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ABSTRACT

Context. The external regions of galaxy clusters may be under strong influence of the dark energy, which was discovered by observa-
tions of supernovae Ia at redshift z < 1. The presence of the dark energy in the gravitational equilibrium equation, with the Einstein Λ
term, balances the gravity, and extends the equilibrium configuration more in radius.
Aims. We investigate the features of the equilibrium configurations to analyse how the presence of the dark energy affects the density
profiles and radial extension by specifying the conditions for which the gravitational equilibrium begins.
Methods. We derived the kinetic equation for an equilibrium configuration in presence of dark energy and solved the gravitational
equilibrium equation by considering a Maxwell-Boltzmann distribution function with a cut-off in the framework of the Newtonian
regime, because the observed velocities of galaxies inside a cluster are much lower than the velocity of light.
Results. The prevalence of dark energy effects on the gravity shows a wide region in the W0–ρΛ diagram where equilibrium solutions
are not possible. In these particular conditions, the galaxies located in the external regions of a cluster can flow out, following the
accelerating expansion of the Universe.
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1. Introduction

It was shown by Chernin (2001, 2008) that outer parts of galaxy
clusters may be under strong influence of dark energy (DE),
which was discovered by observations of supernovae (SN) Ia
at redshift z ≤ 1 (Riess et al. 1998; Perlmutter et al. 1999)
and in the spectrum of fluctuations of cosmic microwave back-
ground (CMB) radiation (see e.g. Spergel et al. 2003; Tegmark
et al. 2004). To investigate these effects on the gravitational equi-
librium of the clusters, solutions for polytropic configurations
in presence of DE have been obtained by Balaguera-Antolínez
et al. (2006, 2007) and Merafina et al. (2012). We here derive a
Boltzmann-Vlasov kinetic equation in presence of DE and grav-
ity in a Newtonian regime. The solutions generalize those ob-
tained by Bisnovatyi-Kogan et al. (1993, 1998) for the kinetic
equation without DE. The Newtonian approximation is cho-
sen because the observed chaotic velocities of galaxies inside
a cluster are much lower than the velocity of light.

The general relativistic solution in presence of DE can be
applied for equilibrium configurations of point masses of some
exotic particles that only interact gravitationally. In early stages
of the Universe expansion, before and during the inflation stage,
these particles may form gravitationally bound configurations
that collapse during the inflation, when anti-gravity decreases.
As a result of this collapse, such hypothetical objects may be
transformed into primordial black holes that appear after the end
of inflation. The relativistic kinetic equation and its solutions in
presence of DE will be considered elsewhere.

2. Newtonian approximation in description of DE

The substance that is called now DE was first introduced by
Einstein (1918) for a stationary universe in the form of the cos-
mological constant Λ during his unsuccessful attempts to con-
struct a solution for a stationary universe. Shortly before this,
de Sitter (1917) had shown that in presence of Λ the solution for
an empty space describes an exponential expansion. Friedmann
(1922, 1924) was the first to obtain exact solutions for the ex-
panding universe that contained matter in presence of the cos-
mological constant Λ. Another exact solution for the metric in
presence of Λ, around the gravitating point mass, was obtained
by Carter (1973). This solution is a direct generalization of the
Schwarzschild solution for a black hole (BH) in vacuum with a
metric

ds2 = g00c2dt2 − g11dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (1)

of the form

g00 =
1
g11
= 1 − 2GM

c2r
− Λr2

3
= 1 − 2GM

c2r
− 8πGρΛr2

3c2
, (2)

where the density of DE ρΛ is connected with Λ as

ρΛ =
Λc2

8πG
· (3)

A transition to the Newtonian limit, where DE is described by
the anti-gravity force in vacuum, was made by Chernin (2008).
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In the limit of a weak gravity (v2 � c2, GM/r � c2) the metric
coefficients are connected with a gravitational potential Φg as
(Landau & Lifshitz 1962)

g1/2
00 = 1 +

Φg

c2
· (4)

