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In this paper we consider singular semilinear elliptic equations whose prototype is 
the following {

−div A(x)Du = f(x)g(u) + l(x) in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set of RN , N ≥ 1, A ∈ L∞(Ω)N×N is a coercive matrix, 
g : [0, +∞[ → [0, +∞] is continuous, and 0 ≤ g(s) ≤ 1

sγ + 1 for every s > 0, with 
0 < γ ≤ 1 and f, l ∈ Lr(Ω), r = 2N

N+2 if N ≥ 3, r > 1 if N = 2, r = 1 if N = 1, 
f(x), l(x) ≥ 0 a.e. x ∈ Ω.
We prove the existence of at least one nonnegative solution as well as a stability 
result; we also prove uniqueness if g(s) is nonincreasing or “almost nonincreasing”.
Finally, we study the homogenization of these equations posed in a sequence of 
domains Ωε obtained by removing many small holes from a fixed domain Ω.

© 2016 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article nous étudions des équations elliptiques semi-linéaires singulières 
dont le prototype est le suivant{

−div A(x)Du = f(x)g(u) + l(x) dans Ω,

u = 0 sur ∂Ω,

où Ω est un ouvert borné de RN , N ≥ 1, A ∈ L∞(Ω)N×N est une matrice coercive, 
g : [0, +∞[ → [0, +∞] est une fonction continue qui vérifie 0 ≤ g(s) ≤ 1

sγ + 1 pour 
tout s > 0, avec 0 < γ ≤ 1 et f, l ∈ Lr(Ω) avec r = 2N

N+2 si N ≥ 3, r > 1 si N = 2
et r = 1 si N = 1, f(x), l(x) ≥ 0 p.p. x ∈ Ω.
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Nous démontrons l’existence d’au moins une solution positive de cette équation et 
un résultat de stabilité ; de plus nous démontrons l’unicité de la solution si g(s) est 
décroissante ou “presque décroissante”.
Nous étudions enfin l’homogénéisation d’une suite de ces équations posées dans des 
domaines Ωε obtenus en perforant un domaine fixe Ω par des trous de plus en plus 
petits et de plus en plus nombreux.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

We deal in this paper with nonnegative solutions to the following singular semilinear problem

{
−div A(x)Du = F (x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where the model for the function F (x, u) is

F (x, u) = f(x)g(u) + l(x),

for some continuous function g(s) with 0 ≤ g(s) ≤ 1
sγ + 1 for every s > 0, with 0 < γ ≤ 1, and some 

nonnegative functions f(x) and l(x) which belong to suitable Lebesgue spaces.
Note that (except as far as uniqueness is concerned) we do not require g to be nonincreasing, so that 

functions g like

g(s) = 1
sγ

(
2 + sin 1

s

)
can be considered.

In the present paper we are first interested in existence, uniqueness and stability results for this kind of 
problems. After this, we will study the asymptotic behaviour, as ε goes to zero, of a sequence of problems 
posed in domains Ωε obtained by removing many small holes from a fixed domain Ω, in the framework 
of [4].

As far as existence and regularity results for this kind of problems are concerned, we refer to the classical 
paper [5] by M.G. Crandall, P.H. Rabinowitz and L. Tartar, and to the paper [2] by L. Boccardo and 
L. Orsina which inspired our work. We also refer to the references quoted in these papers as well as those 
quoted in the paper [1] by L. Boccardo and J. Casado-Díaz which deals with the homogenization of this 
problem for a sequence of matrices Aε(x).

In [5] the authors show the existence of a classical positive solution if the matrix A(x), the boundary ∂Ω
and the function F (x, s) are smooth enough; the function F (x, s), which is not supposed to be nonincreasing 
in s, is bounded from above uniformly for x ∈ Ω and s ≥ 1. Boundary behaviour of u(x) and |Du(x)| when 
x tends to ∂Ω is also studied.

In [2] the authors study the problem (1.1) with F (x, u) = f(x)
uγ , γ > 0 and f in Lebesgue spaces. They 

prove existence, uniqueness and regularity results depending on the values of γ and on the summability 
of f . Specifically, they prove the existence of strictly positive distributional solutions. In order to prove 
their results, they work by approximation and construct an increasing sequence (un)n∈N of solutions to the 
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(nonsingular) problems

⎧⎪⎨⎪⎩−div A(x)Dun = fn(x)
(un + 1

n )γ
in Ω,

un = 0 on ∂Ω,

where fn(x) = min{f(x), n}. This sequence satisfies, for every ω ⊂⊂ Ω,

un(x) ≥ un−1(x) ≥ . . . ≥ u1(x) ≥ cω > 0, ∀x ∈ ω. (1.2)

In order to prove this property, it is essential to assume that the nonlinearity F (x, s) is nonincreasing in the 
s variable and to use, as a main tool, the strong maximum principle. Note that (1.2) provides the existence of 
a limit function u = supn un which is strictly positive on every compact set ω of Ω; in addition, (1.2) implies 
that, on every such set ω, the functions fn(x)

(un+ 1
n )γ are uniformly dominated by a function hω ∈ L1(ω). This 

allow the authors to prove that the function u is a solution in the sense of distributions.
In the present paper, we are interested in giving existence and stability results without assuming that 

F (x, s) is nonincreasing in the s variable and without using the strong maximum principle in the proofs of 
these results. The main interest of this lies in the fact that this kind of proofs provides the tools to deal 
with the homogenization of the problem

{
−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε,

when Ωε is obtained by removing many small holes from Ω (see Theorem 5.2). Of course, the existence and 
stability results (see Theorem 4.1 and Theorem 4.2) have also an autonomous interest, due to the more 
general assumptions and to a different method of proof.

Moreover, we point out that this method, which avoids using the strong maximum principle, also has 
a strong interest in other problems where one cannot expect the strict positivity of the solution on every 
compact set of Ω. Let us briefly describe some of these situations.

A first situation is the case of singular parabolic problems with p-laplacian type principal part, p > 1, 
and nonnegative data u0 and f , whose model is the following:

⎧⎪⎪⎨⎪⎪⎩
ut − div(|Du|p−2Du) = f(x, t)

( 1
uγ

+ 1
)

in Ω × (0, T ),
u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

where γ > 0. In this case, due to the assumption p > 1 and the fact that the initial datum u0 is not assumed 
to be strictly positive, the method of expansion of positivity cannot be applied and one cannot guarantee 
that the solution is strictly positive inside Ω × (0, T ) (see [3]).

A second situation deals with existence and homogenization for elliptic singular problems in an open 
domain Q of RN which is made of an upper part Qε

1 and a lower part Qε
2 separated by an oscillating 

interface Γε, when the boundary conditions at the interface Γε are the continuity of the flux and the fact 
that this flux is proportional to the jump of the solution through the interface. Our method also applies in 
this case (see [9]).
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A third situation where our method applies is the case of a singular semilinear problem which involves 
a zeroth-order term whose coefficient is a nonnegative bounded measure μ which also belongs to H−1(Ω), 
namely ⎧⎪⎪⎨⎪⎪⎩

u ≥ 0 in Ω,

−div A(x)Du + μu = F (x, u) in Ω,

u = 0 on ∂Ω.

(1.3)

Problem (1.3) naturally arises when performing the homogenization of (1.1) (where there is no zeroth-order 
term) posed on a domain Ωε obtained from Ω by perforating Ω by many small holes (see Section 5 below). 
Our method allows us to obtain results of existence, stability, uniqueness and homogenization, even if the 
strong maximum principle does not hold true in general in such a context (see [10] and [11]) (see also [13]).

In the present paper we consider the case 0 < γ ≤ 1. We consider the case γ > 1 (and more generally the 
case of a general singularity) in the papers [10] and [11] (see also [12]). Let us point out that in the latest case, 
no global energy estimate is available for the solutions when the singularity has a strong behaviour. This 
makes the problem more difficult, in particular from the point of view of homogenization. For this reason, 
we have to introduce a convenient (even if rather complicated) framework, in which we prove existence, 
stability, uniqueness and homogenization results. Let us emphasize that despite the changes which are made 
necessary by this framework, the method of the present paper provides the guide to follow also in the case 
of a general singularity.

The precise definition of the solution that we use in the present paper is given in Definition 3.1. Note 
that the solutions are nonnegative.

The keystone in our proofs is the analysis of the behaviour of the singular term near the singularity, 
which is done in Proposition 6.2 of Section 6.

On the other hand, if we suppose that F (x, s) is “almost nonincreasing” in s (see (2.4)), we prove the 
uniqueness of the solution (see Theorem 4.4).

Let us now come to the homogenization problem{
−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε,

when Ωε is obtained by removing many small holes from a given domain Ω according to the framework of [4]
(for the study of this problem we have to assume that N ≥ 2, see Remark 5.1 below). The general questions 
we are concerned with are the following: do the solutions uε converge to a limit u when the parameter ε
tends to zero? If this limit exists, can it be characterized? Will the result be the same as in the nonsingular 
case? In principle the answer is not obvious at all since, as ε tends to zero, the number of holes becomes 
greater and greater and the singular set for the right-hand side (which includes at least the holes’ boundary) 
tends to “invade” the entire Ω.

Actually we will prove that a “strange term” appears in the limit of the singular problem in the same 
way as in the nonsingular case studied in [4]. This result is a priori not obvious at all, and a very different 
behaviour could have been expected.

We now describe the plan of the paper. Section 2 deals with the precise assumptions on problem (1.1). In 
Section 3 we give the precise definition of a solution to problem (1.1) which we will use in the whole of this 
paper. Section 4 is devoted to the statements of the existence, stability and uniqueness results; in addition 
a regularity result dealing with the boundedness of solutions is stated in this Section. In Section 5 we give 
the statement of the homogenization result in a domain with many small holes and Dirichlet boundary 
condition, as well as a corrector result. In Section 6 we prove a priori estimates. Section 7 is devoted to the 
proofs of the stability, existence and regularity results stated in Theorems 4.2 and 4.1 and in Proposition 4.3. 
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In Section 8 we state and prove a comparison principle and we prove the uniqueness Theorem 4.4. Finally 
we prove in Section 9 the homogenization Theorem 5.2 and the corrector Theorem 5.5.

2. Assumptions

In this Section, we give the assumptions on problem (1.1).
We assume that Ω is an open bounded set of RN , N ≥ 1 (no regularity is assumed on the boundary ∂Ω

of Ω), that the matrix A satisfies

{
A ∈ L∞(Ω)N×N ,

∃α > 0, A(x) ≥ αI a.e. x ∈ Ω,
(2.1)

and that the function F satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F : Ω × [0,+∞[→ [0,+∞] is a Carathéodory function,
i.e. F satisfies
i) for a.e. x ∈ Ω, s ∈ [0,+∞[→ F (x, s) ∈ [0,+∞] is continuous,
ii) ∀s ∈ [0,+∞[, x ∈ Ω → F (x, s) ∈ [0,+∞] is measurable,

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃γ,∃h with
i) 0 < γ ≤ 1,
ii)h ∈ Lr(Ω), r = 2N

N+2 if N ≥ 3, r > 1 if N = 2, r = 1 if N = 1,
iii)h(x) ≥ 0 a.e. x ∈ Ω,

such that

iv) 0 ≤ F (x, s) ≤ h(x)
(

1
sγ

+ 1
)

a.e. x ∈ Ω,∀s > 0.

