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General Introduction 3

chapter*

The application of nonlinear-based control to power systems is more and more
popular due to the development of nonlinear control methods and the e�ective-
ness of the model to represent the real process. In fact, a vast number of re-
searches have been introduced aiming to solve power systems most common prob-
lems such as stability and robustness. Part of these researches was focused on
the study of modeling and controlling power system machines. Examples of some
of the successful techniques investigated in this area of research can be found in
([26, 79, 96, 82, 13, 89, 20]). Another exciting topic in this �eld is the ability of
designing a controller that ensures damping oscillation in power systems, thereby
guaranteeing satisfactory performance following signi�cant network disturbances.
The traditional Power System Stabilizers (PSS), Static Var Compensators (SVCs),
and Shunt Static Synchronous COMpensators (STATCOMs) controller often suf-
fers from poor performance due to the variation of the state of the system as they
tuned based on power system linearization model. A thesis conducted by Aykovnle
shows that designing nonlinear control schemes for electrical power system stabilizer
provide better results([8]).

Besides due to the power use of the digital devices which applied to the control
of the modern electric power systems. It is recognized that digital control can o�er
a signi�cant advantage in enhancing power system performances.

Three approaches are known to be developed in the digital control design: 1)Con-
tinuous Time Design (CTD) where the controller is designed using continuous time
control tools and then implemented in discrete-time through sample and holder.The
most common approach when dealing with static feedback on a nonlinear plant is to
directly implement Zero Order Holder (ZOH)of a continuous control computed at
sampling instant.This procedure is denoted as �emulation design�.A modi�ed con-
tinuous time plant or modi�ed continuous time procedure ('redesign methods) can
be used to compensate the e�ects of sampling and holding devices.First results in
the nonlinear context in these lines arr in[[39, 69, 24, 31]]. The emulation design
procedure usually consists of three steps: continuous-time design, controller discret-
ization , and digital implementation. The design of a continuous time controller is
performed in the �rst step without taking into account the sampling procedure.The
e�ectiveness of the emulation and redesign techniques are usually depend on the
extend on which the continuous time performance are maintained by the resulting
sampled data control scheme.The most accurate results are developed in the area of
robust control lyapanov's type techniques in the wide frame work of input to state
stability[[93, 23, 54]].
2)Discrete-time design (DTD) The controller is directly designed on the exact or
approximate equivalent sampled data model of the plant.This design faces major
problem when it's applied into the nonlinear context, as the usual sampled data
model do not admit a closed form representation.The problem is more complicated
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if not standard holding devices are used;properties of the plant which are relevant
for the controller design may be lost under sampling. To quote a few, among the
most traditional drawbacks of sampled models, put in light in a linear context too,
let us recall that : minimum phase property is lost under usual sampling with the
appearance of critical sampling zeroes [[6]]; structural or control properties can be
lost depending on the sampling procedure and/or the order of approximation per-
formed in the computation.Even though there have been huge development in the
discrete time control theory , but the problem will always come down to the choice
of sampling procedure , the computation of the equivalent sampled data model and
the accuracy of the approximated sampled data model [[81, 2, 95, 5]].
3) Sampled Data Design (SDD) The controller is still designed on the discrete-time
model of the plant, but now strictly taking into account two major aspects:the
discrete-time model is issued from sampling and the variables under control are
continuous-time ones.These aspects re�ect in setting suitable performances on the
behaviours not only at the sampling instant[[?, 51, 50, 80]].Despite the fact there
have been wide theoretical research e�ort in nonlinear control , stimulated to work
out adequate digital solutions, the increasing performances of computers in terms
of speed and precision,suggested, at the opposite, to make use of emulation with
appropriate sampling frequency. One might suggest based on the previous sentence
that there are no need for SDD.Major objection to such a point of view was dis-
cussed in[[68]].In conclusion SDD is a very promising control design with a lot of
advantages such as:it's ability to solve continuous-time control problems which do
not admit standard solutions.

Coming from Egypt , where there has been the energy crisis in the last decade
due to the rapid growth of population in addition to the economic di�culties facing
the government and the increase in global fuel prices. I have been motivated to study
the development of control for power systems with speci�c focus in their involvement
in renewable energy.Starting from my �rst research conducted in my master thesis
based on learning and arti�cial algorithms ([61, 74, 33]) I have noticed that control
design is based on thr the accuracy of the model one deduce.
Through the study of my Ph.D., I have addressed the e�ciency of the arti�cial
intelligent controller in power machines, in addition, I tried to put in light the
di�erences between the modern (arti�cial) controller and nonlinear-based control
designs through the application of both techniques to the case of permanent magnet
synchronous generator([32, 34]). In conclusion, I can say that the best results are
provided by the collaboration of both control techniques.
An investigation activity have been developed in the sampled data context. with
possible practical application to power machines. The methodological results are
based on the analysis and further design of the so called zero dynamics whose role
is of paramount importance in stability and stabilization. As it also allow to cope
with e�ectiveness of the control in terms of performance and stability margin.

To Roughly outline the di�erences between Non-Linear Intelligent Controller
(NLIC) and the Digital Non-Linear Intelligent Controller (DNLIC) shown in Figures
1,2, I am going to recall one of my results obtained in this thesis while investigating
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the Maximum Power Point Tracking techniques for wind system fed by doubly fed
induction generator .

Maximum power point tracking (MPPT) or sometimes just power point tracking
(PPT) is a technique used commonly with wind turbines and photovoltaic (PV) solar
systems to maximize power extraction under all conditions.In the wind system its
referred to as the optimal value of the tip speed ratio at which the generator must
be operated such that maximum power is generated.The MPPT algorithms can be
classi�ed into four control techniques. The �rst method is known as the Tip Speed
Ratio (TSR) where the wind speed parameter and the measurement of the speed
are used to regulate the rotor speed and capture the maximum wind power . This
method requires accurate knowledge of the measured values. The second method is
the Power Signal Feedback (PSF) and is based on the wind turbine maximum power
curve. The curves usually obtained via simulation or through o� line experiment.
For that reason it is di�cult to implement this technique in practical applications
. The third method is the Perturb and Observe (P and O) method. Mainly it
is used in the solar energy where the measurement of the current and voltage is
collected from the photovoltaic cell and process this information through micro-
controller . This technique is suitable for wind turbines with small inertia, but not
for medium and large inertia wind turbine systems, since the (P and O) method
adds a delay to the system control . Finally the Optimum Torque Control (OTC)
consists of the adjusting of the generator torque to the optimum value to di�erent
wind speed. This MPPT strategy needs a look-up table of optimum torque. In
conclusion the conventional methods have several drawbacks.An alternative solution
is to use the Arti�cial Intelligent systems.In fact I developed a design that based
on AI MPPT(Arti�cial Immunity maximum power point tracking). The developed
strategy was applied to a wind system driven by a Doubly Fed Induction Generator
DFIG operating at the variable speed.Figure 3 depicts the comparison of the doubly
fed induction generator rotor speed for classical PID controller that is built on the
linear approximation, Fuzzy logic controller and �nally (NLIC) controller. The
NLIC is formed on the bases of nonlinear- based control model, and the Arti�cial
Intelligent (Immunity technique) is used as for the purpose of pattern recognition.
One can note that a slower dynamic variation of the rotor speed is achieved through
the NLIC which ensures better performance. Further analysis was to implement
such a design in practical power system applications which indicate the need to
apply digital control. The results generated from the sampled data implementation
shown in �gure 4 suggest that the �uctuation in speed is reduced compared to the
NLIC found in �gure 3. The results is illustrated in details in chapter �ve.



6 General Introduction

Figure 1: NLIC scheme

Figure 2: Emulation control scheme

0                     20                    40                      60                    80                     100                     120                     140                    160                     180                     200                     240                 260                                     

DFIG
Rotor
Speed

Rad/sec

200

190

180

170

160

150

140

Times

classical

NLAI controller

FLC controller

Controller

Figure 3: MPPT for doubly fed induction generator casting various type of control.
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Contribution

The main contributions of this thesis are:

· Feddback lineariztion design for a class of nonlinear systems exhibiting a linear
output with nonminimum phase property have been developed.
The idea bases on the concept of partially minimum phase systems. We showed
that input-output feedback linearization with stability of the internal dynamics
can be pursued via the use of a dummy output with respect to which the
system is minimum-phase. The design strategy was introduced to multirate
sampled-data context.

· Disturbance decoupling problem of a non minimum phase non linear Single In-
put Single Output (SISO) systems was introduced.We show that by using a
simple idea that is based in factorizing the numerator of the non minimum
phase transfer function of a LTI system a dummy output can be introduced
with respect to which the zero dynamics subjected to one of the factors ,is
stable.
Although there are several work that introduces a feedback control design that
solves the Disturbance Decoupling Problem, but there are not actual solution
that guarantee that the trajectories of the residual unobservable dynamics are
bounded despite the e�ect of the disturbances. The proposed design consider
a �rst step solution towards this problem.

· The Nonlinear control based techniques have been used to solve the Maximum
Power Point problem for a Doubly Fed Induction Generator.Moreover we
showed that using Arti�cial Intelligent system with Nonlinear based controller
provide better solution.
Further more a case study for the DFIG when it's connected to grid showed
that the use of Sampled-data design is better in performance than the direct
implantation of the continuous-time ( so called emulation design).For example
the simulated tip speed ratio found in chapter �ve has smoother variation than
the direct implementation design.This argument indicate that the sampled
data design could provide promising results than the classical digital design.

Thesis Organization

Following this introduction, the contents of the thesis are presented into six chapters,
that have been organised in two parts:

Part I

A self-contained treatment of the methods and techniques addressed in the nonlinear
sampled data context, in particular around the concept of zero dynamics, which is
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a fundamental concept as pointed out in chapter one.The results obtained in this
context is found in chapter1,2,3,4,5]

In Chapter 2, we recall results on sampled-data models.In particular we focus
on the e�ect of each model on the zeros of the system.Moreover, we show how we
can manipulate the zeros of the system through the design of a stability de�ned
feedback control law which perform partial dynamic inversion.

In Chapter 3, We set up a control design method for a class of nonlinear systems
exhibiting a linear output.The proposed technique exploits the concept of partially
minimum phase system. The methodology is illustrated when settling Input Output
linearization with respect to which the system is minimum-phase.

In Chapter 4, we present a solution for the Disturbance Decoupling Problem
with stability.This work is inspired by the very simple idea that by factorizing the
numerator of a transfer function of a LTI system a dummy output can be introduced
with respect to which the zero dynamics subjected to one of the factors , possibly
stable.The design procedure for the sampled data system was investigated in the
linear context and the solution was then extended to the nonlinear case.

In Chapter 5, We investigate the need for the nonlinear based control and the
sampled data techniques in the power systems and the a�ect of incorporating with
the arti�cial intelligent systems.Wind turbine driven by a doubly fed induction gen-
erator was chosen for the purpose of investigation.We track the Maximum Power
Point through three di�erent models.The �rst one is the Fuzzy logic controller where
the actual need for the exact model is not necessary obtained while the second model
was based on the linear approximation of the system followed by conventional PID
controller, �nally a nonlinear model and controller was developed.The Arti�cial Im-
munity was used as a source of pattern recognition.The results indicate that the
best performance is provided based on the Non linear control model.For the pur-
pose of study we compute the Nonlinear sampled data model and we obtained better
performance than the previous methods.Further investigation will be developed in
the future to see how can the sampled data control techniques be applied in power
system application.

Part II

Part II is obtained by collecting a sample of the published work investigation the
arti�cial intelligent controller beside the nonlinear control techniques.The papers is
contained in chapter 6.

In Chapter 6,we include a sample of the published material developed in the
power system machines through the study of my Phd thesis.The researches con-
ducted in this part was mainly based on the Arti�cial Intelligent Systems in power
system machines.We note that even though the use of some of the AI techniques such
as Fuzzy Logic and Neural Network does not require the computation of the model
of the application but it will still su�er from some drawbacks especially in terms
of the implementation in practical applications.An alternative used approach is to
use control techniques such as PID in the approximated linear model.This design is
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very well known to be used but it does not take into account the non linearity of
the model.In fact it seems that control design than is based on Nonlinear control
provide better performances.

Collaboration

The results conducted in this thesis were a result of a Collaboration between sev-
eral great researchers.Some original results in the sampled data control have been
generated under the Collaboration with Professor DorothÃ c©e Normand-Cyrot and
Mattia Mattoni from Paris Sud university in France and the supervision of my
Professor Salvator Monaco.

In the other side I have been collaborating with Associate Professor Noha H. El-
Amary from Arab Academy.We have been working in developing arti�cial intelligent
controller that based on nonlinear control model and it's application in renewable
energy.





Part I

Sampled data control design

with stability





Chapter 1

The concept and the role of zero

dynamics

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Zero dynamics from linear to nonlinear . . . . . . . . . . 13

1.2.1 Zero dynamics in input output feedback linearization . . . 16

1.2.2 Zero dynamics in non interacting control . . . . . . . . . . 17

1.2.3 Zero dynamics in the output regulation problem . . . . . 18

1.2.4 Zero dynamics in high gain feedback . . . . . . . . . . . . 18

1.2.5 Zero dynamics in optimization . . . . . . . . . . . . . . . 19

1.3 Zero dynamics in discrete time . . . . . . . . . . . . . . . 19

1.3.1 Discrete time Relative degree . . . . . . . . . . . . . . . . 20

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Introduction

The concept of zero dynamics was �rst introduced by Alberto Isidori thirty years
ago. It's very well known that the zero dynamics plays in many circumstances
a role similar to that of the zeroes of its extension to the nonlinear context of the
linear system. Roughly speaking, one can say that the zero dynamics is a dynamical
system that characterizes the internal behavior of a system once the initial condition
and the input are chosen in such a way to constrain the output to be identically
zero. In this thesis, we will investigate on the way such a concept can be used to
deduce suitable nonlinear controller.

1.2 Zero dynamics from linear to nonlinear

In this section we give a brief illustration of the development history of zero dynamics
from the linear to the nonlinear context. In the goal of evolution in the linear
system theory sixtieth provided a better understanding of the role of the zeroes in
the control design.It began with milestone contribution by Kalman, who introduced
and developed the concept of controllability and observability and ended by the
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development of sophisticated methods for the design. In a nutshell,the aim of these
methods was to explore all possible theories that can be developed for a feedback
design. Shortly after unavaliable so opening to a wide area of research the need
to extend the concepts for the non linear systems became. The development of
this investigation surfaced at the beginning of the seventies. A group of researches
collaborate and established an equivalent corpus of theory and results for the case of
the non linear systems. The �rst contribution was due to Hermann. He started the
analysis of controllability and observability for non-linear control systems([37]).The
work by Hermann was expanded in a series of major contribution by Haynes−
Hermes([36]),Lobry([57]), Sussmann−Jurdjevic ([87, 88]), Brockett ([14]), Krener
([52]) and reached a culmination with the milestone paper of Hermann−Krener
([38]). The impact of this paper was enormous as it not only re�ned a number of
earlier results, but it also introduced a framework that made possible to begin a
systematic study of the feedback design problems for nonlinear systems.
The immediate follow of ([38]) was in fact the paper by isidori ([46])where the basic
geometric tools for feedback design from linear to non linear systems were extended.
One of the main aspects of the geometric theory either for linear or non linear system
is the study of how observability properties can be in�uenced under feedback. This
study was conceived in the context of disturbance decoupling. This paper also
reaches to promising results in a number of domains. One of these results was the
possibility of characterizing in geometric terms the notion of �zero� of the transfer
function of a system. In fact, the geometric tools developed by ([46]) was the bases
for several further works that appeared in the following years and help to introduce
the zero dynamics concept.

Consider a class of Single Input- Single Output class of nonlinear system

ẋ =f(x) + g(x)u, x ∈ Rn, u ∈ R, y ∈ R
y =h(x).

(1.1)

where x = 0 is an equilibrium point (i.e., f(0) = 0). The system is said to possess
a well de�ne relative degree r ≤ n at the origin;if, LgLifh(x) = 0 for k < r − 1 and
LgL

r−1
f h(x) 6= 0 in a neighbourhood of x = 0. As consequence one can locally de�ne

a mapping φ(x) : Rn → Rn that will underline the essential feature of the system.

De�nition 1.1 [Normal form] The locally de�ned coordinate transformation

z =

(
ζ

η

)
= φ(x) =




h(x)
...

Lr−1
f h(x)

φ2(x)


 . (1.2)

where φ2(x) is s.t. Lgφ2(x) = 0 locally puts the system into the normal form; i.e.,
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it gets the form

ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u) (1.3a)

η̇ = q(ζ, η) (1.3b)

y = ζ1 (1.3c)

with

Â =

(
0 Ir−1

0 0

)
, B̂ =

(
0

1

)
, b(ζ, η) = b(z) = Lrfh(φ−1(ζ))

a(ζ, η) = a(z) = LgL
r−1
f h(φ−1(ζ)). (1.4)

In order to understand the zero dynamic concept, we analyse the problem of zeroing
the output on the normal form of the system.
Recalling from the normal form

y(t) = ζ1(t) (1.5)

constraining the output y(t),= 0 to be zero for all t entails

ζ̇1(t) = ζ̇2(t) = · · · = ζ̇r(t) = 0 (1.6)

that is ζ = 0 for all times. Thus, we note that when the output is set identically to
zero, its state is constrained to evolve in such away that also ζ is identically zero.In
addition the input u must be the solution of

0 = b(0, η(t)) + a(0, η(t)u(t)) (1.7)

The behaviour of η is governed by the di�erential equation

η̇ = q(0, η(t)) (1.8)

The following fact is deduced from the previous analysis .If the output y(t) has to
be zero , then necessary the initial state of the system must be set to a value such
that ζ(0) = 0,whereas η(0) = η0 can be chosen arbitrary.According to the value of
η0, the input is set as

u∗(t) = − b(0, η(t))

a(0, η(t))
(1.9)

where η(t) denotes the solution of the di�erential equation

η̇(t) = q(0, η(t)) with initial condition η(0) = η0 (1.10)

The zero dynamics described the �internal behaviour� of the system when the input
and the initial condition have been chosen in such a way to constrain the output to
remain identically zero.The residual behaviour is de�ned by (1.8).
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Remark 1.1 If the system is linear,

ẋ = Ax+Bu

y = Cx

so it is the map q(0, η);i.e, q(0, η) = qη and one get that ρ(q) coincides with the

zeroes of the transfer function associated to it.

Remark 1.2 If the transfer function of the linear system has negative zeroes then

the dynamics η̇ = q(0, η) are asymptotically stable([42]).

In conclusion one can say that from a general point of view the zero dynamics spe-
ci�es the residual internal dynamics of a dynamical system when the input and the
initial condition are chosen in such a way to force the output to be zero.With that
in mind one can guarantee that zero dynamics cancellation is involved in each tech-
nique.
The zero dynamics plays a crucial role in stabilization problems where dynamical in-
version is explicitly or implicit involved so being fundamental for preserving stability
in closed loop.

In the linear case, this corresponds to designing a feedback that assigns part of
the eigenvalues coincident with the zeros of the system so making the corresponding
dynamics unobservable. In general Inversion methods are naturally involved in any
control methods.In what follows we are going to investigate the in�uence of the zero
dynamics in control design techniques and how it can limit it's performance.

1.2.1 Zero dynamics in input output feedback linearization

The main idea of feedback linearization is to transform a nonlinear system dynamics
into a (fully or partly) linear one, so that linear design techniques can be applied.
Roughly speaking, feedback linearization cancels the nonlinearities . The develop-
ment of feedback linearization techniques for nonlinear systems can be tracked back
to the 80s.As we have seen in the previous section, there exists a static feedback for
a SI-SO system that linearize the system if the system normal form equation (1.8)

possess a trivial zero dynamics.The zero dynamics is the counterpart we are making
it unobservable under feedback.
The �rst attempt to extend the feedback design control law to the Multi Input-Multi
Output system case was introduced in ([47]). The results were obtained under the
assumption that the system poses the same number of inputs and outputs and sat-
isfy the invert ability assumption proposed by Singh([84]) . Other classes of systems
were investigated in ([27]) where the authors showed that a certain class of MIMO
systems can be transformed by means of suitable dynamic extension , into a system
posing a Multi Input Multi Output (MIMO) version of the normal form. As a con-
sequence if dim(η) = 0 for the obtained normal form, the original system can be
rendered linear, via dynamic state feedback and change of coordinates.The result
was enhanced in ([55]), where it is shown that a linear behaviour can be achieved
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to some extent, by pure static feedback. Note that the system whose zero dynamics
are trivial are such that their state can be expressed as a function of its output and
their higher derivatives. Note that it is always possible to design a dummy output in
case there isn't a given speci�c output function.In order to design dummy output for
MIMO system , the system must be invertible and possess a trivial zero dynamics.
The dummy output in question has been called linearizing outputs([42]). Several
examples are discussed in([42]).From the earliest investigation, the concept of zero
dynamics has been extended to several even complex situation.Examples of non min-
imum phase systems that can be handeled by the same method have been discussed
in([72]).Several techniques and applications referred to in([?, 90, 35, 3, 19]).

1.2.2 Zero dynamics in non interacting control

The problem of noninteracting control has been studied since the late sixties by
several authors. The papers of Falb and Wolovich ([28]), Gilbert ([30]) and Wang
([92]) are cornerstones in the noninteracting control theory for linear systems. In
([70]),([71]) and, independently, in ([10])the problem of noninteracting control has
been formulated and solved in the framework of linear geometry,using mathemat-
ical tools such as linear vector spaces and matrix theory. These tools have been
successfully used to address the issue of internal stability: an exhaustive theory is
contained in ([75]). The �rst e�orts to extend to nonlinear systems the noninteract-
ing control theory, available for linear systems, peeped in only at the beginning of
the seventies with the paper of Porter ([77]), followed by few others ([83]).In general
a nonlinear system is noninteractive if there exists a disjoint block partition of the
input vector such that each component of the ith output block is in�uenced only by
the components of the ith input block. In 1988 Alberto Isidori and his colleagues
introduces one of the earliest results in nonlinear feedback design ([45]).The paper
put the base for the condition needed to obtain internal stability when non interac-
tion is achieved via static state feedback.This work was an extension of the earlier
results of Gilbert.The paper shows that there exists a well de�ne internal dynamics,
a sub-dynamics of the zero dynamics of the system , which is �xed with respect
to any decoupling regular static state feedback.Thus,non interacting with stability
via regular static state feedback can only be obtained if the dynamics in question is
asymptotically stable.In the case of linear system, this obstruction can be destroyed
if the dynamic feedback is used, as shown in earlier by Wonham.Thus the question
arises whether or not similar results can be obtained in nonlinear control. A counter
example in ([45]) showed it is not possible.Later a deeper analysis for the necessary
condition for non interacting control with stability via dynamic feedback was carried
out ([91]).The results shows that there exists a sub dynamics of the �xed dynamics
identi�ed in ([45]) which can't be eliminated by any regular dynamic feedback which
make the system non interactive.Deeper analysis was obtained in [([25])]. Finally
one must recall the major contribution in this �eld introduced by Stefano Battilotti
([11])where he analyized and introduced various designs for the nonintaracting prob-
lem with stability.
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1.2.3 Zero dynamics in the output regulation problem

The output regulation problem of nonlinear systems is one of the central issues in
control theory. It has attracted considerable interest in the last decades after the
fundamental contribution given by Alberto Isidori and Christopher Byrnes in 1990
([44]). In general, the problem is concerned with having the regulated variables of a
given controlled plant to asymptotically track (or reject) all desired trajectories (or
disturbances) generated by some �xed autonomous system, called the exosystem.
The problem is much more complicated in the presence of unstable zero dynam-
ics. The key contribution introduced in this topic can be found in ([44]) where
the authors state that the problem is solvable if and only if speci�c nonlinear par-
tial di�erential equations (called regulator equations) are solvable; a feedback law
achieving local asymptotic output regulation is constructed via the solution of the
regulator equations.