Then, using the Eqs. (4) and (2) at Λ = 0, we obtain the expres-
sion for the Newtonian potential Φg and the Newtonian gravity
force acting on the unit mass Fg

Φg = −GM
r
, Fg = −dΦg

dr
= −GM

r2
· (5)

For the Schwarzschild-de Sitter metric (2) we have in the
Newtonian limit

Φ = −GM
r
− 4πGρΛr2

3
, F = Fg + FΛ = −GM

r2
+

8πGρΛr
3
· (6)

In this way, the cosmological constant creates a repulsive (anti-
gravity) force between a BH and a test particle in vacuum,
which force increases linearly with a distance between them.
The normalization of the potential here is chosen so that Φg = 0
at r = ∞, and ΦΛ = 0 at r = 0.

We now consider the equilibrium of a self-gravitating object
in presence of DE. In general relativity the equations describing
the equilibrium in a spherically symmetric configuration in vac-
uum (without DE) have been derived by Oppenheimer & Volkoff
(1939)

dP
dr
= −G(ρc2 + P)(Mrc2 + 4πPr3)

r2c4 − 2GMrrc2

dMr

dr
= 4πρr2· (7)

Here ρ, P are the total density and total pressure of the matter,
and Mr is the total (gravitating) mass, including a gravitationally
binding energy, inside a radius r in the Schwarzschild-like metric

ds2 = eνc2dt2 − eλdr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (8)

eλ =

(
1 − 2GMr

rc2

)−1

, (9)

eν = exp

(
2
∫ ∞

r

dP/dr
P + ρc2

dr

)
· (10)

In presence of DE, ρ and P are represented as

ρ = ρm + ρΛ = ρm +
Λc2

8πG
, P = Pm + PΛ = Pm − Λc4

8πG
· (11)

We consider a Newtonian limit when

Pm � ρm c2, r � 2GM(m)
r

c2
· (12)

Here we used a definition M(m)
r = 4π

∫ r

0
ρmr2dr. In the

Newtonian limit we have from Eq. (7)

dP
dr
= −
ρm

(
3GM(m)

r − Λc2r3
)

r2
(
3 − Λr2

) · (13)

We estimate the last term in the denominator. For an equilibrium
configuration with a finite radius to exist, we need a positive sign
of the numerator; from condition (12) we have

Λr2 <
3GM(m)

r

rc2
� 1·

Therefore, in the denominator we have Λr2 � 3 and we can ne-
glet the term with Λ. In the Newtonian approximation, in pres-
ence of DE, we obtain the following equilibrium equation

dP
dr
= −ρm

⎛⎜⎜⎜⎜⎝GM(m)
r

r2
− Λc2r

3

⎞⎟⎟⎟⎟⎠ = −ρm

⎛⎜⎜⎜⎜⎝GM(m)
r

r2
− 8πGρΛr

3

⎞⎟⎟⎟⎟⎠ , (14)

with ρΛ given by definition (3), which was used without deriva-
tion by Merafina et al. (2012). On the other hand, we can write
the Poisson equation for the gravity of the matter together with
the hydrostatic equilibrium equation

∇2Φg = 4πGρm,
∇P
ρm
= −∇Φg − ∇ΦΛ, (15)

and then, the potential created by DE in the vacuum, taking into
account that P = Pm + PΛ, satisfies the Poisson equation

∇2ΦΛ = −8πGρΛ, ρΛ =
Λc2

8πG
· (16)

This equation, together with the Poisson equation for the gravity
of the matter fully describes a static gaseous equilibrium config-
uration in presence of DE. Similarly, we can write the hydrody-
namic Euler equation in presence of DE as

∂u

∂t
+ (u · ∇)u +

∇P
ρm
= −∇Φg − ∇ΦΛ· (17)

3. Kinetic equation for a self-gravitating cluster
in presence of DE

The kinetic Boltzmann-Vlasov equation for a distribution func-
tion f of non-collisional gravitating points of equal mass m in
spherical coordinates (r, θ, ϕ) is written as

