean of interarrival times. Instead, the second
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mean is strictly connected to the evolution equation of the
process. In this paper, we will not present all the different
evolution equations but only the most general homogeneous
nondiscounted case with constant rewards and the related
discounted case with deterministic constant rate of interest.

𝐸(𝑀) represents the mean rewards that are given or
received during one interarrival time.

In this period, we can have rate reward and impulse
reward.The first is an annuity that is paid at each unitary time
interval of length 𝜏 and we suppose that 𝐸(𝑋) = 𝑘𝜏 + 𝜏1,
where 0 ≤ 𝜏1 < 𝜏. The second is a reward that will be paid if
some random event happens. In this paper, we will suppose
that the rate rewards are paid at the beginning of each time
interval.

In discounted case, 𝑟 is the related interest rate.
The impulse reward can happen in a period in which it

can be paid at the beginning or at the end of the period. We
will suppose that it is paid at the end.With the symbols𝜓 and
𝛾, we denote the values of one rate reward and one impulse
reward. In the following, we report the values of 𝐸(𝑀) in
nondiscounted and discounted cases, respectively:

𝐸 (𝑀) = 𝜓(𝑘+
𝜏1
𝜏
) + 𝛾,

𝐸 (𝑀) = 𝜓( ̇𝑎
𝑘 𝑟

+
𝜏1

𝜏
𝑒
−𝛿𝜗

)+ 𝛾𝑒
−𝛿(𝑘+𝜏

1
/𝜏)

;

𝛿 = log (1+ 𝑟) ;

𝜗 =

{

{

{

𝑘 +
𝜏1
𝜏

if immediate

𝑘 if due,

̇𝑎
𝑘 𝑟

=
1 − (1 + 𝑟)

−𝑘

𝜌
,

𝜌 =

{

{

{

𝑟 if immediate
𝑟

1 + 𝑟
if due.

(11)

Remark 12. In nondiscounted case, the time is not relevant;
this fact implies that the Wald identities hold.

In discounted case, the value 𝐸(𝑀) is calculated at the
beginning of the period; 𝛾 can be paid at the beginning or
at the end of each period; we suppose that it is paid at the
end. 𝐸(𝑀) is always the same for each period, but it should
be discounted at time 0. Its value changes in function of the
time in which it is paid. In relation (6), ̇𝑎

𝑘 𝑟
and 𝜗 depend on

the time of installment payments. Furthermore, in this case,
it is not possible to apply the Wald identities but one of its
simple generalizations.

Then,𝐻(𝑡) represents the mean number of renewals that
happens at times 0, 𝐸(𝑋), 2𝐸(𝑋), . . . , 𝑞𝐸(𝑋) with the first 𝑞
installments equal to 𝐸(𝑀) and the last, paid at time 𝑞𝐸(𝑋).

In the nondiscounted, if we set 𝑉(𝑡) = 𝐸(𝐶(𝑡)) it results:
𝑉 (𝑡) = 𝐻 (𝑡) 𝐸 (𝑀) . (12)

In discounted case, 𝐸(𝑀) represents an installment of a due
annuity.

Proposition 13. The evolution equation in the discounted case
is given by

𝑉 (𝑡) = 𝐸 (𝑀)

⋅ ( ̈𝑎
⌊𝐻(𝑡)⌋ 𝑟

𝐸(𝑋)

+ (𝐻 (𝑡) − ⌊𝐻 (𝑡)⌋) ⋅ 𝑒
−𝛿⌊𝐻(𝑡)⌋

) ,

(13)

where

𝑟𝐸(𝑋) = (1 + 𝑟)
𝐸(𝑋)

− 1;

̈𝑎
⌊𝐻(𝑡)⌋ 𝑟

𝐸(𝑋)

=

{{

{{

{

1 − 𝑒
−𝛿
𝐸(𝑋)
⌊𝐻(𝑡)⌋

𝑑𝐸(𝑋)

if 𝐻(𝑡) ≥ 1

0 if 𝐻(𝑡) < 1;

𝑑𝐸(𝑋) =

𝑟𝐸(𝑋)

1 + 𝑟𝐸(𝑋)

;

𝛿𝐸(𝑋) = log (1+ 𝑟𝐸(𝑋)) ;

⌊𝑏⌋ = floor (𝑏) .

(14)

Proof. 𝐸(𝑀) is discounted at the beginning of each renewal
period. It is considered as a constant installment of a due
annuity. 𝐻(𝑡) ∈ R is the mean number of renewals that
happen from time 0 to time 𝑡. If ⌊𝐻(𝑡)⌋ = 𝐻(𝑡), then the
second term of the sum in (13) is equal to zero. In the other
case,

𝐸 (𝑀) ⋅ (𝐻 (𝑡) − ⌊𝐻 (𝑡)⌋) (15)

represents the value of the last installment that is smaller than
𝐸(𝑀) and should be discounted for the time period ⌊𝐻(𝑡)⌋

because it is supposed that these mean installments are paid
at the beginning of each period.

