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Abstract

We undertake a systematic study of the so-called 2-adic ring C∗-algebra Q2. This is the
universal C∗-algebra generated by a unitary U and an isometry S2 such that S2U = U2S2

and S2S
∗

2+US2S
∗

2U
∗ = 1. Notably, it contains a copy of the Cuntz algebraO2 = C∗(S1, S2)

through the injective homomorphism mapping S1 to US2. Among the main results, the
relative commutant C∗(S2)′ ∩Q2 is shown to be trivial. This in turn leads to a rigidity
property enjoyed by the inclusion O2 ⊂ Q2, namely the endomorphisms of Q2 that restrict
to the identity on O2 are actually the identity on the whole Q2. Moreover, there is no
conditional expectation from Q2 onto O2. As for the inner structure of Q2, the diagonal
subalgebra D2 and C∗(U) are both proved to be maximal abelian in Q2. The maximality
of the latter allows a thorough investigation of several classes of endomorphisms and
automorphisms of Q2. In particular, the semigroup of the endomorphisms fixing U turns
out to be a maximal abelian subgroup of Aut(Q2) topologically isomorphic with C(T,T).
Finally, it is shown by an explicit construction that Out(Q2) is uncountable and non-
abelian.
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§1. Introduction

Ever since their formal debut in the most cited paper [15], the Cuntz algebras have

received a great deal of attention. The reasons are so many they resist any attempt

at a brief account, and this introduction will be no exception. Therefore, we cannot

but draw a rather quick and incomplete outline of the later developments until the

present state of the art, if only to better frame the scope of our work. For the many

authors who have focused their interest on more and more general constructions

inspired by the Cuntz algebras, there are as many authors who have devoted

themselves to as thorough as possible a study of the concrete Cuntz algebras.

This study includes, in particular, an in-depth investigation of endomorphisms

and automorphisms. Cuntz is among those who have undertaken both the tasks.

As for the first, he and other authors have written a long series of works where

increasingly broad classes of C∗-algebras associated with algebraic objects such as

rings are contrived. In particular, in [17] he introduced a C∗-algebra QN associated

with the ax+b-semigroup over the natural numbers. A few years later, Larsen and

Li [22] considered its 2-adic version which, accordingly, they denoted by Q2. The

main object of our interest in the present paper, this novel C∗-algebra is in fact

naturally associated with the semidirect product semigroup of the additive group Z
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acted upon by multiplication with non-negative powers of 2. It has appeared before

elsewhere, cf. [22] and the references therein, but it is in the above-mentioned work

of Larsen and Li that it was studied systematically for the first time. After recalling

that Q2 is a nuclear C∗-algebra, they prove, among other things, that Q2 is also a

purely infinite simple C∗-algebra. They give two proofs of this fact. Notably, one

is a straightforward application of Q2 being a Cuntz–Pimsner algebra, to which

general results of Exel, an Huef and Raeburn [19] apply. From our viewpoint, this

lucky circumstance is well worth mentioning. Indeed, very little is known about

the general structure of endomorphisms or automorphisms for general Pimsner

algebras; cf. [27, 18, 6]. Therefore, as should follow from some of the main results

announced in the abstract, a good way to look at Q2 might be to regard it as

a felicitous example of a Pimsner algebra for which a far-reaching study is not

that prohibitive. Far be it from us, however, to allege we have done all that could

be done. Rather, our hope is that further research may stem from this work.

That for a Pimsner algebra a thorough comprehension of the properties of all

its endomorphisms is a virtually impossible task should be no surprise. Indeed,

already for the Cuntz algebras On the problem, at least in its full generality,

has turned out to be well beyond the reach of current research. For instance,

all endomorphisms of On are known to come from unitary elements of On via a

correspondence first pointed out by Takesaki, see, e.g., [16], and yet it is notoriously

difficult to find non-tautological and effective characterizations of those unitaries

that yield automorphisms, although a number of intriguing if partial results about

the structure of Aut(On) have recently been achieved in [13, 11, 5, 12, 8, 9, 10]; see

also [7, 14] for an informative account. Without further ado, we can now move on to

the basic definitions needed throughout the paper. While being a Pimsner algebra,

the 2-adic ring C∗-algebra is perhaps best described as the universal C∗-algebra

Q2 generated by a unitary U and an isometry S2 such that

S2U = U2S2 and S2S
∗
2 +US2S

∗
2U

∗
= 1.

The reader interested in its description in terms of Pimsner algebras is again re-

ferred to [22]. However, in this paper we will never need to resort to that picture,

which is why we may as well dispense with it. What we do need to observe is

that Q2 contains a copy of the Cuntz algebra O2. Indeed, the latter is by defini-

tion the universal C∗-algebra generated by two isometries X1 and X2 such that

X1X
∗
1 +X2X

∗
2 = 1. Therefore, the map taking X1 to US2 and X2 to S2 extends by

universality to a homomorphism from O2 to Q2, which is injective thanks to the

simplicity ofO2. Accordingly, as of now it will be convenient to think ofO2 as being

a subalgebra of Q2. To us the rather explicit description of the inclusion O2 ⊂ Q2

was in fact among the strongest motivations to carry out the present study of
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Q2, especially as far as the extension problem is concerned. This asks whether an

endomorphism of O2 extends to Q2. It turns out that this is not always the case.

For instance, as soon as Bogoljubov automorphisms are looked at, easy examples

are found of non-extensible automorphisms. More precisely, we find that the only

extensible Bogoljubov automorphisms are the flip-flop, the gauge automorphisms

and their products. In addition, facing the extension problem in general leads to

an interesting rigidity property enjoyed by the inclusion O2 ⊂ Q2, namely if an

endomorphism of Λ of Q2 restricts to O2 trivially, then it is the identity automor-

phism. To the best of our knowledge, the pair (O2,Q2) is the only known example

of a non-trivial inclusion of Pimsner algebras that fulfills the rigidity condition. In

this respect, it is also worth mentioning that there is no conditional expectation

from the larger onto the smaller of the two.

Once these questions have been answered, it is natural to go on to study

endomorphisms and automorphisms of Q2 irrespective of whether they leave O2

globally invariant or not. Asking questions of this sort is of course motivated by the

overwhelming literature written on similar issues for the Cuntz algebras. However,

this entails a preliminary study of the inner structure ofQ2. In this regard, we prove

that both the C∗-algebra generated by U and the diagonal subalgebra D2 ⊂ O2 are

maximal abelian. It came as a surprise to us to learn that not as many results as one

would expect are known on maximal abelian subalgebras for general C∗-algebras.

Apparently, the notion of maximal abelian subalgebra is far more relevant to von

Neumann algebras. YetQ2 seems to be one of the few exceptions, for its theory does

benefit from C∗(U) being such a subalgebra. Indeed, we exploit the maximality

of C∗(U) to derive a number of results on the general form of selected classes of

automorphisms, many of which are, incidentally, quasi-free in the sense of Dykema–

Shlyakhtenko and Zacharias; see [18, 27]. Notably, we show that the semigroup of

the endomorphisms of Q2 that fix U is in fact a maximal abelian subgroup of

Aut(Q2) isomorphic with C(T,T), the group of all continuous T-valued functions

defined on the one-dimensional torus T understood as the spectrum of U . These

results are in fact in same spirit as those expounded in [16]. Moreover, they indicate

that it is not inconceivable to regard C(T,T) ⊂ Aut(Q2) as a generalized maximal

torus, although not connected, for which a kind of infinite-dimensional Weyl theory

might well be worth attempting, as is done in [8, 9] for Cuntz algebras.

Since the group of equivalence classes of outer automorphisms of O2 is known

to be so large as to contain most locally compact groups, our investigation also

addresses Out(Q2). We have partial evidence that Out(Q2) is not as large, not

least because, as a drawback of the aforementioned result on Bogoljubov auto-

morphisms, we no longer have a general procedure for embedding locally compact

groups into Out(Q2) as we would do with Out(O2). At any rate, we prove that
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Out(Q2) is still an uncountable non-abelian group. This is done in two steps.

First, we prove that both the flip-flop and the gauge automorphisms are mutually

non-equivalent outer automorphisms. Second, we provide a broad class of outer

automorphisms that do not commute in Out(Q2) with the flip-flop. Even so, the

non-commutativity thus exhibited is admittedly of a rather mild form. We do

believe that it is an interesting, albeit difficult, problem to say to what extent

Out(Q2) is non-abelian.

A few words on the organization of the material are in order. The various

results of the paper are scattered throughout several sections, which more or less

follow the order in which the topics have been introduced above, so as to allow

the reader to find them more easily. For convenience, there follows a description

of the content of several sections, also to be understood as a short guide to the

main results. Section 2 is preparatory in character, as it sets the stage for our

subsequent considerations. Indeed, all the needed definitions and basic properties

are to be found here. In Section 3.1 both C∗(U) and D2 are shown to be maximal

abelian subalgebras ofQ2; see Theorems 3.4 and 3.9, respectively. In Section 3.2 the

extended canonical endomorphism is proved to be a shift on Q2; see Theorem 3.14.