∂ f
∂t
+ vr
∂ f
∂r
+
vθ
r
∂ f
∂θ
+
vϕ

r sin θ
∂ f
∂ϕ

+

⎛⎜⎜⎜⎜⎜⎝v2θ + v2ϕr
− ∂Φ
∂r

⎞⎟⎟⎟⎟⎟⎠ ∂ f
∂vr
+

⎛⎜⎜⎜⎜⎜⎝− vrvθr
+

cot θ v2ϕ
r
− 1

r
∂Φ

∂θ

⎞⎟⎟⎟⎟⎟⎠ ∂ f
∂vθ

+

(
− vrvϕ

r
− cot θ vϕvθ

r
− 1

r sin θ
∂Φ

∂ϕ

)
∂ f
∂vϕ
= 0, (18)

where, in presence of DE, we haveΦ = Φg +ΦΛ. In a spherically
symmetric stationary cluster, we have ∂Φ/∂t = 0 and Φ = Φ(r).
Moreover, the kinetic Eq. (18) has four first integrals, written in
Cartesian coordinates (x, y, z) as

E
m
=

1
2

(
v2x + v

2
y + v

2
z

)
+ Φ,

Lx

m
= y vz − z vy,

Ly
m
= z vx − x vz,

Lz

m
= x vy − y vx· (19)

In spherical coordinates, these integrals can be expressed by

E
m
=

1
2

(
v2r+v

2
θ+v

2
ϕ

)
+Φ ,

Lx

m
=−r vθ sin ϕ − r vϕ cos θ cosϕ,

Ly
m
= r vθ cosϕ − r vϕ sin ϕ cos θ ,

Lz

m
= r vϕ sin θ, (20)

where E and Li(i = x, y, z) are the energy and the projection of
the angular momentum on the corresponding axis. From the last
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three integrals follows the conservation of the absolute value of
the angular momentum L, written in the form

L2

m2
= r2

(
v2θ + v

2
ϕ

)
· (21)

Then, the solution of the kinetic Eq. (18) is an arbitrary function
of the first integrals (20). We restrict ourselves to an isotropic
distribution function f (E). For a uniform DE, a normalization of
its energy at r = ∞ is not possible, therefore we choose ΦΛ = 0
at r = 0 as the most convenient one (Merafina et al. 2012). Thus,
from Eqs. (15), we have

ΦΛ = −4πG
3
ρΛr2 = −Λc2

6
r2· (22)

Following Zel’dovich & Podurets (1965) and Bisnovatyi-Kogan
et al. (1993, 1998), we consider a Maxwell-Boltzmann distribu-
tion function with a cut-off⎧⎪⎪⎪⎨⎪⎪⎪⎩

f = Be−E/T for E ≤ Ecut

f = 0 for E > Ecut,
(23)

where the cut-off energy Ecut is given by

Ecut = −αT
2

(24)

and α is the so-called cut-off parameter, while T is the tempera-
ture in energy units. The total energy is

E =
mv2

2
+ mΦ =

mv2

2
+ mΦg − mΛc2r2

6
, (25)

where the total potential Φ and the velocity v are given by

Φ = Φg + ΦΛ and v = (v2r + v
2
θ + v

2
ϕ)

1/2. (26)

The constant B in the first of Eqs. (23) depends on the to-
tal potential Φ and therefore is different for each model. To
consider a unique distribution function for all the equilibrium
configurations, following Merafina & Ruffini (1989), we must
choose a different normalization by introducing a new constant A
connected with B through the following relation1

B = AemΦR/T , (27)

with ΦR the value of the total potential Φ at r = R. In this way,
the expression of the distribution function (23) for E ≤ Ecut
becomes

f = A exp

[
mΦR

T
− mv2

2T
− m

T

(
Φg − Λc2r2

6

)]
· (28)

The maximum kinetic energy εc is connected with the
potential Φ by the relation

εc = m(ΦR −Φ). (29)

Then the distribution function can be rewritten as

f = A e−(ε−εc)/T , (30)

where ε = mv2/2 is the kinetic energy of the single-point mass.

