Graphics Interface Conference 2018, 8—11 May, Toronto, Ontario, Canada

dgMotion: A Spatio-Temporal Grammar for the Procedural Generation of
Motion Graphics

Edoardo Carra*

Christian Santoni®

Fabio Pellacini*

Sapienza University of Rome

oD@ @%
HOZCOWOE: WO e oWO:
e e 2006 c®BEGeDO o
HOEOOO @ BOLG OO
v QOMEWE

OCDE @il
QB o

21]

EORTIGIINE(JORT:

) HECOE

COMOSEEs Fole::

[98 |
Gﬁ@“““oﬁo@ Cooe#HoEDe COOEOHBO
o C Hes
(0N CERRNIONO oBQECCCo cHEBL Do oHE
HE5HC D0 5 e
.@OEE@@@
V GOHSYE v CoMsve
%BD BOC0QED BOC IO/ g
sHon ColesEe s DM B

e e OOHE®OE Cooffe %O@

o
ﬁ@O(S)C““ #go 0CD oM
Y CoWsswe

oo
oo

Hoes:@OHoss HE = CZDHNIO
BOoEO @:== SGEEG
@D@JQO-O CK)O CZOO
JGE OECIOO
g CZ)H#&'OE’ E QO =
20@0D0 @ @O = OO_OC.

) @ % OZDWLC‘ O

®35C 00

%O

Figure 1: An example animation created by our timeslice grammars. Here we show the first and five intermediate frames, with the
labels indicating the timestamp of each frame. For the full animation please refer to the supplemental material. This animation is
composed by more than 200 shapes and was completely generated in less than a second.

ABSTRACT

Creating by hand compelling 2D animations that choreograph sev-
eral groups of shapes requires a large number of manual edits. We
present a method to procedurally generate motion graphics with
timeslice grammars. Timeslice grammars are to time what split
grammars are to space. We use this grammar to formally model
motion graphics, manipulating them in both temporal and spatial
components. We are able to combine both these aspects by represent-
ing animations as sets of affine transformations sampled uniformly
in both space and time. Rules and operators in the grammar ma-
nipulate all spatio-temporal matrices as a whole, allowing us to
expressively construct animation with few rules. The grammar ani-
mates shapes, which are represented as highly tessellated polygons,
by applying the affine transforms to each shape vertex given the
vertex position and the animation time. We introduce a small set of
operators showing how we can produce 2D animations of geometric
objects, by combining the expressive power of the grammar model,
the composability of the operators with themselves, and the capabil-
ities that derive from using a unified spatio-temporal representation
for animation data. Throughout the paper, we show how timeslice
grammars can produce a wide variety of animations that would take
artists hours of tedious and time-consuming work. In particular, in
cases where change of shapes is very common, our grammar can
add motion detail to large collections of shapes with greater control
over per-shape animations along with a compact rules structure.

Index Terms: Computing methodologies—Procedural animation;
Theory of computation—Grammars and context-free languages

1 INTRODUCTION

In this paper, we consider the problem of procedurally generating
two-dimensional motion graphics where many, often abstract, shapes
move in unison to form compelling spatio-temporal patterns. Those
kind of animations are often used for advertisement, web sites, news
and generally videos that focus on an abstract and minimalistic style,

*e-mail: carra@di.uniromal.it
fe-mail: santoni @di.uniromal.it
*e-mail: pellacini @di.uniromal..it

or to procedurally add more motion detail to an animated scene.

Today, the creation of motion graphics follows mainly three dif-
ferent approaches. The most popular form is keyframing, in which
the values of object properties are specified for keyframes and inter-
polated throughout the rest of the animation. Despite the constant
improvements to animation softwares, animating shapes in this man-
ner requires significant manual work, often hours for hundreds of
shapes, that cannot be usually re-used to create new animations. A
second popular approach is the use of simulation engines, which
control these animations by simulating either natural forces applied
to the objects, e.g. particle systems [15], or actors in groups, e.g.
boids [16]. One drawback of these approaches is that they can only
express very specific types of motion, either physics-driven or actor-
based, so they are not suitable for many motion graphics used for
example in motion graphics. Finally, one could write procedural
scripts to control objects properties over time. While this would
support all types of motion, choreographing hundreds of shapes with
individual scripts remains cumbersome, especially considering that
such scripts are not re-usable.