Remark 14. In (14), some simple well-known financial equal-
ities are given.

4. Discrete Time Homogeneous Alternating
Compound Processes

Definition 15. Let M = {𝑀1,0,𝑀1,1,𝑀2,1,𝑀2,2,𝑀3,2,𝑀3,3,
. . .} and A = {(𝑌1, 𝑍1), (𝑌2, 𝑍2), . . .} be, respectively, a
sequence of n.n.i.i.d., d.t., and r.v. and a sequence of two-
dimensional random vectors, that is, a homogenous alternat-
ing renewal process. Moreover, 𝑁𝑌(𝑡) and 𝑁𝑍(𝑡), 𝑡 ≥ 0, are
the random numbers of failures and renewals that happened
in (0, 𝑡], respectively. Then, the stochastic process is given by
the couple {(𝐶𝑌(𝑡), 𝐶𝑍(𝑡)), 𝑡 ≥ 0}, where in nondiscounted
and in discounted cases, respectively, it results in

𝐶𝑌 (𝑡) =

{{

{{

{

𝑁
𝑌
(𝑡)

∑

𝑖=1
𝑀𝑖,𝑖−1 if 𝑡 ≥ 1

0 if 𝑡 = 0;
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𝐶𝑍 (𝑡) =

{{

{{

{

𝑁
𝑍
(𝑡)

∑

𝑖=1
𝑀𝑖,𝑖 if 𝑡 ≥ 1

0 if 𝑡 = 0,

𝐶𝑌 (𝑡) =

{{

{{

{

𝑁
𝑌
(𝑡)

∑

𝑖=1
𝑀𝑖,𝑖−1 ⋅ 𝑒

−𝛿
𝑌𝑍
(𝑖−1) if 𝑡 ≥ 1

0 if 𝑡 = 0;

𝐶𝑍 (𝑡) =

{{

{{

{

𝑁
𝑍
(𝑡)

∑

𝑖=1
𝑀𝑖,𝑖 ⋅ 𝑒

−(𝛿
𝑌
+𝛿
𝑌𝑍
(𝑖−1)) if 𝑡 ≥ 1

0 if 𝑡 = 0.
(16)

It is called an alternating compound (reward) renewal pro-
cess. 𝐶𝑌(𝑡) and 𝐶𝑍(𝑡) are called the alternating compound
random variables.

𝑉𝑌(𝑡) = 𝐸(𝐶𝑌(𝑡) ) and 𝑉𝑍(𝑡) = 𝐸(𝐶𝑍(𝑡)) represent the
mean total rewards that were given and/or received during
failure or renewal cycles in a time 𝑡, respectively.

Remark 16. The two sequencesM andA are independent and
𝑀𝑖,𝑖−1 corresponds to 𝑌𝑖 and𝑀𝑖,𝑖 corresponds to 𝑍𝑖.

Remark 17. The r.v. sequences M𝑌 = (𝑀𝑛,𝑛−1)𝑛≥1,M𝑍 =

(𝑀𝑛,𝑛)𝑛≥1,Y = (𝑌𝑛)𝑛≥1,Z = (𝑍𝑛)𝑛≥1 are identically
distributed because of homogeneity. Also, in this case, each
element of each r.v. sequence is constant in the time. We can
find their means 𝐸(𝑌), 𝐸(𝑍), 𝐸(𝑀𝑌), and 𝐸(𝑀𝑍).

𝐸(𝑌) and 𝐸(𝑍) represent the mean of interarrival time of
𝑌 and 𝑍, respectively.

𝐸(𝑀𝑌) represents the mean rewards that are given or
received during one interarrival time of 𝑌. Similarly, 𝐸(𝑀𝑍)
represents themean rewards that are given or received during
one interarrival time of 𝑍.

As for the renewal compound, we can have rate and
impulse reward that we will suppose constant in the time.
The corresponding annuities will be paid at each time interval
of length 𝜏𝑌 and 𝜏𝑍, respectively. We suppose that 𝐸(𝑌) =

𝑘𝑌𝜏𝑌 + 𝜏1, where 0 ≤ 𝜏1 < 𝜏𝑌, and 𝐸(𝑍) = 𝑘𝑍𝜏𝑍 + 𝜏2, where
0 ≤ 𝜏2 < 𝜏𝑍 and 𝑘𝑌, 𝑘𝑍 ∈ N. The impulse rewards 𝛾𝑌 and 𝛾𝑍

will be paid if some random events will happen.
We present the nondiscounted and discounted evolution

equations of the alternating compound process. Further-
more, we denote by 𝜓𝑌 and 𝜓𝑍 the constant rate rewards of Y
and Z, respectively. In discounted case, 𝑟 is the fixed interest
rate for a time interval.