Moreover, there is no conditional expectation from Q2 onto O2; see Theorem 3.16.

The main result of Section 3.3 is Theorem 3.20, where the relative commutant

C∗(S2)
′ ∩ Q2 is shown to be trivial. Section 4 is focused on the uniqueness of

extensions of automorphisms from O2 to Q2, which is proved in Theorem 4.5,

and the non-extendability of general Bogoljubov automorphisms, which is proved

in Theorem 4.14. Section 5 deals with the outerness of the gauge automorphisms

and the flip-flop, but it also includes a general result; see Theorems 5.1, 5.8, 5.9,

respectively. Finally, Section 6 provides a complete description of AutC∗(U)(Q2);

see Theorem 6.13. Moreover, this group is shown to be isomorphic with C(T,T)

and maximal abelian in Aut(Q2); see Theorems 6.14 and 6.16, respectively. The

last two results along with Theorem 6.9, which states that the outer automorphism

group is non-abelian, should be regarded as the main results of the present paper.

Throughout the paper, all endomorphisms are assumed to be unital and

∗-preserving. Finally, for endomorphisms of the Cuntz algebra O2 we adopt the

well-established notation to be found in the wide literature of the field (see the

beginning of Section 4 for a very short description of the Cuntz–Takesaki corre-

spondence). This is certainly the case for the symbols αz, ϕ, λf introduced in full

detail in the next section.



50 V. Aiello, R. Conti and S. Rossi

§2. First results

As we observed in the introduction, the 2-adic ring C∗-algebra contains a copy

of the Cuntz algebra O2, as the C∗-subalgebra generated by S2 and S1 ≐ US2.

Since the theory of the latter has been enriched by a deeper and deeper knowledge

of distinguished classes of endomorphisms as well as automorphisms, problems to

do with their extensions to Q2 are undeniably among the most natural things to

initiate a study with. We will see in Section 4.1 that as soon as too much generality

is allowed, these problems begin to be intractable for all practical purposes. If

one asks slightly more specific questions, a great many partial results do start to

emerge. At any rate, we will also obtain a general result, namely that whenever

extensions exist they are unique, which is yet another way to state the rigidity

property of the inclusion O2 ⊂ Q2 we explained in the introduction. The precise

statement of this fact, too, is contained in Section 4.1. In the present section,

we limit ourselves to three remarkable examples that are easily dealt with. The

first is the canonical shift. The second is the flip-flop. The third is the gauge

automorphisms.

The canonical shift is explicitly defined on every x ∈ O2 as ϕ(x) = S1xS
∗
1 +

S2xS
∗
2 ; therefore if we set

ϕ̃(x) = US2xS
∗
2U

∗
+ S2xS

∗
2 for any x ∈ Q2,

we still define an endomorphism of Q2, which restricts to O2 as the usual shift.

The intertwining rules Six = ϕ̃(x)Si for any x ∈ Q2 with i = 1,2 still hold true.

Moreover, a straightforward computation shows that ϕ̃(U) = U2. Since the contin-

uous functional calculus of a normal operator commutes with any endomorphism,

the above equality can also be rewritten as ϕ̃(f(U)) = f(U2), which is true for

any continuous function f . It goes without saying that the same equality retains

its validity with any Borel function whenever Q2 is represented on some Hilbert

space. We shall avail ourselves of this useful fact later on.

As is well known, the flip-flop is the involutive automorphism λf ∈ Aut(Q2)

that switches S1 and S2 with each other. The flip-flop extends as well, although

the proof is less obvious and needs an argument. This is done here below.

Proposition 2.1 (R. Conti and W. Szymański, unpublished work). The flip-flop

automorphism of O2 extends to an automorphism of Q2.

Proof. If we set U ′ ≐ U∗ and S′2 ≐ US2, then the identity S′2S
′∗
2 +U ′S′2S

′∗
2 U

∗ = 1 is

immediately verified. By universality of Q2, there exists a unique endomorphism

λ̃f ∈ End(Q2) such that λ̃f(U) = U ′ = U∗ and λ̃f(S2) = S
′
2 = US2. This endomor-

phism is necessarily injective as Q2 is simple. Since λ̃f(U
∗) = U and λ̃f(US2) = S2,
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the image of α must be the whole Q2, that is, λ̃f is an automorphism. Finally, it

is obviously an extension of the flip-flop.

As of now, the above extension will be referred to simply as the flip-flop of

Q2 and will be denoted by λ̃f .

It is also well known that the Cuntz algebra O2 is acted upon by T through

the so-called gauge automorphisms αz given by αz(Si) = zSi, with z ∈ T. We can

also prove the following extension result concerning gauge automorphisms.

Proposition 2.2. The gauge automorphisms of O2 can all be extended to auto-

morphisms of Q2.

Proof. Now we set U ′ ≐ U and S′2 ≐ zS2, where z is any complex number of

absolute value equal to 1. As we still have S′2S
′∗
2 +U ′S′2S

′∗
2 U

∗ = 1, there exists an

automorphism α̃z ∈ Aut(Q2) such that α̃z(U) = U and α̃z(S2) = zS2. To conclude,

all that we are left to do is note that α̃z(S1) = α̃z(US2) = α̃z(U)α̃z(S2) = UzS2 =

zS1.

With a slight abuse of terminology, the automorphisms α̃z obtained above

will be referred to as the gauge automorphisms. To conclude, it is worth noting

that the flip-flop and the gauge automorphisms commute.

§2.1. The gauge-invariant subalgebra

The gauge-invariant subalgebra of O2, usually denoted by F2, is known to be

isomorphic with the CAR algebra. The corresponding gauge-invariant subalgebra

of Q2, which throughout this paper will be denoted by QT
2 , can no longer be

identified with such a remarkable C∗-algebra. However, it can be described far

more conveniently as the closure of a suitable linear span. To do so, we need to

point out the following simple but useful result. In order to state it as clearly

as possible, let us first set some notation. As in [15], we denote by W2 the set

of all multi-indices µ = (µ1, µ2, . . . , µn) with µi ∈ {1,2} and n ∈ N; the integer

n is commonly referred to as the length of the multi-index µ and is denoted by

∣µ∣. For any such multi-index µ = (µ1, µ2, . . . , µn), we denote by Sµ the monomial

Sµ1Sµ2⋯Sµn .

Proposition 2.3. Q2 = span{SµS
∗
νU

k ∶ µ, ν ∈W2, k ∈ Z}.

Proof. In order to prove the equality above, all we have to do is observe that

the following relations allow us to take both U and U∗ from the left-hand to the

right-hand side of any monomial of the form SµS
∗
ν :
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� US1 = S2U

� US2 = S1

� US∗1 = S∗2U

� US∗2 = S∗2U
2

� U∗S1 = S2

� U∗S2 = S1U
∗

� U∗S∗1 = S∗1 (U
∗)2

� U∗S∗2 = S∗1U
∗

The relations themselves are immediately verified by direct computation instead.

The gauge automorphisms yield a conditional expectation Ẽ from Q2 onto

QT
2 by averaging the action itself on T, that is, for any x ∈ Q2 we have Ẽ(x) =

∫T α̃z(x)dz, with dz the normalized Haar measure of T. Now since Ẽ(SµS
∗
νU

k) =

SµS
∗
νU

k
∫

2π
0 ei(∣µ∣−∣ν∣)θ dθ

2π
, we also have Ẽ(SµS

∗
νU

k) = 0 if and only if ∣µ∣ ≠ ∣ν∣. This

helps to prove the description alluded to above.

Proposition 2.4. The equalities below hold:

Q
T
2 = span{SµS

∗
νU

k
∶ µ, ν ∈W2, ∣µ∣ = ∣ν∣, k ∈ Z} = C∗

(U,F2) ⊂ Q2.

Proof. The second equality is obvious. We focus then on the first, for which we

have to worry only about the inclusion QT
2 ⊂ span{SµS

∗
νU

k ∶ ∣µ∣ = ∣ν∣}, the other

being immediately verified. If x ∈ QT
2 , then x = Ẽ(x). Now pick a sequence {xn} in

the algebraic linear span of the set {SµS
∗
νU

k ∶ µ, ν ∈W2, k ∈ Z} such that ∥xn −x∥

tends to zero. As Ẽ is a bounded map, ∥Ẽ(xn)−Ẽ(x)∥ = ∥Ẽ(xn)−x∥ tends to zero

as well. The conclusion follows easily now because Ẽ(xn) ∈ span{SµS
∗
νU

k ∶ ∣µ∣ = ∣ν∣}

by the remark we made above.

We should also mention that C∗(F2, U) = C∗(D2, U) is the Bunce–Deddens

algebra of type 2∞; see [3, Rem. 2.8].