In this paper, we propose a formal model for the procedural gener-
ation of motion graphics with enough expressive power to encode the
fundamental characteristics needed to create a large variety of com-
plex animations. We formally model motion graphics with timeslice
grammars, a grammar system that handles both the generation of
the temporal subdivisions of the objects timelines and spatial assign-
ment of specific animation effects to groups of objects. Timeslice
grammars can be considered as an extension of split grammars [23]
and group grammars [17]. We extend split grammars by considering
time as an additional dimension and using splitting operations to
guide the rhythm of the animation. We extend group grammars
by using multiple group tags to choreograph multiple objects. In
our model, shape animations are specified as sets of affine matrices
sampled in space on regular grids and in time by keyframing. We
define a small set of operators for both the spatial and temporal part,
which combined with our grammar can generate complex anima-
tions, including looping animations. Compared to other procedural
animation methods, the main advantage of timeslice grammars, just
like other grammar-based methods, is that they can provide a wide
amount of variation in the produced results with a very compact
description, that is formally well-defined.

We implemented our grammar in a prototype system that can
automatically generate a large variety of motion graphics, shown

Graphics Interface Conference 2018

8-11 May, Toronto, Ontario, Canada

Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.

throughout the paper and in the supplemental material. Fig. 1 shows

92

an example animation generated by our system. We believe that the
main contributions of our work are: (1) the formalization of motion
graphics with timeslice grammars, (2) a small set of operators that
are efficient and easily composable with all the other operators,
allowing the creation of complex animations together with a wide
amount of variations in the generated results.

2 STATE OF THE ART

Grammar Systems. Formal grammar systems have been shown
to be an expressive method for modeling tasks in computer graphics.
The first example is L-Systems [6], a grammar-based modelling
method for simulating the growth of simple multi-cellular organisms.
Since its first definition, L-Systems have being extended to modeling
plant ecosystems, e.g. [9, 14], cities and road networks [10]. A
comprehensive description of these models can be found in [12].

The past decade has seen the extensive use of formal grammars
for modeling architecture, starting from the original formulation
of shape grammars [21] that operated on labeled arrangements of
geometric shapes, representing the symbols of the grammar. Later,
set and split grammars were presented [22,23], as a simplification
of shape grammars. In these grammars, rather than having an initial
string of symbols, the system has an initial shape, and each applica-
tion of a production rule affected directly the geometry of the initial
shape. There are several important works in this context. For the
sake of brevity we refer the reader to [18]. These grammars have
also been extended to generate patterns on surfaces [5] or tangle art
with group grammars [17].

All the grammar approaches described so far produce static ob-
jects (e.g.: plants, buildings, road networks) without providing any
control over their animation. Some works have proposed methods
to add animation aids to the static models, such as [2] that augments
L-Systems with additional information for plants and buildings to
make them ready for simulation. These approaches though only
generate animation aids and not the motion itself.

[4] propose a motion grammar to generate animated scenes using
a data driven approach for the animations. This approach is context
specific to the animations used, and it does not allow to take control
of the spatial and temporal components of the animation itself.

Time slices have yet been used by [13], which propose a model
for simulating the plant development, but in this case the context is
very specific too, and it does not allow to take absolute control of
animation in both spatial and temporal components.

To the best of our knowledge, our timeslice grammars are the
first grammar-based approach that considers both spatial and tem-
poral features as first class entities, in all aspects of the model, i.e.
representation, grammar symbols and production rules.

Simulation. Simulation systems are one of the most popular ap-
proaches that have been followed to solve the problem of animating
a large set of objects. These approaches usually divide themselves
into two main categories: physics simulations and agent-based sim-
ulations.

A vast literature can be found in the field of physically based
animation of groups of objects, starting with the seminal work of
[15]. These methods are extensively used both in academia and
commercial softwares and encompass particle systems, rigid body
solvers (e.g. [3]) and generic simulation engines (e.g. [7,20]). In
these systems, animations cannot be controlled directly by a designer,
but are instead produced by the simulation of a physics system. In
this sense, they solve a different problem than the one we want to
address with our work.