Remark 18. We could consider the Y process discounted and
the Z processes nondiscounted or vice versa but we would
consider only two cases taking into account developing these
aspects in a future paper.

In (17) and (18), the nondiscounted cases, and in (19) and
(20), the discounted cases, 𝐸(𝑀𝑌) and 𝐸(𝑀𝑍) are reported.

They represent the mean of rewards in 𝐸(𝑌) and 𝐸(𝑍),
respectively:

𝐸 (𝑀𝑌) = 𝜓𝑌 (𝑘𝑌 +
𝜏1
𝜏𝑌

)+ 𝛾𝑌, (17)

𝐸 (𝑀𝑍) = 𝜓𝑍 (𝑘𝑍 +
𝜏2
𝜏𝑍

)+ 𝛾𝑍, (18)

𝐸 (𝑀𝑌) = 𝜓𝑌 ( ̇𝑎
𝑘𝑌 𝑟

+
𝜏1
𝜏𝑌

𝑒
−𝛿𝜗
𝑌

)+ 𝛾𝑌𝑒
−𝛿(𝑘
𝑌
+𝜏1/𝜏𝑌)

,

𝜗𝑌 =

{

{

{

𝑘𝑌 +
𝜏1
𝜏𝑌

if immediate

𝑘𝑌 if due,

̇𝑎
𝑘𝑌 𝑟

=
1 − (1 + 𝑟)

−𝑘
𝑌

𝜌
,

(19)

𝐸 (𝑀𝑍) = 𝜓𝑍 ( ̇𝑎
𝑘𝑍 𝑟

+
𝜏1
𝜏𝑍

𝑒
−𝛿𝜗
𝑍

)+ 𝛾𝑍𝑒
−𝛿(𝑘
𝑍
+𝜏2/𝜏𝑍)

,

𝜗𝑍 =

{

{

{

𝑘𝑍 +
𝜏2
𝜏𝑍

if immediate

𝑘𝑍 if due,

̇𝑎
𝑘𝑍 𝑟

=
1 − (1 + 𝑟)

−𝑘
𝑍

𝜌
,

(20)

where 𝜌 is calculated as in (6). Furthermore, it results in the
fact that ̇𝑎0 𝑟 = 0.

Remark 19. Wald’s identity holds in the nondiscounted case.
As for the compound renewal in discounted case, the values
𝐸(𝑀𝑌) and 𝐸(𝑀𝑍) are discounted at the beginning of each
renewal period. It is supposed that 𝛾𝑌 and 𝛾𝑍 are paid at the
end of each period. Furthermore, it is to outline thatY can be
considered as a delayed renewal process (see Beichelt [14]).

Remark 20. In discounted case, 𝐸(𝑀𝑌) and 𝐸(𝑀𝑍) represent
instalments of due annuities.

In alternating renewal processes, the time 𝑡, taking into
account the mean times 𝐸(𝑌) and 𝐸(𝑍), can have two
different situations that are mutually exclusive; that is,

𝑡𝑍 = 𝐸 (𝑌) + 𝑞𝑍 (𝐸 (𝑍) +𝐸 (𝑌)) + 𝜆𝑍

where 𝑞𝑍 ∈ N0, 0 ≤ 𝜆𝑍 < 𝐸 (𝑍) ,

𝑡𝑌 = 𝑞𝑌 (𝐸 (𝑍) +𝐸 (𝑌)) + 𝜆𝑌

where 𝑞𝑌 ∈ N0, 0 ≤ 𝜆𝑌 < 𝐸 (𝑌) .

(21)

Remark 21. We suppose that the rewards corresponding to 𝑌

will be given only in the times 𝑡𝑌 and the ones of 𝑍 will be
given in 𝑡𝑍.

In nondiscounted case,Wald’s identity holds and it results
in

𝑉𝑌 (𝑡𝑌) = 𝐸 (𝑀𝑌) ⋅𝐻𝑌 (𝑡𝑌) ;

𝑉𝑍 (𝑡𝑍) = 𝐸 (𝑀𝑍) ⋅𝐻𝑍 (𝑡𝑍) .

(22)
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HY(t
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E(Y)E(Z) E(Y) E(Z)E(Y) E(Z)E(Y) E(Z)E(Y) E(Z) E(Y) E(Z)
R+
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󳰀󳰀
Y)

Figure 2: Time axis representing case (25).

E(Z) E(Z)E(Y) E(Y) E(Y) E(Z) E(Y) E(Z) E(Y) E(Z) E(Z)E(Y)

HZ(tZ)

R+

Figure 3: Time axis representing case (26). The deferred period is in green.