§2.2. The canonical representation

In this section we gather as much information as we need about a distinguished

representation of Q2, which will actually play a major role in most of what follows

here and in the next sections. As far as we know, it was first exhibited in [22],

where it is called the canonical representation. Therefore, from now on it will

always be referred to as the canonical representation. After a brief review of its

main properties, we discuss a number of results where the canonical representation

proves to be rather useful.
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The canonical representation acts on `2(Z) through the operators S2, U ∈

B(`2(Z)) given by S2ek ≐ e2k and Uek ≐ ek+1, where {ek ∶ k ∈ Z} is the canonical

orthonormal basis of `2(Z), i.e., ek(m) = δk,m. The very first thing to note is that

1 is the only eigenvalue of S2, corresponding to the one-dimensional eigenspace

generated by e0. This simple observation enables us to give a short proof that the

canonical representation is irreducible. Since we do not know of any reference where

this possibly known fact is explicitly pointed out, we do include an independent

proof for the reader’s convenience.

Proposition 2.5. The canonical representation of Q2 is irreducible.

Proof. Let M ⊂ `2(Z) be a Q2-invariant closed subspace. If P is the associated

orthogonal projection, then P ∈ Q′2. In particular, S2P = PS2, and so S2Pe0 = Pe0.

As the eigenspace of S2 corresponding to the eigenvalue 1 is spanned by e0, we

must have either Pe0 = e0 or Pe0 = 0. In the first case, e0 ∈ M , and therefore

C∗(U)e0 ⊂M , which says that M = `2(Z) because e0 is a cyclic vector for C∗(U).

In the second, e0 ∈ M⊥ instead. As above, M⊥ being Q2-invariant too, we have

M⊥ = `2(Z), i.e., M = 0. Note, however, that O2 does not act irreducibly on `2(Z),

for the closed span of the set {ek ∶ k = 0,1, . . .} is obviously a proper O2-invariant

subspace.

However, the canonical representation restricts to O2 as a reducible represen-

tation, which we denote by π. More precisely, it is a direct sum of two inequivalent

irreducible representations of O2. To see this, let us define H+,H− ⊂ `2(Z) as the

closed subspaces given by

H+ ≐ span{ek ∶ k ≥ 0}

and

H− ≐ span{ek ∶ k < 0}.

The Hilbert space `2(Z) is immediately seen to decompose into the direct sum

of these subspaces, i.e., `2(Z) = H+ ⊕ H−. Furthermore, both H+ and H− are

O2-invariant, and finally they may be verified to be O2-irreducible too. This last

statement should be a well-known fact. Even so, we give the proof for the sake of

self-containedness.

Proposition 2.6. The subspaces H± are both O2-irreducible.

Proof. We need to worry only about H+, for H− is dealt with in much the same

way. Exactly as above, if M ⊂ H+ is an O2-invariant subspace, then either M or

its orthogonal complement M⊥ must contain e0. The proof is thus complete if we

can show that an O2-invariant subspace containing e0, say N , is the whole H+,
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and this is proved once we show ek ∈ N for every k ≥ 0. This is in turn easily

achieved by induction on k. Suppose we have proved {el ∶ l = 0,1, . . . , k} ⊂ N . For

the inductive step we have two cases, according to whether k + 1 is even or odd. If

it is even, then ek+1 = S2e k+1
2

; if it is odd, then ek+1 = S1e k
2
. In either case we see

that ek+1 is in N , as desired.

Denoting by π± the restriction of π to H± respectively, the decomposition into

irreducible representations π = π+ ⊕ π− has just been proved to hold. Now, since

what we are really interested in is the commutant π(O2)
′, we also need to observe

that π+ and π− are disjoint. This is done here below.

Lemma 2.7. If π+ and π− are the irreducible representations defined above, then

π+ ⫰ π−.

Proof. It is enough to note that π+(S2) has 1 in its point spectrum, whereas π−(S2)

does not.

To state the next result as clearly as possible some notation is needed, so let

us denote by E± the orthogonal projections onto H± respectively.

Proposition 2.8. The commutant of π(O2) is given by π(O2)
′ = CE+ +CE−.

Proof. According to the decomposition described above, we have π(O2)
′ =

(π+(O2) ⊕ π−(O2))
′. But because π+ and π− are disjoint, we can go a bit fur-

ther and write

(π+(O2)⊕ π−(O2))
′
= (π+(O2))

′
⊕ (π−(O2))

′
= CE+ ⊕CE−,

where the last equality is due to the irreducibility of π±.

This immediately leads to the following corollary, which needs no proof.

Corollary 2.9. In the canonical representation of Q2, the bicommutant of O2 is

given by

π(O2)
′′
= {T ∈ B(`2(Z)) ∶ T = T+ ⊕ T− ∶ T± ∈ B(H±)}.

The information we have gathered about π will actually turn out to be vital in

tackling the problem of whether C∗(U)′∩O2 ⊂ Q2 is trivial. This is the case indeed,

as anyone would expect. However, the proof is not as obvious as the statement.

In fact, we still lack some basic ingredients. In particular, we need to observe that

the basis vectors ek are all cyclic and separating for U . Therefore, the W ∗-algebra

W ∗(U) generated by U is a maximal abelian von Neumann algebra of B(`2(Z)).

Furthermore, it is common knowledge that W ∗(U) is isomorphic with L∞(T, µ),
where µ is the Haar measure of T.



Inner Structure and Automorphisms of Q2 55

In passing, we also take the opportunity to exploit the canonical representation

to show that D′′2 ⊂ B(`2(Z)) is a maximal abelian subalgebra as well. This will

in turn be vital to conclude that D2 is a maximal abelian subalgebra (MASA) of

Q2. Henceforward we shall denote by `∞(Z) the atomic MASA of B(`2(Z)) acting

through diagonal operators with respect to the canonical basis.

Proposition 2.10. In the canonical representation we have D′2 = `∞(Z).

Proof. Since `∞(Z) is a MASA, it is enough to prove that D′′2 = `∞(Z), which will

be immediately verified once we have proved that the projections Ek onto Cek
all belong to the strong closure of D2. To begin with, we note that the sequence

{Sn2 (S∗2 )
n} ⊂ D2 strongly converges to E0. But then the sequence {UkSn2 (S∗2 )

nU−k ∶

n ∈ N} strongly converges to Ek. The conclusion now follows from the fact that

D2 is globally invariant under ad(U).

We now have all the necessary tools to prove that C∗(U)′ ∩ O2 is trivial.

This will in turn result from a straightforward application of the next proposition,

where much more is proved.

Proposition 2.11. We have W ∗(U) ∨ π(O2)
′ = B(`2(Z)).

Proof. Let P be an orthogonal projection in the commutant of W ∗(U) ∨ π(O2)
′.

From PE+ = E+P and PE− = E−P , both H± are straightforwardly seen to be

P -invariant. In particular, Pe0 must take the form Pe0 = ∑k≥0 akek. For the same

reason, Pe−1 is in H−, but it is also given by Pe−1 = PU
∗e0 = U

∗Peo = ∑k≥0 akek−1,

which means ak = 0 for every k > 0. In other words, e0 must be an eigenvector

of P . As such, we have either Pe0 = 0 or Pe0 = e0. In the first case P = 0, while in

the second P = 1, because Pf(U)e0 = f(U)Pe0 for every f ∈ L∞(T).

Corollary 2.12. In the canonical representation, W ∗(U) ∩ π(O2)
′′ = C1. As a

consequence, C∗(U)′ ∩O2 = C1.

Remark 2.13. We have included an elementary proof of Proposition 2.11 for

the reader’s convenience. However, note that the rank-one orthogonal projec-

tions onto Cen, with n ∈ Z, all belong to W ∗(U) ∨ π(O2)
′: indeed, we have

UnE+(U
∗)n = Espan{ek ∶ k≥n} for any n ∈ Z. In light of this, the above proposi-

tion is well worth comparing with the more far-reaching classical result that for

any discrete group Γ the von Neumann algebra on `2(Γ), generated by λ(Γ) and

the multiplication operators Mf , with f ∈ c0(Γ), is the whole B(`2(Γ)). Obviously,

our case corresponds to Γ = Z.

At this stage, there is another step to take to improve our knowledge of the

C∗-algebra generated by U . Indeed, we are yet to prove that C∗(U) is a maximal
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abelian subalgebra of Q2 as well. Since this task requires some technical work, we

postpone the proof to the next section.

§3. Structure results

§3.1. Two maximal abelian subalgebras

The goal of the present section is to tackle two structure problems for Q2, namely

that both C∗(U) and D2 are maximal abelian subalgebras. We start with C∗(U).

The relative result is easily guessed, and yet its proof is unfortunately far from

being straightforward, in that it needs some more-refined tools such as conditional

expectations from B(H) onto a maximal subalgebra. As is known, the proof of the

existence of such conditional expectations can be traced back to the classical work

of Kadison and Singer [20], where the authors first described a general procedure

to obtain them. Nowadays, the existence of conditional expectations of this sort

is seen preferably as an immediate consequence of the injectivity of abelian von

Neumann algebras. Even so, we will sketch the original procedure, not least because

we make use of it in the proof of Proposition 3.6. This runs as follows. Given

T ∈ B(H), set T ∣P ≐ PTP +(I−P )T (I−P ) for any projection P in W ∗(U). If {Pi}

is a generating sequence of projections of W ∗(U), then every cluster point of the

sequence {T ∣P1∣P2∣⋯∣Pn} lies in W ∗(U)′ =W ∗(U), as explained in [20]. This enables

us to define a conditional expectation from B(H) ontoW ∗(U) associated with each

ultrafilter p ∈ βN simply by taking the strong limit of the subnet corresponding to

that ultrafilter.