A lot of researches has been developed in the nonlinear regulator problem follow-
ing the results obtained by Isidori and his coworkers ([16, 78, 41]). They established
a set of necessary and su�cient conditions for the solution of the problem of the
asymptotic output regulation under the additional constraint that the regulation
strategy is insensitive to small variations of uncertain plant parameters. Output
regulation has also been the object of the research e�orts of other groups, both for
linear ([60])and nonlinear systems see ([21, 22, 59]). In particular, they conducted
there work under the plant minimum phase assumption. Several examples could
be found in ([97, 86]) In fact, the focus on the study of the nonminimum phase
system was not started until the nineties.A sample of the work discusses the output
regulation problem for nonminimum phase system can be found in ([53, 73, 76]).

1.2.4 Zero dynamics in high gain feedback

The development of high gain feedback design started to take place in the 80s. The
base for the investigation for this technique was the fact that nonlinear systems
whose zero dynamics are globally asymptotically stable can, under appropriate as-
sumptions lend themselves to the implementation of stabilization strategies based
on high gain output feedback. In this context ([12]), discussed the stabilizability
properties . Roughly ,speaking the paper discussed the ability to design a feedback
control law that preserves a given equilibrium and is such that in the associated
closed loop system the equilibrium is asymptotically stable, with a domain of at-
traction. In fact, paper ([12]) claimed that if the system is globally minimum phase,
then it is possible to semiglobally stabilize it utilizing feedback.The claim was in-
complete because the law in question is su�cient to keep trajectories bounded and
to steer them in an arbitrary small neighbor of origin. This is not su�cient for
asymptotic stability unless the equilibrium z = 0 is also exponentially stable. A
further investigation of paper([81]) was pursued in a subsequent paper([9]) for a
system having relative degree bigger than one. This paper claim that certain de-
rivative feedback is capable of semiglobally stabilizing a globally minimum phase
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system.The claim was incomplete, as pointed out in ([15]). The complete solution
was later provided by([58]). The results show that the stability results hold un-
der the assumption that the dynamics of the inverse system are driven only by
the output and not by its higher order derivatives.Additional work is illustrated in
([49, 4, 1, 85, 56])

1.2.5 Zero dynamics in optimization

[ ([43])] It is well-known that linear systems having zeros in the left-half plane
are di�cult to control, and obstructions exist to the ful�llment of certain control
speci�cations. One of these is found in the analysis of the so-called cheap control
problem, namely the problem of �nding a stabilizing feedback control that minimizes
the functional

Jε = .5

∫ ∞

0
[yT (t)y(t) + εuTu(t)dt] (1.11)

when ε > 0 is small. As ε → 0, the optimal value J∗ε tends to J∗0 , the ideal
performance. It is well-known that, in a linear system, J∗0 = 0 if and only if the
system is minimum phase and right invertible and, in case the system has zeros
with positive real part, it is possible to express explicitly J∗0 in terms of the zeros in
question. If the (linear) system is expressed in normal form as

ż = Fz +Gη (1.12)

η̇ = Hz + kη + bu (1.13)

y = η (1.14)

with b 6= 0, and the zero dynamics are antistable (that is all the eigenvalues of F
have positive real part), it can be shown that J∗0 coincides with the minimal value
of the energy

Jε = .5

∫ ∞

0
ζT (t)ζ(t)dt (1.15)

required to stabilize the (antistable) systemż = Fz + Gη.In other words, the limit
as ε→ 0 of the optimal value of Jε is equal to the least amount of energy required
to stabilize the dynamics of the inverse system.

Those arguments extend to the case of nonlinear dynamic so underlying that the
zero dynamics plays an important role in control design as it form some boundaries
in the control problem which limit the performances of the nonlinear systems.

1.3 Zero dynamics in discrete time

The study of the nonlinear systems in discrete time has been the focus of research
since the eighties.In this section we are going to recall brie�y the de�nition of the
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Zero dynamics in discrete time (see [63, 65, 17]

ΣD :

{
xk+1 = f(xk, uk)

yk = h(xk)
(1.16)

where,
x: is the state evolving in open subset M ∈ Rn and vector �eld f(.),g(.),h(.) are
analytic on M and assume that u = 0 ; i.e., f0(xk) = f(xk, 0)

1.3.1 Discrete time Relative degree

The discrete time system is said to have relative degree rd if

∂h0f
k
0 f(xk, uk)

∂u
= 0, for 0 6 k ≤ rd (1.17)

∂h0f
rd−1
0 f(xk, uk)

∂u
6= 0 (1.18)

Proof: The proof can be exploited by considering the discrete time output and
it's derivatives

yk = h(xk) (1.19)

yk+1 = h(f(xk, uk)), if
∂h0f

∂u
= 0 (1.20)

yk+2 = h0f0(xk), if
∂h0f0f(xk, uk)

∂u
= 0 (1.21)

˙ (1.22)

yk+r = h0f
r−1
0 (xk), if

∂h0f
r−1
0 f(xk, uk)

∂u
6= 0 (1.23)

we can note from the de�nition of the relative degree the independency of the func-
tions h(x), . . . , h.f r◦ , consequently a coordinate transformation in the form of

Z = φ(x) =

(
φ1(x)

φ2(x)

)
=

(
ζ

η

)
(1.24)

ζk+1 = φ1(x).f(φ−1(ζk, ηk), uk) =




h(xk)
...

Lr−1
fk

h(xk)

φ(xk)


 (1.25)

ηk+1 = φ2(x).f(φ−1(ζk, ηk), uk) (1.26)
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puts the system in the normal form





ζ̇1(k+1) = ζ2k

ζ̇2(k+1) = ζ3k

ζ̇(r−1)(k+1) = ζrk

ζ̇r(k+1) = Φ(ζk, ηk, uk)

η̇k+1 = q(ζk, ηk, uk)

y(k) = ζ1k

(1.27)

De�nition 1.2 The zero dynamic of the discrete time is de�ned from

Q =
ηk+1

∂u(k)
= 0 (1.28)

Remark 1.3 The system is said to have asymptotic zero dynamics if and only if Q

is nonsingular.

1.4 Summary

The concept of nonlinear zero dynamics is now �rmly placed at the foundation of
control theory. From a general point of view, the zero dynamics can be speci�ed
as the internal dynamics under which the system evolves when the input is applied
to force the output to be identically zero.In this chapter we have recalled some of
the famous control techniques and we illustrated the impact of zero dynamics in
limiting there performances.

Due to the enormous evolution in digital application the researches shift there
interest in extending the zero dynamic concept under sampling.
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2.1 Overview

The sampling scheme represented in Figure 2.1 is composed of three basic elements:
a continuous time a plant , a sampler and holder device. The main function of the
basic elements can be stated as:

I The hold device used to generate the a continuous time input to the system,
u(t), from a sequence of values uk, de�ned at speci�c time instants .

In what follows we recall the various types of holders.
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Figure 2.1: Sampling process

• Zero Order Hold (ZOH), which simply keeps its output constant for T
instant of time. The output from the input uk is constant over each the
time interval [0, T [ i.e:

u(t) = uk for t ∈ [kT, (k + 1)T [ (2.1)

• First-Order Hold (FOH),which does a linear extrapolation using the
current and the previous elements of the input sequence, i.e.:

u(t) = uk +
uk − uk−1

T
, t ∈ [kT, (k + 1)T [ (2.2)

• Generalised Hold Functions GHF or Periodic hold function,This
type of holder provides more degree of freedom as one can choose the
feedback to ful�l any additional requirement for the system.

uk = αiukfort ∈ [kT +
(1− i)
r

T, kT+]
iT

r
[ (2.3)

where r is the degree of the sampler

II The continuous-time system, de�ned by a set of di�erential equations evolving
in continuous time.

III The sampling device, which gives the output and the state sequences of
samples.The sample device for the output and the state can work at di�erent
sampling period which might be constant or time varying , periodic or not. It
is assumed in our work that the samples are taken each sampling instant T
instant of time and all the samples are measured.

In the following sections we recall the di�erent types of sampled data models.
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2.2 Sampled Data Equivalent Model to LTI system and

the Zeros

Consider a SISO linear time-invariant model in the form :

ΣL :

{
ẋ = Ax+Bu, x, u, y ∈ R
y = Cx.

(2.4)

The system has a well de�ne relative degree r such that

CAkB = 0,∀ k = 1, . . . , r − 2

CAr−1B 6= 0.

The representation for the system in the Laplace domain can be de�ned as

Y (s) = G(s)U(s) (2.5)

where U(s), Y (s) are the Laplace transformation of u(t), y(t) respectively and
the transfer function G(s) can be represented as a quotient of polynomials:

G(s) =
N(s)

D(s)
(2.6)

The roots of N(s) and D(s) determine the zeros and the poles of the system, re-
spectively It is very well known that there exists multiple techniques to obtain the
sample data model describing the evolution of 2.4 at any sampling instant t = kT

and with respect to variation of the control.The model can be derived directly from
the transfer function or from the state space model.In the next section we are going
to recall the various types of sampled data models.

2.2.0.1 The sampled-Single Rate model

Single Rate sampling procedure describe the scheme in which the continuous - time
system input is generated using zero order hold working at the same frequency as
the sampler device. In that case the evolution (2.4) of any t = kT can be described
through the so called SR equivalent model to keep the form of a discrete-time system
parametrized by the sampling period T ;i.e,

ΣL :

{
xk+1 = ATxk +BTuk

yk = Cxk.

with, AT = eAT , BT =
∫ T

0 eAτdτB and relative degree rd = 1 . The discrete-time
transfer function representation of the sampled-data system can be obtained as

W (z) =
T (z)

F (z)
= CT (zI −AT )−1BT (2.7)

where

T (z) = CT adj(zI −AT ) BT = det

(
zI −AT −BT

C 0

)
(2.8)

F (z) = det(zI −AT ) (2.9)
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Figure 2.2: SR sampled data model scheme

2.7 is equivalent to the pulse transfer function obtained directly from the continuous-
time transfer function, as stated in the following lemma

Lemma 2.1 The sampled-data transfer function W (z) can be obtained using the

inverse Laplace transform of the continuous-time step response, computing its Z-

transform, and dividing it by the Z-transform of a discrete-time step:

W (z) = (1− z−1)Z

{
L−1

{
G(s)

s
|t=kT

}}
(2.10)

= (1− z−1)
1

2πj

∫ α+j∞

α−j∞

esT

z − esδ
G(s)

s
ds (2.11)

where T is the sampling period.Furthermore, if the integration path in (2.8) is closed

by a semicircle to the right, we obtain:

W (z) = (1− z−1)

∫ ∞

l=−∞

G((logz + 2πjl)) T

logz + 2πjl
(2.12)

let us now consider the frequency domain and replace z = ejwδ.The previous equa-
tion rewrites as

G(ejWT ) =
1

T

∫ ∞

l=−∞

1− e−Ts
T

(jw + j
2πl

T
)G(jw + j

2πl

T
) (2.13)

where 1−e−Ts
T is the laplace transformation of HZOH This equation illustrates the

well-known aliasing e�ect.

2.2.0.2 Eigenvalues and Zeroes of Single Rate model

The relation between the poles of the sample data model and the continuous time
one can be understood from the analysis of AT = eAT , BT =

∫ T
0 eAτdτB.Sampling

indices one new zero ( the so called sampling zeros) which are generally unstable.This
study has been extended to sampled data LTI system with continuous-time relative
degree r 6 n ([6]).It was shown that
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1 The relative degree of the corresponding sampled-data equivalent model generally
falls to rd = 1.

2 r − 1 induced by sampling coinciding as T → 0.

As consequence , sampling induces s new (r−1) dimensional zero-dynamics which
is generally unstable as r > 2 [67] so not preserving, in general, the minimum-phase
property of the original continuous-time plant.

2.2.1 First Order Hold FOH sampled-Single Rate model

The FOH is a type of holder in which the control signal of the piecewise linear type
starting from two subsequent values of the discrete-time(uk, uk+1 The sampled data

Figure 2.3: FOH sampled-Single Rate model scheme

model of the system (2.4) is described by
(
xk+1

uk

)
=

(
AT BT1

0 0

) (
xk
uk−1

)
+

(
BT2

1

)
uk

yk = [C 0]

(
xk
uk−1

) (2.14)

with AT = eAT , BT1 =
∫ T

0 (2 − τ
T )eAτdτB, BT2 =

∫ T
0 ( τT − 1)eAτdτB.T1, T2

denote the sampling instant with respect to uk, uk+1 respectively. As for the discrete-
time transfer function it can be obtained from

W (z) = [C 0](

(
zI −AT −BT

0 z

)
)−1

(
BT2

1

)
(2.15)

2.2.1.1 Eigenvalues and Zeros of FOH model

The relation between the eigenvalues of the sampled data model are similar to the
one obtained via ZOH.As the poles can be described by both the eigenvalues of eAT

plus one pole at the origin.on the other hand, the zeroes the will be generically
di�erent from the ones obtained when using a ZOH.Moreover an additional sampling
zeros will appear due to the sampling process.
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2.2.2 Sampled Data-Multi Rate model

([29]) Multi Rate sampling relies upon the idea of �sampling� and � holding� the input
signal with a frequency that is ( rtimes) faster than he state and the output.The
input u(t) is assumed to be constant over subintervals of amplitude δ = T

r and

u(t) = uik, t ∈ [kδ + (1−)
r δ), kδ + δ

r In this setting, the evolution(2.4) at any

Figure 2.4: MR sampled data model scheme

sampling instant are described the so called MR equivalent model in the form of

xk+1 = Aδxk + (A(r−1)δBδ, . . . , Bδ)



u1
...
ur




yk = Cxk.

(2.16)

The MR sampled data equivalent model is a multi input system. This scheme o�ers
further degree of freedom than the classical single rate one.Those further control
variation can be exploited to ful�l extra control speci�cation.

Throughout the current Thesis, we will see that multi rate sampled data model
will play a very important role in guaranteeing stability.In particular we will focus
on the idea of the feedback design of a multi rate sample data model and how we
can bene�t from it in case of the existence of unstable zeros in the continuous time
model.

2.2.2.1 Eigenvalues and zeros of Multi Rate model

In case of Multi Rate sampling, one can easily deduce that the eigenvalues are
preserved.As a matter of fact if λ ∈ σ(A) in (2.4), then eλδ = eλT ∈ σeAT .As far
as the zeros are concerned, it was proven in [[67]] that the zeroes of the continuous-
time system (2.4) are preserved under multi rate sampling when the multi rate order



2.2. Sampled Data Equivalent Model to LTI system and the Zeros 29

is set as the relative degree and the extended output

ŷ =




C

CA
...

CAr−1


x

is considered namely , the transmission zero of the square system

xk+1 = ATxk +A(r−1)δBδu1k + · · ·+Bδurk

ŷ =




C

CA
...

CAr−1


x

coincide with ezδ where z:(i = 1, . . . , n− r) denotes the zeros of (2.4).
Accordingly,MR sampling preserves the relative degree and the zeros of the

continuous-time plant.Moreover , MR prevents from the appearance of the sampling
zeros.

2.2.3 Sampling via generalized hold function as a case of MR

Sampling via generalized hold function is a particular a case of MR.When setting
uik = αiuk for αi ∈ uk ∈ R and uk := u(kδ) one recover the sampling procedure
through GHF. In that case , the sampled-data equivalent model is described by the

Figure 2.5: Periodic MR model scheme

system

xk+1 = Aδxk + (α1A
(r−1) δ

r + ...+ αrI)B
δ
r )uk (2.17)

yd(k) = Cxk. (2.18)

Note that through applying the GHF the sampled-data equivalent model (2.16)is
reduced to a a single input dynamics.
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2.2.4 Eigenvalues and zeros of -Periodic MR model

In this case,it can be shown that αi can be chosen to assign the sampling zeros of
the equivalent model (5.5.6).Accordingly, by setting such parameters one can indiuce
stable sampling zeroes. such a scheme is not preserving the relative degree ([48, 18]
)

2.2.5 Asymptotic sampling zeros

It's important to analyze the asymptotic behaviour of the zeros in sampled-data
models, as the sampling period goes to zero.The development in the study of the
zeros role in sample data system can be tracked back to the earlier results obtained
by Astrom.He stated that for a class of linear system if the pole excess of a transfer
function is equal to one the stability,respectively instability of the zeros is maintained
under sampling,while for pole excess larger than two for small sampling period the
pulse of the transfer function always has unstable zero.

The pulse transfer function corresponds to the nth order integrator w(s) = s−n

at a sampling period T is expressed as

w(z) =
Tn

n!

Bn(z)

(z − 1)n
(2.19)

in

Bn(z) = bn1 (zn−1) + · · ·+ bnn (2.20)

bnk =

k∑

l=1

(−1)k−lln
(
n+ 1

k − l

)
(2.21)

Remark 2.1 The polynomials de�ned in Bn(z), bnk correspond, to the polynomials :

1 Their coe�cients can be computed recursively:

bn1 = bnn = 1, ∀n > 1 (2.22)

bnk = kbn−1
k + (n− k + 1)bn−1

k−1 ; k = 2, . . . , n− 1 (2.23)

2 Their roots are always negative real numbers.

3 every root of the polynomial Bn+1(z) lays between every two adjacent roots of

Bn(z), for n > 2.

4 The following recursive relation holds:

Bn+1(z) = z(1− z)dBn
dz

(nz + 1)Bn(z); n > 1 (2.24)

Remark 2.2 sampled-data models for n-th order integrator play a very important

role in obtaining asymptotic results. Indeed, as the sampling rate increases, a system

of relative degree n, behaves as an n-th order integrator.
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Remark 2.3 The relationship between the continuous-time poles and those of the

discrete-time model can be easily determined. However, the relationship between

the zeros in the continuous and discrete-time domains is much more involved. We

consider the asymptotic case as the sampling rate increases. In conclusion one can

say that for a continuous time transfer function in the form

G(s) =
N(s)

D(s)
=
k(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)
(2.25)

and Gq(z) the corresponding pulse transfer function. Assume that m < n,i.e., G(s)

strictly proper.Then as the sampling period T → 0, the zeros m of Gq(z) go to 1 as

eziδ, and the remaining (n−m− 1) zeros of G(z) go to the zeros of the polynomial

Bn−m(z) de�ned in the previous argument i.e.

G(Z)
det≈0−−−−→ Tn−m(z − 1)mBn−m(z)

(n−m)!(z − 1)n
(2.26)

2.2.5.1 Example.1

SR sampling Consider the system in the form

ẋ1 = x2

ẋ2 = u

y = x1 (2.27)

The system obtain relative degree r = 2 as CAB 6= 0.The transfer function corres-
ponding to the the LTM is given by 1

s2
and the sample data model is

(
x1(k + 1)

x2(k + 1)

)
=

(
1 T

0 1

) (
x1k

x2k

)
+

(
T 2

2

T

)
u(k) (2.28)

y = x1k. (2.29)

The transfer function w.r.to the sampled-data model is given by

WSR(z) =
T 2

2 (z + 1)

(z − 1)2
(2.30)

as we can see from �gure 2.6 an extra zero will appear which has no counterpart
in continuous time.Moreover the relative degree of the sample data model drops to
one (CTBT = T 2

2 ).
MR sampling Going back to the case of the double integrator we compute the the
multi rate sampling data model at δ = T

2 , T = 0.1

(
x1(k + 1)

x2(k + 1)

)
=

(
1 2T

0 1

)(
x1k

x2k

)
+

(
3
2T

2 1
2T

2

T T

)(
u1k

u2k

)

Y (xk) =

(
Cx

CAx

)
=

(
1 0

0 1

)
.

(2.31)
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Figure 2.6: Pole Zero map of SR sample data model

The MR sampled data model obtain relative rd = 2 which is the same as the
continuous time system.In the other hand the MR sampled data model convert the
system into MIMO system which indicate that the system will have two types of
zeros the invariant zeros and the transmission zero.Through computing the zeros of
the MR model

N(s) = det
(
ZI −Aδ −Bδ

Cδ Dδ

)
= det




z − 2 −2T −3
2 T

2 −1
2 T

2

0 z − 1 −T −T
1 0 0 0

0 1 0 0


 = T 3 (2.32)

It can be easily noted that the multi rate sampling technique prevent from the
appearance of asymptotic sampling zeros as the transfer function of continuous time
and the sampled data models have no zero's.

GHF sampling The GHF can be used to assign the sampling zeros or to achieve
additional control requirement.For example we could design a feedback control law
such that a zero is assigned at the origin.In such a case and through computation
we obtain transfer function

WPR(z) =
(T

2

2 z)

(z − 1)2
(2.33)

2.3 Nonlinear Systems

Models for continuous-time systems typically take the form of (nonlinear) di�erential
equations. In this section we are going to discuss the a�ect of sampling on the
nonlinear continuous time systems([29])
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2.3.1 Equivalent sampled data models

Consider the nonlinear system

ΣNL : ẋ = f(x) + g(x)u, x, y ∈ Rn, u ∈ R (2.34)

y = h(x). (2.35)

Posing an equilibrium at ẋ = 0 and a well de�ned relative degree r 6 n;i.e,
LgL

k
fh(x) = 0, k = 1, . . . , r − 2 and LgLr−1

f h(x) 6= 0

2.3.1.1 under single rate sampling

Consider u(t) ∈ UT and y(t) = y(kT ) for t ∈ [kT, (k + 1)T [ ,with T being the
sampling period. Then the dynamics of ΣNL at the sampling instants is described
by the single-rate sampled-data equivalent model

Σd :

{
xk+1 = F T (xk, uk)

yk = h(xk)
(2.36)

with xk := x(kT ), yk := y(kT ), uk := u(kT ).

De�nition 2.1 The system Σd de�nes the exact sampled equivalent of system Σc if
for initialization x(0) and for constant control over time interval of amplitude T the
state evolution of Σd and Σc are the same at sampling instant t = kT ;i.e. Assume
for some values k > 1 ones havex(kT ) = xk.

The sample dynamics can be computed by integrating the continuous dynam-
ics.The following Taylor expansion holds true

x(k + 1) = xc((k + 1)T ) (2.37)

:= xc(kT ) + T
dxc(t)

dt
|t=kT +

T 2

2

d2xc(t)

dt2
|t=kT + . . . | (2.38)

:= (1 + TLf (f + ukg) + · · ·+ T p

p!
Lpf (f + uKg) + . . . )(x(kT ). (2.39)

For any constant input uK and T small enough the right hand side represents the
series expansion of the solution of equation (2.35). As we have seen from the previous
de�nition Σd presents the exact sampled-model.Still,computing an exact and closed
form of F T (., .) is to so that approximation are generally computed in practice by
the series expansion (2.38) at any �xed order of in T .Whenever (2.38) admits a �nite
number of terms in power of T , we shall say that Σd admits a �nite sampled-data
equivalent model or that it is �nitely descritizable.

2.3.1.2 under Multi rate sampling of order r

The concept of Multi rate sampling was �rst extended into the nonlinear context
by professor Monaco and professor Dorothee Normand-Cyrot ([67]).For the sake of
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clarity, we assume a single input u(t) ∈ R , and being constant over subinterval of
amplitudeδ = T

r and denote as uiK the value of u(t) over[kT + (i− 1)δ, [kT + iδ[ for
i = 1, .., r

ui(k) = u(kT +
i− 1

r
T ) fort ∈ [kT + (i− 1)δ, kT + δ[ (2.40)

The discrete time state- space representation Σr
ddescribing the continuous-time sys-

tem Σc at any sampling instant t = kT , for k > 0 given by

Σr
d :

{
ẋd(k + 1) = F δ(xk, u1k, . . . , urk)

yk = h(xk).
(2.41)

De�nition 2.2 The system Σr
d is referred to as the exact multi rate sampled-data

equivalent of order r to system Σc if with the same initialization and constant
controls over time interval of amplitude δ = T

r ,Σ
r
dand Σc exhibits the same input

state behaviour,at sampling instant t = kT .

The multi rate sampled dynamics F δ admits the following lie exponential represent-
ation

F δ(xk, u1k, . . . , urk) = eδLf(.)+u1kLg(.) ◦ · · · ◦ eδLf(.)+urkLg(.) . (2.42)

as in the SR case, computing F δ(., .) in (2.41) might not be possible in prac-
tical.However , the power series form induced by (2.42)provided a powerful tool
for computational facilities. A series expansion and approximate representation of a
multi rate sampled model can be found in([40]).Its well known that sampling might
not preserve certain properties of the continuous- time system.In particular the loss
of relative degree and e�ect on the zero dynamics under sampling are the source of
several di�culties in the design problems. As we have illustrated before ,the notion
of the zero dynamics plays an important role in the solution of several control prob-
lems, we will discuss the behaviour of zero dynamics under sampling in the following
section.