1 Equation (27) is not arbitrary but justified by considerations of sta-
tistical mechanics, where E = constant along the motion of each single
component of mass m and taking into account the presence of the chem-
ical potential μ in the constant B, where μ+mΦ = const. along the radial
coordinate r.

The Poisson Eq. (15) in a spherical symmetry applied to a
gravitational field is given by

1
r2

d
dr

(
r2 dΦg

dr

)
= 4πGρm, (31)

with the boundary conditions Φg(0) = Φg0 and Φ′g(0) = 0. The
matter density can be expressed as

ρm = 4πm
∫ pmax

0
f p2dp, with p = mv, (32)

where the expression of the maximum momentum pmax is
given by

pmax =

√
2m

(
−mΦ − αT

2

)
=

√
2m

(
−mΦg +

mΛc2r2

6
− αT

2

)
·

The cluster with a finite radius is possible only when the
following condition is satisfied:

αT
2m
< −Φmax, with Φmax < 0.

Then, by using the form of the distribution given in Eq. (30), we
can finally rewrite the matter density as

ρm=4
√

2πAm5/2
∫ εc

0
e−(ε−εc)/T √ε dε, where εc=

p2
max

2m
· (33)

Introducing dimensionless variables

W =
p2

max

2mT
=
εc
T

and x =
p2

2mT
=
ε

T
, (34)

we obtain W = m(ΦR − Φ)/T, and the expression of matter den-
sity ρm becomes

ρm = 4
√

2πAm5/2T 3/2
∫ W

0
eW−x √xdx, (35)

where, as usual, at W = 0 we have ρm = 0, being Φ = ΦR.
From the Poisson Eq. (31) we can deduce the equation de-

scribing the structure of the Newtonian configurations in pres-
ence of DE by also considering the potential ΦΛ. In fact, insert-
ing the expression of the gravitational potential Φg = Φ − ΦΛ
into Eq. (31) and using Eq. (22), we obtain

1
r2

d
dr

(
r2 dΦ

dr

)
= 4πGρm − Λc2, (36)

where the potential Φ now includes all the contributions. Then,
by considering the first relation in Eq. (11), the equilibrium equa-
tion becomes

1
r2

d
dr

(
r2 dΦ

dr

)
= 4πG(ρm − 2ρΛ). (37)

Now, we have to consider the boundary conditions for the poten-
tial Φ with respect to the conditions given for the potentialΦg in
Eq. (31). Starting from Eq. (22), we can write

Φ = Φg − Λc2

6
r2 and Φ′ = Φ′g −

Λc2

3
r, (38)

and therefore, for r = 0, we have Φ(0) = Φg0 and Φ′(0) =
Φ′g(0) = 0.

To write the dimensionless form of the equilibrium equation,
we can express the radial coordinate as r = ηr̂ and, using the
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definition W = m(ΦR − Φ)/T , the equilibrium equation can be
rewritten as

1
r̂2

d
dr̂

(
r̂2 dW

dr̂

)
= −4πGmη2

T
(ρm − 2ρΛ)· (39)

In the same way, following Merafina & Ruffini (1989), we can
introduce the expression of dimensionless densities by defining
the following quantities

ρm =
σ2

Gη2
ρ̂m and ρΛ =

σ2

Gη2
ρ̂Λ, (40)

where σ2 = 2T/m. Thus, the dimensionless form of the
equilibrium equation will be given by

1
r̂2

d
dr̂

(
r̂2 dW

dr̂

)
= −8π(ρ̂m − 2ρ̂Λ), (41)

with the boundary conditions W(0) = W0 and W′(0) = 0.
Moreover, it is important to note that the relation ρ̂m0 > 2ρ̂Λ
must be satisfied at the centre of the equilibrium configuration
to obtain the condition of initial decreasing density W′′(0) < 0.
However, this is a necessary but not sufficient condition for the
existence of the equilibrium solution, because the presence of
the DE can enable conditions of increasing density (W′ > 0) to
be reached at other values of the radial coordinate.