(2.3)

Remark 2.1. The function F = F (x, s) is a nonnegative Carathéodory function with values in [0, +∞]. But, 
in view of (2.3 iv), the function F (x, s) can take the value +∞ only when s = 0 (or, in other terms, F (x, s)
is always finite when s > 0). �

On the other hand, for proving comparison and uniqueness results, we will assume that F (x, s) is “almost 
nonincreasing” in s: denoting by λ1 the first eigenvalue of the operator −div sA(x)D in H1

0 (Ω), where 
sA(x) = (A(x) + tA(x))/2 is the symmetrized part of the matrix A(x), we will assume that

{
there exists λ with 0 ≤ λ < λ1 such that
F (x, s) − λs ≤ F (x, t) − λt a.e. x ∈ Ω, ∀s,∀t, 0 ≤ t ≤ s,

(2.4)

or in other terms that F (x, s) − λs is nonincreasing in s for some λ such that 0 ≤ λ < λ1.

Remark 2.2. Note that (2.4) holds with λ = 0 when F is assumed to be nonincreasing. But if in place of 
(2.4) one only assumes that the function

s ∈ [0,+∞] → F (x, s) − λ1s is nonincreasing, (2.5)

uniqueness of the solution to problem (1.1) in general does not hold true, see Remark 8.2 below. �
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Notation. We denote by D(Ω) the space of the C∞(Ω) functions whose support is a compact set included 
in Ω, and by D′(Ω) the space of distributions on Ω.

Since Ω is bounded, ‖Dw‖L2(Ω)N is a norm equivalent to ‖w‖H1(Ω) on H1
0 (Ω). We set

‖w‖H1
0 (Ω) = ‖Dw‖L2(Ω)N , ∀w ∈ H1

0 (Ω).

For every s ∈ R and every k > 0 we define

s+ = max{s, 0}, s− = max{0,−s},

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s).

For l : Ω −→ [0, +∞] a measurable function we denote

{l = 0} = {x ∈ Ω : l(x) = 0}, {l > 0} = {x ∈ Ω : l(x) > 0}.

3. Definition of a solution to problem (1.1)

We now give a precise definition of a solution to problem (1.1).

Definition 3.1. Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). We will say that 
u is a solution to problem (1.1) if u satisfies

u ∈ H1
0 (Ω), (3.1)

u ≥ 0 a.e. in Ω, (3.2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ϕ ∈ H1
0 (Ω) with ϕ ≥ 0, one has∫

Ω

F (x, u)ϕ < +∞,

∫
Ω

A(x)DuDϕ =
∫
Ω

F (x, u)ϕ.

(3.3)

Remark 3.2. Given ϕ ∈ H1
0 (Ω), one can take ϕ+ and ϕ− as test functions in (3.3). This implies that (3.3)

is actually equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ϕ ∈ H1
0 (Ω), one has∫

Ω

F (x, u)|ϕ| < +∞,

∫
Ω

A(x)DuDϕ =
∫
Ω

F (x, u)ϕ.

(3.4)

This also proves that for every solution u to problem (1.1) in the sense of Definition 3.1 one has 
F (x, u)ϕ ∈ L1(Ω) for every ϕ ∈ H1

0 (Ω) and that

F (x, u) ∈ L1
loc(Ω), −div A(x)Du = F (x, u) in D′(Ω). �
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Remark 3.3. The nonnegative measurable function F (x, u(x)) can take infinite values when u(x) = 0. The in-
tegral 

∫
Ω

F (x, u)ϕ is therefore correctly defined as a number in [0, +∞] for every measurable function ϕ ≥ 0.

In (3.3) we require that this number is finite for every ϕ ∈ H1
0 (Ω), ϕ ≥ 0, when u is a solution to problem 

(1.1) in the sense of Definition 3.1. This in particular implies that

F (x, u(x)) is finite almost everywhere on Ω, (3.5)

or in other terms that

meas{x ∈ Ω : u(x) = 0 and F (x, 0) = +∞} = 0. (3.6)

A result which is stronger than (3.6) will be given in Proposition 3.4, and an even stronger result will 
be given in Proposition 3.5 and Remark 3.7; note however that the strong maximum principle is used to 
obtain the results of Proposition 3.5 and Remark 3.7. �
Proposition 3.4. Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). Then every 
solution u to problem (1.1) in the sense of Definition 3.1 satisfies

F (x, 0) = 0 for a.e. x ∈ {u = 0} (3.7)

and ∫
Ω

F (x, u)ϕ =
∫

{u>0}

F (x, u)ϕ ∀ϕ ∈ H1
0 (Ω). (3.8)

Proof. In Proposition 6.3 below we prove that for every u solution to problem (1.1) in the sense of Defini-
tion 3.1 one has ∫

{u=0}

F (x, u)ϕ = 0 ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0, (3.9)

which of course implies (3.8).
Writing

{u = 0} =
(
{u = 0} ∩ {F (x, 0) = 0}

)
∪
(
{u = 0} ∩ {0 < F (x, 0) ≤ +∞}

)
implies that (3.9) is equivalent to ∫

{u=0}∩{0<F (x,0)≤+∞}

F (x, u)ϕ = 0 ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0.

The latest assertion is equivalent to

meas{x ∈ Ω : u(x) = 0 and 0 < F (x, 0) ≤ +∞} = 0,

which is equivalent to (3.7). Proposition 3.4 is therefore proved.
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Note that (3.7) is also equivalent to

{x ∈ Ω : u(x) = 0} ⊂ {x ∈ Ω : F (x, 0) = 0} except for a set of zero measure, (3.10)

and also equivalent to

{x ∈ Ω : 0 < F (x, 0) ≤ +∞} ⊂ {x ∈ Ω : u(x) > 0} except for a set of zero measure. �
The following Proposition 3.5 and Remark 3.7 assert that for every solution u to problem (1.1) in the 

sense of Definition 3.1, we can have two possibilities: either u(x) > 0 a.e. in Ω or u ≡ 0 in Ω.
This assertion is stronger than (3.10), but its proof uses the strong maximum principle.
As pointed out in the Introduction, the strong maximum principle is one of the key tools used in the 

proofs of the results obtained in [2] by L. Boccardo and L. Orsina, results which inspired the present paper.
Note that, in contrast with the proofs of the results in [2], the proofs of all the results in the present 

paper do not make use neither of the strong maximum principle nor of the results of Proposition 3.5 and 
Remark 3.7 below.

Proposition 3.5. Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). Then every 
solution u to problem (1.1) in the sense of Definition 3.1 satisfies

either u ≡ 0 or meas{x ∈ Ω : u(x) = 0} = 0. (3.11)

Proof. We first recall the statement of the strong maximum principle (Theorem 8.19 of [14]), or more exactly 
of its variant, where u is replaced by −u. In this variant, Theorem 8.19 of [14] becomes

⎧⎪⎪⎨⎪⎪⎩
Let u ∈ H1(Ω) which satisfies Lu ≤ 0.
If for some ball B ⊂⊂ Ω we have infB u = infΩ u ≤ 0,
then u is constant in Ω.

(3.12)

In our situation one has Lu = div A(x)Du, and Lu ≤ 0 is nothing but −div A(x)Du ≥ 0. Therefore (3.12)
implies the following result

⎧⎪⎪⎨⎪⎪⎩
Let u ∈ H1(Ω) which satisfies − div A(x)Du ≥ 0 in D′(Ω).
If u ≥ 0 a.e. in Ω and if infB u = 0 for some ball B ⊂⊂ Ω,

then u = 0 in Ω,

(3.13)

since when u is a constant in Ω with infB u = 0, then u = 0 in Ω.
But one has the alternative:

{
either infB u > 0 for every ball B ⊂⊂ Ω,

or there exists a ball B ⊂⊂ Ω such that infB u = 0.

In the first case, one has meas{x ∈ Ω : u(x) = 0} = 0; in the second case, (3.13) implies that u ≡ 0.
This proves (3.11). �
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Remark 3.6. Actually the proof of Proposition 3.5 (which uses the strong maximum principle) provides a 
result which is much stronger than (3.11), namely⎧⎪⎪⎨⎪⎪⎩

either u ≡ 0,
or for every ball B ⊂⊂ Ω one has
infB u ≥ c(u,B) for some c(u,B) ∈ R, c(u,B) > 0.

(3.14)

Since the strong maximum principle continues to hold if the operator −div A(x)Du is replaced by 
−div A(x)Du + a0u, with a0 ∈ L∞(Ω), a0 ≥ 0, both (3.11) and (3.14) continue to hold for such an 
operator.

But when a0 ≥ 0 does not belong to L∞(Ω) and is only a nonnegative element of H−1(Ω) (this can be the 
case in the result of the homogenization process with many small holes that we will perform in Section 5), 
the strong maximum principle does not hold anymore for the operator −div A(x)Du + a0u (see [10] for a 
counter-example due to G. Dal Maso), and therefore (3.14) does not hold anymore for such an operator. �
Remark 3.7. If u ≡ 0 is a solution to problem (1.1) in the sense of Definition 3.1, then Proposition 3.4
implies that F (x, 0) = 0 for almost every x ∈ Ω.

Conversely, if F (x, 0) �≡ 0, u ≡ 0 is not a solution to problem (1.1) in the sense of Definition 3.1, and 
Proposition 3.5 (or more exactly (3.14)) then implies that

u(x) > 0 a.e. x ∈ Ω. �
4. Statements of the existence, stability, uniqueness and regularity results

In this Section we state results of existence, stability and uniqueness of the solution to problem (1.1) in 
the sense of Definition 3.1. We also state a result (Proposition 4.3) which provides the boundedness of the 
solutions under a regularity assumption on the function F .

Theorem 4.1 (Existence). Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). Then 
there exists at least one solution u to problem (1.1) in the sense of Definition 3.1.

The proof of Theorem 4.1 will be done in Subsection 7.2 below. It is based on a stability result (see 

Theorem 4.2 below), and on a priori estimates of ‖u‖H1
0(Ω) and of 

∫
{u≤δ}

F (x, u)ϕ for every ϕ ∈ H1
0 (Ω), 

ϕ ≥ 0 and for every δ > 0 (see Propositions 6.1 and 6.2 below); these a priori estimates are satisfied by 
every solution u to problem (1.1) in the sense of Definition 3.1.

Theorem 4.2 (Stability). Assume that the matrix A satisfies assumption (2.1). Let Fn be a sequence of 
functions and F∞ be a function which both satisfy assumptions (2.2) and (2.3) for the same γ and h. 
Assume moreover that

a.e. x ∈ Ω, Fn(x, sn) → F∞(x, s∞) if sn → s∞, sn ≥ 0, s∞ ≥ 0. (4.1)

Let un be any solution to problem (1.1)n in the sense of Definition 3.1, where (1.1)n is the problem (1.1)
with F (x, u) replaced by Fn(x, un).

Then there exists a subsequence, still labeled by n, and a function u∞, which is a solution to problem 
(1.1)∞ in the sense of Definition 3.1, such that

un → u∞ in H1
0 (Ω) strongly. (4.2)
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In the following Proposition we state a regularity result.

Proposition 4.3 (Boundedness). Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). 
Assume moreover that the function h which appears in (2.3) satisfies

h ∈ Lt(Ω), t > N

2 if N ≥ 2, t = 1 if N = 1. (4.3)

Then every u solution to problem (1.1) in the sense of Definition 3.1 belongs to L∞(Ω) and satisfies the 
estimate

‖u‖L∞(Ω) ≤ 1 + 2
α
C(|Ω|, N, t) ‖h‖Lt(Ω), (4.4)

where the constant C(|Ω|, N, t) depends only on |Ω|, N and t and is a nondecreasing function of |Ω|.