Remark 22. Regarding the discounted case, it is to point out
that𝐸(𝑀𝑌) is discounted at the beginning of themean period
𝐸(𝑌) and, similarly, 𝐸(𝑀𝑍) at the beginning of the mean
period 𝐸(𝑍). For this reason, it is necessary to calculate the
following equivalent interest rates:

𝑟𝐸(𝑍) = (1+ 𝑟)
𝐸(𝑍)

− 1,

𝑟𝐸(𝑌) = (1+ 𝑟)
𝐸(𝑌)

− 1,

𝑟𝐸(𝑍)+𝐸(𝑌) = (1 + 𝑟)
𝐸(𝑍)+𝐸(𝑌)

− 1

(23)

and the corresponding interest instantaneous intensities

𝛿𝐸(𝑍) = log (1+ 𝑟𝐸(𝑍)) ,

𝑑𝐸(𝑌) = log (1+ 𝑟𝐸(𝑌)) ,

𝛿𝐸(𝑍)+𝐸(𝑌) = log (1+ 𝑟𝐸(𝑍)+𝐸(𝑌)) .

(24)

Proposition 23. The evolution equations, in discounted case,
are given by the following relations:

𝑉𝑌 (𝑡𝑌) =

{{

{{

{

𝐸 (𝑀𝑌) ⋅ 𝐻𝑌 (𝑡𝑌) if 𝐻𝑌 (𝑡𝑌) ≤ 1

𝐸 (𝑀𝑌) ( ̈𝑎
⌊𝐻𝑌(𝑡𝑌)⌋ 𝑟𝐸(𝑌)+𝐸(𝑍)

+ (𝐻𝑌 (𝑡𝑌) − ⌊𝐻𝑌 (𝑡𝑌)⌋) 𝑒
−𝛿
𝐸(𝑌)+𝐸(𝑍)

⋅⌊𝐻
𝑌
(𝑡
𝑌
)⌋
) if 𝐻𝑌 (𝑡𝑌) > 1,

(25)

𝑉𝑍 (𝑡𝑍) = 𝑒
−𝛿
𝐸(Y)

⋅ ( ̈𝑎
⌊𝐻𝑍(𝑡𝑍)⌋ 𝑟𝐸(𝑍)+𝐸(𝑌)

+ (𝐻𝑍 (𝑡𝑍) − ⌊𝐻𝑍 (𝑡𝑍)⌋) 𝑒
−𝛿
𝐸(𝑌)+𝐸(𝑍)

⋅⌊𝐻
𝑍
(𝑡
𝑍
)⌋
)𝐸 (𝑀𝑍) . (26)

Proof. We will explain first relation (25). We have two
different cases. In the first, we have 𝐻𝑌 ≤ 1, the mean
total rewards are paid for a period 𝐻𝑌(𝑡𝑌) ≤ 𝐸(𝑌), and
𝐸(𝑀𝑌) is already discounted at time 0 and paid for time
units less than or equal to 𝐸(𝑌). In the second case, the
mean total rewards can be divided into two parts. In the first
part, ̈𝑎

⌊𝐻𝑌(𝑡𝑌)⌋ 𝑟𝐸(𝑍)+𝐸(𝑌)
𝐸(𝑀𝑌) represents the mean present

value of the ⌊𝐻𝑌(𝑡𝑌)⌋mean instalments that were totally paid
within the time 𝑡𝑌.

The second represents the part of the last instalment that
was paid. This part is given by

𝐻𝑌 (𝑡𝑌) − ⌊𝐻𝑌 (𝑡𝑌)⌋ . (27)

This part should be discounted for ⌊𝐻𝑌(𝑡𝑌)⌋ periods of length
𝐸(𝑌) + 𝐸(𝑍), given that the mean instalments are discounted
at the beginning of the last partial period of length 𝐸(𝑌).

Relation (26) is similar to the second part of (25); the only
difference is that in this case it is necessary to discount the
values by a supplemental period of length 𝐸(𝑌).

The two cases of (25) are shown in Figure 2. In this
picture,𝐻𝑌(𝑡

󸀠

𝑌
) represents the first case corresponding to the

unit of time. Furthermore, 𝐸(𝑀𝑌) ⋅ 𝐻
󸀠

𝑌
/𝐸(𝑌) represents the

reward paid in the time𝐻𝑌(𝑡
󸀠

𝑌
).

𝐻𝑌(𝑡
󸀠󸀠

𝑌
) corresponds to the time interval of the second

case of (25). It is formed by four time periods of length
𝐸(𝑌) + 𝐸(𝑍) plus𝐻𝑌(𝑡

󸀠󸀠

𝑌
) − ⌊𝐻𝑌(𝑡

󸀠󸀠

𝑌
)⌋.