We still need to define the expression of the dimensional
quantity η. To derive the result, we can use the relations (35)
and (11) for the densities ρm and ρΛ, respectively, and compare
them with the definitions (40). We obtain

η =
(
Am4Gσ

)−1/2
, (42)

with

ρ̂m = 2π
∫ W

0
eW−x √xdx and ρ̂Λ =

Λη2c2

8πσ2
, (43)

where ρ̂Λ is given by the value of Λ. The total mass M(m) at
radius R is given by

M(m) = 4π
∫ R

0
ρmr2dr =

σ2η

G

∫ R̂

0
4πρ̂mr̂2dr̂, (44)

where

M̂(m) =

∫ R̂

0
4πρ̂mr̂2dr̂ and M(m) =

σ2η

G
M̂(m)· (45)

Finally, to make the dependence of the dimensional quantities
on the velocity σ explicit, we can introduce the quantity

ζ = ησ1/2 = (Am4G)−1/2, (46)

and the dimensional quantities can be rewritten as

ρm =
σ3

Gζ2
ρ̂m and ρΛ =

σ3

Gζ2
ρ̂Λ (47)

and

M(m) =
σ3/2ζ

G
M̂(m) and R =

ζ

σ1/2
R̂· (48)

Turning to the condition (24) on the energy Ecut, we can express
the cut-off parameter α by using the condition at the edge of the
configuration

α

2
= −mΦR

T
= −m

T
(Φg + ΦΛ)r=R· (49)

Thus, because Φg(R) = −GM(m)/R and ΦΛ(R) = −Λc2R2/6, we
obtain

α =
2GmM(m)

RT
+

mΛc2R2

3T
(50)

and, finally, by using dimensionless quantities (47), (48) and re-
lation (3), we have

α =
4M̂(m)

R̂

(
1 +

4πρ̂ΛR̂3

3M̂(m)

)
· (51)

For low values of the cut-off parameter α, maintaining a finite
value of αT that corresponds to high values of the tempera-
ture T , the distribution function (23) may be taken as a constant
(Bisnovatyi-Kogan et al. 1998). Then, the solutions only exist
for low values of W0 and ρ̂Λ, assuming a more simplified form
that converges to a limiting sequence. In the limit of W → 0, the
dimensionless density ρm can be expressed as

ρ̂m = 2π
∫ W

0

√
xdx =

4π
3

W3/2, (52)

whereas the equilibrium Eq. (41) becomes

1
r̂2

d
dr̂

(
r̂2 dW

dr̂

)
= −32π2

3
W3/2 + 16πρ̂Λ· (53)

Expressed in dimensional terms, the density can be written as

ρm =
4π
3
σ3

Gζ2
W3/2 = ρpW3/2, (54)

where

ρp =
4π
3
σ3

Gζ2
· (55)

Moreover, by imposing a change of radial coordinate from r̂ to y
for which

r̂ = y

(
3

32π2

)1/2

, (56)

the dimensionless equilibrium equation can be rewritten as

1
y2

d
dy

(
y2 dW

dy

)
= −W3/2 +

3
2π
ρ̂Λ· (57)

We can also substitute the density ρ̂Λ by using Eqs. (47) and (55)
and finally obtain

1
y2

d
dy

(
y2 dW

dy

)
= −W3/2 +

2ρΛ
ρp
, (58)

which corresponds, if we take ρp = ρm0 and W ≡ θ, ex-
actly to the equilibrium equation for a polytropic configuration
with index n = 3/2 in presence of DE introduced by Merafina
et al. (2012) in accordance with the dimensionless Emden vari-
ables and the initial conditions W(0) = θ(0) = 1 and W′(0) =
θ′(0) = 0. Therefore, the polytropic configurations calculated
by Merafina et al. (2012) in hydrostatic approach can be used
to describe clusters of gravitating point masses with distribution
function (28) with the energy cut-off (29), at low values ofΛ and
high values of T .
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Fig. 1. Dimensionless matter density profiles for equilibrium config-
urations with W0 = 4 and ρ̂Λ = 0 (dashed line), 0.5 (dotted line),
0.9 (dash-dotted line), for which the matter density converges to zero,
and ρ̂Λ = 1.25 (solid line), chosen inside the region of non-equilibrium
solutions.