Finally, our uniqueness result is a consequence of the comparison principle stated in Theorem 8.1 below. 
Note that these two results are the only results where the “almost nonincreasing” character in s of the 
function F (x, s) is used in the present paper.

Theorem 4.4 (Uniqueness). Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). 
Assume moreover that the function F also satisfies assumption (2.4). Then the solution to problem (1.1) in 
the sense of Definition 3.1 is unique.

Remark 4.5. When assumptions (2.1), (2.2), (2.3) as well as (2.4) hold true, Theorems 4.1, 4.2 and 4.4
together assert that problem (1.1) is well posed in the sense of Hadamard in the framework of Defini-
tion 3.1. �
5. Statement of the homogenization result in a domain with many small holes and Dirichlet boundary 
condition

In this Section we deal with the asymptotic behaviour, as ε tends to zero, of solutions in the sense of 
Definition 3.1 to the singular semilinear problem

{
−div A(x)Duε = F (x, uε) in Ωε,

uε = 0 on ∂Ωε,
(5.0ε)

where uε satisfies the homogeneous Dirichlet boundary condition on the whole of the boundary of Ωε, 
when Ωε is a perforated domain obtained by removing many small holes from a given open bounded set 
Ω in RN , N ≥ 2, with a repartition of those many small holes producing a “strange term” when ε tends 
to 0.

We begin by describing in Subsection 5.1 the geometry of the perforated domains and the framework 
introduced in [4] (see also [6] and [15]) for this problem when the right-hand side is given in L2(Ω). We then 
state in Subsection 5.2 the homogenization and corrector results for the singular semilinear problem (5.0ε); 
the proofs of these results will be given in Section 9.
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As above we consider in this Section a given matrix A which satisfies (2.1) and a given function F which 
satisfies (2.2) and (2.3). But in this Section, as well as in Section 9, we assume that

N ≥ 2, (5.1)

(see Remark 5.1 below).

5.1. The perforated domains

Let Ω be a bounded open set of RN (N ≥ 2) and let us perforate it by closed holes: we obtain an open 
set Ωε. More precisely, consider for every ε, where ε takes its values in a sequence of positive numbers which 
tends to zero, some closed sets T ε

i of RN , 1 ≤ i ≤ n(ε), which are the holes. The domain Ωε is defined by 
removing the holes T ε

i from Ω, that is

Ωε = Ω −
n(ε)⋃
i=1

T ε
i .

We suppose that the sequence of domains Ωε is such that there exist a sequence of functions wε, a dis-
tribution μ ∈ D′(Ω) and two sequences of distributions με ∈ D′(Ω) and λε ∈ D′(Ω) such that

wε ∈ H1(Ω) ∩ L∞(Ω), (5.2)

0 ≤ wε ≤ 1 a.e. x ∈ Ω, (5.3)

∀ψ ∈ H1
0 (Ω) ∩ L∞(Ω), wεψ ∈ H1

0 (Ωε), (5.4)

wε ⇀ 1 in H1(Ω) weakly, in L∞(Ω) weakly-star and a.e. in Ω, (5.5)

μ ∈ H−1(Ω), (5.6)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div tA(x)tDwε = με − λε in D′(Ω),
with με ∈ H−1(Ω), λε ∈ H−1(Ω),
με ≥ 0 in D′(Ω),
με → μ in H−1(Ω) strongly,
〈λε, z̃ε〉H−1(Ω),H1

0 (Ω) = 0 ∀zε ∈ H1
0 (Ωε),

(5.7)

where, as well as everywhere in the present paper, for every function zε in L2(Ω), we define z̃ε as the 
extension by 0 of zε to Ω, namely by

z̃ε(x) =

⎧⎪⎪⎨⎪⎪⎩
zε(x) in Ωε,

0 in
n(ε)⋃
i=1

T ε
i ;

(5.8)

then z̃ε ∈ L2(Ω) and ‖z̃ε‖L2(Ω) = ‖zε‖L2(Ωε). Moreover{
if zε ∈ H1

0 (Ωε), then z̃ε ∈ H1
0 (Ω)

with D̃zε = Dz̃ε and ‖z̃ε‖H1
0 (Ω) = ‖zε‖H1

0 (Ωε).
(5.9)

The meaning of assumption (5.4) is that

wε = 0 on
n(ε)⋃

T ε
i , (5.10)
i=1
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while the meaning of the last statement of (5.7) is that the distribution λε only acts on the holes T ε
i , 

i = 1, · · · , n(ε), since taking test functions in D(Ωε) in the first statement of (5.7) implies that

−div tA(x)Dwε = με in D′(Ωε).

Taking zε = wεφ, with φ ∈ D(Ω), φ ≥ 0, as test function in (5.7), we have∫
Ω

φ tA(x)DwεDwε +
∫
Ω

wε tA(x)DwεDφ = 〈με, wεφ〉H−1(Ω),H1
0 (Ω),

from which using (5.5) and the fourth statement of (5.7) we easily deduce that∫
Ω

φA(x)DwεDwε → 〈μ, φ〉H−1(Ω),H1
0 (Ω) ∀φ ∈ D(Ω), φ ≥ 0,

and therefore that

μ ≥ 0.

The distribution μ ∈ H−1(Ω) is therefore also a nonnegative Radon measure. Moreover, since⎧⎪⎨⎪⎩
∀φ ∈ D(Ω), φ ≥ 0,∫
Ω

φdμ = 〈μ, φ〉H−1(Ω),H1
0 (Ω) = lim

ε

∫
Ω

φA(x)DwεDwε ≤ C‖φ‖L∞(Ω),

the measure μ is a finite Radon measure which satisfies 
∫
Ω

dμ ≤ C < +∞.

It is then (well) known1 (see e.g. [7] Section 1 and [8] Subsection 2.2 for more details) that if z ∈ H1
0 (Ω), 

then z (or more exactly its quasi-continuous representative for the H1
0 (Ω) capacity) satisfies

z ∈ L1(Ω; dμ) with 〈μ, z〉H−1(Ω),H1
0 (Ω) =

∫
Ω

z dμ ; (5.11)

moreover if z ∈ H1
0 (Ω) ∩ L∞(Ω), then z satisfies

z ∈ L∞(Ω; dμ) with ‖z‖L∞(Ω;dμ) = ‖z‖L∞(Ω); (5.12)

therefore when z ∈ H1
0 (Ω) ∩ L∞(Ω), then z belongs to L1(Ω; dμ) ∩ L∞(Ω; dμ) and therefore to Lp(Ω; dμ)

for every p, 1 ≤ p ≤ +∞.
When one assumes that the holes T ε

i , i = 1, · · · , n(ε), are such that the assumptions (5.2), (5.3), (5.4), 
(5.5), (5.6) and (5.7) hold true, then (see [4] or [15], or [6] for a more general framework) for every f ∈ L2(Ω), 
the (unique) solution yε to the linear problem{

yε ∈ H1
0 (Ωε),

−div A(x)Dyε = f in D′(Ωε),
(5.13)

1 The reader who would not enter in this theory could continue reading the present paper assuming in (5.6) that μ is a function 
of Lr(Ω) (with r = (2∗)′ if N ≥ 3, r > 1 if N = 2, and r = 1 if N = 1) and not only an element of H−1(Ω).
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satisfies

ỹε ⇀ y0 in H1
0 (Ω),

where y0 is the (unique) solution to{
y0 ∈ H1

0 (Ω) ∩ L2(Ω; dμ),
−div A(x)Dy0 + μy0 = f in D′(Ω),

or equivalently to ⎧⎪⎨⎪⎩
y0 ∈ H1

0 (Ω) ∩ L2(Ω; dμ),∫
Ω

A(x)Dy0Dz +
∫
Ω

y0z dμ =
∫
Ω

fz ∀z ∈ H1
0 (Ω) ∩ L2(Ω; dμ); (5.14)

in (5.14) the “strange term” μy0 appears; this term is in some sense the asymptotic memory of the fact that 
ỹε was zero on the holes.

The prototype of the examples where assumptions (5.2), (5.3), (5.4), (5.5), (5.6) and (5.7) are satisfied 
is the case where the matrix A(x) is the identity (and therefore where the operator is −div A(x)D = −Δ), 
where Ω ⊂ RN , N ≥ 2, where the holes T ε

i are balls of radius rε (or more generally sets obtained by a 
homothety of ratio rε from a given bounded closed set T ⊂ RN ) with rε given by⎧⎨⎩rε = C0 ε

N/(N−2) if N ≥ 3,

rε = exp(−C0

ε2 ) if N = 2,

which are periodically distributed at the vertices of an N -dimensional lattice of cubes of size 2ε, and where 
the measure μ is given by ⎧⎪⎨⎪⎩

μ = SN−1(N − 2)
2N CN−2

0 if N ≥ 3,

μ = π

2
1
C0

if N = 2,

(see e.g. [4] and [15] for more details, and for other examples, in particular for the case where the holes are 
distributed on a manifold).

Remark 5.1. In this Remark we prove that in dimension N = 1, there is no sequence wε which satisfies 
(5.2), (5.4) and (5.5) whenever for every ε there exists at least one hole T ε

iε
with T ε

iε
∩ Ω �= ∅. This is the 

reason why we assume in this Section, as well as in Section 9, that N ≥ 2 (see (5.1)).
Indeed let x be any point in Ω, and let zε be any point in T ε

iε
∩ Ω. Assume that there exists a sequence 

wε which satisfies (5.2), (5.4) and (5.5), and let M > 0 be such that ‖wε‖H1(Ω) ≤ M for every ε. Since 
N = 1, one has H1(Ω) ⊂ C0,1/2(Ω), and since wε(zε) = 0, one has{

|wε(x)| = |wε(x) − wε(zε)| ≤ ‖wε‖C0,1/2(Ω) |x− zε|1/2 ≤
≤ C ‖wε‖H1(Ω) |x− zε|1/2 ≤ CM |x− zε|1/2.

(5.15)

Since there exists a subsequence, still denoted by ε, such that the point zε converges to some point z ∈ Ω, 
passing to the limit in (5.15) gives in view of (5.5)

1 ≤ CM |x− z|1/2,

which is a contradiction when x = z. �
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5.2. The homogenization and corrector results for the singular semilinear problem (5.0ε)

The existence Theorem 4.1 asserts that when the matrix A and the function F satisfy assumptions (2.1), 
(2.2) and (2.3), then for given ε > 0, the singular semilinear problem (5.0ε) posed on Ωε has at least one 
solution uε in the sense of Definition 3.1 (this solution is moreover unique if the function F (x, s) also satisfies 
assumption (2.4)).

The following Theorem asserts that the result of the homogenization process for the singular problem 
(5.0ε) is very similar to the homogenization process for the linear problem (5.13). This Theorem will be 
proved in Subsection 9.1.

Theorem 5.2. Assume that N ≥ 2 and that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). 
Assume also that the sequence of perforated domains Ωε is such that (5.2), (5.3), (5.4), (5.5), (5.6) and (5.7)
hold true. Finally let uε be any solution to problem (5.0ε) in the sense of Definition 3.1, namely{

i)uε ∈ H1
0 (Ωε),

ii)uε(x) ≥ 0 a.e. x ∈ Ωε,
(5.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀ϕε ∈ H1
0 (Ωε) with ϕε ≥ 0, one has∫

Ωε

F (x, uε)ϕε < +∞,

∫
Ωε

A(x)DuεDϕε =
∫
Ωε

F (x, uε)ϕε.