Agent-based simulations are based on simple concept: each agent
perceives its own state and decides its following actions based on
a set of rules. This approach has been explored in many works,
addressing from the simulation of flocks and herds [16], to crowds of
people [8,11,19]. These methods suffer from being too application-
specific, and considering the heterogeneity of the effects applied

! <big_sg, 0=
A <med_sq, 0>

seconds

0 1 2 3 4

>

| <rot.2,1.0,A2> |

<tra_3, 1.0, A™3>

<scale, 3.0, A==

<rot, 10,A"> | <tra, 2.0, A*>
<rot, 1.0, A=> | <tra, 2.0, A™>
<rot, 10,A7> | <tra, 2.0, A=

Figure 2: Representation of the final configuration for an animation
created with a toy grammar. 7op: The shapes that compose the
animation, identified by a tag, matched by the grammar’s rules, and
a shape indentifier unique within the same tag. Shapes are color-
coded depending on the value of their tag Is. Bottom: The timelines
associated to the shapes of the animation. Each timeline is composed
by a list of timeslices, that are the symbols of our grammar, and
are identified by their tag, their duration and animation data, here
indicated as A*. Timelines are color-coded depending on the shape
they refer to and changes in color luminosity are used to highlight
different values for the tags of the timeslices.

creating motion graphics, they would require the definition of a
specific set of rules for each type of animated object.

3 TIMESLICE GRAMMAR
3.1 Motion Graphics Model

We model motion graphics with a timeline of animated properties
for each shape, as shown in Fig. 2.

The timeline is represented as a sequence of timeslices, each of
which holds the information necessary to animate a particular object
in a specific slot of time. In our implementation each shape has its
own timeline so that we can have maximum flexibility when apply-
ing animation effects. One key difference of our work compared to
other procedural animation systems is that we represent shape ani-
mations as uniformly sampled spatial grids of affine transformations
that are keyframed in time, as shown in Fig. 3. Each matrix defines
the transformation to be applied to the shape. Transformations are se-
lected based on the shape centroid and either applied with respect to
it or to the global reference frame. We augmented this representation
with animations for the colors of each shape. This representation
is simple enough to be manipulate directly by animation editing
operations while at the same time allows us to support single and
groups animations with rigid and non-rigid transformations.

To output the final animation at a fixed framerate, we uniformly
sample the timeline of each shape using standard keyframe anima-
tion methods. Colors are interpolated trilinearly between the two
keyframes and the values in the spatial grid. Affine transforms can
be either interpolated trilinearly, using the method introduced by [1],
or using nearest neightbor lookups. In the example of this paper, we
use linear interpolation over time and nearest lookup in the spatial
grid since we found this to be a good compromise between speed
and quality.

0.0 05 1.8 3.0

Figure 3: Visual representation of a timeslice (fop) with its asso-
ciated animation (bottom), represented in this figure as a 4x4x2
array of affine translations. The red arrows represent the direction
of each translation. The middle semi-transparent grids represent the
interpolations computed during the animation rendering process.

3.2 Timeslice Grammars

The core idea of our work is to use formal grammars to control both
the temporal and spatial components of an animation. Fig. 4 shows
an example grammar together with the final generated animation. In
this chapter, we first give the intuition behind timeslice grammars
and then provide a succint description of their formal definition.

Timeslices are the terminal and non-terminal symbols in our
grammar, and are defined by a grammar tag and animation data,
hence the name timeslice grammars. Timeslices are directly ma-
nipulated by a small set of operators to obtain the animation of all
shapes. The operators are composable with one another, allowing us
to achieve different procedural effects by composing a small set of
simple operations with the grammar.

To associate animation operations to shapes, we identify shapes
with a tag and a unique id. The tag is used during grammar expansion
to select which rules to apply to each shapes. The id uniquely
identifies a shape and can be used to change the rule behaviour, e.g.
apply different translations to different shapes.

Each shape animation starts with a single timeslice that covers the
whole timeline. Timeslices are then recursively split by the grammar
to apply different animation effects at different times. The final
timeline is a partition of the initial timeslice obtained by subsequent
slots. This observation motivated our choice of using grammars
derived from split grammars to manipulate time as well. In a way,
timeslice grammars are to time what split grammars are to space.

To support looping animation, we found it helpful to tag a times-
lice as either playing forward or backward time. The latter are
indicated within the grammar with inverted tags. For inverted time
slices, the animation transformation and colors are interpolated by
swapping the start and end values within the timeslice.

3.3 Grammar Operators

We introduce two types of operators to manipulate the animation:
the time split operator, that modifies the temporal structure of the
animation, splitting timeslices into new arrangements, and the ani-
mate operator that assigns changes to both the animation transforms
and decorative attributes in each timeslice.

The time splitting operator, shown in Fig. 5, splits an input times-
lice into multiple output timeslices at specified relative times. For
inverted timeslices, the time splits are applied in backward, thus
keeping the same semantic in the looping animation without needing
duplicated rules.