Figure 3 shows a time axis of relation (26). From the
figure, it is simple to understand why the results must be
discounted, further, for a time of length 𝐸(𝑌).

Remark 24. Taking into account the alternating model, we
suppose that when the system is in 𝐸(𝑍), nothing will be paid
to the people that are paid in 𝐸(𝑌) and vice versa. We also
remark that it is also possible to consider these payments.

In Figure 4 is reported a trajectory of an alternating
compound renewal process.

5. The Algorithm Description

The algorithm is long but not tortuous; in this section,
we will describe the main step without entering in detail
(see Algorithm 1).

In the last part of Algorithm 1’s description is reported the
related Mathematica program.

Where aafigYZ[[kY]] is the present value of a due
unitary annuity in which the unit time is 𝐸(𝑌) + 𝐸(𝑍) and
𝑘𝑌 represents the number of instalments, aafigYZY[[kZ]]
represents the previous unitary annuity deferred of a time
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M1,0

M1,1

M2,1
M2,2

M3,2

M3,3

M4,3

Y1 Z1 Y2 Z2 Y3 Z3

R+

Figure 4: A trajectory of a nondiscounted alternating compound renewal process with impulse reward and rate rewards in𝑌 and only impulse
rewards in 𝑍. The impulse rewards are variable.𝑀𝑗,𝑗−1 represent the total value of the 𝑌𝑗 rewards and𝑀𝑗,𝑗 the total value of the 𝑍𝑗 rewards.

(1) Inputs:
(1.1) the interest rate structure (that could be flat, a term structure and stochastic),
(1.2) the rate and impulse rewards (constant or variable),
(1.3) the time unit number of CDF,
(1.4) the CDF.
(2) Construction of the elementary financial data,
(2.1) the construction of discount factors,
(2.2) the construction of due and immediate unitary annuity present value (in the case of constant rewards).
(3) Convolution 𝐹𝑌 ∗ 𝐹𝑍(𝑡).
(4) Construction of𝐻𝑌 and𝐻𝑍.
(5) Calculation of
𝐸(𝑌), 𝐸(𝑍), 𝐸(𝑀

𝑌
), 𝐸(𝑀

𝑍
), 𝐸(𝑌 + 𝑍)

(6) Calculation of other financial data,
(6.1) equivalent interest:
(6.1.1) 𝑟𝐸(𝑌) = (1 + 𝑟)

∧
𝐸(𝑌) − 1,

(6.1.2) 𝑟𝐸(𝑍) = (1 + 𝑟)
∧
𝐸(𝑍) − 1,

(6.1.3) 𝑟𝐸(𝑌)𝐸(𝑍) = (1 + 𝑟)
∧
𝐸(𝑌 + 𝑍) − 1.

(6.2) Instantaneous intensity:
(6.2.1) De = log (1 + 𝑟) ,

(6.2.2) De𝐸(𝑌) = log (1 + 𝑟𝐸 (𝑌)) ,

(6.2.3) De𝐸(𝑍) = log (1 + 𝑟𝐸 (𝑍)) ,

(6.2.4) De𝐸(𝑌)𝐸(𝑍) = log (1 + 𝑟𝐸 (𝑌) 𝐸 (𝑍)) .

(7) Calculation of 𝑉𝑌 and 𝑉𝑍

VY = Table[0.0,{i,1,{nannpYZ}];

VZ = Table[0.0,{i,1,{nannpYZ}];

For [t = 1,t <= nannpYZ,t++,

kY = Floor[HY[[t]]];

hY = HY[[t]] − kY;

If [kY > 0,

VY[[t]] += N[aafigYZ[[kY]] * EMY, 64];

];

VY[[t]] += N[hY * EMY * Exp[−DeEYEZ * kY], 64];

kZ = Floor[HZ[[t]]];

hZ = HZ[[t]] − kZ;

If [kZ > 0,

VZ[[t]] += N[aafigYZY[[kZ]] * EMZ, 64];

];

VZ[[t]] += N[EMZ * hZ * Exp[−DeEY - DeEYEZ * kZ], 64];

];

Algorithm 1



Mathematical Problems in Engineering 9

0 1 2 3 4 0 1 2 3 4
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Figure 5: Possible trajectories in four years with starting state healthy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ZY ZY ZY
M1,0 M1,1 M2,1 M2,2 M3,2

Figure 6: Mean financial evolution of an alternating compound renewal process. The tall segments divide the 𝑌 periods from the 𝑍 periods,
the short the years. It is supposed that the durations of each period 𝑌 and 𝑍 are 𝐸(𝑌) and 𝐸(𝑍), respectively. Only the last period will have
different duration depending on the length of the contract.The closed boxes denote the rate rewards paid for a period less than one time unit.
The length𝑀𝑖,𝑖−1 − Floor(𝑀𝑖,𝑖−1) represents the last part of the 𝑖th 𝑌 (see, e.g., the length of the segment that goes from 3 to𝑀1,0). The length
Ceiling(𝑀