2.3.2 Relative degree under sampling

By applying the discrete-time de�nition 1.2 of the relative degree , we get that
sampled-data dynamics Σd has relative degree r if

1 for any i = 1, . . . , r − 3, ∂
∂ui
ho(F

T
0 )koF T (., u)(x) = 0

0 6 k 6 r − 3 ∀(x, u) ∈M ∗ Rm

2 ∂
∂ui
ho(F

T
0 )r−1oF T (., u)(x) 6= 0

The following lemma is an immediate consequence of the de�nition of Σd

Lemma 2.2 ([66]) Given a SISO linear analytic continuous time system Σc with

relative degree r the relative degree associated to the exact sample equivalent system

Σd is equal to one almost every where.
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The proof of this lemma is directly deduced from the expansion according to δ(T ∈
[0, δ0[) of the output system Σd as

y(k + 1) = h(x(k + 1)) = h(xk) +
∑

j>1

T j

j!
yjc(kT ) (2.43)

= h(xk) +

r−1∑

i>1

T i

i!
Lifh+

T r

r!
(Lf + uLg)L

r−1
f h (2.44)

where yjc(kT ) represents the jth output derivatives of yc(t), computed at time t = kT

under sampled data feedback.Accordingly ,one obtains
∂y(k+1)

∂u = T r

r! LgL
r−1
f (h)(xk) =

TLgL
r−1
f h + · · ·+.Thus the exact sample model has relative degree one regardless

the relative degree of the continuous-time.

2.3.3 Zero dynamics under sampling

Along the lines of the continuous-time case, sampling induces an additional zero
dynamics (the so called sampled-data zero dynamics) of dimension n− r− 1.Those
dynamics are in general unstable as the continuous-time relative degree is r ≥
2.Roughly speaking any nonlinear system with relative degree higher than two exhib-
its unstable zero dynamics under sampling for T su�ciently small.Consequently
any control technique based on an zero dynamics inversion may induces unstabil-
ity of the control system.As a matter of fact, SR sampling induces nonminimum
phase of the sampled-data equivalent model despite of the original continuous-time
performance.This problem was successfully solved through the use of MR sampling
technique.In such a case , it is shown that the MR sampled-data model (2.41)with
output

ŷ =




h(x)

Lfh(x)
...

Lr−1
f h(x)




has vector relative degree r̂ = (2, . . . , 1)(| r̂ |= r and preserves the same zero
dynamics as in continuous-time.

2.4 Conclusion

Di�erent types of sampling procedures have been recalled in this chapter together
with corresponding sampled-data equivalent model.Then,particular attention has
been devoted to the way those sampling scheme a�ect the original continuous-time
properties with focus on the relative degree and zero dynamics.More, in details it
has been shown how multi rate can be suitably employed to overcome the issues
linked to the loss of a relative degree and the new sampling zeros dynamics which a
generally unstable.
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3.1 Introduction

The solution of several nonlinear control problems required the cancellation of some
intrinsic dynamics of the plant under feedback.It results that the so-de�ned control
will ensure stability in closed-loop if and only if the dynamics to cancel are stable.In
the case of LTI systems, this corresponds to assign part of the eigenvalues coincid-
ent to the zeroes.This will include the an unobservable dynamics whose stability
depends on the location of such zeroes in the complex plane.What if those dynamics
are unstable?
Classical control strategies through inversion might solve the problem while making
the closed loop system unstable.Still the linear case suggests that when those dy-
namics are unstable a solution can be obtained.

Based on this idea, we consider non minimum phase nonlinear single-input single-
output (SISO) systems that are controllable in �rst approximation and settle the
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problem in the context of Input-Output linearization. In that case, because the
zero-dynamics are unstable, classical techniques cannot be implemented to solve
the problem with stability.
In this chapter we introduce an approach that is based on the notion of partially
minimum phase systems. The design we propose proceeds in two steps: considering
the linear tangent model (LTM) of the original system, we �rst de�ne a dummy
output based on a suitable factorization of the numerator of its transfer function
so that the corresponding linearized system is minimum-phase; then, we perform
classical input-output linearization of the locally minimum-phase nonlinear system
with the aforementioned dummy output. Finally, we show that when applying the
resulting feedback to the original system, input-output linearization still yields with
respect to the original output while guaranteeing stability of the internal dynamics.

Then we extend the results to the sampled-data context; namely, measures of
the output (say the state) are available only at some time instants and the control
is piecewise constant over the sampling period.

3.2 Problem settlement

We consider nonlinear input-a�ne dynamics with linear output;namely,

ΣNL :

{
ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R, y ∈ R
y = h(x) = C(x).

(3.1)

We assume that the system has a well de�ne relative degree r ≤ n at the origin in a
neighbourhood of x = 0 i.e., f(0) = 0.Moreover , we assume that (3.2)is nonmin-
imum phase;i.e,the origin is unstable equilibrium of the zero dynamics associated
to (3.2).Here we are considering the problem of de�ning a feedback that makes the
input output behaviour linear while ensuring stability of the overall dynamics.The
input output feedback linear property is recalled.This problem was originally posed
and solved by Isidori and kerner.Recalling from chapter 1 the can be transformed
into normal form via a di�eomorphism φ(x) = [ζT , ηT ] if the relative degree r is well
de�ned.The ζ coordinates are de�ned by

ζ = Li−1
f h(x), ∀1 6 i 6 r. (3.2)

and η = Φr+i(x), 1 6 i 6 n − r where LgΦi(x) = 0.The normal form rewrites
as

ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u)

η̇ = q(ζ, η)

y = ζ1.

(3.3)

with

Â =

(
0 Ir−1

0 0

)
, B̂ =

(
0

1

)
(3.4)
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The static feedback control law,

u =
1

a(ζ, η)
(−b(ζ, η) + v) (3.5)

changes the rth equation of (3.3) to : ζ̇r = v. As a result the map between
the transformed input v and the output y is exactly linear.Thus,a linear state
feedback controller can be synthesized to stabilize the ζ subsystem.The control
when expressed in the original coordinates have the following form

u =
1

LgL
r−1
f h(x)

(−Lrfh(x) + v). (3.6)

(3.7)

The external input v can be chosen in order to assign a speci�c set of eigenvalues
or to ful�l extra control requirement ;i.e,

v = br−1L
r−1
f h(x) + · · ·+ boh(x) (3.8)

and (3.9)

u = LgL
r−1
f h(x)

−1
(−Lrfh(x) + br−1L

r−1
f h(x) + · · ·+ boh(x)). (3.10)

The asymptotic stabilization resulting from the input output linearization will be
discussed �bre�ll.

3.2.1 local stability

The input output linearized system is said to be locally asymptotically stable if the
zero dynamics

η̇ = q(0, η) (3.11)

is local locally asymptotically stable.

3.2.2 Global Stability

The feedback linearized system is said to be globally asymptotically stable if the
zero dynamics (3.11) is asymptotically stable.The argument for this proceed as fol-
lows.The state ζ variables can be forced to zero arbitrarily fast by appropriate
selection of controller tuning parameter bi.Once the ζ variable converge to zero
, the closed loop trajectories described by the zero dynamics (3.11).Because the zero
dynamics are globally asymptotically stable by assumption , the η state variables
converge to zero and the closed loop system is globally asymptotically stable.The
argument does not hold if the system relative degree is bigger than two r > 2

due to the so called � peaking phenomena�.High gain linear feedback can cause
the linear state variable η to become very large before they decay to zero.These
�peaking� variables act as destabilizing inputs to the zero dynamics.Consequently
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more restrictive condition is required to insure hat the linearized feedback system is
globally asymptotically stable.

Now let us assume that the system holds relative degree n .Then the exact
feedback linearization problem consists in establishing a coordinate transformation
z = φ(x) and a feedback control law u = α(x) + β(x)v so that

ẋ = f(x) + g(x)u

is linear at least locally in closed loop

ż = Az +Bv (3.12)

Theorem 3.1 The exact feedback linearization problem is solvable for x(0) if and

only if

1 ∆n−1(x) has rank ∆n−1(0) = n.

2 ∆n−2(x) := span
{
g, adfg, . . . , adn−2

f g
}

is involutive in a neighbour of

origin

As well known, controllability of the linearity to be controllable with controllability
matrix

R =
(
B AB . . . An−1B

)
(3.13)

verifying

ρ{R} = n. (3.14)

As well known , controllability in the �rst approximation of ΣNL is necessary to
solve the input output linearization problem;namely, determining

A = ϕf (0), B = g(0). (3.15)

we need

ẋ = Ax+Bu

y = Cx
(3.16)

If (A,B,C) is not in the canonical controllable form (3.16), one preliminarily applies
to (3.2) the linear transformation

ξ = Tx, T =
(
γ> (γA)> . . . (γAn−1)>

)>

with γ =
(
0 1

) (
B AB . . . An−1B

)−1
so transforming the system into the re-

quired form.
In this setting, we looks for a continuous-time feedback that ensures input-output

linearization of (3.2) while guaranteeing stability of the internal dynamics. This will
be achieved via partial dynamics cancellation. Then, we will extend the strategy to
the sampled-data context through multirate sampled-data feedback. Finally we will
extend the results to the square MIMO systems.
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3.3 Partial zero-dynamics cancellation

First,let us sketch the idea that we are going to develop to the LTI case.To this end,
consider a controllable LTI system with relative degree and transfer function

W (s) = C(sI −A)−1B =
N(s)

D(s)
(3.17)

with N(s) = b0 + b1s+ · · ·+ bms
m and D(s) = a0 + a1s+ · · ·+ an−1s

n−1 + sn and
relative degree r̂ = n−m.

Given any factorization of the numerator N(s) = N1(s)N2(s) and �xed D(s),
the dummy output yi = Cix with Ci = (bi0 . . . b

i
mi 0) de�nes a new system

ẋ = Ax+Bu (3.18)

yi = Cix (3.19)

with transfer function

Wi(s) = C(sI −A)−1B =
Ni(s)

D(s)
(3.20)

and Ni(s) := bi0 + bi1s + · · · + bimis
mi(i = 1, 2) as numerator and relative degree

ri = n−mi (i = 1, 2).
Accordingly, the outputs y, y1 and y2 are related by

y(t) = N1(s)y2(t), y(t) = N2(s)y1(t) (3.21)

so getting for j 6= i and =.
d
dt

y(t) = bj0yi + bj1
d

dt
yi + · · ·+ bjmj

dmj

dtmj
yi (3.22)

The feedback

ui = −Fix+ v, Fi =
CiA

ri

CiAri−1B
, i = 1, 2 (3.23)

transforms (3.16) into a system with closed-loop transfer function given by

WFi(s) = C(sI −A−BFi)−1B (3.24)

=
Nj(s)

sri
=
b0 + bj1s+ ..+ bjmjs

mj

sri
, j 6= i. (3.25)

Remark 3.1 The feedback u = −Fix coincides with the one deduced from the Ack-

ermann formula assigning the poles of the system to the roots of p∗i (s) = sriNi(s).

As a consequence, it rewrites ui = −Fix, Fi = −γp∗i (A) and γ is the last row of

the controllability matrix.
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Proof: Assume the LTM is completely controllable, where we use the state
feedback control u = −Fix. Applying the feedback modi�es the system to

ẋ = (A−BFi)x (3.26)

Let us de�ne Ā = A − BFi.The feedback cancels zero's with the characteristic
equation SI−A−BFi = sn+α1s

n−1 + · · ·+αn.Since the Cayley-Hamilton theorem
states thatĀ satis�es its own characteristic equation, we have

P (Ā) = Ān + α1Ā
n−1 + αnI = 0 (3.27)

In order to simplify the derivation we consider the case where n = 3 i.e.

I = 1

Ā = (A−BFi)
Ā2 = (A−BFi)2 = A2 −AFiB −BFiĀ
Ā3 = A3 −A2FiB −ABFiĀ−BFiĀ2

(3.28)

Multiplying the preceding equations in order by α3, α2, α1, andα0 (where α0 =

1),respectively, and adding the results, we obtain

α3I + α2Ā+ α1Ā
2 + Ā3 = α3I + α2A+ α1A2 +A3

− α2BFi − α1ABFi − α1BFiĀ−A2BFi −ABFiĀ−BFiĀ2 (3.29)

Referring to Equation (3.18), we have

α3I + α2Ā+ α1Ā
2 + Ā3 = P (Ā) = 0 (3.30)

α3I + α2A+ α1A
2 +A3 = P (A) 6= 0 (3.31)

Substituting the last two equations into Equation (3.18), we have

P (Ā) = P (A)− α2BFi − α1BFiĀ−BFiĀ2 − α1ABFi −ABFiĀ−A2BFi (3.32)

SinceP (Ā) = 0, we obtain

P (A) = [B : AB : A2B]



Fi + α1FiĀ+ FiĀ

2

α2Fi + FiĀ

Fi


 (3.33)

Premultiplying both sides of Equation (3.25) by the inverse of the controllability
matrix, we obtain

[B : AB : A2B]−1P (A) =



Fi + α1FiĀ+ FiĀ

2

α2Fi + FiĀ

Fi


 (3.34)
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Pre multiplying both sides of this last equation by [0 0 1], we obtain

[0 0 1][B : AB : A2B]−1P (A) = [0 0 1]



Fi + α1FiĀ+ FiĀ

2

α2Fi + FiĀ

Fi


 = Fi (3.35)

which can be rewritten as

Fi = [0 0 1][B : AB : A2B]−1P (A) (3.36)

For an arbitrary positive integer n, we have Fi = [0 0 . . . 1][B : AB : · · · :

An−1B]−1P (A)

The feedback u = −Fix+ v places mi eigenvalues of the system coincident with the
zeros of Ni(s) and the remaining ones to 0 so that stabilization in closed-loop can
be achieved via a further feedback v if and only if Ni(s) is Hurwitz. The previous
argument is the core idea of assigning the dynamics of the system via feedback
through cancellation of the stable zeros only. Accordingly, if N(s) is not Hurwitz
(i.e. Nj(s) has positive real part zeros) the closed-loop system will still have non
stable zeros that will play an important role in �ltering actions but that will not
a�ect closed-loop stability.For better understanding of the zero cancellation concept
simple example is illustrated

3.3.1 Example

Consider the linear controllable system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u

y = −2x1 − x2 + x3

(3.37)

with

A =




0 1 0

0 0 1

0 0 0


 , B =




0

0

1


 , C = [−2− 1 1] (3.38)

The system has a well de�ne relative degree r = 1 as CB = 1 6= 0.The zeroes
of the system is partially minimum phase as one of the zero is with positive real
part(s1 = 2) with the other is located in the negative side(s = −1).Referring to
remark (3.2) ,there exists a feedback control law that partially cancels the zeros of
the system.To see this , let us consider the transfer function of (3.37)

W (s) =
(s+ 1)(s− 2)

s3
(3.39)

whose numerator can be factorized as

W (s) =
N1(s)N2(s)

s3
(3.40)
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with N1(s) = s + 1, N2(s) = s − 2.Accordingly, exploiting such a factorization
one de�nes the dummy output y1 = (110)x = x1 + x2 with respect to which the
system is minimum phase,

The relative degree w.r.to the new output r1 = 2 and we get a feedback in the
form

u =
v − CA2x

CAB
with CA2 =

[0 0 1]

1
andCAB = 1 (3.41)

Through applying the feedback in the original system eq 3.29 we cancels the stable
zero as we can see from the transfer function below

W̄1(s) =
s− 2

s2 − s− 2
(3.42)

The original output is now rewrites as

(d− 2)y1 = ẏ1 − 2y1.

Which in general can be expressed as y(t) = p(d)y1 with p(d) = d
dt

Concluding, given any controllable linear system one can pursue stabilization in
closed-loop via partial zeros cancellation: starting from a suitable factorization of
the polynomial de�ning the zeros, this is achieved via the de�nition a dummy output
with respect to which the system is minimum phase.

3.4 Continuous-time feedback linearization of partially

minimum phase systems

In what follows, we show how the idea developed in the linear context can be settled
in the framework of feedback linearization of nonlinear dynamics of the form (3.1)
that are not minimum phase in �rst approximation.

Lemma 3.1 Consider the nonlinear system (3.2) and suppose that its LTM at the

origin is controllable in the form (3.16) and non minimum phase with relative degree

r. Denote by N(s) = b0 + b1s+ . . . bn−rsn−r the not Hurwitz polynomial identifying

the zeros of the LTM of (3.2) at the origin. Consider the maximal factorization of

N(s) = N1(s)N2(s)

Ni(s) = bi0 + bi1s+ . . . bin−ris
n−ri , i = 1, 2 (3.43)

such that N2(s) is a Hurwitz polynomial of degree n− r2. Then, the system

ẋ =f(x) + g(x)u, y2 = C2x. (3.44)

C2 =
(
b20 b21 . . . b2n−r2 0

)
has relative degree r2 and is locally minimum-phase.
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Proof: By computing the linear approximation at the origin of (3.44), one gets
that the matrices (A,B,C2) are in the form (3.2) so that the entries of C2 are the
coe�cients of N2(s) that is the numerator of the corresponding transfer function.
By construction, N2(s) is a Hurwitz polynomial of degree n−r2. It follows that, in a
nearby of the origin, the relative degree of (3.44) is r2. Furthermore, since the linear
approximation of the zero-dynamics of (3.44) coincides with the zero-dynamics of
its LTM model at the origin, one gets that (3.44) is minimum-phase.

Lemma 3.2 Consider the nonlinear system (3.44) and introduce the normal form

associated to h2(x) = C2x

(
ζ

η

)
= φ(x) =

(
h2(x) . . . Lr2−1

f h2(x) φ>2 (x)
)>

(3.45)

with φ2(x) such that Lgφ2(x) = 0 so that

ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u) (3.46a)

η̇ = q(ζ, η) (3.46b)

y2 =
(
1 0

)
ζ (3.46c)

Then, the feedback

u =
1

a(ζ, η)
(v − a(ζ, η)) (3.47)

solves the Input-Output Linearization problem with stable zero-dynamics. for the

system (3.44)

Proof: The proof is straightforward from construction of y2 in Lemma 3.1.

Remark 3.2 We recall that, in the original coordinates, the feedback (3.47) rewrites

as

u = γ(x, v) :=
v − Lr2f h2(x)

LgL
r2−1
f h2(x)

. (3.48)

Theorem 3.2 Consider the nonlinear system (3.2) and suppose that its LTM at the

origin is controllable in the form (3.16) and non minimum phase with relative degree

r. De�ne the dummy output yi = hi(x) = Cix (i = 1, 2) as in Lemma 3.1 and the

state transformation (3.45) that puts the system into the form

ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u) (3.49a)

η̇ = q(ζ, η) (3.49b)

y = N1(d)y2. (3.49c)

Then, the feedback (3.47) solves the input-output linearization problem with stability

of the internal dynamics of (3.1).
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Proof: From Lemmas 3.1 and 3.2, by expliciting y = N1(d)y2 and exploiting
(3.45) one gets

y = b10y2 + b11ẏ2 + · · ·+ b1r2−ry
(r2−r)
2 =

(
C1 0

)
ζ

so that in closed-loop (3.34) rewrites as

ζ̇ = Âζ + B̂v (3.50a)

η̇ = q(ζ, η) (3.50b)

y =
(
C1 0

)
ζ (3.50c)

that exhibits a linear input-output behavior. Moreover, by construction, y2 ≡ 0

implies y ≡ 0 so that the restriction of the trajectories of (3.50) onto the manifold
identi�ed by y ≡ 0 is described by the dynamics η̇ = q(0, η) that has a locally
asymptotically stable equilibrium by construction. Accordingly, when setting v =

Fζ so that σ(Â + B̂F ) ⊂ C−, the closed-loop system has an asymptotically stable
equilibrium at the origin.
The previous result shows that even if a nonlinear system is non-minimum phase, a
suitable partition of the output can be performed on its LTM at the origin so that
feedback linearization of the input-output behavior can be pursued while preserving
stability of the internal dynamics.

Remark 3.3 It is a matter of computations to verify that the LTM model of the

closed-loop system (3.50) has transfer function W (s) = N1(s)
sr2 . Accordingly, one

can interpret the nonlinear feedback (3.47) as the counterpart of the linear feed-

back presented in Section 3.3; roughly speaking, when applying (3.47) to the original

plant (3.1), one is inverting only the stable component of the zero-dynamics asso-

ciated to y. As a consequence, as y → 0, the trajectories of the closed-loop system

are constrained onto the stable manifold associated to the dummy output y2 = C2x

where they evolve according to η̇ = q(0, η).

3.4.1 Output partition for nonlinear system

In this section we investigate the ability of rewriting any generic output function
as an application of derivative polynomial To this end we assume the dynamics
ḟ(x) + g(x)u to be exactly linearizable in the sense that there is exists a dummy
output ŷ = φ(x) such that the system is Fully feedback linearizable and with
relative degree n. This problem can be solved through de�ning a smooth mapping
φ(x) so that the system

f(x) + g(x)u

y = φ(x).
(3.51)

has a well de�ne relative degree r = n in a neighbour of equilibrium ; basically
Lgφ(x) = · · · = LgL

r−2
f φ(x) = 0, LgL

r−1
f φ(x) 6= 0.

the following theorem recalled
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Theorem 3.3 The exact feedback linearization problem is solvable for x(0) if and

only if

1 ∆n−1(x) has rank ∆n−1(0) = n.

2 ∆n−2(x) := span
{
g, adfg, . . . , adn−2

f g
}

is involutive in a neighbour of

origin

Now we study the problem of de�ning a suitable partition of the zero dynamics of
(3.1) by extending the result presented in the previous section to complete nonlinear
characterization.

Lemma 3.3 Consider the continuous time dynamics

f(x) + g(x)u (3.52)

possess an equilibrium at the origin and be forward complete with smooth vector �eld

f, g.Moreover let the system be FFL.Then any output function h(x) with relative

degreer̂ can be written as an application of linear di�erential polynomial of ϕi.e.

y = p(d)ϕ(x) (3.53)

Proof: consider the nonlinear system f(x) + g(x)u, y = h(x) and introduce
the normal form associated to φ(x)

z =




ϕ(x)

Lfϕ(x)
...

Ln−1
f ϕ(x)


 (3.54)

so that

ż = f̄(z) + ḡ(z)

y = h(x) = H(ϕ(x), fϕ(x), . . . , Ln−r̂f ϕ(x)) = h ◦ ϕ−1(z)

= H(z1, . . . , zn−r̂+1).

(3.55)

We can note that the prove lies straightforward in the structure of H(z)

Theorem 3.4 Consider the nonlinear system (3.1) under the hypothesis of Lemma

3.1.Let ϕ(x) be the output with respect to which

ḟ(x) + g(x)u

ŷ = ϕ(x).

is fully feedback linearizable.Then any output mapping y = h(x) with respect to
which (3.1) has relative degree r is de�ned by a di�erential mapping in

(ϕ(.), Lfϕ(.), . . . , Ln−rf ϕ(x)); i.e
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y = h(x) = H(ϕ(x), Lfϕ(x), . . . , Ln−rf ϕ(x)) through a smooth functionH(.) Proof:

Since the system

ẋ = f(x) + g(x)u, y = ϕ(x). (3.56)

have a well de�ne relative degree n , then a coordinate transformation can be
applied such that

ζ = φ̄(x) =




h(x)
...

Ln−1
f h(x)


 . (3.57)

locally puts the system into the normal form; i.e., it gets the form

ζ̇1 = z2

ζ̇2 = z3

...

ζ̇r−1 = zn

ζ̇n = a(z, η) + a(z)u

y = ζ1.