4. Numerical results

The dimensionless equilibrium Eq. (41) depends on two parame-
ters: the gravitational potential at the centre of configurations W0
and ρ̂Λ, which determines the intensity of DE through the value
of the cosmological constantΛ. Different values of these param-
eters give a two-dimensional family of equilibrium solutions.
The set of solutions for ρ̂Λ = 0 at different values of W0 was
obtained by Bisnovatyi-Kogan et al. (1998).

We solved numerically the Poisson equation for gravitational
equilibrium at different values of the two parameters (W0, ρ̂Λ)
mentioned above. First of all, we focused our attention on the
matter density profiles ρm(r) of the equilibrium configurations;
in detail, we investigated how they change for increasing val-
ues of the dimensionless DE density ρ̂Λ at fixed values of the
dimensionless gravitational potential W0. We chose three values
of W0 and four values of ρ̂Λ, which are the basis of pairs of pa-
rameters (W0, ρ̂Λ) that do not allow equilibrium solutions. This
peculiarity is clearly represented in the matter density profiles
shown in Figs. 1–3. For conciseness, we define the following
quantitites in the figures:

ρ∗ =
σ3

Gζ2
, M∗ =

σ3/2ζ

G
, R∗ =

ζ

σ1/2
, (59)

and, therefore, the dimensionless quantities introduced in
Eqs. (47) and (48) can be rewritten as

ρ̂m =
ρm

ρ∗
, ρ̂Λ =

ρΛ
ρ∗
, M̂(m) =

M(m)

M∗
, R̂ =

R
R∗
, r̂ =

r
R∗
· (60)

For each value of the central potential W0 there is one value of
the parameter ρ̂Λ after which the matter density profile does not
converge to zero, but oscillates indefinitely. If we assert that the
radius R of an equilibrium configuration is defined as the value
of the radial coordinate r at which the matter density ρm(r) be-
comes zero, it is clear that every time this does not occur, we are
unable to estimate the radial extension of the system. All con-
figurations with a given value of W0 and ρ̂Λ that correspond to
oscillating density profiles cannot be considered in gravitational
equilibrium.

Moreover, the calculation of the total radius R of an equilib-
rium configuration is strictly connected to the calculation related

Fig. 2. Dimensionless matter density profiles for equilibrium configura-
tions with W0 = 8 and ρ̂Λ = 0 (dashed line), 0.3 (dotted line), 0.5 (dash-
dotted line), for which the matter density converges to zero, and ρ̂Λ =
0.8 (solid line), chosen inside the region of non-equilibrium solutions.

Fig. 3. Dimensionless matter density profiles for equilibrium configu-
rations with W0 = 12 and ρ̂Λ = 0 (dashed line), 0.3 (dotted line),
0.5 (dash-dotted line), for which the matter density converges to zero,
and ρ̂Λ = 0.9 (solid line), chosen inside the region of non-equilibrium
solutions.

to the total mass M(m). Following Eq. (45) and expressed in terms
of dimensionless quantities, the mass M̂(m)

r within the radius r̂ is
given by

M̂(m)
r =

∫ r̂

0
4πρ̂mξ

2dξ. (61)

As a consequence, the non-equilibrium solutions for which the
total radius R cannot be defined do not even allow evaluating the
total mass M(m) of the system.

Bisnovatyi-Kogan et al. (1998) found the set of solutions
at Λ = 0 for M̂(ρ̂m0) and M̂(α) curves in the Newtonian case.
These curves are shown in Figs. 4 and 5 (continuous line) to-
gether with the curves given for different values of ρ̂Λ (Λ � 0).
Analysing Fig. 4, when the parameter ρ̂Λ is different from zero,
and for increasing values of this parameter, the curves are no
longer continuous and the absolute maximum of the mass disap-
pears. Within the interval 0.6 ≤ ρ̂Λ ≤ 0.8, the curves present sev-
eral branches (in the figure, only the branches for ρ̂Λ = 0.8 are
shown to be able to clearly understand the different behaviours).
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Fig. 4. Dimensionless mass as a function of the dimensionless central
matter density for ρ̂Λ = 0 (solid line), 0.5 (dashed line), 0.8 (dotted
lines), 1.3 (dash-dotted line). The discontinuity of the curves for some
values of the central matter density arises because the condition R ≤ RΛ
that is necessary for the existence of the equilibrium configurations is
not fulfilled (see Figs. 1–3 and Eqs. (62), (63)).