(5.17)

Then there exists a subsequence, still labeled by ε, such that for this subsequence one has, for ũε defined 
by (5.8),

ũε ⇀ u0 in H1
0 (Ω)weakly, (5.18)

where u0 is a solution to {
i)u0 ∈ H1

0 (Ω) ∩ L2(Ω; dμ),
ii)u0(x) ≥ 0 a.e. x ∈ Ω,

(5.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀z ∈ H1
0 (Ω) ∩ L2(Ω; dμ) with z ≥ 0, one has∫

Ω

F (x, u0)z < +∞,

∫
Ω

A(x)Du0Dz +
∫
Ω

u0zdμ =
∫
Ω

F (x, u0)z.

(5.20)

Remark 5.3. Requirements (5.19) and (5.20) are the adaptation of Definition 3.1 of a solution to problem 
(1.1) to the case of problem {

−div A(x)Du0 + μu0 = F (x, u0) in Ω,

u0 = 0 on ∂Ω,
(5.21)

in which there is now a zeroth order term μu0, where μ is a nonnegative finite Radon measure which belongs 
to H−1(Ω). Theorem 5.2 therefore expresses the fact that, when assumptions (5.2), (5.3), (5.4), (5.5), (5.6)
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and (5.7) hold true, the result of the homogenization process of the singular semilinear problem (5.0ε) in 
Ωε with Dirichlet boundary condition on the whole of the boundary ∂Ωε is the singular semilinear problem 
(5.21), where the “strange term” μu0 appears exactly as in the case of the linear problem (5.13) where the 
right-hand side belongs to L2(Ω).

Note nevertheless that the result was not a priori obvious due to the presence of the term F (x, uε), which 
is singular (at least) on the boundary ∂Ωε and, in particular, on the boundary of the holes, whose number 
increases more and more when ε goes to zero, “invading” the entire open set Ω. �
Remark 5.4. If F (x, s) satisfies, in addition to (2.2) and (2.3), the further assumption (2.4), the solution 
uε to (5.16) and (5.17) is unique (see Theorem 4.4 above), and the solution u0 to (5.19) and (5.20) is also 
unique, as it is easily seen from a proof very similar to the one made in Section 8 below.

Under this further assumption there is therefore no need to extract a subsequence in Theorem 5.2, and 
the convergence takes place for the whole sequence ε. �

Further to the homogenization result of Theorem 5.2, we will also prove in Subsection 9.2 the following 
corrector result, which, under the assumptions that u0 ∈ L∞(Ω) and that the matrix A is symmetric, states 
that wεu0 is a strong approximation in H1

0 (Ω) of ũε.

Theorem 5.5. Assume that N ≥ 2 and that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). 
Assume also that the sequence of perforated domains Ωε is such that (5.2), (5.3), (5.4), (5.5), (5.6) and 
(5.7) hold true. Finally let uε be the subsequence of solutions to problem (5.0ε) in the sense of Definition 3.1
(see (5.16) and (5.17)) defined in Theorem 5.2, and let u0 be its limit defined by (5.18), (5.19) and (5.20). 
Assume moreover that

A(x) = tA(x), (5.22)

u0 ∈ L∞(Ω). (5.23)

Then further to (5.18) one has

ũε = wεu0 + rε, where rε → 0 in H1
0 (Ω) strongly. (5.24)

Remark 5.6. If further to assumptions (2.2) and (2.3), the function F is assumed to satisfy the regularity 
assumption (4.3), then in view of Proposition 4.3 every solution uε to (5.0ε) in the sense of Definition 3.1
satisfies

‖ũε‖L∞(Ω) = ‖uε‖L∞(Ωε) ≤ 1 + 2
α
C(|Ωε|, N, t) ‖h‖Lt(Ωε) ≤ 1 + 2

α
C(|Ω|, N, t) ‖h‖Lt(Ω).

In such a case, the limit u0 satisfies assumption (5.23) with

‖u0‖L∞(Ω) ≤ 1 + 2
α
C(|Ω|, N, t) ‖h‖Lt(Ω). �

6. A priori estimates

Proposition 6.1 (H1
0 (Ω) a priori estimate). Assume that the matrix A and the function F satisfy (2.1), (2.2)

and (2.3). Then every u solution to problem (1.1) in the sense of Definition 3.1 satisfies

‖u‖H1
0 (Ω) ≤ C(|Ω|, N, α, γ, r)

(
‖h‖Lr(Ω) + ‖h‖1/2

L1(Ω)
)
, (6.1)

where the constant C(|Ω|, N, α, γ, r) depends only on |Ω|, N , α, γ and r and is a nondecreasing function 
of |Ω|.
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Proof. We take ϕ = u as test function in (3.3). Using (2.3 iv) and Young’s inequality with 1/p = 1 − γ and 
1/p′ = γ when 0 < γ < 1, which implies that

u1−γ ≤ 1
p
u(1−γ)p + 1

p′
= (1 − γ)u + γ, (6.2)

we obtain ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DuDu =
∫
Ω

F (x, u)u ≤
∫
Ω

h(x)
( 1
uγ

+ 1
)
u ≤

≤
∫
Ω

h(x)
(
(1 − γ)u + γ + u

)
=

∫
Ω

h(x)
(
(2 − γ)u + γ

)
.

(6.3)

When N ≥ 3, we use Sobolev’s embedding Theorem H1
0 (Ω) ⊂ L2∗(Ω), with 2∗ defined by 

1
2∗ = 1

2 − 1
N

, 
and the Sobolev’s inequality

‖v‖L2∗ (Ω) ≤ CN‖Dv‖L2(Ω) ∀v ∈ H1
0 (Ω) when N ≥ 3; (6.4)

note that (2∗)′ = 2N/(N + 2) = r since N ≥ 3. Using in (6.3) the coercivity (2.1), Hölder’s inequality, 
Sobolev’s inequality (6.4) and finally Young’s inequality, we get

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α

∫
Ω

|Du|2 ≤ (2 − γ)‖h‖Lr(Ω)‖u‖L2∗ (Ω) + γ‖h‖L1(Ω) ≤

≤ (2 − γ)CN‖h‖Lr(Ω)‖Du‖L2(Ω)N + γ‖h‖L1(Ω) ≤

≤ α

2 ‖Du‖2
L2(Ω)N + 1

2α (2 − γ)2C2
N‖h‖2

Lr(Ω) + γ‖h‖L1(Ω),

(6.5)

which yields

‖Du‖2
L2(Ω)N ≤

( (2 − γ)CN

α

)2
‖h‖2

Lr(Ω) + 2γ
α

‖h‖L1(Ω),

which finally implies

‖Du‖L2(Ω)N ≤ (2 − γ)CN

α
‖h‖Lr(Ω) +

(2γ
α

)1/2
‖h‖1/2

L1(Ω) ,

namely estimate (6.1) with a constant which depends only on N , α and γ.
The proof is similar when N = 1 and N = 2, but Sobolev’s inequality (6.4) has now to be replaced by

‖v‖L∞(Ω) ≤ |Ω|1/2 ‖Dv‖L2(Ω) ∀v ∈ H1
0 (Ω) when N = 1,

and by

∀r′ > 1, ‖v‖Lr′ (Ω) ≤ C(|Ω|, r) ‖Dv‖L2(Ω) ∀v ∈ H1
0 (Ω) when N = 2,

where the constant C(|Ω|, r) is a nondecreasing function of |Ω|.
This completes the proof of estimate (6.1). �
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In the following Proposition we give an estimate of the integral of F (x, u)ϕ near the singular set {u = 0}. 
To this aim we introduce for δ > 0 the function Zδ : [0, +∞[ → [0, +∞[ defined by

Zδ(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 0 ≤ s ≤ δ,

− s
δ + 2, if δ ≤ s ≤ 2δ,

0, if 2δ ≤ s.

(6.6)

Proposition 6.2 (Control of 
∫

{u≤δ}

F (x, u)v when δ is small). Assume that the matrix A and the function F

satisfy (2.1), (2.2) and (2.3). Then every u solution to problem (1.1) in the sense of Definition 3.1 satisfies⎧⎪⎪⎨⎪⎪⎩
∀ϕ ∈ H1

0 (Ω), ϕ ≥ 0, ∀δ > 0,

0 ≤
∫

{u≤δ}

F (x, u)ϕ ≤
∫
Ω

A(x)DuDϕZδ(u). (6.7)

Proof. The proof consists in taking Tk(ϕ)Zδ(u), ϕ ∈ H1
0 (Ω), ϕ ≥ 0 as test function in (3.3). This function 

belongs to H1
0 (Ω) and we get∫
Ω

A(x)DuDTk(ϕ)Zδ(u) = 1
δ

∫
{δ<u<2δ}

A(x)DuDuTk(ϕ) +
∫
Ω

F (x, u)Tk(ϕ)Zδ(u).

Since Zδ(u) = 1 on {u ≤ δ}, this implies that⎧⎪⎪⎨⎪⎪⎩
∀ϕ ∈ H1

0 (Ω), ϕ ≥ 0, ∀k > 0, ∀δ > 0,

0 ≤
∫

{u≤δ}

F (x, u)Tk(ϕ) ≤
∫
Ω

A(x)DuDTk(ϕ)Zδ(u). (6.8)

We now pass to the limit in (6.8) as k tends to infinity, using the strong convergence of DTk(u) to Du

in L2(Ω)N in the right-hand side and Fatou’s Lemma for on the left-hand side. This gives (6.7). �
As a consequence of Proposition 6.2 we have:

Proposition 6.3. Assume that the matrix A and the function F satisfy (2.1), (2.2) and (2.3). Then every u
which is solution to problem (1.1) in the sense of Definition 3.1 satisfies∫

{u=0}

F (x, u)ϕ = 0 ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0. (6.9)

Proof. Since {u = 0} ⊂ {u ≤ δ} for every δ > 0, inequality (6.7) implies that⎧⎪⎪⎨⎪⎪⎩
∀ϕ ∈ H1

0 (Ω), ϕ ≥ 0, ∀δ > 0,

0 ≤
∫

{u=0}

F (x, u)ϕ ≤
∫
Ω

A(x)DuDϕZδ(u).

When δ tends to zero, one has

Zδ(u) → χ{u=0} a.e. in Ω;
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on the other hand, since u ∈ H1
0 (Ω), one has

Du = 0 a.e. on {u = 0};

therefore, since A(x)DuDϕ ∈ L1(Ω), one has, by Lebesgue’s dominated convergence theorem,∫
Ω

A(x)DuDϕZδ(u) → 0 as δ → 0,

which proves (6.9). �
7. Proofs of the stability, existence and regularity results (Theorems 4.2 and 4.1 and Proposition 4.3)

7.1. Proof of the stability Theorem 4.2

First step
Since all the functions Fn(x, s) satisfy assumptions (2.2) and (2.3) for the same γ and h, every solu-

tion un to problem (1.1)n in the sense of Definition 3.1 satisfies the a priori estimates (6.1) and (6.7) of 
Propositions 6.1 and 6.2.