(3.58)

Now we apply the same coordinate transformation to let h(ϕ(x)) = h(ϕ(φ−1(z))) =

h(z1).The system w.r.to the output ŷ become

ζ̇ = Âz + B̂(b(ζ) + a(ζ)u)

yn = H̃(ζ)
(3.59)

Now by exploiting the fact that the system (3.1) has a well de�ne relative degree
r one gets that

Ṽi(ζ) = 0 ∀i = n− r + 2, . . . , n (3.60)

f̃(ζ) = Â(ζ) + B̂(ζ), g̃(ζ) = B̂a(ζ) (3.61)

Lg̃(ζ)H̃(ζ) = VzetaH(ζ)a(ζ) = 0 (3.62)
... (3.63)

Lg̃(ζ)Lf̃r−2(ζ)H̃(ζ) = Vzn−r+2H(ζ)a(ζ) = 0 (3.64)

Lg̃(ζ)Lf̃r−1 + (ζ)H̃(ζ) = Vzn−r+1H(ζ)a(ζ) 6= 0 (3.65)

so implying

Vzi = 0 ∀i = n− r = 2, . . . , n (3.66)

and the H̃(ζ1, . . . , ζn−r+1) = H(ϕ,Lfϕ, . . . , L
n−r
f ϕ.

Remark 3.4 It can be easily veri�ed that the zero dynamics is implicitly de�ned as

H̃(ζ1, . . . , ζn−r+1) = 0 (3.67)
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3.4.1.1 Example

Consider the nonlinear system

ẋ =



x3(1 + x2)

x1

x2(1 + x1)


+




0

1 + x2

−x3


u

y = x3(1 + x2).

(3.68)

With relative degree r = 2.Now we introduce a coordinate transformation

φ =

(
z

η

)
=




x3 + x3x2

x3x1 + x2(1 + x1)(1 + x2)

x1


 . (3.69)

locally puts the system into the normal form; i.e., it gets the form

ż1 = z2

ż2 = a(z, η) + b(z, η)u

η̇ = q(z, η) = z1

y = z1.

(3.70)

The system zero dynamics is provided by η̇ = 0.The following step is to compute
ϕ(x)

adfg =




0 0 0

0 1 0

0 0 − 1





x3(1 + x2)

x1

x2(1 + x1)


−




0 x3 1 + x2

1 0 0

x2 1 + x1 0






0

1 + x2

−x3




=




0

x1

−(1 + x1)(1 + 2x2)




ad2
fg =




0 0 0

1 0 0

−1− 2x2 −2− 2x1 0





x3(1 + x2)

x1

x2(1 + x1)


−




0 x3 1 + x2

1 0 0

x2 1 + x1 0






0

x1

−(1 + x1)(1 + 2x2)




=



−x1x3 + (1 + x1)(1 + x2)(1 + 2x2)

x3(1 + x2)

−x3(1 + x2)(1 + 2x2)− 3x1(1 + x1)




(3.71)

Now we check the necessary conditions

[g, adfg, ad
2
fg] =




0 0 1

1 0 0

0 − 1 0


 (3.72)
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System has full rankn = 3.

[g, adfg] =




0 0 0

1 0 0

−1− 2x2 −2− 2x1 0






0

1 + x2

−x3


−




0 0 0

1 0 0

0 0 −1






0

x1

−(1 + x1)(1 + 2x2)




=




0

−x1

−3(1 + x1)(1 + 2x2)




(3.73)

The matrix[g, adfg, [g, adfg]has rank 2 which means that the vectors that for it
are linearly dependant. That means that the third column is not a new vector
but a linear combination from the �rst two columns. This means that the desired
distribution is involutive.Now we conclude that the system is can be Fully feedback

linearizable, such that∂ϕ(x)
∂x




0 0

1 + x2 x1

−x3 −(1 + x1)(1 + 2x2)


 = 0.The solution is any

function h(x1) i.e. ϕ(x) = x1.The system relative degree w.r.to ϕ(x) rϕ(x) = 3

as Lgϕ(x) = 0, LgLfϕ(x) = 0, LgL
2
fϕ(x) 6= 0. Since the system obtain a well de�ne

relative degree , then a coordinate transformation can be applied such that

ζ =




x1

x3(1 + x2)

x3x1 + x2(1 + x1)(1 + x2)


 . (3.74)

locally puts the system into the normal form; i.e., it gets the form

ζ̇1 = ζ2

ζ̇2 = ζ3

ζ̇3 = a(z) + b(z)u

y = h · φ−1(ζ) = H(ϕ(x), fϕ(x)) = ζ2.

(3.75)

The zero dynamics is described H(ζ1, ζ2) = ζ2 = 0 which coincide with zero dynam-
ics of the original system.

3.5 Feedback linearization of partially minimum phase

systems under sampling

We now address the problem of preserving input-output linearization of 3.2 with
stability under sampling by suitably exploiting the result in Theorem 3.2. As recalled
in the introduction, the problem cannot be solved via standard (also known as
single-rate) sampling procedures. Consider the Multirate sampled data model and
set u(t) = uik for t ∈ [(k + i − 1)T, (k + i)T [ for i = 1, . . . , r where y(t) = yk for
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Figure 3.1: sampled data control scheme

t ∈ [kT, (k + 1)T [ so that the multirate equivalent model of order r2 of 3.2 gets the
form

xk+1 =F δm(xk, u
1
k, . . . , u

r2
k ) (3.76)

where δ = T
r2

and

F δm(xk, u
1
k, . . . , u

r2
k ) =eδ(Lf+u1

kLg) . . . eδ(Lf+u
r2
k Lg)x

∣∣
xk

= F δm(·, ur2k )o . . . oF δ(xk, u
1
k).

In the sequel, we show how multirate feedback can be suitably employed with the ar-
guments in Theorem 3.2 to achieve input-output linearization of 3.2 at the sampling
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instant t = kT (k ≥ 0) with stability regardless the minimum-phase property. Ac-
cordingly, we �rst design a multirate feedback uk = γ(δ, xk,vk) (u = col(u1, . . . , ur2)

and v = col(v1, . . . , vr2) so to ensure input/output linearization of the v-y2 behavior
of (3.44), at the sampling instants. This is achieved by considering the sampled-
data dynamics (3.76) with augmented dummy output Y2k = H2(xk) composed of
y2 = C2x and its �rst r2 − 1 derivatives; namely, we consider

xk+1 =F δm(xk, u
1
k, . . . , u

r2
k ), Y2k = H2(xk) (3.77)

with δ = T
r2

and output vector

H2(x) =
(
h2(x) Lfh2(x) . . . Lr2−1

f h2(x)
)>

that has by construction a vector relative degree rT = (1, . . . , 1). Now let us compute
the feedback uk = γ(δ, xk,vk) so that to reproduce, at the sampling instants t = kT ,
the trajectories of the dummy output of (3.44) and of its �rst r2 − 1 derivatives in
closed-loop under the continuous-time linearizing feedback (3.48). The existence of
the sampled-data control is stated in the following result.

Lemma 3.4 Consider the nonlinear system (3.44) under the hypotheses of Lemma

3.2 with multi-rate equivalent model of order r2 provided by (3.77). Then, there

exists a unique solution

uT = γ(T, x,v) = (γ1(T, x,v) . . . γr2(T, x,v))> (3.78)

to the input-output Matching (I-OM) equality

H2(F Tm(xk, γ
1(T, xk,vk), . . . , γr2(T, xk,vk)) =

er2δ(Lf+γ(·,v)Lg)H2(x)
∣∣
xk

(3.79)

for any xk = x(kT ) and v(t) = v(kT ) := vk, vk = (vk, . . . , vk). Such a solution is

in the form of a series expansion in powers of δ around the continuous-time γ(x, v);

i.e., for i = 1, . . . , r2

γi(T, x,v) = γ(x,v) +
∑

j≥1

T

(j + 1)!
γij(x,v). (3.80)

As a consequence, the feedback uTk = γ(T, xk,vk) ensures Input-Output linearization

of (3.77) with stability of the internal dynamics.

Proof: First, we rewrite (3.79) as a formal series equality in the unknown uδ;
i.e.,

(
T r2ST1 (x,uT ) . . . TST1 (x,uT )

)>
(3.81)
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with, for i = 1, . . . , r2,

T iSTi (x,uT ) =eT (Lf+u1Lg) . . . eT (Lf+u1Lg)Li−1
f h2(x)

− er2T (Lf+γ(·,v)Lg)Li−1
f h2(x).

Thus one looks for u = γ(T, x, v) satisfying

ST (x,uT ) =
(
ST1 (x,uT ) . . . ST1 (x,uT )

)>
= 0 (3.82)

where each term rewrites as STi (x,uT ) =
∑

s≥0 T
sSij(x,u

T ) with

Si0(x,uT ) =
(
Tju

T − rr2−i+1
2 γ(x, v)

)
LgL

r2−1
f h2(x) (3.83)

and Tj
j! = ( j

r2−j+1−(j−1)r2−j+1

j!
(j−1)r2−j+1−(j−2)r2−j+1

j! . . . 1
j!). It results that uT =

γ(T, x, v) = (γ(x, v), . . . , γ(x, v))> solves (3.82) as T → 0. More precisely, as T → 0,
one gets the equation

ST→0(x,uT ) =
(
TuT −Dγ(x, v)

)
LgL

r2−1
f h2(x)

with T = (T>1 , . . . T
>
r2)> and D = diag(rr22 , . . . , r2). Furthemore, the Jacobian of ST

with respect to uT is

∇uTS
δ(x, (γ(x, v), . . . , γ(x, v))>)

∣∣
T̄→0

= T LgL
r2−1
f h2(x)

is full rank by de�nition of the continuous-time relative degree r2 and because T is
invertible so concluding the existence of T ∈]0, T ∗[ so that (3.79) admits a unique
solution of the form (3.80) around the continuous-time solution γ(x, v) (Implicit
Function Theorem). Stability of the zero-dynamics is ensured by multi-rate sampling
as proven in ([67]).

The feedback control is in the form of a series expansion in powers of T . Thus, iter-
ative procedures can be carried out by substituting (3.80) into (3.79) and equating
the terms with the same powers of T ([64]) where the explicit expression for the
�rst terms are given). Unfortunately, only approximate solutions γ[p](T, x, v) can
be implemented in practice through truncations of the series (3.80)) at �nite order
p in δ; namely, setting γ[p](T, x, v) = (γ1[p](δ, x, v), . . . , γr2[p](T, x, v), one gets for
i = 1, . . . , r2

γi[p](T, x,v) = γ(x,v) +

p∑

j=1

T

(j + 1)!
γij(x,v). (3.84)

When p = 0, one recovers the sample-and-hold solution γi[p](δ, xk,vk) = γ(x(KT ), v(KT )

or emulated control. Preservation of performances under approximate solutions has
been discussed in ([62]) by showing that, although global properties are lost, input-
to-state stability (ISS) and practical global asymptotic stability can be deduced in
closed-loop even through the inter sampling instant. Similarly to the continuous-
time case, the next result shows that applying the feedback (3.78) to (3.2) ensures
input-output linearization of the input-output behavior at any sampling instant
t = kT (k ≥ 0) while preserving stability of the internal dynamics.
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Theorem 3.5 Consider the nonlinear system (3.2) under the hypotheses of The-

orem 3.2 with multi-rate equivalent model of order r2 provided by

xk+1 =F δm(xk, u
1
k, . . . , u

r2
k ), yk =

(
C1 0

)
H2(xk) (3.85)

and let the feedback (3.80) be the unique solution to the I-OM equality (3.79). Then

the feedback uTk = γ(δ, xk,vk) ensures Input-Output linearization of (3.85) with

stability of the internal dynamics.

Proof: We �rst note that yk rewrites as a linear combination of Y2. As a
consequence, because the v-Y2k behavior is linear under (3.78), the vk-yk is linear
by construction. Moreover, we observe that Y2 ≡ 0 implies yk ≡ 0 by de�nition.
Thus, by construction of (3.78), as yk → 0, the closed-loop trajectories of (4.57) are
forced onto the zero-manifold de�ned by Y2 ≡ 0 over which they are asymptotically
stable.

Remark 3.5 Denote by zci the zeros of the non Hurwitz polynomial N1(s) in Lemma

3.1. When considering the LTM model of (3.85) in closed-loop under (3.78), one gets

that, as δ̄ → 0, the closed-loop linearized system has exactly r2− r zeros asymptotic-

ally approaching to the origin as eδz
c
i (namely, as δ → 0, zTi → eδz

c
i , i = 1, . . . , r2).

Accordingly, by applying this result in the linear case, one gets that the feedback

(3.78) is the one that assigns n − r2 poles coincident with the stable zeros, without

a�ecting the unstable ones.

Remark 3.6 Along the lines of the continuous-time case, when controlling (3.85)

via the multirate feedback (3.78) one is constraining the trajectories of the closed-

loop system onto the stable part of the zero-manifold identi�ed by the non-minimum

phase output.

Remark 3.7 A purely digital single-rate feedback might be computing over single

rate sample data model

xk+1 = F T (xk, uk)

yk = h(xk)
(3.86)

by settling Lemma 3.1 to this context. Assuming, for simplicity, that 3.1 is locally

minimum-phase, one might de�ne a partition of the original output yk = Cxk based

on the numerator NT (z) of transfer function of its LTM at the origin. Accordingly,

one might deduce yδ2 = Cδ2xk with respect to which the original dynamics has no

sampling zero dynamics and the y = N(q)yT2 where q denotes the shift operator and

N(q) is the polynomial de�ning the sampling zeros of the LTM. Though, an exact

partition of the original output is hard to be found and only approximate solutions

can be found based on the concept of limiting sampling zeros ([7]).
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3.5.1 The TORA example

An academic working example is proposed on the basis of the TORA system

ẋ1 = x2

ẋ2 = −x1 + ε sinx3

ẋ3 = x4

ẋ4 =
ε cosx3(x1 − εx2

4 sinx3) + u

1− ε2 cos2 x3

y =
(

2(ε2−1)
ε 0 1− ε2 1− ε2

)
x

(3.87)

The system is fully feedback linearizable.i.e

[g, adfg, ad
2
fg, ad

3
fg]x=0 =




0 0 0 ε
(1−ε(2)

0 0 ε
(1−ε(2)

0

0 − 1
1−ε2)

0 −ε2+ε4

(1−ε2)3

1
1−ε2 0 −ε2+ε4

(1−ε2)3 0




is full rank. Moreover the matrix[g, adfg, [g, adfg], [g, ad2
fg] has rank less thann for

all x nearx0 which indicate that the system is involutive. In this context, we consider
the TORA dynamics with �ctitious output

y = (
2

ε
(ε2 − 1) 0 1− ε2 1− ε2)x

with respect to which the system is non-minimum phase and has relative degree
r = 1. Thus, setting

T−1 = (γ>, A>γ>, . . . , An−1>γ>), γ = (0 1)R−1(A,B) (3.88)

N1(s) = s− 1 (3.89)

we de�ne the partition N1(s) = s−1 and N2(s) = s2 +2s+1 so that, in the original
coordinates, we de�ne the dummy

y2 = (0 − 2

ε
(ε2 − 1), 1− ε2, 0)x

with respect to which the system is minimum-phase in �rst approximation and
has relative degree r2 = 2. Accordingly, by applying Theorem 3.2, there exists a
coordinate transformation

φi(x) =




h2(x)

Lfh2(x)

L2
fh2(x)

φ2(x)


 (3.90)
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that put the system into normal form

ζ̇1 = z2

żeta2 = b(z, η) + a(z, η)u

ζ̇1 = q1(ζ, η)

ζ̇2 = q2(ζ, η)

(3.91)

The feedback (3.47) with

LgLfh2(x) =
ε2 − 1

ε2 cos2(x3)− 1

L2
fh2(x) =

2x2(ε2 − 1)

ε
− 2x4 cos(x3)(ε2 − 1)+

+
ε cos(x3)(ε2 − 1)(x1 − ε sin(x3)(x2

4 + 1))

ε2 cos(x3)2 − 1

and v = −k1h2(x) − k2Lfh2(x) achieves local asymptotic stabilization in closed-
loop with k1, k2 > 0. To solve the problem under sampling, the multirate feedback

γ[1](δ, x,v) in (3.84) is computed with �rst corrective terms

γ1
1(x, v) =

1

3
γ̇(x,v), γ2

1(x, v) =
5

3
γ̇(x, v)

and γ̇(x, v) = (Lf + γ(x, v)Lg)γ(x, v).
Figures (3.2),(3.3) and (3.4) depict simulations of the aforementioned situations

under continuous-time feedback (3.47) and the sampled-data feedback (3.84) with
�rst-order p = 1 corrective terms and for di�erent values of the sampling period.
The sample and hold (or emulated-based) solution is reported as well in a com-
parative sense. In particular, setting by η = (η1, η2, η3)>, we denote the internal
dynamics corresponding to the simulated situations. It is clear from Figure (3.2)
that the continuous-time feedback computed via partial dynamic inversion yields
feedback linearization while ensuring asymptotic stability in cosed-loop. Concern-
ing sampled-data control, we note that, as T increases, the emulated based solution
fails in stabilizing (and linearizing the input-output behavior) in closed-loop while
the presented multi-rate strategy yields more than acceptable performances even in
that case (see �gure 3.4,3.5).

3.6 Conclusions

The notion of partially minimum-phase systems is used to get feedback input-output
linearization while preserving stability. The proposed approach is introduced in
continuous time and extended to the sampled-data context through multirate to
overcome the well-known pathologies induced by the sampling zero dynamics. A
working example shows the performances of the control strategies.
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Figure 3.2: Partial feedback linearization of Tora example T = .5
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Figure 3.3: Partial feedback linearization of Tora example T = .7
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Figure 3.4: Partial feedback linearization of Tora example T = .9
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4.1 Introduction

The problem of annihiuating the e�ect of disturbances from the output evolution of
a dynamical system represent an evergreen area of research from both theoretical
and practical point of view.Very important work results on this topic have been
obtained by Wonham ([94]) and Isidori for both linear and nonlinear.
The proposed solutions shared the idea of constraining under feedback , the e�ect
of disturbances onto a sub dynamical of the system which can be made unobserv-
able.More precisely, the idea is to decouple the input-output evolution from the
disturbance by limiting its e�ect onto the zero dynamics.
Condition for solving such a problem are well consolidated and are linked to the
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concept of relative degree and dynamical inversion.Although a feedback solving the
the problem might be de�ned, one still need to guarantee that the trajectories of the
residual unobservable dynamics are bounded despite the e�ect of the disturbances.

Very few works have been addressing this second but essential problem so that
only su�cient condition for solving the Disturbance Decoupling Problem while pre-
serving stability of the overall system.Moreover,those conditions are to check after
the feedback design with no insight toward the rede�nition of a feedback that solves
the with stability .At the same time preserving a good behaviour of the residual
dynamic a�ected by the perturbations.In this chapter, a �rst step towards this goal
is made

In chapter 3, we introduced, the very simple idea that by factorizing the nu-
merator of the non minimum phase transfer function of a LTI system a dummy
output can be introduced with respect to which the zero dynamics subjected to one
of the factors ,is stable.Based on this idea we consider a class of non minimum phase
non linear Single Input Single Output (SISO) systems that are controllable and are
a�ected by an essentially bounded disturbances.Thus , we study the problem of de-
�ning a feedback preserving disturbances decoupling from the output evolutions .It
will be shown that given a feedback linearizable nonlinear system with linear out-
put necessary and su�cient conditions for solving(locally) the DDP can be easily
deduced from LTM at the origin.

4.2 Motivation

In this section ,we show the arguments developed in chapter 3 can be exploited in the
LTI case,To set necessary and su�cient condition to solve the DDP with stability.
Consider the linear time-invariant system described by

ẋ = Ax+Bu+Dw

y = Cx (4.1)

where x ∈ Rn and u, y, w ∈ R. The system have transfer function in the form

P (s) =
N(s)

D(s)
(4.2)

where N(s) = b0 + b1s+ · · ·+ bms
m , D(s) = a0 + a1s+ · · ·+ sn and relative degree

r = n−m.
Given any factorization of the numerator N(s) = N+(s)N−(s) and �xedD(s) re-
writes the transfer function as

P (s) = N+(s).W̄ (s), W̄ (s) =
N−(s)

D(s)
(4.3)

The factor N−(s) de�nes a dummy output ȳ = C̄x with respect to which the
relative degree is r̄ and the system corresponding to

ẋ = Ax+Bu+Dw (4.4)

y = C̄x (4.5)
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is minimum phase.In this case the output rewrites as

y(t) = N+(d)ȳ(t),withd =
d

dt
. (4.6)

Remark 4.1 The original output y = Cx can be rewritten as a linear combination

to the output ȳ .The consequent r̄− r derivative via the coe�cient of the non

Hurwitz polynomial induced by

N−(s) = b0 + b1s+ · · ·+ br̄−rsr̄−r. (4.7)

Proposition 4.1 Let N−(s) and N+(s) be the factorization of the numerator N(s)

where N−(s), N+(s) represent the stable and the unstable zeros respectively. Then

the DDP is solvable with stability if and only if r̄ 6 rw where rw denote the relative

degree with respect to disturbances and is such that CAiD = 0, ∀i = 0, ..., rw −
2and CArw−1D 6= 0. Equivalently, the DDP is solvable with stability if and only

if

ImD ⊂ V ∗s ⊂ kerC (4.8)

with (4.9)

V ∗s = ker




C̄

. . .

C̄Ar̄−1


 (4.10)

and there exists feedback in the form

u∗s = −(C̄Ar̄−1B)−1C̄Ar̄x (4.11)

Remark 4.2 It is clear that by decoupling the disturbance w from the dummy output

ȳ ,the original output y(t) will remain decoupled.

The subspace V ∗s de�nes the maximal subspace which can be made invariant and
unobservable under feedback while preserving stability.It turns out that , the DDP
admits a solution with stability if and only if the e�ect of perturbation can be
constrained into V ∗s .

Remark 4.3 V ∗s veri�es the

V ∗s ⊂ V ∗ = ker




C

. . .

CAr−1


 ⊂ kerC (4.12)

where V ∗ is the largest subspace which can be made unobservable under feedback.Regardless

its stability.

Accordingly, our condition complements the classical one by stating that the DDP is

solvable if

· ImD ⊂ V ∗ ⊂ kerC (solvability)

· ImD ⊂ V ∗s (stability).
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4.3 DDP with stability for LTI

Consider the LTI system

ẋ = Ax+Bu+ Pw

y = Cx (4.13)

where P de�nes a family of disturbance action acting over.T he system obtain re-
lative degree r ≤ n and being partially minimum phase.Based on the argument
developed in the previous section.We will provide in this section the necessary and
su�cient conditions for characterizing the action of disturbances which can be de-
coupled from the output under feedback with stability.In doing so, we shall show
that the problem admits a solution if the disturbance can be contained onto the
minimal dynamics of 4.13 which can be rendered unobservable under feedback while
preserving stability of the closed loop ; in other words,the problem is solvable if and
only if the action of disturbances to be decoupled is contained into the unobservable
subspace generated by cancelling only the stable zeroes of 4.13.

Theorem 4.1 Consider the system 4.13 being controllable and possessing relative

degree r ≤ n and being partially minimum phase.Denote N(s) = b0 +b1s+ · · ·+
bn−rsn−r the not Hurwitz polynomial identifying the zeroes of 4.13.Consider the

maximal factorization of N(s) = N+(s)N−(s) with

Ni(s) = bi0 + bi1 + · · ·+ bn−rin−ri , i = 1, 2 (4.14)

such that N−(s) is Hurwitz polynomial of degree n−r̄ and introduce C̄ = (b̄0 . . . b̄m2 0...0).

Then DDP-S admits a solution for the system 4.13 for all P verifying

ImP⊂Vs (4.15)

with Vs⊂V ∗ , V ∗ being the the maximal (A,B) invariant distribution and , for

r̄ = n−m2

Vs = Ker




C̄

C̄A
...

C̄Ar̄−1


 (4.16)

Proof: The proof is straight forward by showing that Vs⊂V ∗⊂KerC.To this
end, one exploit the deferential relation y = N+(d)ȳ by deducing

y = Cx = N+(d)C̄x = b+0 C̄x+ b+1 C̄Ax+ · · ·+ b+r̄−rC̄A
r̄−rx

ẏ = CAx = Ṅ+(d)C̄x = b+0 C̄Ax+ b+1 C̄A
2x+ · · ·+ b+r̄−rC̄A

r̄−r+1x

...

yr−1 = CAr−1x = b+0 C̄A
r−1x+ · · ·+ b+r̄−rC̄A

r̄−1x

(4.17)
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for r̄ ≤ r by construction. As consequence , one gets



C

CA
...