𝑖,𝑖
) − 𝑀

𝑖,𝑖
shows the first part of the 𝑖 + 1th 𝑌 (see, e.g., the length of the segment that goes from 𝑀2,2 to 12). The one side open

boxes represent the 𝑍 rate rewards paid for a period less than one time unit. The lengths Ceiling(𝑀𝑖,𝑖−1) − 𝑀𝑖,𝑖−1 and 𝑀𝑖,𝑖 − Floor(𝑀𝑖,𝑖) give,
respectively, the first and the last parts of the 𝑖th 𝑍-period.

𝐸(𝑌). N[. . .,64] means that the calculations are done with
64 digits.

Remark 25. 𝐸(𝑌), 𝐸(𝑍) are the reward mean time of 𝑌 and
𝑍, respectively. 𝐸(𝑀𝑌), 𝐸(𝑀𝑍) are the mean reward paid in
𝐸(𝑌) and in 𝐸(𝑍); they are discounted at the beginning of the
mean periods.

6. The Temporary Disability Insurance
Studied by a D. T. Alternating Compound
Renewal Model

6.1. The Insurance Problem. In this section, we apply the
discrete time homogeneous alternating compound renewal
process to the temporary disability insurance contract.

In this case, the insured can be temporarily disabled, that
is, cannot work, or be healthy. It is clear that the insurance
company will never accept at the beginning of the contract a
disabled person. For the insurance company, the healthy state
is the “working state” and the illness is the not working state.

The contract has a yearly premium payment. We are
interested to find the present value of the cost of claims that
the insurance company should pay to the insured person
and the present value of premiums that the company will
receive. We can model this insurance contract by a discrete
time homogeneous alternating compound renewal model.

In Figure 5, the trajectories that can be obtained in 4
time periods with starting state healthy are reported. The
first period is healthy because an insurance company will not
accept any insured that at the beginning of the contract is ill.
For this reason, the only possible trajectories are 23 = 8.

6.2. Applicative Examples. We did not have data that could
permit a precise construction of input for our model. How-
ever, we decided to construct four examples that will show
how our model works.

Table 1: 𝑌 and 𝑍 CDF.

Input data
Time CDF 𝑌 CDF 𝑍

0 0 0
1 0.014476 0.144349
2 0.019221 0.515605
3 0.025497 0.806072
4 0.083142 0.86736
5 0.127643 0.908418
6 0.206742 0.939994
7 0.245294 0.958056
8 0.351764 0.970789
9 0.446537 0.981991
10 0.537532 0.988795
11 0.641189 0.992272
12 0.724329 0.994815
13 0.819436 0.996897
14 0.923688 0.998432
15 1 1

In these applications, we suppose that the insurance will
not receive impulse rewards and that the mean benefit of the
insured is an impulse reward.

Our starting horizon time was 15 years. Taking into
account the convolution of the 𝑌 and 𝑍 random variables,
we covered a period of 30 years. In the first two examples,
we suppose that the insurance company will get 300C per
time unit as mean premium by the insured people received
at the beginning of the unit time. The insured will get
3000C as reimbursement per each 𝑍 renewal period by the
company supposing that it is paid at the end of the period.
The yearly interest rate is 3%. The present value of the rate
rewards received as premium by the insurance company was
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Table 2: Distribution function 𝐹𝑌𝑍.

CDF 𝑌𝑍

Time 0 1 2 3 4 5 6 7 8
Prob. 0 0 0.00209 0.008149 0.015021 0.027938 0.05847 0.10419 0.156249
Time 9 10 11 12 13 14 15 16 17
Prob. 0.214468 0.287706 0.375240 0.463810 0.554860 0.645052 0.736492 0.830444 0.906403
Time 18 19 20 21 22 23 24 25 26
Prob. 0.946832 0.964069 0.975923 0.984026 0.989375 0.993217 0.995827 0.997425 0.998444
Time 27 28 29 30
Prob.

discounted at the beginning of each mean renewal period of
length 𝐸(𝑌) = 9.83 by the present value of a due unitary
installment. It was supposed that the other inputs were the
CDF of 𝑌 and 𝑍 that are reported in Table 1.

In Table 2, the d.f. of 𝐹𝑌 ∗ 𝐹𝑍 is shown.
In Table 3, the mean total number of claims reported

within each year 𝑡 of the considered time horizon is reported.

Remark 26. In Table 3, 𝐻𝑌(1) > 0 instead of 𝐻𝑍(1) = 0.
Indeed, this fact depends on the different known terms of the
two mean numbers. It results clear in looking (7) and (8).