Therefore there exist a subsequence, still labeled by n, and a function u∞ such that

un ⇀ u∞ in H1
0 (Ω) weakly and a.e. in Ω. (7.1)

Since un ≥ 0, we have also u∞ ≥ 0.
Since un satisfies (3.3)n, we have∫

Ω

A(x)DunDϕ =
∫
Ω

Fn(x, un)ϕ ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0. (7.2)

Using in the left-hand side the weak convergence (7.1), and in the right-hand side the almost every-
where convergence (7.1) of un to u∞, assumption (4.1) on the functions Fn and Fatou’s Lemma, one 
obtains ∫

Ω

F∞(x, u∞)ϕ ≤
∫
Ω

A(x)Du∞Dϕ < +∞ ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0, (7.3)

which implies the first assertion of (3.3)∞.
It remains to prove the second assertion of (3.3)∞ and the strong convergence (4.2).

Second step
We fix a function ϕ ∈ H1

0 (Ω), ϕ ≥ 0, and, for every δ > 0, we write (7.2) as∫
Ω

A(x)DunDϕ =
∫

{un≤δ}

Fn(x, un)ϕ +
∫

{un>δ}

Fn(x, un)ϕ. (7.4)

We pass now to the limit as n tends to infinity for δ > 0 fixed in (7.4). In the left-hand side we get (as 
before) ∫

A(x)DunDϕ →
∫

A(x)Du∞Dϕ. (7.5)

Ω Ω
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For what concerns the first term of the right-hand side of (7.4) we use the a priori estimate (6.7). Since 
DϕZδ(un) tends to DϕZδ(u∞) strongly in L2(Ω)N while A(x)Dun tends to A(x)Du∞ weakly in L2(Ω)N , 
we obtain

∀δ > 0, lim sup
n

∫
{un≤δ}

Fn(x, un)ϕ ≤
∫
Ω

A(x)Du∞DϕZδ(u∞). (7.6)

Since

Zδ(u∞) → χ{u∞=0} a.e. in Ω, as δ → 0,

and since u∞ ∈ H1
0 (Ω) implies that Du∞ = 0 almost everywhere on the set {x ∈ Ω : u∞(x) = 0}, the 

right-hand side of (7.6) tends to 0 when δ tends to 0.
We have proved that

lim sup
n

∫
{un≤δ}

Fn(x, un)ϕ → 0 as δ → 0. (7.7)

Third step
Let us now observe that for every δ > 0

∫
{u∞=0}

Fn(x, un)χ{un≤δ}ϕ ≤
∫

{un≤δ}

Fn(x, un)ϕ. (7.8)

Since un converges almost everywhere to u∞, one has, for every δ > 0,

χ{un≤δ} → χ{u∞≤δ} a.e. on {x ∈ Ω : u∞(x) �= δ},

and therefore

χ{un≤δ} → 1 a.e. on {x ∈ Ω : u∞(x) = 0},

while in view of assumption (4.1), one has

Fn(x, un(x)) → F∞(x, u∞(x)) a.e. x ∈ Ω.

Applying Fatou’s Lemma to the left-hand side of (7.8), we obtain

∀δ > 0,
∫

{u∞=0}

F∞(x, u∞)ϕ ≤ lim sup
n

∫
{un≤δ}

Fn(x, un)ϕ,

which in view of (7.7) implies that

∫
{u∞=0}

F∞(x, u∞)ϕ = 0. (7.9)
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Fourth step
Let us finally pass to the limit in n for δ > 0 fixed in the second term of the right-hand side of (7.4), 

namely in ∫
{un>δ}

Fn(x, un)ϕ =
∫
Ω

Fn(x, un)χ{un>δ}ϕ.

Since in view of (2.3 iv)

0 ≤ Fn(x, un)χ{un>δ}ϕ ≤ h(x)
(

1
δγ

+ 1
)
ϕ a.e. x ∈ Ω,

since hϕ ∈ L1(Ω), since in view of assumption (4.1) and of the almost everywhere convergence (7.1) of un

to u∞ one has

Fn(x, un)ϕ → F∞(x, u∞)ϕ a.e. on Ω,

and finally since

χ{un>δ} → χ{u∞>δ} a.e. on {x ∈ Ω : u∞(x) �= δ},

defining the set C ⊂ [0, +∞[ by

C = {δ > 0, meas{x ∈ Ω : u∞(x) = δ} > 0 }

(note that this set is at most countable), and choosing δ /∈ C, Lebesgue’s dominated convergence Theorem 
implies that ∫

{un>δ}

Fn(x, un)ϕ →
∫

{u∞>δ}

F∞(x, u∞)ϕ as n → +∞, ∀δ /∈ C. (7.10)

Since the set C is at most a countable, choosing δ outside of the set C and using the fact that the set 
{x ∈ Ω : u∞(x) > δ} monotonically shrinks to the set {x ∈ Ω : u∞(x) > 0} as δ tends to 0, the fact that 
F∞(x, u∞)ϕ belongs to L1(Ω) (see (7.3)), and finally (7.9), we have proved that∫

{u∞>δ}

F∞(x, u∞)ϕ →
∫

{u∞>0}

F∞(x, u∞)ϕ =
∫
Ω

F∞(x, u∞)ϕ as δ → 0, δ /∈ C. (7.11)

Fifth step
Passing to the limit in each term of (7.4), first in n for δ > 0 fixed with δ /∈ C, and then for δ /∈ C which 

tends to 0, and collecting the results obtained in (7.5), (7.7), (7.10) and (7.11), we have proved that∫
Ω

A(x)Du∞Dϕ =
∫
Ω

F∞(x, u∞)ϕ ∀ϕ ∈ H1
0 (Ω), ϕ ≥ 0,

which is nothing but the second assertion in (3.3)∞.
We have proved a weaker version of Theorem 4.2, where the strong H1

0 (Ω) convergence (4.2) is replaced 
by the weak H1

0 (Ω) convergence (7.1).
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Sixth step
Let us now prove that (4.2) (namely the strong H1

0 (Ω) convergence) holds true. Indeed, taking un as test 
function in (3.3)n, we have

∫
Ω

A(x)DunDun =
∫
Ω

Fn(x, un)un.

Observe that in view of hypothesis (4.1) and of convergence (7.1) we have

Fn(x, un)un → F∞(x, u∞)u∞ a.e. x ∈ Ω.

Observe also that the functions Fn(x, un)un are equi-integrable: indeed for every measurable set E ⊂ Ω, we 
have, using (2.3 iv), (6.2), Hölder’s and Sobolev’s inequalities (see the proof of Proposition 6.1 above) and 
finally (6.1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤
∫
E

Fn(x, un)un ≤
∫
E

h(x)
(

1
uγ
n

+ 1
)
un ≤

≤
∫
E

h(x)
(
(1 − γ)un + γ + un

)
=

∫
E

h(x)
(
(2 − γ)un + γ

)
≤

≤ (2 − γ)‖h‖Lr(E) c(|Ω|, N, r) ‖Dun‖L2(Ω)N + γ‖h‖L1(E) ≤
≤ c‖h‖Lr(E) + γ‖h‖L1(E),

(7.12)

where c is a constant which does not depend neither on E nor on n. Therefore by Vitali’s Theorem we 
have

Fn(x, un)un → F∞(x, u∞)u∞ in L1(Ω) strongly.

This implies that

∫
Ω

A(x)DunDun =
∫
Ω

Fn(x, un)un →
∫
Ω

F∞(x, u∞)u∞.

On the other hand, taking u∞ as test function in (3.3)∞, we have

∫
Ω

A(x)Du∞Du∞ =
∫
Ω

F∞(x, u∞)u∞dx.

Therefore

∫
Ω

A(x)DunDun →
∫
Ω

A(x)Du∞Du∞.

Together with (7.1), this implies the strong convergence (4.2).
This completes the proof of the stability Theorem 4.2. �
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7.2. Proof of the existence Theorem 4.1

Let un be a solution to {
un ∈ H1

0 (Ω),
−div A(x)Dun = Tn(F (x, u+

n )) inD′(Ω),
(7.13)

where Tn is the truncation at height n.
Since Tn(F (x, s+)) is a bounded Carathéodory function defined on Ω ×R, Schauder’s fixed point theorem 

implies that problem (7.13) has at least one solution. Since F (x, s+) ≥ 0, this solution is nonnegative by 
the weak maximum principle, and therefore u+

n = un.
It is then clear that un is a solution to problem (1.1)n in the sense of Definition 3.1, where (1.1)n is the 

problem (1.1) with F (x, u) replaced by Fn(x, un) = Tn(F (x, un)).
Moreover it is easy to see, considering the cases where s∞ > 0 and where s∞ = 0, that the functions 

Fn(x, s) satisfy assumption (4.1) with

F∞(x, s) = F (x, s).

The stability Theorem 4.2 then implies that there exists a subsequence of un whose limit u∞ is a solution 
to problem (1.1) in the sense of Definition 3.1.

This proves the existence Theorem 4.1. �
7.3. Proof of the regularity Proposition 4.3

Using Gk(u), k > 0 as test function in (3.3), we get∫
Ω

A(x)DGk(u)DGk(u) =
∫
Ω

F (x, u)Gk(u) ∀k > 0.

Setting k = j + 1 with j ≥ 0, this implies, using the coercivity (2.1) and condition (2.3 iv), that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α

∫
Ω

|DGj+1(u)|2 ≤
∫
Ω

h(x)
(

1
uγ

+ 1
)
Gj+1(u) ≤

≤
∫

{u>1}

h(x)
(

1
uγ

+ 1
)
Gj+1(u) ≤ 2

∫
Ω

h(x)Gj+1(u), ∀j ≥ 0.
(7.14)

Since

Gj+1(s) = Gj(G1(s)) ∀s ∈ R, ∀j ≥ 0,

and since G1(u) ∈ H1
0 (Ω), setting

u = G1(u),

we deduce from (7.14) that u satisfies⎧⎪⎨⎪⎩
u ∈ H1

0 (Ω),∫
|DGj(u)|2 ≤ 2

α

∫
h(x)Gj(u) ∀j ≥ 0.
Ω Ω
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A result of G. Stampacchia (see the proof of Lemma 5.1 and Lemma 4.1 in [16]) (see also Section 5 
in [12]) then implies that when h ∈ Lt(Ω) (hypothesis (4.3)), the function u belongs to L∞(Ω), and that 
there exists a constant C(|Ω|, N, t) which is a nondecreasing function of |Ω| such that

‖u‖L∞(Ω) ≤
2
α
C(|Ω|, N, t) ‖h‖Lt(Ω).