1. timesplit({0.3, 0.4, 0.3}): [(all), (all})]->["a1",“a2”, “inv_al"]

2. animate("affine”, “world”, 0.0. tran(400.0, 0.0)) : [("a1”), ("c")] -> ["t1”]
3. animate("affine”, “world", 0.0, tran(-400.0, 0.0)) : [("a1”), ("s")] -> ["t3"]
4. animate("affine”, “local’, 0.0, scale(0.5)) : [("a2”), ("c”)] -> ["t27]
5.animate("affine”, “world", 0.0, rot_scale(45,0.5)) : [("a2"), ("s")]-> ["t4"]

T=0.0s T=0.5s

T=14s

<t 06 A, > <13, 08A, >

Figure 4: A toy grammar (fop), together with frames picked from
the generated animation (middle), and the final timeline configura-
tion (bottom). The square and circles are tagged respectively with
the tags ’s” and c”. tran, scale and rot_scale represents affine

transformations that we do not report on full for readability.

1.0 20 3.0 4.0
‘ <to, 4.0> ‘
1. Initial timeline
1.0 20 3.0 4.0
\ <t,, 20> \ <inv_ty, 2.0> |
2. TimeSplit({0.5, 0.5}) : [(to),(Is)] = [ts,inv_t,]
1.0 20 3.0 4.0

| <t125

[<t,075> [<iv,075> [S dzes]

3. TimeSplit({0.625, 0.375}) : [(t.),(Is)] = [tz,ts]

Figure 5: Recursive application of the time split operator. (1) Ini-
tial timeline configuration. (2) Each application of the operator
subdivides the input timeslice into a set on new timeslices, labeled
accordingly to the operator parameters. (3) Example of inverted tags.
Note how both the tag assignment and the split points are inverted.

Animation effects are applied with a single grammar operator
that sets the spatial grid of affine transformations at the start and end
of the selected timeslice. We support different animation effects by
defining different spatial grids of affine matrices. For the results of
this paper we used the following effects: (1) affine transform that
applies a constant transformation to all transforms on the 2D grid;
(2) move towards that sets all affine transforms on the 2D grid as
translations from their center toward a point; (3) follow path that sets
all affine transforms on the 2D grid as translation from their center
toward the closest point on a path; (4) fill/border color that sets the
colors for the selected shapes.

Note how we always sample operators on the spatial 2D grid, for
example for move towards and follow path. The main reason for
this is to ensure that grammar operators are composable by using
the same input and output representation for all. In this manner,
very complex effects can be controlled completely by the grammar

93

94

formulation. This is similar to [17]. Most procedural systems instead
rely on some form of programmable “plugin” which is typically not
composable, so complex effects need to be replicated for each plugin.

3.4 Grammar Expansion

The configuration of an animation at a particular step of the expan-
sion process is represented by all timelines, one for each shape, each
composed of a list of individual timeslices. Starting from an initial
configuration, productions are applied sequentially to the current
state of the animation to produce the next step in the expansion pro-
cess. For each production, matched timeslices are modified either
by splitting them or by assigning animation effects. This process
continues until all timeslices are terminal symbols in the grammar.

A single expansion step, shown in Fig. 6, is performed in the
following manner. (1) We first select a set of non-terminal timeslices
with the lowest tags, or their inverted versions, referring to the lowest
tagged shapes; tags are sorted by their creation time so we effectively
process timeslices in a breadth-first manner. (2) We then find the
set of grammar rules that match both the timeslices tag as well as
the shapes tag. (3) From these, we choose randomly a rule. (4)
We then generate a new set of timeslices by applying the operator
referred by rule to each matched timeslice. (5) We finally update the
configuration by substituting the matched timeslices with the newly
created ones.

3.5 Formal Grammar Definition

Let us now define the grammar more formally. Timeslice gram-
mars act on shapes S and timeslices 7' that are formally defined
as S = (I5,ss,0s) and T = (Iy,dy,Ar) where Ig, It are the shapes
and timeslices tags, sg the shape’s identifier, ®g the shapes ver-
tices and colors, dy the timeslice duration and A7 the timeslice
animation. Animation data A7 is stored as a n X m X p array of
affine matrices, defined by a n X m uniform spatial grid, keyframed
at p times. Productions R in timeslice grammars are written as
R=0({p}): {L},{I;}] — {I}, where O is the operator that will
be used when the rule is applied, {p} its parameters, {I; } is the set
of timeslice tags matched by the rule, {/;} the set of matched shape
tags, and {I/} are the tags assigned to the newly created timeslices.