We next show, as a key lemma to achieve our result, that for any conditional

expectation E from B(H) onto W ∗(U), we have that E[SαS
∗
β] is at worst a

monomial in U . For the sake of clarity, our proof is in turn divided into a series of

preliminary lemmas.

Lemma 3.1. With the notation set above, the equalities E[Sk2 ] = E[(S∗2 )
k] = 0

hold for k ∈ N.

Proof. First note that the second equality is a straightforward consequence of the

first thanks to the fact that E[T ∗] = E[T ]∗, which holds for every T ∈ B(H). The

commutation rules Sk2U = U2kSk2 give E[Sk2 ]U = U2kE[Sk2 ] = E[Sk2 ]U
2k . If we now

set f(U) ≐ E[Sk2 ], we see that f(z)(z − z2k) = 0, hence f(z) = 0 for every z ∈ T.

This says E[Sk2 ] = 0 and we are done.

Lemma 3.2. We have E[Sk2 (S
∗
2 )
k] = 2−k for every non-negative integer k.
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Proof. To begin with, we observe that

E[SαS
∗
α] = U

hE[S
∣α∣
2 (S∗2 )

∣α∣
]U−h

= E[S
∣α∣
2 (S∗2 )

∣α∣
]

for some positive integer h. Since 1 = ∑∣α∣=k SαS
∗
α we have

1 = ∑
∣α∣=k

E[SαS
∗
α] = 2kE[S

∣α∣
2 (S∗2 )

∣α∣
].

This implies that E[Sk2 (S
∗
2 )
k] = 2−k.

Lemma 3.3. We have E[Sk2 (S
∗
2 )
m] = 0 for k,m ≠ 0, k ≠m.

Proof. Thanks to the last two lemmas, it suffices to show the statement for k >m >

0. By using the commutation rules Sk2U = U2kSk2 we get U2kE[Sk2 (S
∗
2 )
m]U−2m =

E[Sk2 (S
∗
2 )
m]. If we now set f(U) ≐ E[Sk2 (S

∗
2 )
m], we obtain the functional equation

(z2k−2m − 1)f(z) = 0, which clearly implies f(z) = 0 for every z ∈ T. This shows

that E[Sk2 (S
∗
2 )
m] = 0 and we are done.

We now have all the necessary information to carry out our proof that C∗(U)

is a maximal abelian algebra.

Theorem 3.4. C∗(U) is a maximal abelian C∗-subalgebra of Q2.

Proof. As C∗(U)′ ∩Q2 =W
∗(U)∩Q2, it is enough to prove that given f ∈ L∞(T)

with f(U) in Q2, then f is in fact a continuous function. Now if f(U) belongs to

Q2, it is also the norm limit of a sequence {xk} ⊂ Q2 with each xk taking the form

∑α,β,h cα,β,hSαS
∗
βU

h. If E ∶ B(H)→W ∗(U) is any of the conditional expectations

considered above, we have f(U) = E(f(U)) = limkE(xk). But then each E(xk)

is of the form ∑α,β,h cα,β,hU
h+kα,β , where Ukα,β is nothing but E(SαS

∗
β). Conse-

quently, there exists a sequence of Laurent polynomials pk such that ∥f(U)−pk(U)∥

tends to zero, i.e., f(U) ∈ C∗(U), as maintained.

Among other things, it is interesting to note that the former proof yields a dis-

tinguished conditional expectation from Q2 onto C∗(U), which is simply obtained

by restricting any of the aforesaid conditional expectations to Q2. Although there

are conditional expectations onto W ∗(U) aplenty, as proved in [20], the above

computations also show that E is in fact unique, a fact worthy of a statement of

its own.

Theorem 3.5. The conditional expectation E ∶ Q2 → C∗(U) is unique.

To complete the picture, we next show that E is faithful. This is actually a

straightforward consequence of a general well-known result due to Tomiyama [26],
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whose proof in our setting is nevertheless included for the sake of completeness,

being utterly independent of Tomiyama’s work to boot.

Proposition 3.6. The unique conditional expectation E above is faithful.

Proof. By uniqueness it is enough to make sure that the conditional expectation

yielded by the Kadison–Singer procedure is faithful. Now if T is an α-coercive

operator, i.e., (Tx,x) ≥ α∥x∥2 with α > 0, then T ∣P is α-coercive as well, regardless

of the projection P . In particular, if T ∈ B(H) is a coercive operator, then E[T ]

cannot be zero, being by definition a weak limit of coercive positive operators all

with the same constant as T . If now T is any non-zero positive operator and ε > 0 is

any real number with ε < ∥T ∥, the spectral theorem provides us with an orthogonal

decomposition H =Mε ⊕Nε with Mε and Nε both T -invariant and such that the

restriction T ↾Nε is ε-coercive. The remark we started our proof with allows us to

conclude that E[T ] is not zero either.

We can now move on to D2. Again, the techniques we employ make rather

intensive use of conditional expectations. Before we start, it is worth mentioning

that this result can be understood as a generalization of the well-known property

of D2 being maximal in O2. We start attacking the problem with the following

couple of lemmas, for which we first need to set some notation. We still denote by

E the unique faithful conditional expectation from B(H) onto `∞(Z). As known,

this is simply given by (E[T ]ei, ej) = (Tei, ej)δi,j .

Lemma 3.7. The following relations hold:

� E[Uk] = δk,0I;

� E[SαS
∗
α] = SαS

∗
α;

� if ∣α∣ ≠ ∣β∣, E[SαS
∗
βU

h] is either 0 or Ei;

� if ∣α∣ = ∣β∣, E[SαS
∗
βU

h] is either 0 or SαS
∗
βU

h.

Proof. The first two equalities need no proof. For the third relation, without harm-

ing generality, we may suppose that ∣α∣ < ∣β∣:

E[SαS
∗
βU

h
] = E[Uh(α)(S2)

∣α∣
(S∗2 )

∣β∣Uh−h(β)]

= E[Uh(α)(S2)
∣α∣

(S∗2 )
∣α∣U−h(α)Uh(α)(S∗2 )

∣β∣−∣α∣Uh−h(β)]

= Uh(α)(S2)
∣α∣

(S∗2 )
∣α∣U−h(α)E[Uh(α)(S∗2 )

∣β∣−∣α∣Uh−h(β)],

where h(α) and h(β) are positive integers. Accordingly, we are led to compute

E[Uh(S2)
kU l], where h ∈ Z. Now the condition Uh(S2)

kU lei = ei implies that

i = 2k(i+ l)+h, and because the former equation has a unique solution, we get the
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thesis. Finally, for the fourth relation we have

E[SαS
∗
βU

h
] = E[Uh(α)(S2)

∣α∣
(S∗2 )

∣β∣Uh−h(β)]

= E[Uh(α)(S2)
∣α∣

(S∗2 )
∣α∣U−h(α)Uh−h(β)+h(α)]

= Uh(α)(S2)
∣α∣

(S∗2 )
∣α∣U−h(α)E[Uh−h(β)+h(α)]

= δh−h(β)+h(α),0U
h(α)

(S2)
∣α∣

(S∗2 )
∣α∣U−h(α)

= δh−h(β)+h(α),0U
h(α)

(S2)
∣α∣

(S∗2 )
∣α∣Uh−h(β)

= δh−h(β)+h(α),0SαS
∗
βU

h.

In order to make our proof work, we also need to take into account the con-

ditional expectation Θ from Q2 onto D2 described in [22]. We recall that this is

uniquely determined by Θ((S∗2 )
iU−lfU l

′

Si
′

2 ) ≐ δi,i′δl,l′(S
∗
2 )
iU−lfU lSi2, where f is

in F2. Moreover, it is there shown to be faithful too.

Lemma 3.8. If ∣α∣ = ∣β∣, Θ[SαS
∗
βU

h] is either 0 or SαS
∗
βU

h. In particular, Θ and

E coincide on monomials SαS
∗
βU

h with ∣α∣ = ∣β∣.

Proof. By direct computation, indeed, we have

Θ[SαS
∗
βU

h
] = Θ(Uh(α)(S2)

∣α∣
(S∗2 )

∣α∣Uh−h(β))

= δh(α),−h+h(β)U
h(α)

(S2)
∣α∣

(S∗2 )
∣α∣Uh−h(β).

Theorem 3.9. The diagonal subalgebra D2 ⊂ Q2 is a maximal abelian subalgebra.

Proof. As usual, all we have to do is make sure that the relative commutant

D′2∩Q2 = `∞(Z)∩Q2 reduces to D2. Let x ∈ `∞(Z)∩Q2; then there exists a sequence

{xk} converging normwise to x with each of the xk of the form ∑ cα,β,hSαS
∗
βU

h.

As above, x = E(x) = limkE(xk). Thanks to the former lemmas, we can rewrite

E(xk) as dk + fk, where dk ∈ D2 and fk are all diagonal finite-rank operators.