CAr−1


 =




b+0 b+1 . . . b+r̄−r 0 . . . 0

0 b+0 . . . b+r̄−r−1 b+r̄−r . . . 0

0 0 . . . ∗ ∗ . . . b+r̄−r







C̄

C̄A
...

C̄Ar̄−1


 (4.18)

so getting Vs ≡ KerC̄⊂KerC ≡ V ∗. As a consequence, one gets that Vs⊂KerC
so getting that all the disturbances that can be made independent on the output
are such that ImP⊂Vs
Remark 4.4 From the result above, it is clear that the problem is solvable if s ∈ Cs.t.N(s) = 0 ⊂
C+ that is whenever the system 4.13 is not partially minimum phase and only the

trivial factorization holds with N−(s) = 1.This pathology also embeds the case

r = n− 1 corresponding to the presence of only one zero in 4.13 that is on the right

hand side of the complex plane

Remark 4.5 The previous results shows that whenever 4.13 is partially minimum

phase and DDP-S is solvable, the dimension of the range of the disturbances which

can be decoupled under feedback while guaranteeing stability is denuclearising with

respect to the standard DDP problem as dimVs ≤ dimV ∗.This is due to the fact that

one is con straining the disturbance to the act only on the solvable lower dimension

component of the zero dynamics associated to 4.13 and evolving according to the

zeroes de�ning the Hurwitz sub-polynomial N(s).

Remark 4.6 The previous results might be reformulated by stating that DDP-S for

4.13 is solvable if and only if the classical DDP is solvable for the minimum phase

system

ẋ = Ax+Bu+ Pw

y = C̄x.
(4.19)

deduced from 4.13 and having input- output behaviour transfer function W−(s) =
N−(s)
D(s)

If DDP-S is solvable for 4.13 , then the disturbance output decoupling feedback
is given by

Corollary 4.1

ū =
v − C̄Ar̄x
C̄Ar̄−1

Bx (4.20)

Proof: First,introduce the coordinate transformation

(
ζ

η

)
=




C̄

C̄A
...

C̄Ar̄−1

T2



x, zeta = col(ζ1, ...., ζr̄) (4.21)
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with T2 such that T2B = 0. By exploiting the de�rential relation

y = N+(d)ȳ (4.22)

with, in the new coordinates ȳ = (10)ζ and that dζi = ζ̇i = ζi+1 for all i =

1, ..., r̄ − r, the system 4.13 under the feedback 4.20 gets the form

ζ̇ = Âζ + B̂v

η̇ = Q̄η + R̄ζ + P̂w

y = Ĉζ.

(4.23)

with Ĉ = (b−0 ....b
−
r̄−r0) clearly underlying that the the disturbance decoupling

problem is solved .As for as the stability is concerned , it results that by constructing
, σ(Q̄) ≡ s ∈ Cs.t.N−(s) = 0 ∈ C− so implying that the unobservable dynamics
4.23 are asymptotically stable.

4.4 Disturbance decoupling with stability for nonlinear

system

In what follows we show how the disturbance decoupling problem can be solved for
a class of nonlinear systems.
Let us consider the SISO nonlinear system on the form:

ΣNL∗

{
ż = f(z) + g(z))u+ p(z)w

y = Cz.
(4.24)

with x ∈ Rn, u, y, w ∈ Rand x = 0 being the equilibrium point (i.e., f(0) = 0).
The system has a well de�ne relative degree r ≤ n.The analysis of the problem is
carried out under the following assumptions

1 the vector �eld p̃(x) being such that LpL
j
fh(x) = 0 in a neighbourhood of the

origin.

2 The system is non minimum phase.

3 The system is Fully Feedback Linearizable when p(x) = 0

Remark 4.7 Along the lines of chapter 3, we assume the LTM associated to 4.24

is in the controllable canonical form.If this is not the case , we introduce coordinate

change that puts the linear part of the system into controllable form

z = Mx, , B =
(
γ> (γA)> . . . (γAn−1)>

)>
(4.25)

where γ denotes the last row of the inverse of the controllability matrix R associated

to the couple (A,B).
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In the new coordinates, ΣNL is transformed into

ΣNL

{
ẋ = f̃(x) + g̃(x)u+ ˜p(x)w

y = h(x) = Cx.
(4.26)

where f̃(z) = Mf̃(M−1z), g̃(z) = Mg̃M−1z), p̃(z) = Mp(M−1z). The LTM at
the origin of the nonlinear system ΣNL∗ is given by

ΣL

{
ż = Acz +Bcu+Dcw

y = Ccz
(4.27)

The system has relative degree r̂ coinciding, at least locally, with r and is partially
minimum phase.

Lemma 4.1 Consider the nonlinear system (4.24) and let its LTM at the origin

(4.27) be non minimum phase with relative degree r.Denote byN(s) = b0 + b1s +

. . . bn−rsn−r the not Hurwitz polynomial identifying the zeros of the LTM of (4.26)

at the origin. Consider the maximal factorization of N(s) = N+(s)N−(s)

Nj(s) = bj0 + · · ·+ bn−rjs
n−rj , j = 1, 2.

such that N2(s) = N−(s)is a Hurwitz polynomial of degree n− r̄. Then, the system

ẋ = f(x)+g(x)u+p(x)w, ȳ = C̄. where C̄x = [b0, . . . , bn−r̄] has relative degreer̄ ≥ r
and is locally minimum phase

Lemma 4.2 Consider the nonlinear dynamics

ẋ = f(x) + g(x)u+ p(x)w (4.28)

ȳ = C̄x (4.29)

with relative degree r̄ 6 n and being locally minimum phase.

Then, the DDP problem admits a solution with stability if rw ≥ r̄ with rw such that

LpL
i
f h̄(x) = 0, i = 0, ..., rw − 2 (4.30)

LpL
rw−1
f h̄(x) 6= 0. (4.31)

Accordingly , the feedback solving the problem is given by

u =
1

LgL
r̄−1
f h̄(x)

(v − Lr̄f )h̄(x) (4.32)

Proof: To see the result one set

(
ζ

η

)
=




h̄(x)

Lr̄f h̄(x)

vdots

Lr̄−1
f h̄(x)

φ2(x)




(4.33)
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with Lgφ2(x) = 0 so getting

ζ̇ = Âζ + B̂(a(ζ, η) + b(ζ, η)u) (4.34)

η̇ = q(ζ, η) + ϕ(ζ, η)w (4.35)

ȳ = ζ1 (4.36)

where y − w are decoupled.As far as stability of the zero dynamics is concerned,
following line of chapter 3, one gets

σ(q) = s ∈ Cs.t.N−(s) = 0 ⊂ C−, q =
∂q

∂η
|(q,0) (4.37)

Theorem 4.2 Consider the nonlinear system (4.24) and suppose that its LTM at

the origin 4.27 is controllable and non minimum phase with relative degree r. De�ne

the dummy output ȳ = C̄x as in Lemma 4.1 and the state transformation ??.If

rw ≥ r then DDP is solvable for (4.24)with stability. By applying the coordinate

transformation 4.33 to 4.24 one gets

ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u) (4.38)

η̇ = q(ζ, η) + v(ζ, η)w (4.39)

y = C+ζ. (4.40)

with C+ = [b+0 , ....., b
+
r̄−r0] being the co�cient of C+. Thus , under (4.32) one

obtains (4.34,4.35) with y = C+ζ and thus the result

Remark 4.8 Given nonlinear feedback linearizable input a�ne dynamics with lin-

ear output map as inΣNL,under a static feedback ū∗ any perturbation satisfying

p̃ ⊂ ker
{
C̄x, . . . , dLr̄−1

f̃
C̄x
}

(4.41)

can be decoupled.

Remark 4.9 If the disturbance is measurable then decoupling of the output from

the disturbance is possible if and only if

p(x) ⊂ Ω⊥ + span {g(x)} in a neighbour of the origin (4.42)

Ω = span
{
C̄x, . . . , dLr̄−1

f̃
C̄x
}

(4.43)

and Ω⊥ being the orthogonal distribution to Ω.

4.5 Disturbance Decoupling problem with stability un-

der sampling

In this section we address the Disturbance decoupling problem for 4.24 with stability
and under sampling.First the problem is investigated in the linear context.We shall
see require w(t) = w(k) as t ∈ [kT, (k + 1)T [ and being measured.
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4.5.1 The Linear Tangent Invarient under sampling

4.5.1.1 Single Rate Design

DDP with stability admits a solution under SR sampling if the continuous-time solu-
tion exists. Moreover the relative degree r = 1 and the original system is minimum
phase itself.
In case it is partially minimum phase, Multi rate is always needed to preserve stabil-
ity of the internal dynamics under the action of perturbation.To see this, one should
notice that whenever a system is partially minimum phase one solves the problem
through an auxiliary output with respect to the relative degree r̄ is increased so
getting r̄ ≥ 1.Accordingly, we have shown in chapter 2 that multi rate sampling of
order r̄ is needed to preserve the requires properties under sampling because of the
rise of the sampling zeroes.This prevent from the possibility of solving the DDP via
Single Rate sampling.

4.5.1.2 Multi Rate Design

Consider the multi rate sampled- data equivalent model to (4.24)model as provided
by

xk+1 = ATx(k) +Bδ
mu+DTwk (4.44)

with

AT = eAT , Bδ
m = [A(r̄−1)δBδ, . . . , Bδ] (4.45)

DT =

∫ T

0
eAδdδD, quadBδ =

∫ δ

0
eAδdδB

In what follows ,we show how multirate feedback can be exploited and combined
with the arguments of the 4.1 to solve DDP with stability under sampling.This is
achieved by considering the sampled-data dynamics (4.44) with augmented dummy
output Ȳ = Γ(x) composed of Ȳk = C̄x and its �rst r̄ − 1 derivatives; namely, we
consider

xk+1 = Aδxk +Bδ
muk +Dδwk, Ȳk = Γ(x) (4.46)

with δ = T
r̄ and output vector

Γx =




C̄

C̄A

. . .

C̄Ar̄−1


x

Remark 4.10 It can be easily veri�ed from the de�nition of the relative degree that

the row vector C̄, . . . , C̄Ar̄−1 are linearly independent and hence

ρ(Γ) = r̄

where ρ denotes the rank
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Lemma 4.3 Let (4.24)verify proposition 4.1 and consider the MR a sample data

model in the form(4.44) to (4.24).Introduce ȳk = Γxk as in (4.3) verifying

Yk+1 = ΓAδxk + Υuk + ΓDδwk (4.47)

where

Υ =




C̄A(r̄−1)δBδ . . . C̄Bδ

...

C̄Ar̄−1A(r̄−1)δBδ . . . C̄Ar̄−1Bδ




is the decoupling matrix.Then the matrix Υ is invertible and there exists a feedback

law that solves the DDP with stability and under sampling.Such a feedback takes the

form

uk = (Υ)−1(−Γ(Aδxk +Dδwk) + vk) (4.48)

Theorem 4.3 Consider the LTI in the form of (4.27) under the hypotheses of

Theorem4.1 with multi-rate equivalent model of order r̄ provided by

xk+1 = Aδx(k) + Mδu +Dδwk, Ȳk = Γ(x) (4.49)

Then the feedback (4.48) solves the sample data disturbance decoupling problem with

stability of the internal dynamics if and only if the decoupling matrix Υ is nonsin-

gular and there is exists a feedback control law that solves the problem in continuous

time .

Remark 4.11 Simple computations show that the transmission zeros as T → 0

coincide with the zeros of the continuous time system

4.6 DDP under sampling for nonlinear systems

In this section we extend the previous result to the case of nonlinear systems which
are partially minimum phase.As in the linear case it intuitive to deduce that the
problem will admit a solution with stability under SR sampling if the original
continuous-time system is minimum phase and with relative degree r = 1.In any
other case Multi rate is necessary .
In what follows , we shall consider the dynamics (4.24)under the hypothesis of the-
orem 3.1 while considering the dummy output ȳ = C̄x with respect to which the
relative degree is r̄ for design purpose.

4.6.0.1 Multi Rate Sample Data Model of sampled data system under

disturbances and DDP stability under sampling

Consider the Multi Rate Sampled-data model to the dynamics (4.24)as

Σδ
D

{
xk+1 = F δ(xk, wk, u1k, ...., ur̄k)

y = H̄(xk)
(4.50)
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with δ = T
r̄ and

H̄(xk) =




h̄

Lf h̄
...

Lr̄−1
f h̄


 (4.51)

with h̄(x) = C̄x

Lemma 4.4 The sampled dynamics (F )δ admits the following exponential expan-

sion

(F )δ(xk, wk, u1k, ...., ur̄k) = eδLf (.)+δu1Lg(.)+δLp(.)wo . . . oeδLf (.)+δur̄Lg(.)+δLp(.)wxk

with δ = T
r̄ and can be expanded according to power of delta or according to the power

of the control tool.The dynamic (4.50)has relative degree r̄ = (1....1) with r̄δ = r̄.

Lemma 4.5 Consider the nonlinear system (4.24) under the hypotheses of Lemma

4.2 with multi-rate equivalent model of order r̄ provided by (4.50). Then, there exists

a unique solution

uT = γ(T, x,v, w) = (γ1(T, x,v, w) . . . γ r̄(δ, x,v, w))> (4.52)

to the equality

H̄(F T (xk, γ
1(T, xk,vk, wk), . . . , γ

r̄(δ, xk,vk, wk)) =

er̄T (Lf+γ(·,·,v)Lg+Lpw)H̄(x)
∣∣
xk

(4.53)

for any xk = x(kT ) and vk = v(kT ) := vk, vk = (vk, . . . , vk). Such a solution is in

the form of a series expansion in powers of T around the continuous-time γ(x,w, v);

i.e., for i = 1, . . . , r̄

γi(T, x,v, w) = γ(x,v, w) +
∑

j≥1

T

(j + 1)!
γij(x,v,w). (4.54)

As a consequence, the feedback uTk = γ(T, xk,vk) solves the DDP with stability of

the internal dynamics.

The feedback (4.54) solution to (4.53) is aimed at matching , at each sampling
instant t = kT , the evolution of the output ȳ = h̄(x) and its r̄ − 1 derivative
under the continuous-time feedback

γ(x,w, v) =
1

LgL
r̄−1
f h̄

(v − Lr̄f h̄). (4.55)

γ(x,w, v) =
1

LgL
r̄−1
f h̄

(v − Lr̄f h̄). (4.56)

By construction , such a feedback ensures convergence at any t = kT of the
dynamics onto the stable zero dynamics associated to ȳ = h(x2).
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Theorem 4.4 Consider the nonlinear system (4.24) under the hypotheses of The-

orem 4.2 with multi-rate equivalent model of order r̄ provided by

xk+1 =F δ(xk, u1k, . . . , ur̄k, wk), yk =
(
C1 0

)
H2(xk) (4.57)

and let the feedback (4.52) be the unique solution to the equality (3.79). Then the

feedback uTk = γ(δ, xk,vk) ensures solves the DDP with stability.

4.6.1 Computation of Discrete time feedback design for the MR
system

The purpose of this section is provide computational facilities to de�ne the sampled
data feedback. The feedback uT comes in the form of a series expansion in power
of δ.Accordingly, computing an exact and closed form is not possible in general.
Still, one can exploit the power series form of (4.53) to deduce any term γij(x, v, w) in
(4.54). Through a constructive and iterative procedure by equating the terms with
the same power of δ and solving at each step j, a linear equation in the unknown
γij(x, v, w) i = 1, 2.For the sake of simplicity assume relative degree r = 1 of the
continuous time system (4.24) and the relative degree with respect to the dummy
output r̄ = 2 and for a small time interval δ = T

2 . In this case the left hand side
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rewrite as

e(Lf+u1Lg+Lpw)oe(Lf+u1Lg+Lpw)h̄x = h̄+ δLf h̄+
δ2

2
L2
f h̄+ · · ·+ u1(δLgh̄+

δ2

2
(LfLgh̄

+ LgLf h̄)) +
δ2

2
LpLf h̄ (4.58)

+ δLf h̄+ δ2L2
f h̄+

δ3

2
L3
f h̄+ · · ·+ u1(δ2LfLgh̄+

δ3

2
(L2

fLgh̄+ LfLgLf h̄)) +
δ3

2
LpL

2
f h̄

(4.59)

+
δ2

2
L2
f h̄+

δ3

2
L3
f h̄+

δ4

4
L4
f h̄+ · · ·+ u1(

δ3

2
L2
fLgh̄+

δ4

4
(L3

fLgh̄+ L2
fLgLf h̄)) +

δ4

4
LpL

3
f h̄

(4.60)

+ u2

[
δLgh̄+ δ2LgLf h̄+

δ3

2
LgL

2
f h̄+ · · ·+ u1(δ2Lgh̄+

δ3

2
(LgLfLgh̄+ L2

gLf h̄)) +
δ3

2
LgLpLf h̄w

(4.61)

+
δ2

2
LfLgh̄+

δ3

2
LfLgLf h̄+

δ4

4
L3
fLgh̄+

δ4

4
LfLgLpL

f h̄w (4.62)

+
δ2

2
LgLf h̄+

δ3

2
LgL

2
f h̄+

δ4

4
LgL

3
f h̄+ · · ·+ δ4

4
LgLpLf h̄w

]
+ w

[δ3

2
LpL

2
f h̄+ u1(δ2LpLgh̄

(4.63)

+
δ3

2
(LpLfLgh+ LpLgLf h̄(x) + w(

δ3

2
L2
pLf h̄) +

δ2

2
LfLph̄+

δ3

2
LfLpLf h̄

+ u1(
δ3

2
fLpLgh̄+

δ4

4
(LfLpLfLg + LfLpLfLgLf

]
(4.64)

= h̄+ 2δLf h̄) +
δ2

2
(4L2

f h̄) + u1[δLgh̄+
δ2

2
(3LfLgh̄+ LgLf h̄) +

δ3

3!
(6L2

fLgh̄+ 3LfLgLf h̄)]+

(4.65)

u2[δLgh̄+
δ2

2
(3LgLf h̄+ LfLgh̄) +

δ3

3!
(6LgL

2
f h̄+ 3LfLgLf h̄)] + [

δ2

2
LpLf h̄+

δ3

3!
(3lpL

2
fh+ 3LfLpLf h̄]

(4.66)

simultaneously we get

Lf h̄ = e(f+pw+u2g).e(f+pw+u1g)Lf ¯h(x)

with

e(f+u1g)Lf ¯h(x) = Lf h̄+ δL2
f h̄+

δ2

2
L3
f h̄+ · · ·+ u1(δLgLf h̄+

δ2

2
(LfLgLf h̄+ LgL

2
f h̄) + . . . )
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Lf h̄(xd(k + 2δ)) = Lf h̄+ δL2
f h̄+

δ2

2
L3
f h̄+ · · ·+ u1(δLgLf h̄+

δ2

2
(LfLgLf h̄+ LgL

2
f h̄)) +

δ2

2
LpL

2
f h̄w

+ δL2
f h̄+ δ2L3

f h̄+
δ3

2
L4
f h̄+ · · ·+ u1(δ2LfLgLf h̄+

δ3

2
(L2

fLgLf h̄+ LfLgL
2
f h̄)) +

δ3

2
LfLpL

2
f h̄w

+
δ2

2
L3
f h̄+

δ3

2
L4
f h̄+

δ4

4
L5
f h̄+ · · ·+ u1(

δ3

2
L2
fLgLf h̄+

δ4

4
(L3

fLgLf h̄+ L2
fLgL

2
f h̄)) +

δ4

4
L2
fLpL

2
f h̄w

+ u2

[
δLgLf h̄+ δ2LgL

2
f h̄+

δ3

2
LgL

3
f h̄+ · · ·+ u1(δ2LgLf h̄+

δ3

2
(LgLfLgLf h̄+ L2

gL
2
f h̄)) +

δ3

2
LgLpL

2
f h̄w

+
δ2

2
LfLgLf h̄+

δ3

2
LfLgL

2
f h̄+

δ4

4
L3
fLgLf h̄+ +

δ4

4
LfLgLpL

2
f h̄w + . . .

+
δ2

2
LgL

2
f h̄+

δ3

2
LgL

3
f h̄+

δ4

4
LgL

4
f h̄+

δ4

4
LgLfLpL

2
f h̄w + . . .

]

+ w
[
u1(δ2LpLgLf h̄+

δ3

2
(LpLgL

2
f h̄+ LpLfLgLf h̄) +

δ2

2
L2
pL

2
f h̄

+ (
δ2

2
LfLpLf h̄+

δ3

2
LfLpL

2
f h̄+

δ3

2
LfLpLgLf + . . . )u1 + . . .

]

= Lf h̄+ δ(2L2
f h̄) +

δ2

2
(4L3

f h̄) + u1[δLgLf h̄+
δ2

2
(3LfLgLf h̄+ LgL

2
f h̄) +

δ3

3!
(6L2

fLgLf h̄+ 3LfLgL
2
f h̄)]+

u2[δLgLf h̄+
δ2

2
(3LgL

2
f h̄+ LfLgLf h̄) +

δ3

3!
(6LgL

3
f h̄+ 3LfLgL

2
f h̄)] +

δ2

2
LpLf h̄w +

δ3

3!
(LfLpLf h̄)w

and the output rewrites as

H̄ ≈=

(
h̄

Lf h̄

)
+ δ

(
2Lf h̄

2L2
f h̄

)
+
δ2

2

(
4L2

f h̄

4L3
f h̄

)
+
[
δ

(
Lgh̄ Lgh̄

LgLf h̄ LgLf h̄

)
+ (4.67)

δ2

2

(
3LfLgh̄+ LgLf h̄ 3LgLf h̄+ LfLgh̄

3LfLgLf h̄+ LgL
2
f h̄ 3LgL

2
f h̄+ LfLgLf h̄

)
+
δ3

3!

(
6L2

fLgh̄+ 3LfLgLf h̄ 6LgL
2
f h̄+ 3LfLgLf h̄

6L2
fLgLf h̄+ 3LfLgL

2
f h̄ 6LgL

3
f h̄+ 3LfLgL

2
f h̄

)]
u+ γpδkw

(4.68)

with

γ =




h̄(x)
...

Lr̄−1
f h̄(x)




Denoting Bm(δ, δ2, δ3) the approximate decoupling matrix

Bm(δ, δ2, δ3) = δ

(
Lgh̄ Lgh̄

LgLf h̄ LgLf h̄

)
+
δ2

2

(
3LfLgh̄+ LgLf h̄ 3LgLf h̄+ LfLgh̄

3LfLgLf h̄+ LgL
2
f h̄ 3LgL

2
f h̄+ LfLgLf h̄

)
+

δ3

3!

(
6L2

fLgh̄+ 3LfLgLf h̄ 6LgL
2
f h̄+ 3LfLgLf h̄

6L2
fLgLf h̄+ 3LfLgL

2
f h̄ 6LgL

3
f h̄+ 3LfLgL

2
f h̄

)

Remark 4.12 The existence of the solution of the previous equation derives from
the implicit function theorem if and only if the decoupling matrix is invertible.

Ψ =
(

Ψ1 Ψ2
Ψ3 Ψ4

)
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where

Ψ1 = δLgh̄+
3δ2

2
LfLgh̄+

δ2

2
LgLf h̄+ δ3L2

fLgh̄+
δ3

2
LfLgLf h̄

Ψ2 = δLgh̄+ 3
δ2

2
LgLf h̄+

δ2

2
LfLgh̄+ δ3LgL

2
f h̄+

δ3

2
LfLgLf h̄

Ψ3 = δLgLf h̄+
δ2

2
(3LfLgLf h̄+ LgL

2
f h̄) +

δ3

3!
(6L2

fLgLf h̄+ 3LfLgL
2
f h̄)

Ψ4 = δLgLf h̄+
δ2

2
(3LgL

2
f h̄+ LfLgLf h̄) +

δ3

3!
(6LgL

3
f h̄+ 3LfLgL

2
f h̄)

is nonsingular

As for the left hand RHS of (4.53) is concerned one gets

H̄ + 2δ(Lf + ucLg + wLp)H̄ +
(2δ)2

2
(Lf + ucLg + wLp)

2H̄ (4.69)

= H̄ + 2δ(Lf + ucLg + Lpw)H̄ +
(2δ)2

2
(L2

f + uc(LfLg + LgLf ) (4.70)

+ u̇cLg + u2
cL

2
g + w(LfLp + LpLf ) + w2L2

p + ucw(LpLf + LfLp)H̄ (4.71)

with

H̄ =

(
h̄

Lf h̄

)
(4.72)

Iteration can be made similarly to the left hand side.Now let us assume that the
starting from the SISO system in the form of (4.24) and under the hypothesis of
lemma 4.1 there is exists a continuous time feedback control law

uc =
1

LgLf h̄(x)
(−L2

fh(x)− Lpwh(x) + v) = α(x) + β(x) (4.73)

which leads to

¨̄y = v (4.74)

The case of vk+ 1
2

= vk is chosen in order to simplify the computations .The MR
sampled data model (4.50) is speci�ed as

xk+1 = F δ(xk, u1k, u2k, wk)

y1k = h̄(x) = C̄x

y2k = Lf h̄(x) = Lf C̄x.