Timeslice grammars defined two operators. The time splitting
operator is defined as rimesplit({s;}) : 7R — {1,’1_}, where {s;} are
the split times, {I,’,} the output tags, and .7® represents the timeslice
and shape matching tags [{/; },{I}] of the rule the operator refers
to. The animation operator is written as animate(type,ref,of f,¢) :
TR {Itf }, where type is one of the animation types defined above
("affine transform”, “move towards”, “follow path”, and fill” or
”border” color), ref indicates whether the animation is specified
in shape or world coordinates, of f the time offset to apply the
transform at, and ¢ are the parameters of the transformation (a
matrix for affine transforms, the point for move towards, the path for
follow path, and the colors for fill and border colors).

Starting from an initial configuration %y, productions are ap-
plied sequentially to the current state %, of the animation, until
all timeslices are terminals. In timeslice grammars the configura-
tion at a particular step e in the expansion process is described as
6. = (,T,) where . are all animated shapes and .7, the set of
all timeslices at that expansion step. At each expansion, the configu-
ration is modified with the procedure described previously, which
amounts to removing all timeslices ﬂeR matched by the randomly
selected rule R, and adding all timeslices 7, created the the rule

operator O. This can be written as €, = €, U .20\ XK.

3.6 Discussion

The main advantage of timeslice grammars, in fact most grammars
for that matter, is that the number of rules remains very compact
even for complex animation effects. This comes mainly from four
reasons. First, only one time splitting operator is sufficient to specify

Table 1: Summary information for all generated animation

Name Rules Shapes Duration Expansion Timing

teaser 44 208 6s 60 0.04s

cube 13 54 6s 16 0.04s

abstract 19 68 Ss 22 0.03s

panel 19 106 8s 40 0.02s

crack 53 358 4s 55 0.46s
intersections mini 105 44 4s 161 0.07s
intersections 105 8214 8s 161 22s

From left to right: the number of rules and shapes, animation dura-
tion, number of expansion steps, and execution times (taking into
account both the expansion process and the animation rendering
phase).

the temporal structure of complex motion, since the operator is re-
cursively and selectively applied by the grammar to different shape
and timeslice groups. Second, the animation operations are closed
with respect to composition, since all animations have a common,
sampled, representation. This in turn means that complex motion
can be choreographed by combining simpler ones with the grammar,
without requiring special operations. Third, complex grouping be-
haviour can be expressed by matching rules to shapes with similar
timeslice and shape tags. This in turn lets us easily express complex
choreographies using the rule matching mechanism. Finally, the in-
troduction of inverted tags allows us to produce looping animations
without duplicating rules.

4 RESULTS AND DISCUSSION
4.1 Animations

Grammars. Throughout the paper we show a variety of animations
created with our system. Each one was created by hand designing
grammars given an input set of shapes. Table 1 summarizes the
statistics regarding each grammar for all figures in this paper. In the
supplemental material we show the grammar videos and all their
rules.

Animation Types. Each animation presented in Fig. 7 tries to
focus on some of the advantages that derive from using our gram-
mars. The cube animation shows how the keyframed spatial sam-
pling of affine transformations makes this model more compact.
To animate the circles in most commercial softwares would mean
either applying an individual animation to each of the circles, or the
production of a specific script. The abstract animation shows one of
the applications for the attribute changing effects and how, even in
presence of complex asymmetric time subdivisions, this system can
still seamlessly produce a looping animation. This is achieved with
the use of inverted tags. The panel animation displays an example of
the variety of effects that can be achieved by creating animations that
combine different reference space, either local or global, with and
without specifying an offset. The crack animation shows, with small
individual units connected spatially and temporally, that our model is
expressive enough to capture animations with cause-effect relations
and that imitate physics-based models (although in this case, we
do not think grammars are optimal). One advantage of grammars
is that we can prototype animations on simple examples and then
scale them to large and intricate sets of shapes. This is shown in
the intersections example of Fig. 9, where a complex animation
is composed by small patches of episodic animations. Finally, the
teaser animation shown in Fig. 1, demonstrate all the effects applied
together.