Now, since dk = Θ(xk), we see that dk must converge to some d ∈ D2. But then fk
converge normwise to a diagonal compact operator, say k, which means k = x − d

is in Q2, hence k = 0, since K(H) ∩Q2 = {0}, and x = d ∈ D2.

The former result readily leads to D2 being a Cartan subalgebra of Q2. An

anonymous referee pointed out an alternative approach to showing this by using

the works of Larsen and Li [22] and Renault [25]. We believe this approach is very

elegant and we give a brief account of it. In the first place, one should see the
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2-adic ring C∗-algebra Q2 as a reduced groupoid C∗-algebra (see [22, Sect. 5]).

Indeed, if G = (Z[ 1
2
] ⋊ 2Z) ⋉Q2 is the transformation groupoid, where Z[ 1

2
] and

2Z act on Q2 by addition and multiplication, respectively, and F ∶= G∣Z2 , then

C∗
r (F ) ≃ Q2. Now, the claim follows at once by using [25, Prop. 3.1] after showing

that the set of isotropy points of Z2 is countable, and thus that the set of points

with trivial isotropy is dense (that is, the corresponding action is topologically

free [25, Sect. 6.1]). The canonical abelian subalgebra of a crossed product with

respect to a group is considered the most typical example of MASA, provided

that the action is topologically free. In the present case, although Q2 is only a

crossed product by a semigroup, the situation is almost the same because it is just

a corner of a crossed product by a group. One advantage of this description of Q2

as a crossed product is that it is more natural to recognize D2 as the canonical

Cartan subalgebra (and the canonical expectation).

As for O2, later we will prove that there is no conditional expectation from

Q2 onto O2.

§3.2. Irreducible subalgebras

In order to take a step further towards the study of Q2, especially as far as the

properties of the inclusionO2 ⊂ Q2 are concerned, it is worthwhile recalling a useful

result proved by Larsen and Li in their aforementioned paper [22]. It says that a

representation ρ of O2 extends to a representation of Q2 if and only if the unitary

parts of the Wold decompositions of ρ(S1) and ρ(S2) are unitarily equivalent to

each other. Accordingly, once the unitary parts of the Wold decompositions have

been proved to be unitarily equivalent, the isometries are unitarily equivalent too

because of the relation US1 = S2U . As remarked by the authors themselves, this

allows us to think of Q2 as a sort of symmetrized version of O2. Notably, the

result applies to those representations π of O2 in which both π(S1) and π(S2)

are pure. Moreover, in such cases the sought extension is unique, as pointed out

in [22, Rem. 4.2]. For the reader’s convenience, though, we do single this out as a

separate statement.

Proposition 3.10. Let π be a representation of O2 on the Hilbert space Hπ such

that π(S1) and π(S2) are both pure. Then there exists a unique unitary Ũ ∈ B(Hπ)

such that π(S2)Ũ = Ũ2π(S2) and π(S1) = Ũπ(S2).

The recalled theorem by Larsen and Li would actually be enough to prove that

the Cuntz algebra O2 is irreducible in Q2, as might be expected. Even so, this can

also be derived from the much stronger result that even the UHF subalgebra F2

has trivial relative commutant, which is shown below.
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Theorem 3.11. The UHF subalgebra F2 ⊂ Q2 is irreducible, i.e., F ′2 ∩Q2 = C1.

Proof. As D2 is a subalgebra of F2, we have F ′2∩Q2 ⊂ D
′
2∩Q2 = D2, where the last

equality depends upon D2 being a maximal abelian subalgebra of Q2. Therefore,

we find F ′2 ∩Q2 = F
′
2 ∩D2 ⊂ F

′
2 ∩F2 = Z(F2) = C1.

Although immediately derived from the above theorem, the following couple

of corollaries do deserve to be highlighted.

Corollary 3.12. The relative commutant of O2 in Q2 is trivial, i.e., O′
2∩Q2 = C1.

Corollary 3.13. The relative commutant of the gauge-invariant subalgebra QT
2 is

trivial, i.e., (QT
2)

′ ∩Q2 = C1.

Interestingly, the irreducibility of F2 also applies to the canonical shift, which

turns out to enjoy the so-called shift property, i.e., ⋂k ϕ̃
k(Q2) = C1, whence its

name. This important property should first have been singled out by R. T. Powers,

who called it strong ergodicity, but we do not have a precise reference for the reader.

The canonical shifts of On are of course known to be strongly ergodic; see [21] for

full coverage of the topic.

Theorem 3.14. The canonical endomorphism ϕ̃ of Q2 is a shift, i.e., ⋂k ϕ̃
k(Q2) =

C1.

Proof. Since ϕ̃k(x) = ∑γ∶∣γ∣=k SγxS
∗
γ , the equality ϕ̃k(x)SαS

∗
β = SαS

∗
βϕ̃

k(x), x ∈ Q2

is straightforwardly verified to hold true for every pair of multi-indices α and β

with ∣α∣ = ∣β∣ = k. This says that ϕ̃k(Q2) is contained in (Fk2 )′ ∩ Q2 for every

k, where Fk2 ≐ span{SµS
∗
ν ∶ ∣µ∣ = ∣ν∣}. But then we have the chain of inclusions

⋂k ϕ̃
k(Q2) ⊂ ⋂k(F

k
2 )′ ∩Q2 ⊂ F

′
2 ∩Q2 = C1.

Remark 3.15. The former theorem says in particular that ϕ̃ is not surjective in

a rather strong sense. We can be more precise by observing that U is not in ϕ̃(Q2).

Indeed, by maximality of C∗(U), any inverse image of U should lie in C∗(U), but

the restriction of ϕ̃ to C∗(U) does not yield a homeomorphism of T.

We can now go back to the announced result that conditional expectations

onto the Cuntz algebra O2 do not exist.

Theorem 3.16. There is no unital conditional expectation from Q2 onto O2.

Proof. Suppose that such a conditional expectation does exist. We want to show

that this leads to E(U) being U , which is obviously absurd. We shall work in any

representation in which S1 and S2 are both pure, for instance the one described in



62 V. Aiello, R. Conti and S. Rossi

[4]. If we compute E on the operator USn1 S2S
∗
2 (S

∗
1 )
n by using the commutation

rule Sn2U = USn1 , we easily get to the equality

E[U]Sn1 S2S
∗
2 (S

∗
1 )
n
= Sn2 S1S

∗
2 (S

∗
1 )
n.

But on the other hand we also have USn1 S2S
∗
2 (S

∗
1 )
n = Sn2 S1S

∗
2 (S

∗
1 )
n. Accord-

ingly, E(U) and U must coincide on the direct sum of the subspaces Mn ≐

Sn1 S2S
∗
2 (S

∗
1 )
nHπ, which can be easily seen to be the whole Hπ.

§3.3. The relative commutant of the generating isometry

This section is entirely devoted to proving that C∗(S2)
′ ∩Q2 is trivial. We first

observe that this is the same as proving that C∗(S1)
′∩Q2 is trivial, merely because

ad(U∗)(C∗(S2)) = C
∗(S1). For this, we still need some preliminary definitions and

results.

Given any k ∈ N, we set Bk2 ≐ span{SαS
∗
βU

h ∣ ∣α∣ = ∣β∣ = k, h ∈ Z}. For every

k we have the inclusion Bk2 ⊂ Bk+1
2 , which readily follows from the Cuntz relation

1 = S1S
∗
1 + S2S

∗
2 .

Lemma 3.17. Let x ∈ Bk2 ; then

1. (S∗1 )
kxSk1 ∈ C∗(U);

2. the sequence {(S∗1 )
mxSm1 } stabilizes to a scalar cx ∈ C.

Proof. Without loss of generality, suppose that x = SαS
∗
βU

h. We have

(S∗1 )
kxSk1 = δα,1S

∗
βU

hSk1 .

If h > 0, then by using the relation S2U = US1, we see that the right-hand side of

the last expression is given by

δα,1S
∗
βSγU

l(h)
= δα,1δβ,γU

l(h),

where γ is a multi-index of length k. If h = 0, we obtain

δα,1S
∗
βS

k
1 = δα,1δβ,1.

When h < 0, by using the relations U∗S1 = S2 and U∗S2 = S1U
∗ we obtain

δα,1S
∗
βU

hSk1 = δα,1U
l(h)S∗γS1 = δα,1δγ,1U

l(h),

where γ is a multi-index of length k. We observe that in these cases we always

have ∣l(h)∣ ≤ ∣h∣, and this fact will be important in the sequel. For the second part

of the thesis, we may suppose that m > k + ∣h∣ + 1. The needed computations can
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be made faster in the canonical representation (for brevity we write l instead of

l(h)):

(S∗1 )
mU lSm1 ej = (S∗1 )

mU le2mj+2m−1 = (S∗1 )
me2mj+2m−1+l.

The expression above is non-zero if and only if 2mj + 2m − 1 + l = 2mi + 2m − 1 for

some i, i.e., l = 2m(i − j). But m > k + h + 1 and ∣l∣ ≤ ∣h∣; therefore we finally get

i = j and l = 0.