6.2.1. I Case. The data given in the previous three tables are
common to all the given cases. In this first case, we suppose
that the interest rate is 3%.Themeanpresent value is𝐸(𝑀𝑌) =
2597.55C. The mean benefit paid by the insurance company
has a mean renewal period of length 𝐸(𝑍) = 2.94.The 3000C
were discounted at the beginning of the 𝐸(𝑍) period and its
mean discounted value is 𝐸(𝑀𝑍) = −2750.61C. Its value is
negative because we are working from the viewpoint of the
insurance company.

In Table 4 are reported the results of our first example.

Remark 27. It looks strange that the value of 𝑉𝑌 at time
5 is smaller than the one in 4 and the value in row 6 is
smaller than both but it depends on the actualization; indeed,
before it, they are equal to 228.376, 248.296, and 269.244,
respectively.

6.2.2. II Case. In the first case, the mean present value of
the insurance company was smaller than the mean present
value of the insured. This fact does not happen usually. In
this second case, the premium is brought at 350C with a
mean present value equal to 3030.48.The claim value was not
changed.

In Table 5 are reported the related values.

6.2.3. III Case. In this case, we suppose that the rate of interest
is always 3%, but we suppose also that there is an increasing of
the 1.8% of the premiums of the company and an increasing
of the 1.5% of the mean claim value.

Table 3: Mean number of renewals reported within each year for 𝑌
and 𝑍.

Mean number of claims
Time 𝐻𝑌 𝐻𝑌 𝐻𝑍

0 0 0
1 0.014476 0
2 0.019221 0.00209
3 0.025527 0.008149
4 0.08327 0.015026
5 0.127912 0.027967
6 0.20739 0.058566
7 0.246932 0.104423
8 0.355123 0.156813
9 0.452676 0.215772
10 0.548401 0.29037
11 0.659883 0.380202
12 0.754524 0.472627
13 0.865198 0.569899
14 0.990609 0.669364
15 1.094958 0.773789
16 1.130467 0.885427
17 1.174013 0.984889
18 1.225479 1.055479
19 1.285403 1.110094
20 1.354001 1.166913
21 1.430345 1.227918
22 1.511493 1.294302
23 1.595246 1.366705
24 1.681536 1.443804
25 1.769417 1.52414
26 1.856478 1.607162
27 1.941151 1.692138
28 2.023513 1.777598
29 2.103553 1.862118
30 2.181583 1.945029

By means of the following relation, it will be possible
to calculate the real rate of interest that will be used in the
discounting factor:

1 + 𝑟

1 + 𝑟𝑖

− 1, (28)

where 𝑟 is the interest rate and 𝑟𝑖 the inflation rate.
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Table 4: Results of the first case.

Time Premium 300C Benefit 3000C
𝑉𝑌 𝑉𝑍

0 0 0
1 37.60217 0
2 49.92756 −4.29789
3 66.30837 −16.7606
4 216.2974 −30.9047
5 332.2589 −57.5234
6 538.7058 −120.458
7 641.4176 −214.777
8 922.4504 −322.535
9 1175.85 −443.802
10 1424.5 −597.236
11 1714.081 −782.003
12 1959.916 −972.105
13 2247.397 −1172.17
14 2573.158 −1376.75
15 2766.663 −1591.54
16 2829.9 −1821.15
17 2907.45 −2025.73
18 2999.106 −2135.04
19 3105.824 −2212.06
20 3227.99 −2292.18
21 3363.95 −2378.21
22 3508.466 −2471.82
23 3657.62 −2573.92
24 3811.294 −2682.64
25 3967.8 −2795.93
26 4122.846 −2913
27 4273.64 −3032.83
28 4407.152 −3153.34
29 4504.88 −3272.53
30 4600.153 −3389.45

Having two different inflation rates, we will have two
different interest rates.

More precisely, the real interest rate of premiums is 1.179%
and of benefits 1.478%. In this case, the mean present value
is 𝐸(𝑀𝑌) = 2802.56C and claim cost −2873.52. The time
evolution of the means of premiums and of claim costs is
reported in Table 6.

6.2.4. IV Case. In the third case, the mean of premiums is
lower than the benefit mean. As before, we brought the one
time period of the premium at 350C obtaining 𝐸(𝑀𝑌) =

3269.65C. The evolution of the premiums and of claim costs
of this last case is given in Table 7.

Remark 28. The cases three and four are calculated with two
different discount rates.The algorithm described in Section 5

Table 5: Results of the second case.