Expressiveness. The examples shown so far cover a large va-
riety of animation effects, which were created using only 2 operators.
This in turn shows that, as a formal model, timeslice grammars are
an expressive model for motion graphics. This fact is reinfored by

1.0 2.0 3.0 4.0 10 2.0 3.0 4.C
<a,40Ag> /\t ! <b25A5> | <C15A4>
<t, OAN//<t, 2> <t, 0>
.00 <a,40,A;4> PGS <a,4.0,A;>
<a,4.0,Ai> <a,40Aq>
<a, 4.0, Aiy> <a, 4.0, Ai4>
<m, 0> <m, 0>
<a,4.0Ai4> <a,4.0,Ais>
1. Initial configuration 2. R = TimeSplit({po}) : [(a),(big_sq)] = [b,c]
1.0 20 3.0 4.0 1.0 20 3.0 4.C
AAWZ f} <b25Au> | <c15Au> t25A0> | “t215A0>
—_ <b,0>
/' <a,4.0,Ai4> <ts, 1.0, Axp> <tp, 1.0,Asp>
L I <a,4.0Aig> <t5, 10,Az> | <tz 10Az>
<m, 0>
<a, 4.0,Ai4> <ts, 10,A40> | <tp,1.0,As>

3. R = Animate({po}) : [(a),(med_sq)] — [ti]

4. Final configuration

Figure 6: First steps in the expansion process of a simple grammar. (1) The expansion starts from an initial configuration composed by a set
of shapes and a set of timelines (one for each shape), in turn initially composed by a single timeslice. (2) The application of the time split
operator subdivides the input timeslices into a new set of timeslices, that will be constructed and labeled accordingly to the rule semantic. (3)
The application of the animate operator doesn’t further subdivide the timelines, but assigns changes to both the animation transforms and
decorative attributes in each input timeslice. (4) The final configuration, after all rules are applied. Shapes trails represent the initial frames of

their animation, once applied.

2 [oE.
s T <> <&

° o [oo °° R } <’ xjt 9‘5

m 39

52 : 38

0 O g O al |°}>, 08

2 Fy B3 e NN N R

0 L R JP A/ R | 0o

n & = &_$h] om

2 B 22 RN\ & 387 + oo

g g e e i al

4] B o @ 3]

2

=~
o

~I
w
i

as EB ZE
A t;;,f.
i [L 5
W R
114 136
2 2 jr sl oo o
D? & 0 ? 'g N \f« ke Gb — d
0o BSXN ¢e 3 G C abn [=
E% N [5 \\\ é“ % ¢ gs E E E [\ 5
e LEAN & € e W~ ﬁEEEE @b ef "; " ¢
Eg \:G' :] g g [\u"”* ? IE_ B E i # ::
oo b LI —~ g C G b g
RY &9 38 Qb 3
O & &0 3 oo :
= @ 119 137 9

oo f
3
o
!

64

Figure 7: Eight frames from example animations generated with timeslice grammars, composed up to several hundreds of different shapes. The
label at the top left of each image indicates the frame number. For the full animations please refer to the supplemental material.

the fact that timeslice grammars are stochastic in nature and can gen-
erate motion variations, as shown in Fig. 8 by a series of animations
produced with the same grammar.

Design Times. The authors of this paper wrote each of the

grammars from scratch and without any user interface. Design times
go between half hour to a few hours. The most complex animation
to create has been the teaser, since it includes several effects within
the same animation, and the crack animation that require precise

95

96

Figure 8: Four animations generated from the same grammar due to the randomized matching process. The starting point is the same for every
animation. Please refer to the supplemental material for the full animation.

alignment of the transformations.

We found that overall timeslice grammars are relatively easy to
use and that the design time is amortized well over the number of
shapes. We found that most of the time was spent manually setting
the values of the operators, rather than determining the structure of
the grammar. Furthermore, just like any procedural language, we
found that using the grammars well required significant training,
making it not suitable for first-time or non-technical users.

One benfit of using grammars is that the number of shapes in the
animations is significantly less than the number of rules applied to
them. In a traditional animation editor, the number of operations
would need to be roughly proportional to the number of shapes at
least for selection operations.

Performance. From the point of view of the generated anima-
tion, the expansion process took less than a second, on a standard
desktop, for all animations, but the largest one. This means that an
interactive user interface can be built to support editing. The inter-
sections animations tests the execution speed of our implementation,
taking 22 seconds for 8 thousand shapes with 160 expansions. In this
case, most of the time is taken by the interpolation of affine matrices.
Note that we can design most of the grammar with a simpler set of
shapes and then scale to effect later.

4.2 Limitations

Grammar learning. All the grammars in the paper have been
manually written. A common goal in grammar-based systems is to
learn the grammar from input data, a topic we have not investigated
yet. We believe this might be achieved by analyzing the spatial
relations that exists between the input set of shapes and inferring the
best animation effects that could be applied.