Proposition 3.18. Let x ∈ QT
2 = span{SαS

∗
βU

h ∣ ∣α∣ = ∣β∣, h ∈ Z}. Then

lim
h

(S∗1 )
hxSh1 ∈ C.

Proof. By hypothesis there exists a sequence xk ∈ B
f(k)
2 that tends to x in norm.

Choose a pair of natural numbers i and j. For any k ∈ N sufficiently larger than

f(i) and f(j), by the former lemma we have (S∗1 )
kxiS

k
1 =∶ ci, (S

∗
1 )
kxjS

k
1 =∶ cj ∈ C.

The sequence ci is convergent since

∣ci − cj ∣ = ∥(S∗1 )
kxiS

k
1 − (S∗1 )

kxjS
k
1 ∥ ≤ ∥xi − xj∥.

We denote the limit by c. Now the sequence (S∗1 )
hxSh1 tends to c as well.

For any non-negative integer i we now define the linear maps Fi ∶ Q2 → Q
T
2

given by

Fi(x) ≐ ∫
T
α̃z[x(S

∗
1 )
i
]dz,

F−i(x) ≐ ∫
T
α̃z[S

i
1x]dz.

We observe that

Fi(x) = Fi(x)S
i
1(S

∗
1 )
i,(3.1)

F−i(x) = S
i
1(S

∗
1 )
iF−i(x).(3.2)

Before proving the main result of the section, we also need to recall the following

lemma, whose proof can be adapted verbatim from the original [15, Prop. 1.10],

where it is proved for the Cuntz algebras instead.

Proposition 3.19. Let x ∈ Q2 be such that Fi(x) = 0 for all i ∈ Z. Then x = 0.

Now we have all the tools for completing our proof.

Theorem 3.20. Let w ∈ U(Q2) such that wS1w
∗ = S1. Then w ∈ T1.
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Proof. First of all we observe that we also have wS∗1w
∗ = S∗1 . We have S∗1Fi(w)S1 =

Fi(w). Indeed, for i ≥ 0,

S∗1Fi(w)S1 = S
∗
1 (∫

T
α̃z[w(S∗1 )

i
]dz)S1 = ∫

T
S∗1 α̃z[w(S∗1 )

i
]S1 dz

= ∫
T
α̃z[S

∗
1w(S∗1 )

iS1]dz = ∫
T
α̃z[w(S∗1 )

i
]dz = Fi(w),

S∗1F−i(w)S1 = S
∗
1 (∫

T
α̃z[S

i
1w]dz)S1 = ∫

T
S∗1 α̃z[S

i
1w]S1 dz

= ∫
T
α̃z[S

∗
1S

i
1wS1]dz = ∫

T
α̃z[S

i
1w]dz = F−i(w).

By Proposition 3.18 we obtain that for each i ∈ Z one has

lim(S∗1 )
kFi(w)Sk1 = Fi(w) ∈ C.

Equations (3.1)–(3.2) together imply that for i ≠ 0 we have Fi(w) = 0. Now Propo-

sition 3.19 applied to w − F0(w) gives the claim.

Exactly as for the Cuntz algebras, we can also state a slight generalization of

the former result, which says that an inner automorphism of Q2 cannot send Si
to a scalar multiple of it.

Proposition 3.21. Let φ ∈ Aut(Q2) be such that φ(Si) = zSi for some z ∈ T∖{1}

and i = 1 or i = 2. Then φ is an outer automorphism.

The proof is straightforwardly obtained by recasting Theorem 3.20 in terms

of a unitary w such that wS1w
∗ = zS1. This is done for On in [23], from which

some of the techniques deployed in this section have actually been taken.

§4. Extending endomorphisms of the Cuntz algebra

For what follows it may be convenient to recall that associated with any unitary

V ∈ U(O2) there is an endomorphism λV of O2, defined by λV (Si) = V Si, i = 1,2.

Notably, the other way round is also true, that is, any endomorphism λ ∈ O2 comes

from a unique V . The bijective correspondence thus obtained is often named after

Cuntz and Takesaki. To take just one important example, the flip-flop λf is nothing

but the automorphism corresponding to f ≐ S1S
∗
2 + S2S

∗
1 .

§4.1. Uniqueness of the extensions

This section is mostly concerned with the problem of extending endomorphisms of

O2 to endomorphisms of Q2. More precisely, we spot necessary and sufficient con-

ditions for an extension to exist. Before entering into the details, some comments
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are in order. Indeed, the equations we get are hardly ever easy to verify, save for

those endomorphisms that we already know extend. Notwithstanding their intrin-

sic difficulty, they do provide general information when applied to idO2 . We can

now go on with our discussion. To begin with, if V is a unitary of O2 such that

the associated endomorphism λV extends to an endomorphism λ̃ of Q2, then one

must have V US2 = V S1 = λV (S1) = λ̃(S1) = λ̃(U)λV (S2) = λ̃(U)V S2. Therefore,

λ̃(U)V S2 = V US2 and thus U∗V ∗λ̃(U)V S2 = S2. Thus, setting W = U∗V ∗λ̃(U)V ,

it holds that WS2 = S2 and λ̃(U) = V UWV ∗. We now examine whether such

extensions exist. We always have

V S2S
∗
2V

∗
+ V UWV ∗V S2S

∗
2V

∗VW ∗U∗V ∗
= V (S2S

∗
2 +US2S

∗
2U

∗
)V ∗

= V V ∗
= 1,

and we must have

V S2λ̃(U) = λ̃(U2
)V S2

or, equivalently,

V S2V UWV ∗
= (V UWV ∗

)
2V S2 = V UWV ∗V UWV ∗V S2

= V UWUWS2 = V UWUS2.

We have thus shown the following result.

Proposition 4.1. Let V ∈ U(O2) and let λV ∈ End(O2) be the associated endo-

morphism. Then λV extends to an endomorphism of Q2 if and only if there exists

a unitary W ∈ Q2 such that WS2 = S2 and S2V UWV ∗ = UWUS2. For any such

W , we have an extension λ̃ = λ̃V,W with λ̃(U) = V UWV ∗.

As shown later, the W defined above is uniquely determined in all the cases

we have examined. Furthermore, the endomorphism λ̃ is necessarily injective since

Q2 is simple. Moreover, if λV is an automorphism of O2, then λ̃ is surjective if

and only if the associated W is contained in λ̃(Q2). Moreover, for the extensions

built above, the following composition rule holds:

λ̃V,W ○ λ̃V ′,W ′ = λ̃λV (V ′)V,WV ∗λ̃V,W (W ′)V .

As an example, if ϕ̃ is the canonical shift introduced in Section 2, we have

ϕ̃ = λ̃θ,U∗θU2θ,

where θ = ∑
2
i,j=1 SiSjS

∗
i S

∗
j ∈ U(F

2
2 ) is the self-adjoint unitary flip.

It is interesting to note that the extensions of the gauge automorphisms we

have considered all work with W = 1. This is no coincidence. In fact, the converse

also holds true.
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Proposition 4.2. Let V ∈ U(O2). If the associated endomorphism λV ∈ End(O2)

extends to λ̃V,1, that is, the choice W = 1 does yield an extension, then V = z1, for

some z ∈ T.

Proof. If we put W = 1 in the equality S2V UWV ∗ = UWUS2, we get S2V UV
∗ =

U2S2. But U2S2 = S2U , and so we must have S2V UV
∗ = S2U . Hence V UV ∗ = U ,

that is, V commutes with U . Since V is a unitary, we also have V ∈ C∗(U)′ ∩O2,

which concludes the proof.

Extensions of the identity map of O2, which obviously correspond to V = 1,

may be looked at more closely. If we define W ≐ U∗λ̃(U), we find that W is

a unitary in Q2 such that λ̃(U) = UW , WS2 = S2 and WS1 = S1W . Indeed,

S2S
∗
2 + UWS2S

∗
2W

∗U∗ = S2S
∗
2 + US2S

∗
2U

∗ = 1 and S2UW = (UW )2S2, so that

U2S2W = UWUWS2 and thus US2W = WUS2. Hence, S1W = WS1, as stated.

Obviously, the trivial choice W = 1 corresponds to the trivial extension.

Proposition 4.3. If W ∈ U(Q2) is such that WS2 = S2 and WS1 = S1W , then

W = 1.

Proof. This is in fact a straightforward application of the fact that C∗(S1)
′∩Q2 =

C1. However, we can also give an alternative, if longer, proof that depends only on

the theorem of Larsen and Li that we have quoted. The computations are easily

made in the irreducible representation of O2 produced in [4]. This acts on the

Hilbert space H = L2([−1,1]) through the pure isometries S1, S2 ∈ B(H) given by

the formulas

(S1f)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 for − 1 ≤ t ≤ 0,
√

2f(2t − 1) for 0 < t ≤ 1,

(S2f)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

√
2f(2t + 1) for − 1 ≤ t ≤ 0,

0 for 0 < t ≤ 1.