Out of the interval 0.6 ≤ ρ̂Λ ≤ 0.8 the branches reduce to a
unique curve and, in particular, for ρ̂Λ > 0.8 the curve becomes
gradually shorter at increasing values of ρ̂Λ until it reaches the
critical value ρ̂Λ 
 1.38, when the curve reduces to a unique
point (we discuss this critical value below). It is clear that the
unusual behaviour of the M̂(ρ̂m0) is related to the density pro-
files of the non-equilibrium solutions. To analyse Fig. 5, by con-
sidering Eq. (51), we can conclude that the parameter α is also
connected to the values of the total radius R̂ and the mass M̂(m).
Consequently, it is easy to show that for non-equilibrium so-
lutions it is not possible to calculate the cut-off parameter α.
Therefore we can expect the existence of different branches of
solutions here as well. Moreover, the behaviour of the M̂(α)
curves at different values of ρ̂Λ extends the range of solutions
at values of α higher than the critical value (α = 2.87) valid
for Λ = 0 (Bisnovatyi-Kogan et al. 1998). As previously under-
lined, it is possible to distinguish several branches of solutions
with a limiting value of α that changes in dependence of the
value of ρ̂Λ. This limiting value, systematically higher than 2.87,
increases at increasing values of ρ̂Λ until the absolute limiting
value αlim 
 3.42.

The DE background in which all the bodies of the Universe
are embedded produces the anti-gravity that changes their grav-
itational equilibrium, acting in contrast to the matter gravity. To
establish when we have found configurations for which the pres-
ence of the DE can change the gravitational equilibrium, follow-
ing Bisnovatyi-Kogan & Chernin (2012), we introduce the so-
called zero gravity radius RΛ. This is a physical parameter that is
defined as the distance from the centre of the system where the
matter gravity and DE anti-gravity balance each other exactly.
We consider the total force acting on the unit mass

F = Fg + FΛ = −GM(m)
r

r2
+

8πGρΛ
3

r, (62)

where, differently from Eq. (6), this relation is also valid within
the matter and not only in the vacuum. Then, the total force F
defined in Eq. (62) and, consequently, the acceleration, are both
zero at a distance

RΛ =

⎡⎢⎢⎢⎢⎢⎢⎣3M(m)
RΛ

8πρΛ

⎤⎥⎥⎥⎥⎥⎥⎦
1/3

, (63)

Fig. 5. Dimensionless mass as a function of the cut-off parameter α
for ρ̂Λ = 0 (solid line), 0.5 (dashed line), 0.8 (dotted lines), 1.3 (dash-
dotted line). The discontinuity of the curves for some values of the cut-
off parameter arises because the condition R ≤ RΛ that is necessary
for the existence of the equilibrium configurations is not fulfilled (see
Figs. 1–3 and Eqs. (62), (63)).

where the zero-gravity radius depends on the total mass of the
equilibrium configurations if R ≤ RΛ, while if the condition F =
0 is satisfied inside the configuration, we have no equilibrium,
and the mass to consider is M(m)

r with r = RΛ.
This means that every cluster has its zero-gravity radius. This

definition allows us to identify a gravitationally bound system
only if it is enclosed within the sphere of radius RΛ, namely only
if its total radius is smaller than its zero-gravity radius (R < RΛ).
Galaxies in the external regions where r ≥ RΛ can flow out from
the centre of the cluster under the action of the DE anti-gravity
force.