New operators. Actually it is not possible to apply affine
transform to individual vertices to add shape changes, or support
true shape morphing. This can be a limitation in types of motion
graphics, and might be a possible improvement. By the way our
grammar model allows to add a new operator shapemorph, which
explicitly applies the 2D grid of affine transformations to the single
shape vertexes. Nontheless we focused mainly proposing an easy
way to write a grammar both compact and enough expressive to
create motion graphics.

Beneficial Usage. One question that arises when defining
procedural systems is whether the approach is better than hand
editing. In our opinion, the benefit of grammars is when designing
animations that work in a non-trivial manner on groups of many
shapes. Working on single shapes is still possible, but grammars are
likely more cumbersome than a direct editing UI. An example of

such animation is the crack animation, that took lots of time to create
for a small number of shapes. This is a limitation of our approach
not in expressiveness, but in convenience. This problem is typical
of all procedural systems. For example, writing a split grammar is
helpful in architectural modeling when designing cities, rather than
a single building.

4.3 Extension: User Interface

User Interface. As an extension to the work presented so far, we
implemented a graphics user interface to improve upon the usability
of our grammar. Fig. 10 shows a screenshot of the interface and the
supplemental video a full editing sequence. Starting with the input
shapes and a possibly empty grammar, the interface lets user create
grammar rules and edit operator parameters, visually select shape
and timeslices, while visualizing the timeline and the final animation
in real-time. In the supplemental video we use the interface to
recreate the cube animation. Compared to hand-editing, the user
interface speeds up grammar editing significantly, since (1) the
user has real-time feedback on the operations, (2) visual shape and
timeslice selection makes rule naming a lot easier, (3) the edited
grammar is by construction syntactically and semantically correct,
avoiding any error during grammar compilation.

One benefit of using grammars rather than arbitrary scripts is that
adding a user interface is straightforward since grammars have a
simpler formal model than any commonly-used scripting language,
and that model is amenable to direct interfaces, like ours, our node
based interface. In our case, we implemented in the interface as a
web application wrapping the procedural system, an architecture
that allows more technically inclined user to hand-edit the grammar
directly if so desired.

Informal User Study. We ran an informal user study to vali-
date whether users can control the spatial and temporal aspect of
an animation using our grammar supported by the user interface.
In a manner similar to [17], we ask four subjects to match a target
animation starting from given grammars, by modifying or creating
grammar rules and editing operator parameters. This single task
requires various spatial and temporal adjustments and the creation
of new rules. Fig. 11 shows the starting and goal animation. All sub-
jects had some knowledge of computer graphics, but were novice to
both our grammar as well as animation editing. We did not approach
actual designers with the system. We collected users feedback with
exit interviews to gain insight into the grammar and interface use.
We choose to run an informal study rather than measuring subjects
performance to statistical significance, since the latter would be
outside the scope of our work and since exit interviews provide more

Figure 9: A grammar designed with a small set of shapes (fop) can be used to create a much larger animation (bottom). For the larger case we

show insets of four frames each.

=5
i d

gl
-8

1

ﬁ
;

L] 0
5| [|| —
rj I.-E P i Ty e s | L : 1

il
]

iﬁiﬁi’i o

Figure 10: Screenshot of the prototype user interface for editing
grammars. Left: Aniamtion preview. Center: Timeline visualization
and operator adjustment. Right: Shape list. Bottom: Rule creation.

direct feedback into the grammar and interface features.

Overall all subjects were able to complete the given task in be-
tween 20 and 30 minutes. Considering that only a very short training
phase was performed before the experiment (8 minutes long), this
shows that timeslice grammars can effectively be used to control an-
imations. In exit interviews, users had four main observations. First,
the immediate feedback gained with the realtime preview allowed
them to perform fast parameters tuning by trial and error, leading
them to match the target animation with high confidence. Second,
the selection preview enabled them to immediately understand which
shapes’ animations they were editing, without having to keep track
on that during grammar writing. Third, subjects mentioned that

without the user interface they would have been lost writing the
grammar manually. Said another way, the interface allowed them to
take advantage of the formalism without requiring lots of training.
Finally, our users explicitly mentioned that, to their knowledge, no
other tool would allow them to obtain similar animations in such a
simple and direct manner.

5 CONCLUSIONS

In this paper, we presented timeslice grammars, an extension of split
and group grammars, for the procedural generation of 2D motion
graphics. We showed how our grammar model, together with the
described operators, can successfully create complex and compelling
animations. As future work, we plan to extend our approach to learn
grammars from examples, allow users to have more control over the
final generated animations, and consider new operators that could
improve the expressivity and compactness of our grammar model.