Note that (S∗1f)(t) =
√

2
2
f( t+1

2
) and (S∗2f)(t) =

√
2

2
f( t−1

2
) for every f ∈ H. The

unitary operator U ∈ U(H) given by (Uf)(t) = f(−t) for every t ∈ [−1,1] is an

intertwiner between S1 and S2, namely US2 = S1U . By virtue of the result of

Larsen and Li we mentioned above, we can then regard this representation as a

representation of Q2 as well, which allows us to think of Q2 as a subalgebra of

B(H). In order to prove the proposition, we will actually show even more: any

unitary W ∈ B(H) such that WS2 = S2 and WS1 = S1W must be the identity

operator I on H. To accomplish this task, we define a sequence of orthogonal

projections given by Pn ≐ (S1)
nS2S

∗
2 (S

∗
1 )
n for each n ∈ N. It is straightforwardly
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verified that WPn = Pn for every n and PnPm = PmPn = 0 for every m ≠ n.

Therefore Qn ≐ ∑
n
k=0 Pk is still an orthogonal projection such that WQn = Qn.

Accordingly, the conclusion will be easily achieved once we have proved that Qn
converges to I in the strong operator topology. As easily recognized, we have the

following explicit formulas for Sn1 and (S∗1 )
n:

(Sn1 f)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 for − 1 ≤ t ≤ 1 − 1
2n−1

,
√

2
n
f(2nt −∑

k
i=0 2i) for 1 − 1

2n−1
< t ≤ 1,

and

((S∗1 )
nf)(t) = (

√
2

2
)

n

f (
t + 2n − 1

2n
) .

We can use them to see that Pn is the projection corresponding to the multiplica-

tion operator by χ[1− 1
2n−1

,1− 1
2n ], that is, the characteristic function of the interval

[1 − 1
2n−1

,1 − 1
2n

]. As a consequence, Qn is nothing but the projection associated

with χ[−1,1− 1
2n ]. Hence Qn → 1 in the strong operator topology, which was to be

proved.

Remark 4.4. The representation of Q2 recalled in the proof of the above result

is not equivalent to the canonical representation, merely because its restriction to

O2 is still irreducible, as proved in [4], whereas the restriction of the canonical

representation to O2 is not, as we remarked.

We are at last in a position to prove the following result, which says that a

non-trivial endomorphism of Q2 cannot fix O2 pointwise.

Theorem 4.5. If Λ ∈ End(Q2) is such that Λ ↾O2= idO2 , then Λ = idQ2 .

Proof. A straightforward application of the former proposition.

Remark 4.6. Actually, the theorem just obtained strengthens the information

that the relative commutant O′
2∩Q2 is trivial. For, if u ∈ O′

2∩Q2, then ad(u) is an

automorphism fixing O2 pointwise. As such, ad(u) is trivial, hence u is a central

element. Since Q2 is simple, u must be a multiple of the identity, i.e., O′
2∩Q2 = C1.

As a simple corollary, we can also get the following property of the inclusion

O2 ⊂ Q2.

Corollary 4.7. If Λ1 ∈ Aut(Q2) and Λ2 ∈ End(Q2) are such that Λ1 ↾O2= Λ2 ↾O2 ,

then Λ1 = Λ2. In particular, Λ2 is an automorphism as well.

Proof. Just apply the above theorem to the endomorphism Λ−1
1 ○Λ2, which restricts

trivially to O2.
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In particular, the extensions of both the flip-flop and the gauge automorphisms

are unique.

Of course there are automorphisms of Q2 that do not leave O2 globally in-

variant. The most elementary example we can come up with is probably ad(U).

Indeed, ad(U)S1 = US1U
∗ = S2 = US1, ad(U)S2 = US2U

∗ = S1U
∗ = U∗S2. Hence,

ad(U)(O2) is not contained in O2, because S1U
∗ is not in O2. Even more can be

said. Indeed, ad(U)(F2) is not contained in O2 either. This is seen as easily as be-

fore, since, for instance, ad(U)(S1S
∗
2 ) = US1S

∗
2U

∗ does not belong to O2 although

S1S
∗
2 belongs to F2. Given that US1S

∗
2U

∗ = S2US
∗
2U

∗ = S2US
∗
1UU

∗ = S2US
∗
1 ,

if US1S
∗
2U

∗ were in O2, then U = S∗2S2US
∗
1S1 would in turn be in O2, which it

is not. Even so, ad(U) does leave the diagonal subalgebra D2 globally invariant.

This can be shown by means of easy computations involving the projections of

Dk2 ≐ span{SαS
∗
α s.t. ∣α∣ = k} for every k ∈ N.

We would like to end this section by remarking that for each Λ ∈ End(Q2)

there still exists a unique uΛ ∈ U(Q2) such that Λ(S2) = uΛS2 and Λ(S1) =

uΛS1, which is simply given by uΛ = Λ(S1)S
∗
1 + Λ(S2)S

∗
2 . Furthermore, Λ leaves

O2 globally invariant if and only if uΛ ∈ O2. This allows us to regard the map

End(Q2) ∋ Λ→ uΛ ∈ U(Q2) as a generalization of the well-known Cuntz–Takesaki

correspondence. Nevertheless, this map is decidedly less useful for Q2 than it is for

O2, not least because it is not surjective. In other words, there exist unitaries u in

U(Q2) such that the correspondence S1 → uS1, S2 → uS2 does not extend to any

endomorphism of Q2. Examples of such u are even found in U(O2), as we will see

in the next section, where we shall give a complete description of the extensible

Bogoljubov automorphisms. For the time being we observe that if a unitary u ∈

U(Q2) does give rise to an endomorphism Λu, the equation uUS2 = Λu(U)uS2

must be satisfied. This says that Λu(U) = uUWu∗ for some W ∈ U(Q2) such

that WS2 = S2 and S2uUWu∗ = UWUS2. By the same computations as at the

beginning of the section, the converse is also seen to be true. Hence we obtain a

complete if hitherto unmanageable description of End(Q2). At any rate, our guess

is that the above equations are hardly ever verified unless u is of a very special

form, such as u = vϕ̃(v∗) for any v ∈ U(Q2), corresponding to inner automorphisms,

u = z1, corresponding to the gauge automorphisms α̃z, or u = S2S
∗
2U

∗ + US2S
∗
2 ,

corresponding to the flip-flop. In fact, this prediction is partly supported by the

result in the negative obtained in the next section. Moreover, it is still not clear

at all whether the map End(Q2) ∋ Λ → uΛ is injective, although its restriction to

Aut(Q2) certainly is.



Inner Structure and Automorphisms of Q2 69

§4.2. Extensible Bogoljubov automorphisms

We have seen some remarkable classes of automorphisms of O2 that extend to Q2.

However, there is no a priori reason to expect every endomorphism of O2 to extend

automatically to an endomorphism of Q2. In fact, we next give rather elementary

examples of automorphisms of O2 that do not extend. Indeed, if we denote by ηα,β
the automorphism of O2 defined by ηα,β(S1) = αS1 and ηα,β(S2) = βS2 for any

given α,β ∈ T, we have the following proposition.

Proposition 4.8. The automorphisms ηα,β ∈ Aut(O2) defined above extend to

endomorphisms of Q2 if and only if α = β.

Proof. Since S1 and S2 are unitarily equivalent in Q2, their images αS1 and βS2

would be unitarily equivalent as well if an extension of ηα,β existed. In particular,

we would find {α} = σp(αS1) = σp(βS2) = {β}, where σp denotes the point spec-

trum. This is absurd unless α = β, in which case the corresponding endomorphism

does extend, being but a gauge automorphism.

It is no surprise that the same proof as above covers the case of the so-

called anti-diagonal automorphisms. These are simply given by ρα,β(S1) = αS2

and ρα,β(S2) = βS1 for any given α,β ∈ T. Again, an automorphism ρα,β extends

precisely when α = β. To complete the picture, we shall presently determine which

Bogoljubov automorphisms of O2 extend to endomorphisms of Q2. A suitable

adaptation of some of the techniques developed by Matsumoto and Tomiyama

in [23] will be again among the ingredients for concocting the proof of the main

result of this section. This says that the extensible Bogoljubov automorphisms

are precisely the flip-flop, the gauge automorphisms and their products, which

altogether form a group isomorphic with the direct product T × Z2. To this aim,

consider a unitary matrix

A = (
a b

c d
) ∈ U(C2

),

and let α = λA be the corresponding automorphism of O2, i.e., α(S1) = aS1+cS2 =

(aU + c)S2 and α(S2) = bS1 +dS2 = (bU +d)S2. Set f(U) = (bU +d) for short. The

condition S2U = U2S2 implies that f(U)S2α(U) = α(U)2f(U)S2. Suppose that α

is extensible and denote by α̃ such an extension. Finally, set Ũ ≐ α̃(U), S̃2 ≐ α(S2),

S̃1 ≐ α(S1). From now on we shall always be focusing on the case where a, b, c, d

are all different from zero. That said, the first thing we need to prove is that the

extension is unique provided that it exists.