(4.75)

with

F δ(xk, u1k, u2k, wk) = eδ(Lf+Lpw+u1Lg) ◦ eδ(Lf+Lpw+u2Lg)(xk) (4.76)
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The multi rate sampled data feedback is given byγ(T, x, v, w)

γ(T, x, v, w) = (γ1(T, x, v, w), γ1(T, x, v, w) (4.77)

with (4.78)

γj(T, xk, vk, wk) = γj0(xk, vk, wk) + Σi>1T
iγji (xk, vk, wk). (4.79)

substituting (4.79) into (4.53) and exploiting the parametrization by T one get

h̄oF̃ δ(xk, u1k, u2k, wk) = h̄(xk) + TLf h̄(xk) +
1

2
δ2(L2

f + uLgLf + wLpLf )h̄(x) + . . .

(4.80)

Note that under the assumption that the problem is solvable in continuous-time and
the relative degree with respect to the dummy output rw = 2 i.e. Lph̄ = LpLf h̄ = 0.
By substituting and equating equation we get

γ1
0(xk, vk, wk) = γ2

d0(xk, vk, wk) = uc(xk, vk) (4.81)

γ1
0(xk, vk, wk) =

1

6
u̇c (4.82)

γ2
0(xk, vk, wk) =

5

6
üc (4.83)

that is

γ1(xk, vk, wk) = uc(xk, vk, wk) +
1

6
T u̇c + . . . (4.84)

γ2(xk, vk, wk) = uc(xk, vk) +
5

6
T u̇c + . . . (4.85)

4.7 Example

Recalling the TORA example described in chapter 3

ẋ1 = x2

ẋ2 = −x1 + ε sinx3

ẋ3 = x4

ẋ4 =
ε cosx3(x1 − εx2

4 sinx3) + u

1− ε2 cos2 x3

y =
(

2(ε2−1)
ε 0 1− ε2 1− ε2

)
x

(4.86)

In this context consider a disturbance

p(x) =




2
ε (ε

2 − 1)

0

0

(ε2 − 1)






4.7. Example 77

considering the auxiliary output

y2 = (−1 10 0)Tx = (0− 2

ε
(ε2 − 1) (1− ε2)0)x (4.87)

where T is provided by

T = (ε2 − 1)




−1
ε 0 0 0

0 −1
ε 0 0

1
ε 0 −1 0

0 1
ε 0 −1


 (4.88)

It is a matter of computation to verify that with respect to the new output 4.87 the
system has relative degree r2 = 2 and is minimum phase with transfer function
of the corresponding LTM at the origin was provided by

w2(s) =
(s+ 1)2

s(1− ε2)s2 + 1)
(4.89)

Moreover, DDP with stability is solvable as the relative degree condition rw <

r2 > r is met so that the feedback being computed as

LgLfh2(x) =
ε2 − 1

ε2cos2(x3)− 1
(4.90)

L2
fh2(x) =

2x2(ε2 − 1)

ε
− 2x4cos(x3)(ε2 − 1) +

εcos(x3)(ε2 − 1)(x1 − εsin(x3)(x2
4 + 1))

ε2cos(x3)2 − 1

(4.91)

ful�lls the requirement.Moreover, setting v = −k1h2(x) − k2Lfh2(x) one gets
y(t) → 0 as t → ∞ whenever k1, k2 > 0 To solve the problem under sampling
under sampling, the multirate feedback γ1(δ, x, w, v) was computed for p = 1 with

γ1
1(x,w, v) =

1

3
γ̇(x,w, v), γ2

1(x,w, v) =
5

3
γ̇(x,w, v)

Figure 4.1 to 4.2 depict simulations of the aforementioned situations under continu-
ous time feedback and the sample data feedback with one correcting term i.e p = 1

and di�erent values of the sampling period an di�erent simulating scenarios
It is clear from �gure 4.1 to 4.2 that in case of the continuous time scenario

that the pro boded feedback computed via partial dynamic inversion succeeded in
isolating the e�ect of the disturbance from the output for the original system as the
output goes to zero with an acceptable behaviour of the zero dynamics which is still
converging to origin despot the perturbation.
As far as the sampled-data system is concerned,simulation underline that although
an approximated feedback is implemented in a notable improvement of the perform-
ance is achieved with respect to the mere emulation case which is failing to stabilize
the input output evolution T grows enough.
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Figure 4.1: δ = 0.2.

Figure 4.2: δ = 0.7 s

4.8 Conclusion

In this chapter , we introduce new conditions for characterizing all the disturbances
that can be locally decoupled from the output evolution of nonlinear systems have
been deduced by also requiring the preservation of the internal stability. The in-
troduced approach is based on a local factorization of the polynomial de�ning the
zeros of the corresponding linear tangent model at the origin and , thus on partially
dynamic cancellation.Future works are towards the extension of these argument to
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the multi input- multi output case and to a global characterization of the results
possibly combined with input -output stability and related results.
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5.1 Introduction

In this chapter we investigate the e�ectiveness of nonlinear control-based model and
the sampled-data design through power system application.In particular we study
the model of a wind turbine system fed by a doubly fed induction generator and
we track Maximum Power Point. (MPPT) extracts maximum power from the wind
turbine from cut-in to rated wind velocity . Till date, many algorithms for MPPT
have been reported, each with its own features.Through the development of this
Two cases studied we aim to introduce a solution to this problem.
In the �rst case we focus on the study of the di�erent models and control design
. Three models have been used :the �rst one is the linearized state-space model



82

Chapter 5. Nonlinear and under sampling control for a wind system

fed by a Doubly Fed Induction Generator

followed by a classical PID controller while the second one is the fuzzy logic control-
ler.Finally a nonlinear model based controller is used.Moreover we have used the Ar-
ti�cial Immunity controller as a learning algorithm to collaborate with the nonlinear
model.Through the chapter we will see that the best performance in terms of wind
speed variation i.e, (steeling time, transient response, maximum over shoot) gener-
ated from the nonlinear based model supported by the arti�cial intelligent.Roughly,
speaking the idea that the future of arti�cial intelligence lies in the sphere of non-
linear dynamics and chaos that is absolutely critical to understanding and modeling
cognition processes.
In the other hand when the system is connected to grid there appear the need to use
digital control.The development of Phasor measurement Unit and the availability of
modern communication beside the fact that transferring power in DC is much more
cheaper than AC all encourage the need to study solution to this problem in digital
control.Figure 5.1,5.2 illustrate the operation of wind turbine when its connected to
grid.As we have state in the introduction there are three designs can be applied in
this concept.From our point of view direct implementation of the continuous- time
model (the emulation design) does not always provide better results especially if
one consider the transient behaviour.As for the Discrete- time design we will still
faces di�culties in de�ning the exact model.A case study for the DFIG is developed
through setting power factor into one so that we have only the direct axis frame.In
this case the system is transformed from MIMO square system into SISO one.The
sampled-data design has been used and a comparison have been made with respect
to both emulation design and the sample data.We will see that the sampled-data
provide better results in tracking the MPP.

Figure 5.1: Wind system operation.
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Figure 5.2: Three phase synchronous generator.

The arti�cial intelligent controller that is build on the bases of nonlinear based
control design for a doubly fed induction generator DFIG.The controller consists of
two clusters.The �rst part is developed based on a novel Arti�cial Immunity sensor-
less Maximum Power Point Tracking (AI MPPT) technique.To build the AI MPPT,
an Arti�cial Immunity System Estimator (AISE) based on arti�cial immunity tech-
nique and a MRAS (model reference adaptive system) are used to estimate the
Doubly Fed Induction Generator (DFIG) rotor speed. Then the AI MPPT is ap-
plied to provide the reference electromagnetic torque. Subsequently, the wind power
is approximated from the data of the estimated generator speed and the reference
electromagnetic torque.Finally, the wind speed is determined by the mechanical
power.The second cluster is designed using a nonlinear Asymptotic output tracking
technique.The purpose of this control is to track the reference signal of the ro-
tor direct and quadratic current respectively.Thus, assigning speci�c zeros through
feedback ensure the reproduction of an output that converges asymptotically to a
required reference rotor current.The reference signal is generated from the previous
controller that is based on the arti�cial immunity technique.The introduced ap-
proach method has been applied to a wind turbine generator driving a 3.7 KW.The
MAT LAB program is used to simulate and test the performance of the proposed
control methods.The results are featured to show the e�ectiveness of the proposed
technique.

5.2 modeling

This section address the modeling of Doubly Fed Induction Generator (DFIG) and
wind turbine model respectively.

5.2.1 Doubly Fed Induction Generator model

In order to simplify the Doubly Fed Induction Generator (DFIG) model ,the follow-
ing assumption is assumed

1 The �ow distribution is sinusoidal.

2 The air-gap is constant.
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3 The in�uences of the heating and the skin e�ect are not taken into account.

4 The saturation of the magnetic circuit is negligible.

The DFIG modelling with respect to a rotor �ux orianted reference frame will
be expressed as:

5.2.1.1 Stator Equations

Vsd = Rsisd +
d

dt
λsd − λsqWs (5.1)

Vsq = Rsisq +
d

dt
λsq + λsdWs (5.2)

λsd = Lsisd +Mird (5.3)

λsq = Lsisq +Mirq (5.4)

5.2.1.2 Rotor Equations

Vrd = Rrird +
d

dt
λrd − λrqWr (5.5)

Vrq = Rrirq +
d

dt
λrq + λrdWr (5.6)

λrd = Lrird +Misd (5.7)

λrq = Lrirq +Misq (5.8)

(5.9)

Where, Rs and Rr are, respectively, the stator and rotor phase resistances,
Ls, Lr,MStator and rotor per phase winding and magnetizing inductances and
Ws,Wrare the stator and rotor speed of the synchronous reference frame.The direct
and quadratic stator and rotor currents are respectively represented asisd, isq, ird and
irq.The voltage of the stator side for both direct and quadratic de�ned as Vsd, Vsq
while the voltage of the rotor direct and quadratic represented as Vrd, Vrd.The stator-
�ux linkage for direct and quadratic frame are given byλsd, λsd.The λrd, λrq referred
to the rotor �ux for both the direct and quadratic respectively.Finally g is the ratio
of the gear box.
The dynamics of the mechanical part of the wind turbine are represented by

J
dW

dt
= cm − ce − cfW (5.10)

ce = p
M

Ls
(λsqird − λsdirq) (5.11)

where J is the moment of inertia while ce, cm represent the electromagnetic
torque,mechanical torque respectively and cf is the friction coe�cient. The sys-
tem now will be modeled with respect to the rotor side direct and quadratic (d,q)
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synchronous reference frame.The input in such case are irdandirq.
First the system expression w.r.to d axis frame

vrd = Rrird +
d

dt
(Lrird +Misd)− (Lrirq +Misq)Wr (5.12)

= Rrird + Lr i̇rd(1−
M2

LsLr
)− LrWr(1−

M2

LsLr
)irq (5.13)

= Rrird + LrΛi̇rd − LrΛWrirq (5.14)

˙ird =
1

LrΛ
vrd −

Rr
LrΛ

ird + wrirq (5.15)

˙ird =
1

LrΛ
vrd −

1

T Λ
ird + wrirq (5.16)

with Λ = (1− M2

LsLr
),T = Rr

Lr
.

Now consider q axis frame

Vrq = Rrirq +
d

dt
λrq + λrdWr (5.17)

= Rrirq + LrΛi̇rq − LrΛWrird (5.18)

i̇rq =
1

LrΛ
vrq −

1

T Λ
irq − wrird (5.19)

Finally we obtain the speed from the torque equation as: Ẇ = −Cf
J W−pMLs (λsqird−

λsdirq).

5.2.2 Wind turbine model

For a given wind speed vw, the mechanical power Pmgenerated by the turbine is
expressed as

pm =
1

2
ρAcp(λ, β)v3

m (5.20)

where ρ is the density of the air in kg/m3; AπR2 is the area swept by blade in m2,
and R the radius of the blade in m. The aerodynamic model of a wind turbine can
be determined by the Cp(λ, β)curves. Cp is the power coe�cient, which is a function
of both tip-speed-ratio λ and the blade pitch angleβ. The tip-speed ratio can be
determine fromλ = ωrR

vm
whereωr represents the rotational speed of the wind turbine

in rad/sec.The optimal DFIG speed to achieve a maximum wind power tracking is
given by:

ω∗r =
λoptv̂w
R

(5.21)

Thev̂w is the estimated wind speed and λopt is the optimal tip-speed ratio. The
power coe�cient is non-dimensional term and is modeled by the following equation

cp = 0.398 sin(
π(λ− 3)

15− .3β − .0039(λ− 2)β (5.22)



86

Chapter 5. Nonlinear and under sampling control for a wind system

fed by a Doubly Fed Induction Generator

If the wind speed is below its rated value, the WTG operates in the variable speed
mode, and Cp is kept at its maximum value.In this operating mode, the pitch control
is deactivated. If the wind speed is above the rated value, the pitch control is
activated in order to reduce the generated mechanical power.

5.3 DFIG Control strategy

The proposed technique will only consider the control of the Rotor Side Converter
of the Doubly-Fed Induction Generator.The overall scheme of the RSC are shown
in Figure1.The control of the generator rotor speedω∗m and the reactive power Qs is
independently achieved by means of current regulations.As one can see from Figure1
there are two control loops.The outer loop control is realized using the Arti�cial
Immunity System (AIS)technique(detailed illustration is provided in section 4).The
outer loop control the rotor speed and the stator reactive power used to generate
the reference signal of direct and quadratic current component. As for the inner
loop it controls the direct and quadratic rotor axis current .The nonlinear control
design will be applied in the inner loop.The control will be realized in the rotor
reference frame so the d axis regulate the reactive power and the q axis regulate
the active power.In general, the system will produce an output that, regardless of
the initial state of the system will converge asymptotically to the rotor reference
current signal.The nonlinear input output decoupling with tracking is illustrated
below. In order to achieve a power decoupling control, the vector control strategy
was adopted, with stator �eld orientation. Reactive power Qs and generator speed
are respectively proportional to rotor currents idr and iqr.

5.3.1 Decoupling and Asymptotic tracking by static feedback for
the DFIG

The nonlinear model of the DFIG may be expressed as

ΣC :





ẋ = f(x) + g1(x)u1 + g2(x)u2, x ∈ Rn, u ∈ Rn

y =

(
h1(x)

h2(x)

)
=

(
ird

irq

)
(5.23)

where, x = [x1 x2 x3]T = [ird irq Wr]
T ,u = [u1 u2]T = [vrd vrq]

T .The
functionf(x), g(x) are smooth vector �elds and the output function h(x) is a
smooth scalar function.

f(x) =




− 1
T Λx1 + x2x3

− 1
T Λx2 − x2x3

−Cf
J x3 − pM

Ls
(λsqx1 − λsdx2)


 (5.24)

g1(x) =




1
T Λ

0

0


 , g2(x) =




0
1
T Λ

0


 . (5.25)
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Figure 5.3: Block diagram of the overall RSC control scheme

Remark 5.1 According to the previous results obtained by isidori, A multi variable
nonlinear system in the form of (5.23) has a relative degreer1, . . . , rmat point x

0 if
LgjL

k
fhi(x) = 0 for all1 6 j 6 m, for all 1 6 i 6 m,for all k 6 ri − 1, and for all

neighbour ofx0.

The system has a de�ned relative degree r = 2.The relative degree with respect to
the �rst and the second input are r1 = 1, r2 = 1 respectively. Now we compute the
lie derivative of the output function

Lg1h1(x) =
1

T Λ
, Lg2h2(x) = 0 (5.26)

Lg1h2(x) = 0, Lg2h2(x) =
1

T Λ
(5.27)

Since the relative degree r1 = 1, r2 = 1 the decoupling matrix takes the form

M =

(
Lg1L

r1−1
f h1(x) Lg2L

r2−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x)

)
=

(
1
T Λ 0

0 1
T Λ

)
(5.28)

Recalling from the non interacting control theory if the decoupling matrix is nonsin-
gular then there is exists a static feedback control law in the form of

u = α(x) + β(x)w (5.29)
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that solve the problem with

α(x) = −M−1(x)

(
Lr1f h1(x)

Lr2f h2(x)

)
=

(
x1 − T Λx2x3

x2 + T Λx2x3

)
(5.30)

and

β(x) = M−1(x) =
1

(T Λ)
I (5.31)

where I is the identity matrix. The imposition of the feedback yields a system
characterized by

żj,1 = zj,2, . . . , żj,rj−1 = zj,rj (5.32)

żj,rj = wi (5.33)

η̇ = q(z, η) + p(z, η)w (5.34)

yj = zj,1 ∀j = 1, 2 (5.35)

Remark 5.2 The zero dynamics of the system is described by

η̇ = q(0, η)− p(0, η)M−1(0, η)α(x) =
Cf
J
x2 (5.36)

which can verify that the system is exponentially globally stable

Choosing the external control in the form

w =

(
w1

w2

)
=

(−k1,1z11

−k2,1z21

)
(5.37)

one obtain the dynamics

żj,i = zj,i+1, ∀i = 1, . . . , rj−1 (5.38)

żj,rj = −kj, 1zj,1 + · · · − kj, rjzj,rj , ∀j = 1, 2 (5.39)

where the coe�cient kj, 1 de�ne Hurwitz polynomial.This property ensure the asymp-
totic output tracking of the required output behaviour.

5.4 AI MPPT algorithm

This section is dedicated to illustrate the novel of Arti�cial Immunity technique
maximum tracking technique
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5.4.1 Wind speed estimation

The traditional way of calculating the wind speed can be carried out using the data
of wind turbine power,tip speed ratio and the pitch angle .A lookup table can be used
to implement the inverse function.Nevertheless this method requires much memory
space beside the calculation of the real-time nonlinear function roots may result
in a complex and time consuming calculation.A solution for this problem is to use
an Arti�cial Intelligent techniques, in particular Arti�cial Immunity (AI)technique
is known to be very powerful tool due to its robustness and reliability.The wind
estimation will be obtained through arti�cial immunity technique First the turbine
mechanical power is calculated from the estimated DFIG speed given by Arti�cial
Immunity System Estimator AISE .The reference electromagnetic torque of the
DFIG is determine from the rotor speed controller (Figure5.3)and by taking into
account power losses in the gearbox

W ∗m = gW ∗r (5.40)

where W ∗m is the reference rotational speed of DFIG in rad/sec, g is the ratio of
gearbox and W ∗r is the optimal speed of the turbine.

P̂m = T refem Ŵm + Ploss,GB (5.41)

The P̂mis the estimated mechanical power, T refem represent reference electromagnetic
torque, while Ŵm, Ploss,GB represents the estimated DFIG rotor's speed and the
power losses in the gearbox respectively.The wind speed estimated from the mech-
anical power provide the optimal DFIG rotor speed.

Figure 5.4: Arti�cial Immunity technique based wind speed estimation

5.4.2 DFIG rotor speed estimation

The proposed AISE observer consists of using an adaptive model and a reference
model (MARS) in the closed loop scheme with an Arti�cial Immunity System (AIS).
The AIS is used in order to reduce the error between the two models and provide the
appropriate estimated rotor speed.The concept of colona selection was used to build
the AI technique.The Colona System Pattern explains the immune response when an
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antigenic pattern is recognized by a given antibody. In the clonal selection algorithm,
the antigen (Ag) represents the problem to be solved (estimated speed), while the
antibodies (Abs) are the candidate solutions of the problem. The antibody-antigen
a�nity indicates as well the matching between the solution and the problem. The
algorithm performs the selection of antibodies based on a�nity either by matching
against an antigen pattern or by evaluating the pattern via an objective function.The
data used to train the system is based on the fuzzy technique applied in .The overall
AISE is shown in Figure5.4, 5.5 while the Arti�cial technique concept is shown
in Figure5.6.The Colona System Pattern explains the immune response when an
antigenic pattern is recognized by a given antibody. In the clonal selection algorithm,
the antigen (Ag) represents the problem to be optimized and its constraints, while
the antibodies (Abs) are the candidate solutions of the problem. The antibody-
antigen a�nity indicates as well the matching between the solution and the problem.
The algorithm performs the selection of antibodies based on matching against an
antigen pattern.The reference model is refereed in the previous section To achieve
a power decoupling control, the vector control strategy is adopted, with a stator
�eld orientation on the d-axis (λd is set to zero).As a consequence the q axis rotor
current can now be rewritten as function of the stator current.

irq =
Ls
M
isq (5.42)

The estimated rotor voltage used to build the adaptive model is de�ned as

v̂rq = −RrLs
M

isq + (M − LsLr
M

)
disq
dt

+ Ŵr((
Lr
M
λsd) + (M − LsLr

M
isd)) (5.43)

In this paper MRAS observer,Arti�cial Immunity system are used to estimate the
rotational speed of the DFIG ŵr After estimating the rotor electrical angular ve-
locity, the rotational speed of DFIG is estimated using the electrical frequency us
throughout PLL (phase-locked loop).

5.4.3 Proposed sensorless MPPT algorithm

A sensorless MPPT solution based on the Arti�cial Immunity technique is intro-
duced.The estimation of the overall power losses in the wind turbine generator and
the estimated wind speed (shown in Figure 5.7) are used to provide the optimal
value of power coe�cient.The structure of AI MPPT is show in �g(5.8).The data
used to train the system was provided from arti�cial fuzzy technique.The idea in
simple term is that the system collect the input data and deal with it as an anti-
gen.The data is then compared to the di�erent scenarios , when a match is detected
then the value of MPPT is determined. The main advantage of this sensor less
AI MPPT is that it reduces the size of PWM back-to-back converter while tracks
the maximum power point which reduces the overall system costs.Firstly, for the
adopted MPPT algorithm, the optimal value of the power coe�cient by taking into
account the power losses is expressed as

coptp =
plosses + prated

2ρAv̂m
3 (5.44)
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Figure 5.5: Arti�cial Immunity technique based wind speed estimation

Figure 5.6: Detailed model of arti�cial immunity technique based wind speed es-
timation
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where coptp represents the optimal power coe�cient to extract the maximum wind
power,v̂m is the estimated wind speed,prated is the the rated output power of DFIG.plosses
represents the estimated power losses.The AI MPPT algorithm calculate the value
of the optimal ratio λopt which provide the optimal value of the power coe�cient
according to the estimated wind speed.The mathematical representation of the Cp
curves is given cp = 0.398 sin(π(λ−3)

15−.3β − .0039(λ − 2)β while the optimal generator
reference speed W ∗r for maximum wind power tracking is determine from W ∗r =
λoptv̂w
R .The AI MPPT controller has been programmed in c code using an embed-

ded MAT LAB function in MATLAB SIMULINK software there for a hardware
implementation can be achieved using micro controller.