Combined with

u = T1(u) + G1(u) = T1(u) + u,

this result implies that

‖u‖L∞(Ω) ≤ 1 + 2
α
C(|Ω|, N, t) ‖h‖Lt(Ω),

which proves Proposition 4.3. �
8. Comparison principle and proof of the uniqueness Theorem 4.4

In this Section we prove the following comparison result:

Theorem 8.1 (Comparison principle). Assume that the matrix A satisfies (2.1). Let F1(x, s) and F2(x, s) be 
two functions satisfying (2.2) and (2.3) (for the same or for different γ and h). Assume moreover that

either F1(x, s) or F2(x, s) satisfies (2.4), (8.1)

and that

F1(x, s) ≤ F2(x, s) a.e. x ∈ Ω, ∀s ≥ 0. (8.2)

Let u1 and u2 be solutions in the sense of Definition 3.1 to problem (1.1)1 and (1.1)2, where (1.1)1 and 
(1.1)2 stand for (1.1) with F (x, u) replaced by F1(x, u1) and F2(x, u2). Then

u1(x) ≤ u2(x) a.e. x ∈ Ω. (8.3)

8.1. Proof of the uniqueness Theorem 4.4

Applying this comparison principle to the case where F1(x, s) = F2(x, s) = F (x, s), with F (x, s) satisfying 
(2.4), immediately proves the uniqueness Theorem 4.4. �
8.2. Proof of Theorem 8.1

Since (u1 − u2)+ ∈ H1
0 (Ω), we can take it as test function in (3.3)1 and add to both sides of (3.3)1 the 

finite term −λ 
∫
Ω

u1(u1 − u2)+. The same holds for (3.3)2. This gives

∫
Ω

A(x)DuiD(u1 − u2)+ − λ

∫
Ω

ui(u1 − u2)+ =
∫
Ω

(Fi(x, ui) − λui)(u1 − u2)+, i = 1, 2.
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Taking the difference between these two equations it follows that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)D(u1 − u2)+D(u1 − u2)+ − λ

∫
Ω

|(u1 − u2)+|2 =

=
∫
Ω

(
(F1(x, u1) − λu1) − (F2(x, u2) − λu2)

)
(u1 − u2)+.

Using the coercivity (2.1) and the characterization of the first eigenvalue λ1 of the operator −div sA(x)D in 
H1

0 (Ω), we get

(λ1 − λ)
∫
Ω

|(u1 − u2)+|2 ≤
∫
Ω

(
(F1(x, u1) − λu1) − (F2(x, u2) − λu2)

)
(u1 − u2)+. (8.4)

Let us now prove that(
(F1(x, u1) − λu1) − (F2(x, u2) − λu2)

)
(u1 − u2)+ ≤ 0 a.e. x ∈ Ω, (8.5)

or equivalently that

(F1(x, u1) − λu1) − (F2(x, u2) − λu2) ≤ 0 a.e. x ∈ {u1 > u2}. (8.6)

We first observe that since u1 and u2 are solutions to (1.1)1 and (1.1)2 in the sense of Definition 3.1, one 
has (see (3.5))

F1(x, u1) and F2(x, u2) are nonnegative and finite a.e. x ∈ Ω. (8.7)

In order to prove (8.6), let us first consider the case where F1 satisfies (2.4). In this case we have

F1(x, u1) − λu1 ≤ F1(x, u2) − λu2 a.e. x ∈ {u1 > u2}. (8.8)

We observe that hypothesis (8.2) implies that

F1(x, u2) ≤ F2(x, u2) a.e. x ∈ Ω,

and therefore, using (8.7), that

F1(x, u2) is nonnegative and finite a.e. x ∈ Ω.

Since there is no indeterminacy of the type (∞ −∞), it is licit to write that⎧⎪⎪⎨⎪⎪⎩
(F1(x, u1) − λu1) − (F2(x, u2) − λu2) =
= (F1(x, u1) − λu1) − (F1(x, u2) − λu2) +
+(F1(x, u2) − λu2) − (F2(x, u2) − λu2) a.e. x ∈ Ω.

(8.9)

Since the first line of the right-hand side of (8.9) is nonpositive on {u1 > u2} by (8.8), and since the second 
line of this right-hand side, namely F1(x, u2) − F2(x, u2), is nonpositive by (8.2), we have proved (8.6).

Let us now consider the case where F2 satisfies (2.4). In this case we have

F2(x, u1) − λu1 ≤ F2(x, u2) − λu2 a.e. x ∈ {u1 > u2}. (8.10)
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We observe that, together with the fact that F2(x, u2) is finite almost everywhere on Ω (see (8.7)), this 
result implies that

F2(x, u1) is nonnegative and finite a.e. x ∈ {u1 > u2}.

Since there is no indeterminacy of the type (∞ −∞), it is licit to write that⎧⎪⎪⎨⎪⎪⎩
(F1(x, u1) − λu1) − (F2(x, u2) − λu2) =
= (F1(x, u1) − λu1) − (F2(x, u1) − λu1) +
+ (F2(x, u1) − λu1) − (F2(x, u2) − λu2) a.e. x ∈ {u1 > u2}.

(8.11)

Since the second line of the right-hand side of (8.11) is nonpositive on {u1 > u2} by (8.10), and since 
the first line of this right-hand side, namely F1(x, u1) − F2(x, u1), is nonpositive by (8.2), we have again 
proved (8.6).

In both cases we have proved that the right-hand side of (8.4) is nonpositive when assumptions (8.1) and 
(8.2) are assumed to hold true. Since λ1 − λ > 0 by hypothesis (2.4), this implies that (u1 − u2)+ = 0.

This proves (8.3). �
Remark 8.2. Consider the case where the matrix A satisfies (2.1) and is symmetric and where the function 
F is defined by

F (x, s) = λ1Tk(s) ∀s ≥ 0, (8.12)

where Tk is the truncation at height k > 0, for some k fixed, and where λ1 and φ1 are the first eigenvalue 
and eigenvector of the operator −div A(x)D in H1

0 (Ω), namely⎧⎪⎨⎪⎩
φ1 ∈ H1

0 (Ω), φ1 ≥ 0,
∫
Ω

|φ1|2 = 1,

−div A(x)Dφ1 = λ1φ1 in D′(Ω).
(8.13)

The function F defined by (8.12) satisfies assumptions (2.2), (2.3) and (2.5), but does not satisfy (2.4).
Recall that φ1, the solution to (8.13), belongs to L∞(Ω). Then for every t with 0 ≤ t ≤ k/‖φ1‖L∞(Ω), 

the function

u = tφ1

is a solution to (1.1) with F (x, s) given by (8.12) in the classical weak sense, and therefore in the sense of 
Definition 3.1.

This proves that uniqueness does not hold if assumption (2.4) is replaced by the weaker assump-
tion (2.5). �
9. Proofs of the homogenization Theorem 5.2 and of the corrector Theorem 5.5

9.1. Proof of the homogenization Theorem 5.2

First step
Theorem 4.1 asserts that for every ε > 0 there exists at least one solution to problem (5.0ε) in the sense 

of Definition 3.1, namely a least one uε which satisfies (5.16) and (5.17).
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Proposition 6.1 and (5.9) imply that every such uε satisfies{
‖ũε‖H1

0 (Ω) = ‖uε‖H1
0 (Ωε) ≤

≤ C(|Ωε|, N, α, γ, r)
(
‖h‖Lr(Ωε) + ‖h‖1/2

L1(Ωε)
)
≤ C(|Ω|, N, α, γ, r)

(
‖h‖Lr(Ω) + ‖h‖1/2

L1(Ω)
)
.

(9.1)

Estimate (9.1) implies that there exists a function u0, and a subsequence ũε, still labeled by ε, which 
satisfies

ũε ⇀ u0 in H1
0 (Ω) weakly and a.e. in Ω. (9.2)

Observe that u0(x) ≥ 0 a.e. x ∈ Ω.

Second step
In view of assumptions (5.2), (5.3) and (5.4), one has

wεψ ∈ H1
0 (Ωε) ∩ L∞(Ωε) ∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω),

and {
‖wεψ‖H1

0 (Ωε) = ‖wεψ‖H1
0 (Ω) ≤

≤ ‖wε‖L∞(Ω)‖Dψ‖L2(Ω)N + ‖ψ‖L∞(Ω)‖Dwε‖L2(Ω)N ≤ C∗(‖Dψ‖L2(Ω)N + ‖ψ‖L∞(Ω)),

where

C∗ = max
ε

{1, ‖Dwε‖L2(Ω)N }.

We now fix ψ ∈ H1
0 (Ω) ∩ L∞(Ω), ψ ≥ 0, and we use ϕε = wεψ ∈ H1

0 (Ωε), ϕε ≥ 0, as test function in 
(5.17). We obtain ∫

Ωε

A(x)DuεDψwε +
∫
Ωε

A(x)DuεDwε ψ =
∫
Ωε

F (x, uε)wεψ,

which using (5.9) implies that∫
Ω

A(x)DũεDψwε +
∫
Ω

A(x)DũεDwε ψ =
∫
Ω

˜F (x, uε)wεψ. (9.3)

Equation (9.3) in particular implies by (9.1) and (5.5) that∫
Ω

˜F (x, uε)wεψ ≤ C, (9.4)

where C is independent of ε.
We now claim that for a subsequence, still labeled by ε,

χΩε → 1 a.e. in Ω; (9.5)

indeed, from wεχΩε = wε a.e. in Ω, which results from (5.4) (see also (5.10)), and from (5.5) we get

χΩε = χΩεwε + χΩε(1 − wε) = wε + χΩε(1 − wε) ⇀ 1 in L∞(Ω) weakly-star,
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which implies that ∫
Ω

|χΩε − 1| =
∫
Ω

(1 − χΩε) → 0

which implies (9.5) (for a subsequence).
From now on, ε will always belong to this subsequence.
We deduce from (9.5) that for almost every x0 fixed in Ω there exists ε0(x0) such that χΩε(x0) = 1 for 

every ε ≤ ε0(x0), which means that x0 ∈ Ωε for every ε ≤ ε0(x0). This implies that

˜F (x, uε)(x0) = F (x, uε)(x0) = F (x, ũε)(x0) ∀ε ≤ ε0(x0).

Therefore, using (9.2), we get

˜F (x, uε)(x0) = F (x, ũε(x0)) → F (x, u0(x0)) as ε → 0,

or in other terms

˜F (x, uε) → F (x, u0) a.e. x ∈ Ω. (9.6)

Using (9.4), (5.5) and (9.6) and applying Fatou’s Lemma implies that∫
Ω

F (x, u0)ψ < +∞ ∀ψ ∈ H1
0 (Ω) ∩ L∞(Ω), ψ ≥ 0. (9.7)

Third step
Let us now fix φ ∈ D(Ω), φ ≥ 0, and take ψ = φ in (9.3). Since in view of (5.7) one has⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDwε φ =
∫
Ω

tA(x)DwεD(φũε) −
∫
Ω

tA(x)DwεDφ ũε =

= 〈με, φũε〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDφ ũε,

equation (9.3) implies that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDφwε + 〈με, φũε〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDφ ũε =

=
∫
Ω

˜F (x, uε)wεφ ∀φ ∈ D(Ω), φ ≥ 0.
(9.8)

Using (9.2), (5.4), (5.5) and (5.7), we easily pass to the limit in the left-hand side of (9.8), and we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDφwε + 〈με, φũε〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDφ ũε →

→
∫
Ω

A(x)Du0Dφ + 〈μ, φu0〉H−1(Ω),H1
0 (Ω).

(9.9)



JID:MATPUR AID:2843 /FLA [m3L; v1.180; Prn:23/06/2016; 13:17] P.28 (1-37)
28 D. Giachetti et al. / J. Math. Pures Appl. ••• (••••) •••–•••
As far as the right-hand side of (9.8) is concerned we write it for every δ > 0 as∫
Ω

˜F (x, uε)wεφ =
∫
Ω

˜F (x, uε)wεφχ{0≤ũε≤δ} +
∫
Ω

˜F (x, uε)wεφχ{ũε>δ}. (9.10)

Fourth step
We now use ϕε = wεφZδ(uε) as test function in (5.17), where the function Zδ is defined by (6.6) and 

where φ ∈ D(Ω), φ ≥ 0. Note that ϕε ∈ H1
0 (Ωε) ∩ L∞(Ωε), ϕε ≥ 0 in view of (5.4). We get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ωε

F (x, uε)wεφZδ(uε) =

=
∫
Ωε

A(x)DuεDwε φZδ(uε) +
∫
Ωε

A(x)DuεDφwεZδ(uε) +
∫
Ωε

A(x)DuεDuε Z ′
δ(uε)wεφ,

which implies, since Zδ(s) = 1 for 0 ≤ s ≤ δ and since Zδ is nonincreasing, that∫
Ωε

F (x, uε)wεφχ{0≤uε≤δ} ≤
∫
Ωε

A(x)DuεDwε φZδ(uε) +
∫
Ωε

A(x)DuεDφwεZδ(uε).