ACKNOWLEDGMENTS

This work has been partially funded by MIUR (project DSurf),
Sapienza University of Rome and Intel Corporation.

97

98

STARTING

87 150

Figure 11: Starting and final animation for the user study task.

REFERENCES

[1]
[2]

[3]

[4

=

[6]

[7

—

[8]

[9]
[10]

(11]

[12]

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

M. Alexa. Linear combination of transformations. In ACM Transac-
tions on Graphics, vol. 21, pp. 380-387, 2002.

R. Baxter, Z. Crumley, R. Neeser, and J. Gain. Automatic addition of
physics components to procedural content. In Proc. of AFRIGRAPH
’10, pp. 101-110, 2010.

J. Bender, K. Erleben, J. Trinkle, and E. Coumans. Interactive simula-
tion of rigid body dynamics in computer graphics. In EUROGRAPHICS
2012 State of the Art Reports, 2012.

K. Hyun, K. Lee, and J. Lee. Motion grammars for character animation.
Computer Graphics Forum, 35(2), 2016.

Y. Li, F. Bao, E. Zhang, Y. Kobayashi, and P. Wonka. Geometry
synthesis on surfaces using field-guided shape grammars. IEEE T. Vis.
Comput. Gr., 17(2):231-243,2011.

A. Lindenmayer. Mathematical models for cellular interaction in
development: Parts i and ii. Journal of Theoretical Biology, 18, 1968.
M. Macklin, M. Miiller, N. Chentanez, and T.-Y. Kim. Unified particle
physics for real-time applications. ACM Trans. Graph., 33(4):153:1—
153:12,2014.

S. R. Musse and D. Thalmann. A Model of Human Crowd Behavior :
Group Inter-Relationship and Collision Detection Analysis, pp. 39-51.
1997.

R. Méch and P. Prusinkiewicz. Visual models of plants interacting with
their environment. In Proc. of SIGGRAPH ’96, pp. 397-410, 1996.

Y. I. H. Parish and P. Miiller. Procedural modeling of cities. In Proc. of
SIGGRAPH ’01, pp. 301-308, 2001.

N. Pelechano, J. Allbeck, and N. Badler. Controlling individual agents
in high-density crowd simulation. In Proc. of 2007 ACM Symposium
on Computer animation, pp. 99-108, 2007.

S. Pirk, B. Benes, T. Ijiri, Y. Li, O. Deussen, B. Chen, and R. Méch.
Modeling plant life in computer graphics. In ACM SIGGRAPH 2016
Courses, pp. 18:1-18:180, 2016.

P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Animation of plant
development. In Proc. of SIGGRAPH ’93, pp. 351-360, 1993.

P. Prusinkiewicz and A. Lindenmayer. The Algorithm Beauty of Plants.
Springer, 1990.

W. T. Reeves. Particle systems — a technique for modeling a class of
fuzzy objects. ACM Trans. Graph., 2(2):91-108, 1983.

C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proc. of SIGGRAPH '07, SIGGRAPH ’87, pp. 25-34, 1987.
C. Santoni and F. Pellacini. gtangle: A grammar for the procedural
generation of tangle patterns. ACM Trans. Graph., 35(6):182:1-182:11,
2016.

M. Schwarz and P. Wonka. Practical grammar-based procedural mod-
eling of architecture: Siggraph asia 2015 course notes. In SIGGRAPH
Asia 2015 Courses, pp. 13:1-13:12, 2015.

W. Shao and D. Terzopoulos. Autonomous pedestrians. In Proc. of
2005 ACM Symposium on Computer Animation, pp. 19-28, 2005.

J. Stam. Nucleus: Towards a unified dynamics solver for computer
graphics. In IEEE International Conference on Computer-Aided Design

and Computer Graphics, pp. 1-11, 2009.

[21] G. Stiny. Introduction to shape and shape grammars. Environment and
planning B, 7(3):343-351, 1980.

[22] G. Stiny. Spatial relations and grammars. Environ. Plan. B - Plan. Des.,
9(1):113-114, 1982.

[23] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture.
ACM Trans. Graph., 22(3):669-677, 2003.

	Introduction
	State of the Art
	Timeslice grammar
	Motion Graphics Model
	Timeslice Grammars
	Grammar Operators
	Grammar Expansion
	Formal Grammar Definition
	Discussion

	Results and discussion
	Animations
	Limitations
	Extension: User Interface

	Conclusions