Figure 5.7: Calculation of optimal power coe�cient

Figure 5.8: Structure of the AI MPPT

5.5 simulation and Results

This section is dedicated to the evaluate the performance of the proposed technique.
The introduced approach method has been applied to a wind turbine generator driv-
ing a 3.7 kW. The MAT LAB program was used to emulate the wind variation and
to compare the proposed AI MPPT with the conventional and fuzzy logic methods.
It was also used to test the performance of the nonlinear technique. The parameter
used to evaluate the performance and the e�ectiveness of the proposed technique
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are shown in Table 1. The measured and the estimated wind speed are shown in
Figure 5.9. The performance of the AISE is shown in Figure 5.10. It can be no-
ticed that the tracking error less than 3%. The DFIG rotor speed estimation is
illustrated in Figure (5.11,5.12), where the direct and quadratic rotor current and
voltage of DFIG are shown respectively. To evaluate the ability of nonlinear tech-
nique to track the direct and quadratic rotor currents reference signal generated
from the AIS controller (Figure 5.11) .It can be noticed from Figure 5.12 that the
proposed control technique succeeded in reproducing a current signal that coincides
with the required reference signal in both cases. Figure 5.13 illustrates the wind
speed behavior at di�erent time (i.e usually called wind speed pro�le). In order to
analyse the e�ectivness of the proposed controller, a classical PID control is applied
and simulated via MAT LAB using the same parameters. Figure 5.14 depicts the
Maximum Power Point Tracking curves conducted from classical PID controller and
new AI MPPT. The results indicate a slower dynamic variation of the rotor speed in
the AI MPPT algorithm compared to the conventional one. The system behaviours
which are illustrated in Figures 5.9 -5.16, are detected versus time (in seconds).

Moreover the performance of the proposed technique was compared to the Fuzzy
logic controller . The fuzzy log model was also build on MATLAB . The results
shown in Figure 5.15 proves that the AI MPPT provide better performance than
both the Fuzzy Logic Controller and the conventional one. With the introduced
AI MPPT strategy, the slip which is proportional to the size of power converters is
reduced. Then, the power converters can be downsized without reducing the output
power which leads to the reduction in both the cost and maintenance of the overall
system by reducing the size of the back-to-back converters. Figure 5.16 shows the
comparison of the optimal tip speed ratio of both MPPT strategies. The execution
time generated from all techniques are illustrated in Table 2. Even though the
execution time of fuzzy controller and conventional methods are less than the AIS.
On the other hand the results generated from AIS in terms of tracking MPPT proved
to be smoother and more reliable. Finally, since the executed time is considered
su�cient, the c code used to build these models could be used in micro-controller
applied in hardware implementation.

Table.1 The DFIG data sheet
The DFIG data of a typical 3.7 Kw generator

Frame / power 3.7 Kw
E�ciency at rated speed appr. 97...97.5

Voltage 690 V
Locked rotor voltage approx. 1000 V
Operation speed range 1000...2000 rpm

Power factor p.f. 0.90 cap ...1.0
Rotor Resistance 1 K Ω
Rotor Inductance .2 mH
Stator Resistance 0.5 K Ω
Stator Inductance .001 mH
Mutual inductance Msr= 0.078 H
Number of poles 4
Inertia moment j=0.3125 Nms2
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Figure 5.9: Wind speed estimation.

Figure 5.10: DFIG rotor speed estimation performance using AISE

Table.2 MAT LAB execution time for di�erent techniques
Execution Time

Fuzzy MPPT controller 14.11 second
Conventional Method 10.333 second

AIS MPPT 11.66 second
AISE 13.22 second
ASO 2.72 second

Total AI time appr 23 second
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Figure 5.11: DFIG rotor current

Figure 5.12: ASO traking rotor current

5.5.1 Second Case

In this section we study the e�ect of the doubly fed induction generator when it's
connected to the grid
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Figure 5.13: Wind speed pro�le.

Figure 5.14: Comparison of DFIG rotor speed for classical and our design MPPT
strategies.
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Figure 5.15: Comparison of DFIG rotor speed for di�erent types of MPPT strategies.

Figure 5.16: Comparison of TSR for di�erent types of MPPT strategies.

5.5.2 Grid Side Converter command model

vfd = Rf ifd + Lf
d

dt
ifd −WrLf ifq − VGd (5.45)

vfq = Rf ifq + Lf
d

dt
ifq +WrLf ifd − VGq (5.46)

i̇fd =
1

Lf
(−Rf ifd + vfd +WrLf ifq + VGd) (5.47)

i̇fq =
1

Lf
(−Rf ifq + vfq −WrLf ifd + VGq) (5.48)
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Figure 5.17: The di�erence between DFIG output power in both standard and
MPPT cases.

with VGd, VGq indicated the input voltage of AC-DC converter in the direct and
quadrature frame.The electric network components of voltage and current on the
AC side for both the direct and quadrature frame are given by vfd, vfq, ifd and ifq
respectively, while the Lf referred to the inductance of the system. The active and
reactive power are expressed as:

P = VGdifd + VGqifq (5.49)

Q = VGqifq − VGdifd. (5.50)

Remark 5.3 Through setting the power factor to be 1 and neglecting the �lter losses
one can get the following expression VGd = Vfd = VG, VGq = Vfq = 0, leading the
active and reactive power to be Pf = VGifdandQf = −VGifq.

5.5.3 Non linear grid side converter model

Referring to 5.3 we know that through setting the power factor to unity we get
VGd = Vfd = VG, VGq = Vfq = 0.In such a case the system is converted into single
input-single output system in the form:

f(x) =



−Rf
Lf
x1 + x3x2

−Rf
Lf
x2 − x3x1

−fr
J x3 − p

Jφrdx2


 , g(x) =




2
Lf

0

0


 (5.51)

y = x1. (5.52)

where, x:state vector=[ifd ifq Wr]
T ,U = [u1 u2]T .
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5.5.4 Non linear modelling and Control of the direct axis control

In this part the focus will apply the asymptotic output tracking technique in the
direct axis reference �ltered current.The system has a well de�ne relative degree
r = 1. Consequently one can apply a coordinate transformation in the form Γ(x) =

x1

x3

x2


.

The state space description in the new coordinates




ż1 = a(z, η) + b(z, η)

η̇1 = fr
J η1 − p

Jφrdη2

η̇2 = −Rf
Lf
η1 − η2z1.

(5.53)

Remark 5.4 The system has a stable zero dynamics. In fact by calculating the
jacobian matrix Q which describes the linear approximation at η = 0 of the zero
dynamics of the original nonlinear system

Q =

(
fr
J − p

Jφrd
−Rf
Lf
b 0

)
(5.54)

we can see that the matrix is nonsingular.Hence the zero dynamics is asymptotically
stable.The stability of the zero dynamics will depend on the parameters of the DFIG.

The stator of the DFIG was directly connected to the grid while its rotor was
connected to it via a cascade (Recti�er, Inverter and Filter).In order to evaluate
the grid side model the power factor was set to one , thus only the direct rotor
current will be produced.The voltage on the output of the inverter will su�er from
disturbance signals formed by the original of frequencyf = 50Hz and other signals.A
passive R-L �lter was used to eliminate harmonics.The input in the form u =

1
a(z,η)(−b(z, η) + c0z1)) ensures the reproduction of an output ird that will track the
required reference signal.Figure depict 5.20 that the system nonlinear controller has
reproduced an output that will converge asymptotically to the required reference
signals and minimizes the e�ect of disturbance.

5.5.5 Feedback design under sampling

We now address the problem of preserving under system behaviour under sampling.In
fact, considering u(t) ∈ UT and y(t) = y(kT ) for t ∈ [kT, (k + 1)T [(T the sampling
period).Now we compute the single-rate sampled data equivalent model of (5.51)

xk+1 = F T (xk, uk) (5.55)

yk = h(xk) (5.56)

with xk := x(kT ), yk := y(kT ), uk := u(kT ), h(x) = ird and F T (xk, uk) = eT (Lf +

ukLg)xK .In this case we compute a digital control law

ud = u(kT ) + Tw1k (5.57)

which solve the problem
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5.5.6 Results of simulation

The wind speed and the DFIG are shown in �gures (5.18,5.19) while the rotor cur-
rent are shown in �gure(5.20).Figures (5.21,5.22) depict simulations of the aforemen-
tioned situations.It can be shown that sampled-data design provided better results
i.e, the variation is smoother and the transient time is less than the emulated one).In
addition the results of the the tip speed 5.5.6 has been reduced by more than 2%

compared with the emulation design which indicate that the size of power convert-
ers is reduced.Then, the power converters can be downsized without reducing the
output power.
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Figure 5.18: Wind speed estimation.

5.6 Conclusion

In this chapter we studied a wind speed estimation based on sensorless maximum
power extracting for a variable speed Wind Turbine Generator system .Two case
studies were developed.The �rst case study the wind turbine stands alone while the
second case study the system when the rotor side is connected to grid.The main
focus was to study the e�ect of modeling in the system.
The advanced control consists of two parts: the �rst part based on the Arti�cial
Immunity Maximum Power Point Technique AI MPPT while the second part is
based on the Input Output decoupling with asymptotic tracking technique. A signi-
�cant advantage of the proposed intelligent controller is that it generates the same
electrical power as the classical MPPT method, as it reduces the size of the power
converter. The nonlinear control technique ensures the reproduction of the rotor
direct and quadratic current that converge to the reference signal generated from
the Arti�cial Immunity controller.The wind speed estimation is executed through
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Figure 5.19: DFIG rotor speed estimation performance using AISE

15

10

5

0

-5

-10

-15

0                     20                    40                      60                    80                     100                     120                     140                    160                     180                     200                     240                                       

Times

Rotor
Current

A

I_rd

Figure 5.20: DFIG rotor current

two operations: First, the mechanical power is estimated via the DFIG rotor speed
adaptive model and the electromagnetic reference, then the Arti�cial Immunity con-
troller uses the estimated mechanical power values of the generated wind speed. The
MatLab program is used to simulate and test the proposed technique. The simula-
tion results of AI MPPT show that this approach has better performance compared
to the classical method and the fuzzy logic technique that uses both output power
and estimation of the overall power losses. The results of the nonlinear controller
succeeded in reproducing an output signal that coincides with the required refer-
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Figure 5.21: Nonlinar control applied to rotor current
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Figure 5.22: DFIG rotor speed for MPPT

ence signal. It was also shown that the system has a compelling performance under
disturbance such as the wind variation. The AI controller has been programmed in
c code using embedded MATLAB function in MATLAB (Simulink) software; there-
fore, the hardware implementation can be applied using the micro-controller. The
DSPIC33FJ64MC706A-I pic could be used to build the nonlinear controller and AI
MPPT.

The second case was developed on the base of wind system connected to grid.
The sampled -data control techniques discussed in this thesis have been used as a
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Figure 5.23: Tip Speed Ratio for MPPT .

suggested solution to the MPPT problem.The obtained results indicate better results
than the direct implementation of continuous time design.Further investigation could
be carried out in the future .
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Abstract—In this paper In this paper, a new technique based 
on Artificial Immunity System (AIS) technique has been 
developed to track Maximum Power Point (MPP). AIS system is 
implemented in a photovoltaic system that is subjected to 
variable temperature and insulation condition. The proposed 
novel is simulated using Mat Lab program. The results of 
simulation have been compared to those who are generated from 
Observation Controller. The proposed model shows promising 
results as it provide better accuracy comparing to classical 
model. 

Keywords—component; Artificial Immunity Technique;
solar energy; perturbation and Observation; Power based 
methods.

I. INTRODUCTION 

Due to several factors such as: instability in oil and gas 
prices. Also with the call of defenders of the environment to 
reduce pollution that cause global warming effect. The search 
for clean and reliable energy source becomes more essential.
Solar energy history spans from the 7th Century to today.
Even though multi mega watt Photovoltaic (PV) system start 
to be planted all over the world, the efficiency of energy 
conversion still consider insufficient. The output of (PV) cells 
various according to multiple conditions [1]. As shown from 
figure.1 the maximum efficiency can be obtained only at P 
max. 

Fig.1. PV and load characteristics [2] 

In order to increase this efficiency, MPPT controllers are used. 
Such controllers are becoming an essential element in PV 
systems. 

 A significant number of MPPT control schemes have been 
elaborated since the seventies. The most famous techniques 
are: a) Current feedback based methods b) Voltage feedback 
based methods c) perturbation and observation (P&O) [3].  

In this paper a new developed method based Artificial 
Immunity system (AIS) is used to determine MPPT point. 
Perturbation and observation (P&O) controllers used to 
provide experimental results. The results are used in building 
and testing the proposed model. The proposed model provides 
very powerful results and proves to be a reliable 

II. PERTURBATION AND OBSERVATION CONTROLLER 
The controller main function is to manipulate pulse width

modulation PWM duty cycle. According to the output PV 
curve the controller take the decision whether to increase or 
decrease PWM. Figure 2 explain the classical operation of 
perturbation and observation controller. It operates by 
perturbing the voltage of PV array. If the instant power P (k) is 
greater than the previous perturbation cycle P (k − 1), then the 
direction of perturbation is maintained otherwise it is reversed. 
This algorithm has two major disadvantages. First in case of 
small increment between two measurement points, the system 
will have very slow reaction. Second a larger increment will 
make the algorithm more reactive but inaccurate [4]. 

Fig.2 Flow chart of perturbation and observation (P&O) [3] 
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v (k) Instant Voltage

I (k) Instant Current

P (k) Instant power

The results obtained from the controller are going to 
provide reference to test proposed model.   

  

III. DEVELOPED MPPT CONTROLLER

The proposed model is build using Artificial Immunity 
System (AIS). Through the years many researchers have been 
developed in Expert System field.  

Artificial Neural Networks, fuzzy logic, genetic algorithms 
and immunity system are being widely used in industrial 
applications [5]-[9]. Artificial Immune Systems (AIS) are 
adaptive systems, inspired by theoretical immunology and 
observed immune function. It can be used in various 
applications such as: pattern recognition, self organization and 
anomaly detection [10]. 

The immunity system composed of a range of cells and 
molecules that work together with other systems .The idea 
based on when antigen enter body (it infect the cell, activation 
T lymphocytes this cause activation of B cell) it try to bind 
with B cell (antibody) through receptors with affinity (the 
strong affinity will be taken) then it form plasma cell that 
made colonel expansion and convert into memory cell, when 
the same antigen enter the body again memory cell will 
identify it , shown in Fig. 3). 

Fig.3 Immunity System [11] 

Maximum power Point results obtained from Perturbation 
and observation controller is used to form a database structure 
for AIS. All calculated value is stored an array to form 
antibody. When the program received new values it compared 
it with the stored cases. Figure.4 illustrated the algorithm in 
form of flowchart. 

Fig.4 Flow chart of Artificial Immunity System

IV. SIMULATION AND RESULTS

The research work is progressed and implemented in a  
PC. The proposed system is realized in form of three main 
stages. The stages are described in the following block 
diagram of Fig.5.  

Fig.5 The main stages of developed technique

Stage1 Apply different conditions to the load and 
implement PV characteristics

Stage 2 A new developed AIS technique is developed to 
predict Maximum Power Point MPP

Stage 3 Display Result and take discussion whether to 
change the direction of PV cell or not to achieve 
maximum output.
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The AIS technique is being tested under these conditions 
as follows: 

[1] Variation of panel under standard conditions: insulation 
1000 W/m2 and temperature of 25 °C

[2] Apply a rapid  change in insulations conditions from 
1000 to 800 W/m2 at 25 °C

Figure 6and 7 shows the results obtained by AIS. Each 
figure illustrate: a) Power signal in watt b) Battery signal c) 
Control Signal 

Obviously, it can be deduced that the AIS controller is 
faster than the P&O controller in the transitional state  
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Fig. 6 Variation of the panel power, battery power under standard 
conditions: temperature (25 °C) and solar insulation (1000 W/m2)
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Fig. 7 MPPT controller responses: for a slow (120 s) 
solar insulations increase (800 W/m2 to 1000 W/m2 at 25 °C) 

V. CONCLUSION 
There is no doubt that the need for a new source of clean 

and reliable of energy is required. Through the years a quite 
number of researches have been developed in solar energy 
field. The researched aimed to improve the efficiency of 
Photovoltaic System panel by generating maximum power. 

 In this paper artificial immunity system is developed. The 
system AIS technique determine with advanced information 
encoding and adjustable rules Maximum Power Point MPP. 

 Artificial Immunity System succeeded to prove high 
flexibility and accuracy. The work is processed using Mat 
Lab. The execution time in micro seconds which form a great 
advantage. A small execution time allows the MPPT controller 
to be implemented in real sites.  

The perturbation and observation (P&O) MPPT controller is 
used to provide results in order to train and test proposed model. 
Photovoltaic panels are being tested under different conditions by 
varying temperature and insulations.  

The newly approach succeeded in providing reliable 
results and provide better results in some cases. The results 
obtained in this work can be used for tracking Maximum 
Power Point. 
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In this paper a theoretical approach has been developed to address the stability problem of permanent magnet synchronous 
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1. Introduction 

Due to the great cost of power generation in economical and environmental sides, it became necessary to benefit 
from all accessible resources. Micro turbine introduces a very powerful solution for remote sites located far from the 
utility. It used variable speed wind turbine to create an autonomous system. Micro turbine system help avoid the  
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high costs of having utility power lines extended to a remote location add to that it has zero emission and pollution 
in the environment. It also helps uninterruptible power supplies ride through extended utility outages [1]-[3].             
Permanent Magnet Synchronous Generator (PMSG) forms an important role as a main component of wind turbine. 
The wind is fed as an input to the generator at variable speeds. According to the input varies the output electricity. 
Permanent magnet synchronous generator offers a variety of advantages such as: reliability, compact size, loss 
reduction, higher power density and finally optimal efficiency [4]-[6]. In the last decades a lot of researches have 
been introduced in the control area of Permanent magnet synchronous generator. In 2006 Kenji Amei and his 
colleagues introduces a quite interesting solution to generate electricity at maximum point. The paper suggested 
using a boost chopper for generation control of Permanent magnet synchronous generator [7]. The technique is 
useful but it still doesn't solve the problem of transient stability. Another example is novel where, direct torque 
control (DTC) scheme for an interior permanent magnet synchronous machine is introduced. The proposed 
technique has great advantage as its simple control structure. On the other hand it only uses a controller for torque 
and I have no say on the flux and this might be quite not useful [8]. Finally one of the updated papers demonstrates a 
multiplatform hardwarein-the-loop (HIL) approach to observe the operation of a high speed permanent-magnet 
synchronous generator coupled with a microturbine in an all-electric-ship power system [9]. Even though there are a 
lot of promising and powerful solution discussed in the past few years but not much of them deal with stability 
occurrence. Because of the nature of wind it's so hard to obtain a constant production of electricity at all times. 

 
In this paper a new approach regarding permanent magnet synchronous generator stability is proposed. The 

strategy is build on the base of dealing with the transient stability occurs as a result of variable speed and nature of 
wind. The proposed technique is obtained through three stages. First stage is to apply linear approximation to the 
original system. The second stage is to obtain the transfer function in Laplace domain. The last stage is to separate 
the unstable zero from the original system. Once it's separated a suitable feedback will be designed to treat the effect 
of unstable zero. The paper is organized as follows. In section 2 permanent magnet synchronous generator modeling 
is recalled. The proposed control approach is introduced in section 3. Following that is the simulation and tested 
results. The results show that the approach proved to be a very powerful tool in treating and enhancing permanent 
magnet synchronous generator stability. 

2. Permanent Magnet Synchronous Generator (PMSG) Modelling 

The permanent magnet synchronous generator is represented in two phase synchronous rotor reference frame q-
axis and d-axis. The electrical and mechanical model is going to be used to represent proposed model 

 
The electrical equations [10]: 

 

 

 

(1) 

 

 

(2) 

 
 (3) 
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The mechanical equation [10]: 
 (4) 

 

 
(5) 

 

 
(6) 

Where, 
 Current of d&q axis 

,  Inductance of  d&q axis 
,  D,q axis voltage 

 Stator winding 
resistance 

 Number of pole pairs 
 Angular velocity 
 Induced flux by stator 
 Inertia 
 friction 
 Shaft mechanical 

torque 
 

 
The previous equations are going to be used to put system in the standard form: 
 

 

 

(7) 

State vector is chosen as follows: 
 
 

X(t)= = , U(t)=  

 

 

 
 

 

 

(8) 

 
 
 

(9) 
 
 
 
 
 

 
(10) 
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3. Control Approach 

In this section the control approach will be illustrated. Fist consider a class of multi input multi output non linear 
system 

 

 

  (11) 

 

 

  (12) 

 
 

  (13) 

 
In which are smooth vector field and  smooth function defined on an open set 

of  . For more simplicity the above equation will be rewritten in the more condensed form 
 
  

 

 

  (14) 

   (15) 
 
Where    IRn is the state, u  IRm is the input, and y  IRl is the output.  The system assumed to have equilibrium 

point at the origin  .The system relative degree r<n Euler system [11] is applied to obtain linear 
approximation around equilibrium point, the result obtained as follows: 

 
 
    

 

  (16) 

 
  

 

  (17) 

 
     

 

  (18) 

 
Consider: 

=  

    y=      h(x)-h(Xe) , the new system is: 

 

 

  (19) 

   y =c    (20) 
Where A=  , B=g(0), C=  

After the system converted into linear form it became easier to obtain transfer function.  
 

T.F= = [12]                                                     (21)                                     
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The next step is to separate the unstable part as follows: 
T.F=  

Where, 

W(s) is the unstable part of the system 

 is the stable part of the system 

Subsequent is designing a suitable feedback E(s) to amend stabilization of the system. From the definition of 
closed loop system it is known that: 

T'=  

Assume  to be the desired stable function 

 

 

 

 

  

 

 

 

 

 

 

 

 

From the general case a more specific concept can be extended 

regarding the improvement of zero stability. Figure 1 illustrate the steps 

for developed approach 

 

 

 

(22) 
 
 
 
(23) 
 
 
 
(24) 
 
 
 
(25) 
 
 
 
(26) 
 
 
(27) 
 
 
 
 
(28) 
 
 
 
(29) 
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(30) 
 
 
(31) 
 
 
(32) 
 
 
(33) 
 
 
 
(34) 
 
 
 
 
(35) 

 
According to stability definition the new zero ''c'' will vary between these bands  

 

3.1 Permanent Magnet Synchronous generator model after applying the approach 

First step is to apply the linear approximation. Assume that the initial condition is at the origin and without loss 
of generality . Followed by the system form is: 

 

 

 
T.F=  

 
The following step is to design a suitable feedback  The main idea is manipulating the zero in order to 

enhance the system stability.  
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Finally the new system can be represented as 

 

=                                                                      (37) 

Where
=-  c, V=  c  c 

 

4. Simulation and  Results 

In this paper, the stability of permanent magnet synchronous generator has been investigated. An approach has 
been introduced to refinement stability bandwidth and deal with transient stability problem. The permanent magnet 
synchronous generator has been modeled using Math Lab program .The values chosen for PMSG model is listed in 
Table.1.The work is progressed through three steps ( shown in Fig.1): 

 
 
 
 
 

Fig.1 Work Progressed Diagram 

PMSG 

No of Poles 8 

Rated Current 10A 

Rated Speed 600 rad/sec 

Armature Resistance 0.32ohm 

Stator inductance 8.3mH 

Rated Torque 60Nm 

Rated power 50 kW 

Magnetic flux linkage 0.42 wb 

 
Table.1 PMSG Paramete 

 The first step is divided into two parts. The first part is to represent system in the non linear standard form: 
  

 

 
Second part is to implement the PMSG parameters into Mat Lab and run the program. Figure 2 show the rotor 

speed generated from Mat Lab simulink. It is clear that system response will suffer from some instability problem as 
the system goes beyond the required reference. Nyquist plot was chosen to analysis the whole system stability 
behaviour. Figure 3 shows the nyquist plot of the PMSG transfer function extracted from non linear form. The 
system will go beyond the limits of unity circle -1<G(S)H(S)<1, which coincides with result generated from 
simulink model.  
 

PMSG 
Modeling 

 
Controller 

 
Results 
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Fig.2 Rotor speed of PMSG 

 

Fig.3 Nyquist polt PMSG 

 
 
The second step is to execute the proposed control approach. The aim is to improve system stability whether to 

enlarge the range if it is too small or to reduce it if the situation verses. In this case the target is to enhance the 
stability by drove the system back in to the unity circle.  

 

 

The following steps is to designing a suitable feedback E(s). In order to determine the feedback, the value of zero 
"c' will be assigned. According to Routh stability definition the value of new zero will be chosen to be c=0.5. 

Final step is to feed the new parameter to the simulink to see the affect in the rotor speed. The Nyquist plot will 
be plotted with respect to new transfer function. Figure 4 and 5 show the rotor speed and nyquist plot respectively. It 
is clarified that the system stability is improved by the developed approach. 