In view of the definition (5.8) of the extension by zero and of (5.9), we get∫
Ω

˜F (x, uε)wεφχ{0≤ũε≤δ} ≤
∫
Ω

A(x)DũεDwε φZδ(ũε) +
∫
Ω

A(x)DũεDφwεZδ(ũε). (9.11)

Let us define the function Yδ : [0, +∞[ → [0, +∞[ by

Yδ(s) =
s∫

0

Zδ(σ)dσ, ∀s ≥ 0,

and observe that Yδ(uε) ∈ H1
0 (Ωε) and Ỹδ(uε) = Yδ(ũε). Using (5.7), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDwεφZδ(ũε) =
∫
Ω

tA(x)DwεDYδ(ũε)φ =

=
∫
Ω

tA(x)DwεD(φYδ(ũε)) −
∫
Ω

tA(x)DwεDφYδ(ũε) =

= 〈με, φYδ(ũε)〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDφYδ(ũε).

(9.12)

Using now (5.7), (9.2), the fact that

Yδ(ũε) ⇀ Yδ(u0) in H1
0 (Ω) weakly and L2(Ω) strongly,

and (5.5) proves that the right-hand side of (9.12) tends to

〈μ, φYδ(u0)〉H−1(Ω),H1
0 (Ω)

as ε tends to zero for δ > 0 fixed.
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Turning back to (9.11), using (9.12) and the latest result, and passing to the limit as ε tends to zero, we 
have proved that for every fixed δ > 0

lim sup
ε

∫
Ω

˜F (x, uε)wεφχ{0≤ũε≤δ} ≤ 〈μ, φYδ(u0)〉H−1(Ω),H1
0 (Ω) +

∫
Ω

A(x)Du0DφZδ(u0). (9.13)

We now pass to the limit in the right-hand side of (9.13) as δ tends to zero.
For the first term of the right-hand side of (9.13), we use the fact that

0 ≤ Zδ(u0) ≤ 1, Zδ(u0) → χ{u0=0} a.e. in Ω as δ → 0, (9.14)

and

Du0 = 0 a.e. x ∈ {u0 = 0} since u0 ∈ H1
0 (Ω), (9.15)

imply that

DYδ(u0) = Zδ(u0)Du0 → χ{u0=0}Du0 = 0 strongly in L2(Ω)N ;

this implies the strong H1
0 (Ω) convergence of Yδ(u0) to 0, and therefore that

〈μ, φYδ(u0)〉H−1(Ω),H1
0 (Ω) → 0 as δ → 0.

For the second term of the right-hand side of (9.13) we have, using again (9.14) and (9.15),

∫
Ω

A(x)Du0DφZδ(u0) →
∫
Ω

A(x)Du0Dφχ{u0=0} = 0 as δ → 0.

As far as the first term of the right-hand side of (9.10) is concerned, we have proved that

lim sup
ε

∫
Ω

˜F (x, uε)wεφχ{0≤ũε≤δ} → 0 as δ → 0. (9.16)

Fifth step
Let us now pass to the limit in the second term of the right-hand side of (9.10).
Observe that there is at most a countable set C0 of values of δ > 0 such that

meas{x ∈ Ω : u0(x) = δ} > 0 if δ ∈ C0.

From now on we will often choose δ > 0 outside of this set C0.
Using (9.6), (5.5), (9.2), the fact that

∀δ > 0, χ{ũε>δ} → χ{u0>δ} a.e. x ∈ {u0 �= δ},

and therefore that

∀δ /∈ C0, χ{ũε>δ} → χ{u0>δ} a.e. x ∈ Ω,
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and the estimate (2.3 iv), which yields

0 ≤ ˜F (x, uε)wεφ(x)χ{ũε>δ} ≤ h(x)
(

1
(ũε)γ + 1

)
φ(x)χ{ũε>δ} ≤ h(x)

(
1
δγ

+ 1
)
φ(x) a.e. x ∈ Ω,

Lebesgue’s dominated convergence Theorem implies that∫
Ω

˜F (x, uε)wεφχ{ũε>δ} →
∫
Ω

F (x, u0)φχ{u0>δ} as ε → 0, ∀δ /∈ C0.

Using (9.7) and Lebesgue’s dominated convergence Theorem, we pass to the limit in this equality when 
δ /∈ C0 tends to zero. We have proved that

lim
ε

∫
Ω

˜F (x, uε)wεφχ{ũε>δ} →
∫
Ω

F (x, u0)φχ{u0>0} as δ → 0, δ /∈ C0. (9.17)

Sixth step
We now want to prove that ∫

{u0=0}

F (x, u0)φ = 0. (9.18)

Since ũε converges almost everywhere to u0, one has

ũε(x0) → 0 as ε → 0, a.e. x0 ∈ {u0 = 0},

and therefore ũε(x0) < δ for every ε < ε0(x0). This implies that for every δ > 0

χ{0≤ũε≤δ} → 1 a.e. x ∈ {u0 = 0}.

Using this fact, (9.6), (5.5) and Fatou’s Lemma for δ > 0 fixed we get∫
{u0=0}

F (x, u0)φ ≤ lim inf
ε

∫
{u0=0}

˜F (x, uε)wεφχ{0≤ũε≤δ} ∀δ > 0,

which, passing to the limit with δ which tends to zero and using (9.16) gives (9.18). This implies that∫
Ω

F (x, u0)φχ{u0>0} =
∫
Ω

F (x, u0)φ. (9.19)

Let us come back to (9.8). Collecting together (9.9), (9.10), (9.16), (9.17) and (9.19) we have proved that⎧⎪⎨⎪⎩
∀φ ∈ D(Ω), φ ≥ 0,∫
Ω

A(x)Du0Dφ + 〈μ, u0φ〉H−1(Ω),H1
0 (Ω) =

∫
Ω

F (x, u0)φ. (9.20)

Using (5.11) (see footnote 1), this is equivalent to⎧⎪⎨⎪⎩
∀φ ∈ D(Ω), φ ≥ 0,∫

A(x)Du0Dφ +
∫

u0φdμ =
∫

F (x, u0)φ. (9.21)
Ω Ω Ω
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Seventh step
Let us now fix ψ ∈ H1

0 (Ω) ∩ L∞(Ω), ψ ≥ 0.
Consider a sequence ψn such that{

ψn ∈ D(Ω), ψn ≥ 0, ‖ψn‖L∞(Ω) ≤ C,

ψn → ψ in H1
0 (Ω) strongly and a.e. x ∈ Ω,

and define

ψ̂n = inf{ψn, ψ};

then ⎧⎪⎪⎨⎪⎪⎩
ψ̂n ∈ H1

0 (Ω) ∩ L∞(Ω), ψ̂n ≥ 0, ‖ψ̂n‖L∞(Ω) ≤ C,

supp ψ̂n ⊂ supp ψn ⊂⊂ Ω,

ψ̂n → ψ in H1
0 (Ω) strongly and a.e. x ∈ Ω.

For the moment let n be fixed and let ρη be a sequence of mollifiers. For η sufficiently small the support 
of ψ̂n � ρη is included in a fixed compact Kn of Ω, and ψ̂n � ρη ∈ D(Ω), ψ̂n � ρη ≥ 0. We can therefore use 
φ = ψ̂n � ρη as test function in (9.21). We get∫

Ω

A(x)Du0D(ψ̂n � ρη) +
∫
Ω

u0(ψ̂n � ρη)dμ =
∫
Ω

F (x, u0)(ψ̂n � ρη).

Let us pass to the limit in each term of this equation for n fixed as η tends to zero. In the right-hand side we 
use the facts that F (x, u0) ∈ L1

loc(Ω) (see (9.7)), that supp (ψ̂n�ρη) ⊂ Kn, that ‖ψ̂n�ρη‖L∞(Ω) ≤ ‖ψ̂n‖L∞(Ω)
and the almost convergence of ψ̂n � ρη to ψ̂n, and we apply Lebesgue’s dominated convergence Theorem. In 
the first term of the left-hand side we use the strong convergence of ψ̂n � ρη to ψ̂n in H1

0 (Ω). This strong 
convergence also implies (for a subsequence) the quasi-everywhere convergence for the H1

0 (Ω) capacity 
and therefore the μ-almost everywhere convergence of ψ̂n � ρη to ψ̂n; we use again Lebesgue’s dominated 
convergence Theorem, this time in L1(Ω; dμ), together with the facts that (see (5.12))

0 ≤ u0(ψ̂n � ρη) ≤ u0‖ψ̂n‖L∞(Ω;dμ) = u0‖ψ̂n‖L∞(Ω) μ-a.e. x ∈ Ω,

and that (see (5.11)) u0 ∈ L1(Ω; dμ) in order to pass to the limit in the second term of the left-hand side. 
We have proved that ∫

Ω

A(x)Du0Dψ̂n +
∫
Ω

u0ψ̂ndμ =
∫
Ω

F (x, u0)ψ̂n. (9.22)

We now pass to the limit in each term of (9.22) as n tends to infinity. This is easy in the right-hand 
side by Lebesgue’s dominated convergence Theorem since ψ̂n tends almost everywhere to ψ, since by the 
definition of ψ̂n

0 ≤ F (x, u0)ψ̂n ≤ F (x, u0)ψ a.e. x ∈ Ω,

and since the latest function belongs to L1(Ω) (see (9.7)). This is also easy in the first term of the left-hand 
side of (9.22) since ψ̂n tends to ψ strongly in H1

0 (Ω). This strong convergence also implies (for a subsequence) 
the quasi-everywhere convergence for the H1

0 (Ω) capacity and therefore the μ-almost everywhere convergence 
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of ψ̂n to ψ; we use again Lebesgue’s dominated convergence Theorem in L1(Ω; dμ), together with the facts 
that (see (5.12))

0 ≤ u0ψ̂n ≤ u0ψ ≤ u0‖ψ‖L∞(Ω;dμ) = u0‖ψ‖L∞(Ω) μ-a.e. x ∈ Ω,

and that (see (5.11)) u0 ∈ L1(Ω; dμ) in order to pass to the limit in the second term of the left-hand side. 
We have proved that

⎧⎪⎪⎨⎪⎪⎩
∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω), ψ ≥ 0,∫
Ω

A(x)Du0Dψ +
∫
Ω

u0ψdμ =
∫
Ω

F (x, u0)ψ. (9.23)

Eighth step
Let us finally prove that u0 ∈ L2(Ω; dμ) and that (5.20) holds true.
Taking ψ = Tn(u0) ∈ H1

0 (Ω) ∩ L∞(Ω) in (9.23) we obtain

∫
Ω

A(x)Du0DTn(u0) +
∫
Ω

u0Tn(u0)dμ =
∫
Ω

F (x, u0)Tn(u0),

in which using the coercivity (2.1) of A and condition (2.3 iv) on the function F , we obtain

∫
Ω

|Tn(u0)|2dμ ≤
∫
Ω

F (x, u0)Tn(u0) ≤
∫
Ω

h(x)
( 1
(u0)γ + 1

)
u0 =

∫
Ω

h(x)((u0)(1−γ) + u0) < +∞, (9.24)

which using Fatou’s Lemma implies that

u0 ∈ L2(Ω; dμ).