Time Premium 350C Benefit 3000C
𝑉𝑌 𝑉𝑍

0 0 0
1 43.869199 0
2 58.248817 −4.29789
3 77.359765 −16.7606
4 252.34692 −30.9047
5 387.63538 −57.5234
6 628.49006 −120.458
7 748.32055 −214.777
8 1076.1921 −322.535
9 1371.8247 −443.802
10 1661.9161 −597.236
11 1999.7613 −782.003
12 2286.5685 −972.105
13 2621.9626 −1172.17
14 3002.0174 −1376.75
15 3227.7734 −1591.54
16 3301.5503 −1821.15
17 3392.0256 −2025.73
18 3498.957 −2135.04
19 3623.4617 −2212.06
20 3765.9884 −2292.18
21 3924.6081 −2378.21
22 4093.2108 −2471.82
23 4267.2236 −2573.92
24 4446.5096 −2682.64
25 4629.0995 −2795.93
26 4809.9865 −2913
27 4985.9136 −3032.83
28 5141.6778 −3153.34
29 5255.6936 −3272.53
30 5366.8456 −3389.45

changes slightly andwe think that it is not necessary to rewrite
more or less the same algorithm.

7. Conclusion

In this paper, the discrete time alternating compound renewal
process, in homogeneous case, was presented. It is to outline
that this paper for the first time gives the time evolution of
a compound alternating renewal process and despite what
was written in literature (see Tijms [13]) it is shown how
simple the application of this process is. Usually the papers
that apply the alternating process in continuous time have a
very huge theoretical part and if there are applications, they
are very simple examples. Furthermore, many applications
give the asymptotic results but never the time evolution of the
process.

To authors’ knowledge, the compound alternating pro-
cesses were never applied in a general framework. This is
another strength of this paper that gives the tool for the
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Table 6: Third case results.

Time Premium 300C Benefit 3000C
𝑉𝑌 𝑉𝑍

0 0 0
1 40.56984881 0
2 53.86799282 −5.19786
3 71.54162948 −20.2702
4 233.3682117 −37.3761
5 358.481782 −69.5687
6 581.2220687 −145.682
7 692.0402553 −259.751
8 995.252993 −390.073
9 1268.651391 −536.734
10 1536.925406 −722.296
11 1849.361647 −945.753
12 2114.598448 −1175.66
13 2424.767918 −1417.62
14 2776.239291 −1665.04
15 3031.697365 −1924.8
16 3117.381572 −2202.5
17 3222.459179 −2449.91
18 3346.648929 −2601.93
19 3491.248083 −2714.58
20 3656.77799 −2831.77
21 3840.998257 −2957.59
22 4036.812728 −3094.52
23 4238.910474 −3243.85
24 4447.132468 −3402.87
25 4659.191563 −3568.57
26 4869.27302 −3739.81
27 5073.594004 −3915.07
28 5264.450334 −4091.34
29 5430.746378 −4265.67
30 5592.865348 −4436.68

application on any other field where there is a phenomenon
that evolves in a dichotomist way.

The proposal applicative example is on temporary disabil-
ity insurance. Unfortunately, we did not have real data. But
we think that this example can show how it will be possible to
apply our model in real life models.

It is also to outline that the alternating compound renewal
processes can be applied in many other fields. For example,
the application in the reliability of complex mechanical
systems is really immediate where the two states are the
Up (working) and Down (not working) state. Furthermore,
the possibility to put a negative reward for the Down state
and a positive reward for the Up state gives the possibility
to evaluate costs and revenues by means of a really simple
model.

The discrete time approach does not present any applica-
tive difficulty. It is really simple to apply and as proved in
D’Amico et al. [11] the strict connection between continuous
and discrete time justifies the general application of the
discrete time approach.

In future papers, the authors would study the continuous
approach of the alternating compound process and the
different kinds of evolution equations of these families of

Table 7: Fourth case results.

Time Premium 350C Benefit 3000C
𝑉𝑌 𝑉𝑍

0 0 0
1 47.33149028 0
2 62.84599162 −5.19786
3 83.46523439 −20.2702
4 272.2629137 −37.3761
5 418.2287457 −69.5687
6 678.0924135 −145.682
7 807.3802978 −259.751
8 1161.128492 −390.073
9 1480.09329 −536.734
10 1793.079641 −722.296
11 2157.588588 −945.753
12 2467.031522 −1175.66
13 2828.895905 −1417.62
14 3238.945839 −1665.04
15 3536.980259 −1924.8
16 3636.945167 −2202.5
17 3759.535708 −2449.91
18 3904.42375 −2601.93
19 4073.122763 −2714.58
20 4266.240988 −2831.77
21 4481.164633 −2957.59
22 4709.61485 −3094.52
23 4945.395553 −3243.85
24 5188.321212 −3402.87
25 5435.72349 −3568.57
26 5680.818524 −3739.81
27 5919.193004 −3915.07
28 6141.858723 −4091.34
29 6335.870774 −4265.67
30 6525.009573 −4436.68

processes. Moreover, they will try also to generalize these
models in a nonhomogenous setting.
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