 

  
Fig.4 new Rotor speed of PMSG 

 

Fig.5 Nyquist polt of new PMSG system 
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5. Conclusion 

This paper is dedicated to investigate the instability of permanent magnet synchronous generator (PMSG). A 
developed approach is introduced to enhance system performance in the occurrences of instability. The work is 
progresses through three stages. First stage is to build the PMSG model. The second main stage is to execute the 
control approach. The technique is based on transforming system into Laplace domain by means of linear 
approximation and transfer function methods. After obtaining transfer function a suitable feedback will be designed. 
The value of the feedback varies according to the situations. Finally the last  stage is to implement the new system in 
the MAT LAB and invstigate the new system rliability. Nyquist and bode plot is used to rule the effictivness of the 
proposed approach. The results show that the introduced control strategy   proove to provide good results. 
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Abstract—This work presents a non-linear control technique
for a grid-connected wind turbine based on Doubly Fed Induction
Generator (DFIG) targeting improved adapted power efficiency
with high voltage performance. The control approach is realized
in the rotor reference frame and is based on Asymptotic output
tracking technique. Thus, assigning specific zeros through a
feedback process ensure the reproduction of an output that
converges asymptotically to the required reference rotor current.
As a consequence, active and reactive powers can be controlled.
The mathematical models of the doubly-fed induction generator
and the grid side converter command models are presented.
Based on the mathematical model of the DFIG and the grid side
converter, a nonlinear representation of them are developed. In
this paper, two cases are studied. The Matlab program is applied
to simulate and test the proposed control technique. The results
are featured to show the effectiveness of the proposed control
design.

Keywords—Non Linear Control,Renewable Energy,Doubly Fed
Induction Generator (DFIG),rotor side converter and Asymptotic
Output Tracking.

I. INTRODUCTION

Due to the growing integration of wind energy into power
grids, the impact of wind generators on power system able to
meet the growing energy demand is of increasing concern.In
the latest years, the Doubly Fed Induction Generator (DFIG)
became the dominant type of Wind Turbine system used in
wind farms.This type of generators has numerous advantages
over its counterparts as it provide better results in terms of
weight, cost, and size.It also presents greater benefits such as
power quality and efficiency[1-3].
In general, the standard structure of Wind turbines consists of
a doubly-fed induction generator (DFIG) consist of a wound
rotor induction generator and an AC/DC/AC converter. The
stator winding is connected directly to the grid while the
rotor is fed at variable frequency through the AC/DC/AC
converter. The DFIG technology allows extracting maximum
energy from the wind for low wind speeds by optimizing the
turbine speed while minimizing mechanical stresses on the
turbine during gusts of wind [4].

Even though the DFIG is considered as a stable symmetric
induction machine but there might exist regions of instabil-

ity due to the natural variation of the wind.The eigenvalue
prediction for mapping the boundary of the stability region
for DFIG machines was investigated by Banakar in[5]. The
analysis shows that the stability region of DFIG machine
can be defined by the variation of the d, the q rotor current
angle in Idr-Iqr plane for sensorless rotor position estimation
that based on model reference adaptive system [6].Though
the aforementioned papers [5-7] explain the stability criterion
for the DFIG machines, yet the control scheme for stable
operation remains unaddressed by the authors.The nonlinear
nature of the DFIG model motivated the researchers to develop
a nonlinear control designed techniques that ensure a smooth
and stable operation for the DFIG. There has been a lot of
progress in the nonlinear control designing context in the
past years.Most of these control techniques (for example back
stepping, regulation, robust and tracking) have been used to
control the DFIG[8-20].Some of the latest researches will be
recalled.A nonlinear control strategy to stabilize the DFIG
based on back stepping algorithm was proposed in[8]. The
proposed controller was successful in tracking the reference
rotor speed, stabilizing the stator power.While this control
approach provides sufficient results but it still suffers from a
lot of constraints with respect to the designing procedure. In[9]
a robust nonlinear feedback control approach of a residential
Savonuis Vertical Axis Wind Turbine (VAWT) based on Dou-
ble Fed Induction Generator (DFIG) and connected to a power
grid was introduced. The aim of this work was to control
the Rotor Side Converter (RSC) using a robust non-linear
feedback control scheme, in which, a robust control law based
on Lyapunov theory associated with a sliding mode controller
is used to handle the issue of parameters uncertainty and to
guarantee a global asymptotic stability of the system. The
results of this approach were proved to be acceptable.The work
was considered incomplete because of the obtained results
didn’t show robust a good robustness against the parameters
uncertainty.Another example of the nonlinear design technique
was investigated in[13]. An input-state feedback linearization
controller was proposed in this paper.The authors designed a
system of eight ordinary differential equations is used to model
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the wind energy conversion system.The generator has a wound
rotor type with back-to-back three-phase power converter
bridges between its rotor and the grid; it is modelled using
the direct-quadrature rotating reference frame with aligned
stator flux.The mathematical model developed in this paper
is, in fact, an approximated model which made the result
of this controller not an applicable in actual situations. Even
though there have been several attempts to design the most
powerful nonlinear control technique but it is still a wide-
open area of research.In this paper, a control technique for a
grid-connected doubly fed induction generator (DFIG)-based
on wind energy conversion system was presented. Control
strategy for the grid side and rotor side converters placed in the
rotor circuit of the DFIG is introduced. The control approach is
based on the asymptotic output tracking technique.Simply by
applying a feedback with certainly assigned zeros, the system
will reproduce an output rotor current that will converge
to a specific reference signal. The paper is structured as
follow: section II recalls the definition of asymptotic output
tracking control technique.Section III illustrates the modelling
considerations of the Doubly Fed Induction Generator and
grid side converter command models.The control approach
is discussed in section Iv. Finally, Section V presents the
obtained results while Section VI concludes the paper and
formulates further research directions.

II. RECALLS

Consider the class of SISO nonlinear systems

ẋ =f(x) + g(x)u, x ∈ Rn, u ∈ R, y ∈ R
y =h(x).

(1)

where x, f(x), g(x) represents the state, function of the whole
system states and the input function respectively.Assume x =
0 is the equilibrium point (i.e., f(0) = 0). The system has
a well define relative degree r ≤ n at the origin; namely,
LgL

i
fh(x) =

∂Li
fh(x)

∂x g(x) = 0 i.e.Lfh(x) = ∂h
∂xf(x) for

k < r−1 and LgLr−1
f h(x) 6= 0 in a neighbourhood of x = 0.

Asymptotic output tracking,[21 ]
Since the system has a well define relative degree one can
locally define a mapping Γ(x) that introduce the system in
the normal form.

(
ζ
η

)
= Γ(x) =




h(x)
...

Lr−1
f h(x)

Γ2(x)


 . (2)

where Γ2(x) is such that LgΓ2(x)) = 0 locally puts the system
into the normal form; i.e., it gets the form





ζ̇ = Âζ + B̂(b(ζ, η) + a(ζ, η)u)

η̇ = q(ζ, η)

y = ζ1

(3)

with
Â =

(
0 Ir−1

0 0

)
, B̂ =

(
0
1

)
.

In order to guarantee the exact reproduction of specific refer-
ence output function yR(t) the input is chosen in the form
of u = 1

a(ζ,η) (−b(ζ, η) + yrR −
∑r
i=1 ci−1(zi − yi−1

R ))for
1 ≤ i ≤ r and c0, . . . , cr−1are real numbers .

Remark 1 Imposing the input in the normal form implies
żr = yr = yrR − cr−1e

r−1 − · · · − c0e, i.e er + cr−1e
r−1 +

· · · + c0e = 0.The roots of the characteristic equation can be
arbitrarily assigned.

III. MODELLING

This section address the modelling of Doubly Fed Induction
Generator (DFIG) and grid side converter command model
respectively.These equations will later be used to form the
non linear models.

A. Doubly Fed Induction Generator model

In order to simplify the Doubly Fed Induction Generator
(DFIG) model ,the following assumption is assumed [22]

1 The flow distribution is sinusoidal.
2 The air-gap is constant.
3 The influences of the heating and the skin effect are

not taken into account.
4 The saturation of the magnetic circuit is negligible.
The DFIG modelling with respect to a rotor flux oriented

reference frame will be expressed as:

1-Stator Equations

Vsd = Rsisd +
d

dt
φsd − φsqWs (4)

Vsq = Rsisq +
d

dt
φsq + φsdWs (5)

φsd = Lsisd +Mird (6)
φsq = Lsisq +Mirq (7)

2-Rotor Equations

Vrd = Rrird +
d

dt
φrd − φrqWr (8)

Vrq = Rrirq +
d

dt
φrq + φrdWr (9)

φrd = Lrird +Misd (10)

φrq = Lrirq +Misq (11)
Wr = g.Ws (12)

with

isd =
φsd −Mird

Ls
(13)

isq =
−Mirq
Ls

(14)

Where, Rs and Rr are, respectively, the stator and rotor phase
resistances, Ls, Lr,MStator and rotor per phase winding and
magnetizing inductances and Ws,Wrare the stator and rotor
speed pair pole number.The direct and quadratic stator and



rotor currents are respectively represented asisd, isq, ird and
irq.The voltage of the stator side for both direct and quadratic
defined as Vsd, Vsq while the voltage of the rotor direct and
quadratic represented as Vrd, Vrd.The stator-flux linkage for
direct and quadratic frame are given byφsd, φsd.The φrd, φrq
referred to the rotor flux for both the direct and quadratic
respectively. The Electromagnetic torque is presented by the
following equation

J
dWr

dt
+ frWr = cem − cr (15)

Cem = p(φrqird− φrdirq) (16)

with J is the moment of inertia.cem, cr are the magnetic torque
and rationale torque while p is the numbers of pairs per pole.
The system now will be modelled with respect to the rotor side
direct and quadratic (d,q) synchronous reference frame.The
input in such case are irdandirq.
First the system expression with respect to d axis frame

vrd = Rrird +
d

dt
(Lrird +Misd)− (Lrirq +Misq)Wr

(17)

= Rrird +
d

dt
ird(Lr −

M2

Ls
)− LrirqWr −MWr(

−Mirq
Ls

)

(18)

= Rrird + Lr
d

dt
ird(1−

M2

LsLr
)− LrirqWr +

M2

Ls
Wrirq

(19)

= Rrird + LrΛi̇rd − LrΛWrirq (20)

˙ird =
1

LrΛ
vrd −

Rr
LrΛ

ird + wrirq (21)

˙ird =
1

LrΛ
vrd −

1

T Λ
ird + wrirq (22)

with Λ = (1− M2

LsLr
),T = Rr

Lr
.

Now consider q axis frame

Vrq = Rrirq +
d

dt
φrq + φrdWr (23)

= Rrirq + LrΛi̇rq − LrΛWrird (24)

i̇rq =
1

LrΛ
vrq −

1

T Λ
irq − wrird (25)

Finally we obtain the speed from the torque equation as: Ẇr =
− frJ Wr + p

J φrqird −
p
J φrdirq.

B. Grid Side Converter command model

In order to eliminate the harmonics from the converter
operation an RL filter is installed[24-25].

vfd = Rf ifd + Lf
d

dt
ifd −WrLf ifq − VGd (26)

vfq = Rf ifq + Lf
d

dt
ifq +WrLf ifd − VGq (27)

i̇fd =
1

Lf
(−Rf ifd + vfd +WrLf ifq + VGd) (28)

i̇fq =
1

Lf
(−Rf ifq + vfq −WrLf ifd + VGq) (29)

with VGd, VGq indicated the input voltage of AC-DC converter
in the direct and quadrature frame.The electric network com-
ponents of voltage and current on the AC side for both the
direct and quadrature frame are given by vfd, vfq, ifd and ifq
respectively, while the Lf referred to the inductance of the
system. The active and reactive power are expressed as:

P = VGdifd + VGqifq (30)
Q = VGqifq − VGdifd. (31)

Remark 2 Through setting the power factor to be 1 and
neglecting the filter losses one can get the following expression
VGd = Vfd = VG, VGq = Vfq = 0, leading the active and
reactive power to be Pf = VGifdandQf = −VGifq .

IV. CONTROL STRATEGY

In this section, the asymptotic output tracking technique will
be applied in the Doubly-Fed Induction Generator and the grid
side converter command models.The control will be realized
in the rotor reference frame so the d axis regulate the reactive
power and the q axis regulate the active power.In general, the
system will produce an output that, regardless of the initial
state of the system will converge asymptotically to the rotor
reference current.

A. Non linear model of DIFG

Recalling from the modelling section ,the system is intro-
duced in the condensed nonlinear form

ΣC :

{
ẋ = f(x) + g1(x)u1 + g2(x)u2, x ∈ Rn, u ∈ Rn

y = h(x).

(32)

where, X = [x1 x2 x3]T = [ird irq Wr]
T ,U =

[u1 u2]T = [vrd vrq]
T .The functionf(x), g(x) are smooth

vector fields and the output functionh(x) is a smooth scalar
function.

f(x) =




− 1
T Λx1 + x2x3

− 1
T Λx2 − x2x3

− frJ x3 + p
J φrqx1 − p

J φrdx2


 (33)

g1(x) =




1
T Λ

0
0


 , g2(x) =




0
1
T Λ

0


 . (34)

Note that Λ = (1− M2

LsLr
),T = Rr

Lr
. Since the purpose of this

study is to control the rotor side converter current, the output
was chosen as h(x) = [ird, irq]

T .

Remark 3 According to the previous results obtained by
isidori, A multi variable nonlinear system in the form of (32)
has a relative degreer1, . . . , rmat point x0 if LgjL

k
fhi(x) = 0

for all1 6 j 6 m, for all 1 6 i 6 m,for all k 6 ri − 1, and
for all neighbour ofx0.

Following the same definition it can be easily verified that the
system relative degree with respect to the outputs r = 2



Control of d-axis rotor current

In order to track rotor currentirq we assume that the system
is only affected by u1 and u2 = 0

ẋ = f(x) + g1(x) (35)
y = h1(x) = ird (36)

The system relative degree w.r.to the output r = 1.Now we
apply a coordinate transformation and introduce the system in
to the normal form.

Γ(x) =




z1 = x1

η1 = x2

η2 = x3, Lg.η = 0.


 (37)





ż1 = − 1
T Λz1 + η1η2 + 1

T Λu1

η̇1 = − 1
T Λη1 − z1η2

η̇2 = pφrdz1 − pφrdη1 − fr
J eta2

(38)

After applying the proper control law in the form ofu =
T Λ(− 1

T Λx1 + x2x3 + xr1 − c0x1)where xr1, c0 represents the
rotor current desired value and the chosen zero,we obtain the
desired output .

Control of q-axis rotor current

In this case the effect ofu2 is studied

f(x) =




− 1
T Λx1 + x2x3

− 1
T Λx2 − x2x3

− frJ x3 + p
J φrqx1 − p

J φrdx2


 , g2(x) =




0
1
T Λ

0




(39)
y = h2(x) = irq. (40)

The system relative degree rq = 1.The coordinate transfor-
mation and the normal take the form of

Γ(x) =



z1 = x2

η1 = x3

η2 = x1


 (41)





ż1 = − 1
T Λz1 − η1η2 + 1

T Λu2

η̇1 = pφrdη2 − pφrdz1 − fr
J η1

η̇2 = − 1
T Λη2 + z1η2.

(42)

The inputu = T Λ(− 1
T Λx2 − x1x3 + xr2 − c0x2).

B. Non linear grid side converter model

Referring to remark 2 we know that through setting the
power factor to unity we get VGd = Vfd = VG, VGq =
Vfq = 0.In such a case the system is converted into single
input-single output system in the form:

f(x) =



−Rf

Lf
x1 + x3x2

−Rf

Lf
x2 − x3x1

− frJ x3 − p
J φrdx2


 , g(x) =




2
Lf

0
0


 (43)

y = x1. (44)

where, x:state vector=[ifd ifq Wr]
T ,U = [u1 u2]T .

d-axis control

In this part the focus will be in tracking the d-axis reference
filtered current.Since the system obtained a well define relative
degree r = 1 then we apply a coordinate transformation in the

form Γ(x) =



x1

x3

x2


.

The state space description in the new coordinates




ż1 = a(z, η) + b(z, η)

η̇1 = fr
J η1 − p

J φrdη2

η̇2 = −Rf

Lf
η1 − η2z1.

(45)

Through setting the input u to be u =
Lf

2 (−Rf

Lf
x1 +x3x2 +

xr2−c0x1), one can regulate the rotor current in order to meet
a specific active and reactive power.

V. SIMULATION AND RESULTS

This section is dedicated for the evaluation of the per-
formance of the proposed technique.Two cases were devel-
oped.The first case investigated the performance of controller
when it’s directly connected to the DFIG while in the second
case the focus was in investigating the behaviour of the DFIG
when it’s connected to the network and under the operating
condition of setting power factor to one.The DFIG and grid
side models referred to in the third section are used to test
the proposed design.Table 1 presents the values of the DIFG
parameters used to build the models.The block diagram of
figure 1 illustrated the design process of the DFIG model while
the block diagram shown in figures 2 illustrated the second
case scenario. In order to evaluate the ability of the proposed
designed technique for tracking the d andq axis rotor currents
reference signal generated at maximum efficiency an input
in the formu = T Λ(− 1

T Λx1 + x2x3 + xr1 − 1000x1), u =
T Λ(− 1

T Λx2 − x1x3 + xr2 − 1200x2) were applied respec-
tively.Figure 3, 4 illustrated the rotor side reference signal and
the generated current signals verses time in seconds in the
direct and quadratic frames respectively.It can be noticed from
Figure 3, 4 that the proposed control technique succeeded in
reproducing a current signal that coincides with the required
reference signal in both cases. Figure5 presents the continuous
bus voltage of the DFIG regulated to the standard reference
voltage fixed at 1000 V.It is clear that in spite of fluctuation
of the wind the voltage remain stationary.In fact the proposed
design succeeded in reducing the voltage disturbance in com-
parison to sliding mode design introduced in[25].In the second
case the the stator of the DFIG was directly connected to the
grid while its rotor was connected to it via a cascade (Rectifier,
Inverter and Filter).In order to evaluate the grid side model the
power factor was set to one (shown in Figure 6), thus only the
direct rotor current will be produced.The voltage on the output
of the inverter will suffer from disturbance signals formed
by the original of frequencyf = 50Hz and other signals.A
passive R-L filter was used to eliminate harmonics.The input
in the form u =

Lf

2 (−Rf

Lf
x1 + x3x2 + xr2 − 900x1) ensures

the reproduction of an output ird that will track the required



reference signal(shown in Figure7).Finally, the analysis of this
technique has shown that the system hasn’t just succeeded in
reproducing an output that will converge asymptotically to the
required reference signals but it also minimizes the effect of
disturbance.

Table.1 The DFIG data sheet

The DFIG data of a typical 3.6 MW generator
Frame / power 7 kW

Efficiency at rated speed appr. 97...97.5
Voltage 690 V

Locked rotor voltage approx. 1000 V
Operation speed range 1000...2000 rpm

Power factor p.f. 0.90 cap ...1.0
Rotor Resistance 1 K Ω
Rotor Inductance .2 mH
Stator Resistance 0.5 K Ω
Stator Inductance .001 mH
Mutual inductance Msr= 0.078 H
Number of poles 4
Inertia moment j=0.3125 Nms2

Fig. 1: Simplified Block diagram of the Asymptotic output
tracking technique for the DFIG model

Fig. 2: Block diagram of the Asymptotic output tracking for
the Grid side model

Fig. 3: Doubly Fed Induction Generator irdrotor current

Fig. 4: Doubly Fed Induction Generator irqrotor current

Fig. 5: Doubly Fed Induction Generator continuous bus volt-
age

Fig. 6: Power factor of DFIG connected to Grid



Fig. 7: The rotor direct current of DFIG connected to grid

VI. CONCLUSION

The aim of this work is to introduce a non-linear control
technique that asymptotically tracks the rotor current of the
grid-connected wind turbine based on Double Fed Induction
Generator (DIFG). In general, the idea is to produce a certain
rotor current in order to meet a specific requirement of active
and reactive power production.The modelling of DFIG and
the grid side converter command models have been studied.
The control of the grid side converter command model was
studied under the assumption of the system obtaining a unity
power factor.Maximum power point strategy makes it possible
to provide totally of the active power produced by the grid with
a unity power factor. Two cases have been developed based on
the DIFG model and the grid side converter command model.
The performance of the DFIG when it’s connected to the
proposed design controller was investigated in the first case .In
the second case the stator of the DFIG was directly connected
to the grid while its rotor was connected to it via a cascade
(Rectifier, Inverter and Filter) ,finally the filter was connected
to the suggested controller.The results in both cases shown
that the control approach succeeded in reproducing an output
signal that coincides with the required reference signal. It was
also shown in that the system has a very powerful performance
under disturbance such as the wind variation. Finally, further
investigation will be carried out regarding practical cases.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

This thesis is divided into two parts .In the �rst part of the thesis, we addressed
the Input-Output feedback linearization and Disturbance Decoupling Problem with
stability for a class of nonminimum SISO nonlinear systems that are controllable in
the �rst approximation through exploring the idea of partial dynamic cancellation.In
fact the classical techniques failed in solving the problem due to the existence of
unstable zero dynamics.More in details, we propose a two step design approach:First
we consider the linear tangent model of the original system, a dummy output is
constructed via a suitable factorization of the numerator of its transfer function
so that the corresponding linearized system is minimum phase;then, classical input
output linearization of the locally minimum phase nonlinear system is performed
with respect to the after mentioned dummy output.Finally it was proved that, when
applying the result feedback to the original systems the problems is solved.

The extended results in both cases were extended to the sampled-data context
through multirate sampling design to overcome the well-known pathologies induced
by the sampling zero dynamics where the minimum phase property are lost.The
results obtained in the Disturbance Decoupling consider the �rst step towards this
direction as the results shows that the problem is more complicated under sampling
as sampling induces more conservative design which require the disturbance to be
measurable and piecewise constant over the sampling interval.

Finally a power system application based on the Wind turbine system driven by
the Doubly Fed Induction Generator (DFIG) was studied.

In the second part we collect part of the individual research conducted during
the Phd period in the power system machines where the main contribution was
based on the mixing between the Arti�cial Intelligent technique and the nonlinear
based control.

7.2 Future Work

Future work concerns deeper analysis of control strategy for the sampled data design
, new proposals to try di�erent methods, or simply curiosity can be obtained .This
thesis has been mainly focused on the Single Input Single Output System , the
investigation towards the extension of these argument to the Multi Input- Multi
Output case and to a global characterization of the results possibly combined with
input -output stability and related results could be carried out.

As for the application side tests, and experiments could be executing based on
the sampled data model in practical the renewable energy �eld.As we have seen in
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chapter �ve the Multi rate sampled data design can preserve the continuous time
behaviour and provide better performances than the direct implementation of the
continuous time design which could be useful from a theoretical point of view during
transient behaviour.
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Abstract: Sampled data systems have come into practical importance for a variety of reasons.
The earliest of these had primarily to do with economy of design. A more recent surge of interest
was due to increase utilization of digital computers as controllers in feedback systems. This thesis
contributes some control design for a class of nonlinear system exhibition linear output. The
solution of several nonlinear control problems required the cancellation of some intrinsic dynamics
(so-called zero dynamics) of the plant under feedback. It results that the so-de�ned control will
ensure stability in closed-loop if and only if the dynamics to cancel are stable. What if those
dynamics are unstable? Classical control strategies through inversion might solve the problem while
making the closed loop system unstable. This thesis aims to introduce a solution for such a problem.
The main idea behind our work is to stabilize the nonminimum phase system in continuous- time
and undersampling using zero dynamics concept. The overall work in this thesis is divided into
two parts. In Part I, we introduce a feedback control designs for the input-output stabilization
and the Disturbance Decoupling problems of Single Input Single Output nonlinear systems. A
case study is presented, to illustrate an engineering application of results. Part II illustrates the
results obtained based on the Arti�cial Intelligent Systems in power system machines. We note
that even though the use of some of the AI techniques such as Fuzzy Logic and Neural Network
does not require the computation of the model of the application, but it will still su�er from some
drawbacks especially regarding the implementation in practical applications. An alternative used
approach is to use control techniques such as PID in the approximated linear model. This design
is very well known to be used, but it does not take into account the non-linearity of the model. In
fact, it seems that control design that is based on nonlinear control provide better performances.
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