Fix now z ∈ H1
0 (Ω) ∩L2(Ω; dμ), z ≥ 0. Taking ψ = Tn(z) ∈ H1

0 (Ω) ∩L∞(Ω) as test function in (9.23) we 
have ∫

Ω

A(x)Du0DTn(z) +
∫
Ω

u0Tn(z)dμ =
∫
Ω

F (x, u0)Tn(z). (9.25)

It is easy to pass to the limit in each term of the left-hand side of (9.25), since Tn(z) tends to z in 
H1

0 (Ω) ∩ L2(Ω; dμ) and since u0 ∈ L2(Ω; dμ).
Applying Fatou’s Lemma to the right-hand side of (9.25), we obtain

∫
Ω

F (x, u0)z ≤
∫
Ω

A(x)Du0Dz +
∫
Ω

u0zdμ < +∞,

which is the first statement of (5.20).
But since

0 ≤ F (x, u0)Tn(z) ≤ F (x, u0)z,
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and since the latest function belongs to L1(Ω), Lebesgue’s dominated convergence Theorem implies that∫
Ω

F (x, u0)Tn(z) →
∫
Ω

F (x, u0)z,

which allows us to pass to the limit in (9.25) and completes the proof of the second statement of (5.20).

The proof of Theorem 5.2 is now complete. �
9.2. Proof of the corrector Theorem 5.5

First step
In view of hypothesis (5.23) and of (5.2), the function wεu0 belongs to H1

0 (Ω) ∩L∞(Ω), and therefore the 
function rε defined by (5.24) belongs to H1

0 (Ω). By the coercivity assumption (2.1) and by the symmetry 
assumption (5.22) on the matrix A, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α

∫
Ω

|Drε|2 ≤
∫
Ω

A(x)DrεDrε =
∫
Ω

A(x)(Dũε −D(wεu0))(Dũε −D(wεu0)) =

=
∫
Ω

A(x)DũεDũε − 2
∫
Ω

A(x)DũεD(wεu0) +
∫
Ω

A(x)D(wεu0)D(wεu0).
(9.26)

We will pass to the limit in each term of the right-hand side of (9.26).

Second step
As far as the first term of the right-hand side of (9.26) is concerned, taking uε ∈ H1

0 (Ωε) as test function 

in (5.17) and extending uε and F (x, uε) by zero into ũε and ˜F (x, uε) (see (5.9) and (5.8)), we get∫
Ω

A(x)DũεDũε =
∫
Ω

˜F (x, uε)ũε. (9.27)

Let us pass to the limit in the right-hand side of (9.27). By (2.3 iv) we have

0 ≤ F (x, uε)uε ≤ h(x)
(

1
(uε)γ + 1

)
uε,

which by (9.1) and by a computation similar to the one made in (7.12) implies that for every measurable 
set E ⊂ Ω one has

0 ≤
∫
E

˜F (x, uε)ũε ≤
∫
E

h(x)
(

1
(ũε)γ + 1

)
ũε ≤ c ‖h‖Lr(E) + γ‖h‖L1(E),

where c is a constant which does not depend neither on E nor on ε, which implies the equi-integrability of 
˜F (x, uε)ũε. Then convergences (9.2) and (9.6) and Vitali’s Theorem imply that∫

Ω

˜F (x, uε)ũε →
∫
Ω

F (x, u0)u0. (9.28)

On the other hand, taking z = u0 as test function in (5.20) implies that∫
A(x)Du0Du0 +

∫
(u0)2dμ =

∫
F (x, u0)u0.
Ω Ω Ω
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By (9.27), (9.28) and the previous equality we have, using (5.11) which holds true since (u0)2 ∈ H1
0 (Ω)

when u0 ∈ L∞(Ω),∫
Ωε

A(x)DũεDũε →
∫
Ω

A(x)Du0Du0 +
∫
Ω

(u0)2dμ =
∫
Ω

A(x)Du0Du0 + 〈μ, (u0)2〉H−1(Ω),H1
0 (Ω). (9.29)

Third step
Let us now pass to the limit in the third term of the right-hand side of (9.26). Using (5.7) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

A(x)D(wεu0)D(wεu0) =

=
∫
Ω

A(x)D(wεu0)Dwεu0 +
∫
Ω

A(x)D(wεu0)Du0wε =

=
∫
Ω

tA(x)DwεD(wε(u0)2) −
∫
Ω

tA(x)DwεDu0wεu0 +
∫
Ω

A(x)D(wεu0)Du0wε =

= 〈με, wε(u0)2〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDu0wεu0 +
∫
Ω

A(x)D(wεu0)Du0wε,

in which it is easy to pass to the limit in each term, obtaining∫
Ω

A(x)D(wεu0)D(wεu0) → 〈μ, (u0)2〉H−1(Ω),H1
0 (Ω) +

∫
Ω

A(x)Du0Du0. (9.30)

Fourth step
Passing to the limit in the second term of the right-hand side of (9.26) is a little bit more delicate (except 

in the case where the regularity hypothesis (4.3) is made on the function F , see Remark 9.1 below).
Fix φ ∈ D(Ω) and write∫

Ω

A(x)DũεD(wεu0) =
∫
Ω

A(x)DũεDu0wε +
∫
Ω

A(x)DũεDwεφ +
∫
Ω

A(x)DũεDwε(u0 − φ). (9.31)

It is easy to pass to the limit in the first term of the right-hand side of (9.31), obtaining∫
Ω

A(x)DũεDu0wε →
∫
Ω

A(x)Du0Du0. (9.32)

For what concerned the second term of the right-hand side of (9.31), we have in view of (5.7)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDwεφ =
∫
Ω

tA(x)DwεDũεφ =

=
∫
Ω

tA(x)DwεD(ũεφ) −
∫
Ω

tA(x)DwεDφ ũε = 〈με, ũεφ〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDφ ũε,
(9.33)

and therefore∫
A(x)DũεDwεφ → 〈μ, u0φ〉H−1(Ω),H1

0 (Ω) = 〈μ, (u0)2〉H−1(Ω),H1
0 (Ω) + 〈μ, u0(φ− u0)〉H−1(Ω),H1

0 (Ω). (9.34)

Ω
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Fifth step
We now use wε(u0 − φ)2 as test function in (5.7). This gives∫

Ω

tA(x)DwεDwε(u0 − φ)2 + 2
∫
Ω

tA(x)DwεD(u0 − φ)(u0 − φ)wε = 〈με, wε(u0 − φ)2〉H−1(Ω),H1
0 (Ω),

which implies that ∫
Ω

tA(x)DwεDwε(u0 − φ)2 → 〈μ, (u0 − φ)2〉H−1(Ω),H1
0 (Ω).

By the coercivity (2.1), this implies that, for every φ ∈ D(Ω),

lim sup
ε

α

∫
Ω

|Dwε|2|u0 − φ|2 ≤ 〈μ, (u0 − φ)2〉H−1(Ω),H1
0 (Ω).

This result together with Hölder’s inequality and the bound (9.1) on ‖ũε‖H1
0 (Ω) implies that for every 

φ ∈ D(Ω)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim sup
ε

∣∣∣∣∣∣
∫
Ω

A(x)DũεDwε(u0 − φ)

∣∣∣∣∣∣ ≤
≤ ‖A‖L∞(Ω)N×N lim sup

ε
‖ũε‖H1

0 (Ω)

⎛⎝lim sup
ε

∫
Ω

|Dwε|2|u0 − φ|2
⎞⎠1/2

≤

≤ ‖A‖L∞(Ω)N×N C(|Ω|, N, α, γ, r)
(
‖h‖Lr(Ω) + ‖h‖1/2

L1(Ω)
)( 1

α
〈μ, (u0 − φ)2〉H−1(Ω),H1

0 (Ω)

)1/2

≤

≤ c
(
〈μ, (u0 − φ)2〉H−1(Ω),H1

0 (Ω)
)1/2

,

(9.35)

where C(|Ω|, N, α, γ, r) is the constant which appears in (6.1), and where the constant c depends only on 
|Ω|, N , α, ‖A‖L∞(Ω)N×N , γ, r, ‖h‖Lr(Ω) and ‖h‖L1(Ω).

Sixth step
Using in (9.26) the results obtained in (9.29), (9.30), (9.31), (9.32), (9.34) and (9.35), we have proved 

that for every φ ∈ D(Ω) one has⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim sup
ε

α ‖rε‖2
H1

0 (Ω) ≤

≤ −2〈μ, u0(φ− u0)〉H−1(Ω),H1
0 (Ω) + lim sup

ε

⎛⎝−2
∫
Ω

A(x)DũεDwε(u0 − φ)

⎞⎠ ≤

≤ −2〈μ, u0(φ− u0)〉H−1(Ω),H1
0 (Ω) + 2c

(
〈μ, (u0 − φ)2〉H−1(Ω),H1

0 (Ω)
)1/2

.

(9.36)

Since the sequence y2
n converges to 0 strongly in H1

0 (Ω) when yn converges to 0 strongly in H1
0 (Ω) and 

weakly-star in L∞(Ω), approximating u0 ∈ H1
0 (Ω) ∩ L∞(Ω) by a sequence of functions φ ∈ D(Ω) which 

converges to u0 strongly in H1
0 (Ω) and weakly-star in L∞(Ω) proves that

rε → 0 in H1
0 (Ω) strongly,

i.e. (5.24).

Theorem 5.5 is proved. �
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Remark 9.1. The above proof of Theorem 5.5 has been made assuming that (5.23) holds true, namely that 
u0 ∈ L∞(Ω). If we assume that the function F , in addition to assumption (2.2) and (2.3), verifies the 
regularity condition (4.3), the proof of the corrector Theorem 5.5 becomes simpler.

Indeed under this hypothesis, the solutions ũε are bounded in L∞(Ω) (see Remark 5.6) (a result which, 
by the way, implies (5.23)). We claim that this L∞(Ω) bound on ũε allows us to perform the computation 
in the fourth step above when we replace φ by u0: indeed in this case the third term of the right-hand side 
of (9.31) vanishes (and therefore the fifth step above becomes useless), and (9.33) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

A(x)DũεDwε u0 =
∫
Ω

tA(x)DwεDũε u0 =

=
∫
Ω

tA(x)DwεD(ũεu0) −
∫
Ω

tA(x)DwεDu0 ũε = 〈με, ũεu0〉H−1(Ω),H1
0 (Ω) −

∫
Ω

tA(x)DwεDu0 ũε,

(9.37)

where each term has a meaning since now ũε ∈ L∞(Ω). Using the fact that ũε is bounded in L∞(Ω) allows 
us to pass to the limit in (9.37), obtaining∫

Ω

A(x)DũεDwε u0 → 〈μ, (u0)2〉H−1(Ω),H1
0 (Ω).

Then (9.36) reads as

lim sup
ε

α ‖rε‖2
H1

0 (Ω) ≤ 0,

which is nothing but the desired result (5.24). �
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