In Fig. 6 we have represented the curve of the equilibrium
configurations with R = RΛ, through the behaviour of W0 as
a function of ρ̂Λ. In addition, we have also shown the curves
that represent the families of equilibrium solutions at fixed val-
ues of α. When the value of W0 is kept constant and the value
of ρ̂Λ is increased, we obtain one limiting value located on the
curve after which it is no longer possible to obtain equilibrium
solutions. Along this limiting curve, which separates two regions
(solid line), the equilibrium configurations have the total radius
exactly equal to the zero-gravity radius and the matter density
profiles vanishing with a minimum in correspondence of the total
radius R = RΛ. This enables defining the region on the right side
of the figure in which no gravitational equilibrium can establish
and no curves at constant α can lie, corresponding to configura-
tions with matter density profiles that do not converge to zero. In
contrast, in the region corresponding to the left side of the figure,
we can assert that the force due to the presence of the DE, FΛ,
is weaker than the force due to the gravity, Fg, and gravitational
equilibrium can be achieved. In other words, speaking in terms
of radial extension, the condition R ≤ RΛ is satisfied for each
configuration belonging to this region, and the matter density
profiles are regular and converging to zero in correspondence to
the total radius R.

Finally, from Eq. (63) we can see that the zero-gravity
radius RΛ is inversely proportional to the DE density ρΛ.
Therefore, by decreasing the value of the DE density, the
zero-gravity radius increases until the condition RΛ → ∞
for ρΛ = 0. By considering the plane (W0-ρ̂Λ) of Fig. 6, the
gravitational equilibrium is even achieved more easily and for
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Fig. 6. Limiting curve of the equilibrium configurations with R = RΛ
(solid line), expressed in terms of W0 as a funtion of ρ̂Λ. Labelled curves
at constant α (dashed lines) are also considered.

more values of W0, when parameter ρ̂Λ is small. In particular,
for ρ̂Λ = 0, the equilibrium solutions are possible for each value
of W0, recovering the well-known results of Bisnovatyi-Kogan
et al. (1998).

5. Conclusions

We have calculated the equilibrium configurations of Newtonian
clusters with a truncated Maxwellian distribution function in
presence of DE. All clusters that satisfy the condition R ≤ RΛ
have a structural equilibrium and can be considered dynamically
stable. On the other hand, there are conditions for which the ef-
fects of DE prevail on the gravity, and equilibrium cannot be
reached. This occurs whenever the zero-gravity radius lies inside
the configuration and divides the inner part, which is dominated
by gravity, from the external part in which the expanding forces
due to DE are prevalent.

Then we described the density distribution inside galaxy
clusters by several phenomenological functions, some of which
follow from numerical simulations (see Chernin et al. 2013).
Qualitatively, the truncated Maxwellian distribution considered
here is similar to the non-singular density distribution suggested
by Chernin et al. (2013). It may be used for a more detailed
study of the density and velocity distribution on the periphery
of rich clusters, where the influence of DE is significant, and
their comparison with observations.

The number density of the galaxies located in the outer
part of a cluster is less relevant than those of the central region
and, in general, these galaxies have smaller masses and lower
luminosities in presence of an even weaker relaxation because
of the low probability of encounters. Therefore, only the largest

telescopes should be used to search for galaxies in the external
cluster regions. Furthermore, the most sensitive X-ray telescopes
are needed to detect the hot gas in the low-density regions to re-
veal the possible outflow in presence of DE that was considered
by Bisnovatyi-Kogan & Merafina (2013).

Finally, the evaluation of the parameters that characterize
the clusters of galaxies suggests that these systems are colli-
sionless. In fact, if we consider the relaxation time, we obtain
higher values than the age of the Universe and, therefore, we
can conclude that thermodynamical instabilities are irrelevant in
the current evolution of the galaxy clusters. On the other hand,
using well-known criteria for identifying the onset of thermo-
dynamical instability (Bisnovatyi-Kogan & Merafina 2006), we
can see that the critical point lies far from the first maximum
mass of the curve with ρ̂Λ = 0 in Fig. 4, namely, at higher values
of the central matter density, as well as in curves with ρ̂Λ � 0,
which allows us to conclude that the larger part of the equilib-
rium configurations is thermodynamically stable.
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