Lemma 4.9. If λA extends, then its extension is unique.
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Proof. By Proposition 3.10 all we need to check is that S̃1 is pure as an isometry

acting on `2(Z). This entails ascertaining that ⋂nRan[S̃n1 (S̃∗1 )
n] = {0}. To this

aim, let us set Mn ≐ Ran[S̃n1 (S̃∗1 )
n]. As Mn+1 ⊂ Mn, we have that E⋂nMn =

limEMn strongly. Thus we are led to show limnEMn = 0. For this it is enough

to prove limn ∥EMnek∥ = 0 for every k. Now the powers of S̃1 are given by S̃n1 =

∑∣α∣=n cαSα, where cα ≐ an1(α)cn2(α) ∈ C∗ with n1(α) being the number of 1s

occurring in α and n2(α) the number of 2s occurring in α. We set L ≐ max{∣a∣, ∣c∣}

and observe that L < 1 by the hypotheses on the unitary matrix A. We have

∥(S̃∗1 )
nek∥ = ∣cα(k)∣ ≤ L

n
→ 0, n→ +∞

for a unique coefficient cα(k) that depends on k (this is actually a consequence of

the fact that ∑∣α∣=k SαS
∗
α = 1). This in turn implies the claim.

In light of the previous result, it is a very minor abuse of notation also to

denote by λA its extension to Q2 when it exists.

Lemma 4.10. If λA extends, then Ũ ∈ QT
2 .

Proof. Suppose that Ũ is not in QT
2 . Then by definition there must exist a non-

trivial gauge automorphism α̃z such that α̃z(Ũ) ≠ Ũ . By applying α̃z to both sides

of the equalities S̃2Ũ = Ũ2S̃2 and S̃2S̃
∗
2 + Ũ S̃2S̃

∗
2 Ũ

∗ = 1, we also get

α̃z(Ũ)
2S̃2 = S̃2α̃z(Ũ),

S̃2S̃
∗
2 + α̃z(Ũ)S̃2S̃

∗
2 α̃z(Ũ)

∗
= 1,

which together say that there exists an endomorphism Λ ∈ End(Q2) such that

Λ(S2) = S̃2 and Λ(U) = α̃z(Ũ). Now Λ(S1) = Λ(US2) = Λ(U)Λ(S2) = α̃z(Ũ)S̃2 =

z̄α̃z(Ũ S̃2) = z̄α̃z(S̃1) = S̃1 = λA(S1). A contradiction is thus arrived at because Λ

and λ̃A are different maps.

Now we introduce some lemmas to prove that α̃(U) is actually contained in

C∗(U).

Lemma 4.11. For any x ∈ Bk2 , the element (S̃∗2 )
kxS̃k1 belongs to C∗(U).

Proof. Suppose that x = SαS
∗
βU

h, where ∣α∣ = ∣β∣ = k. If h ≥ 0, we have that

(S̃∗2 )
kxS̃k1 = (S̃∗2 )

kSαS
∗
βU

hS̃k1 is a polynomial in U . The case h ≤ 0 can be handled

with similar computations.

Lemma 4.12. Let x ∈ QT
2 be such that the sequence (S̃∗2 )

kxS̃k1 converges to an

element z. Then z ∈ C∗(U).
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Proof. Let {yk}k≥0 be a sequence such that yk ∈ B
k
2 and yk → x normwise. Then

the thesis follows from the inequality

∥z − (S̃∗2 )
kykS̃

k
1 ∥ ≤ ∥z − (S̃∗2 )

kxS̃k1 ∥ + ∥(S̃∗2 )
k
(x − yk)S̃

k
1 ∥ .

Lemma 4.13. We have Ũ ∈ C∗(U).

Proof. By applying λ̃A to the identity USk1 = Sk2U we get Ũ S̃k1 = S̃k2 Ũ . For all

k ∈ N we have (S̃∗2 )
kŨ S̃k1 = Ũ . Therefore, Ũ is in C∗(U) thanks to Lemma 4.12,

applied to x = Ũ .

We have verified that α(U) = g(U) for some g ∈ C(T), which turns out to be

vital in proving the following result.

Theorem 4.14. If α ∈ Aut(O2) is a Bogoljubov automorphism, then α extends

to Q2 if and only if α is the flip-flop, a gauge automorphism or a composition of

these two.

Proof. By the discussion at the beginning of this section it is enough to consider

the case in which a, b, c, d are all different from zero. All the computations are

henceforth made in the canonical representation. The condition f(U)S2α(U) =

α(U)2f(U)S2 yields

f(U)S2g(U) = g(U)
2f(U)S2,

f(U)g(U2
)S2 = f(U)g(U)

2S2.

Since the point spectrum of U is empty, f(U) is always injective, unless b = d = 0,

in which case A is not unitary. Thus g(U2)S2 = g(U)2S2. At the function level we

must then have g(z2) = g(z)2 for every z ∈ T. By continuity, we find that g(z) = zl;

for this see, e.g., Appendix A. Therefore g(U) = U l. We have α(S1) = aS1 + cS2 =

bU l+1S2 + dU
lS2. If we compute the above equality on the vectors em, we get

ae2m+1 + ce2m = be2m+l+1 + de2m+l,

which is to be satisfied for each m ∈ Z. Therefore, there are only two possibilities

to fulfill these conditions:

1. l = 1, and a = d ≠ 0, b = c = 0;

2. l = −1, and b = c ≠ 0, a = d = 0.

The first corresponds to gauge automorphisms, while the second corresponds to

the flip-flop and its compositions with gauge automorphisms.
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§5. Outer automorphisms

In this section the group Out(Q2) is shown to be non-trivial. More precisely, it

turns out to be a non-abelian uncountable group. A thorough description of its

structure, though, is still missing. As far as we know, it might well be chimerical

to obtain.

§5.1. Gauge automorphisms and the flip-flop

Below, the flip-flop and non-trivial gauge automorphisms are proved to be outer.

In fact, this parallels analogous known results for O2. Since gauge automorphisms

are more easily dealt with, we start our discussion by focusing on them. The next

result (partly) follows from Proposition 3.21; however, we give an alternative proof

because it will shed further light on the properties of the gauge automorphisms,

see Remark 5.2.

Theorem 5.1. The extensions to Q2 of the non-trivial gauge automorphisms of

O2 are still outer automorphisms (and they are not weakly inner in the canonical

representation).

Proof. We shall argue by contradiction. From now on, Q2 will always be thought

of as a concrete subalgebra of B(`2(Z)) via the canonical representation. We will

actually prove the following statement: no unitary V ∈ B(`2(Z)) can implement

a non-trivial gauge automorphism. Indeed, let z ∈ T different from 1, and let

Λz ∈ Aut(Q2) be the corresponding gauge automorphism. If V is a unitary operator

on `2(Z) such that Λz = ad(V ) ↾Q2 , then in particular we must have Λz(U) =

ad(V )(U), namely U = V UV ∗. This shows that V commutes with U . Since U

generates a MASA, V must take the form V = f(U), for some f ∈ L∞(T); in

particular it belongs to W ∗(U) too. But we also have zS2 = Λz(S2) = ad(V )(S2) =

V S2V
∗, i.e., zS2V = V S2. If we now compute this identity between operators on

the vector e0, we get zS2V e0 = V e0, i.e., S2V e0 = z̄V e0. As a consequence, we also

have V e0 = 0, merely because 1 is the only eigenvalue of S2. Since V ∈W ∗(U) and

e0 is a separating vector for W ∗(U) as well, we finally find that V is zero, which

is clearly a contradiction.

Remark 5.2. Actually, the proof given above says a bit more. Indeed, the non-

trivial gauge automorphisms of Q2 ⊂ B(`2(Z)) are not weakly continuous. For if

they were, they should clearly extend to an automorphism of B(`2(Z)), but this

is absurd because the automorphisms of B(`2(Z)) are all inner.

Among other things, we also gain the additional information that Out(Q2)

is an uncountable group, in that different gauge automorphisms give rise to dis-
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tinct classes in Out(Q2). Indeed, if α̃z and α̃w are two different gauge automor-

phisms, then by Proposition 3.21 there cannot exist any unitary u ∈ Q2 such that

uα̃z(x)u
∗ = α̃w(x) for every x ∈ Q2. For the sake of completeness we should also

mention that every separable traceless C∗-algebra is actually known to have un-

countably many outer automorphisms [24].

Remark 5.3. Notably, the former result also provides a new and simpler proof

of the well-known fact that the gauge automorphisms on O2 are outer. However,

the case of a general On cannot be recovered from our discussion, and must be

treated separately, as already done elsewhere.

As for the flip-flop, instead, we start our discussion by showing it is a weakly

inner automorphism, which is the content of the next result.

Proposition 5.4. The extension of the flip-flop to Q2 is a weakly inner automor-

phism.

Proof. By definition, we have only to produce a representation π of Q2 such that

λ̃f is implemented by a unitary in π(Q2)
′′. The canonical representation does this

job well. For if V ∈ U(`2(Z)) is the self-adjoint unitary given by V ek ≐ e−k−1,

the equalities V S1V
∗ = S2 and V S2V

∗ = S1 are both easily verified. Since the

canonical representation is irreducible, the proof is thus complete.

This result should also be compared with a well-known theorem by Archbold

[1] that the flip-flop is weakly inner on O2.

Remark 5.5. The unitary V as defined above can be rewritten as V = PU = U∗P,

where P is the self-adjoint unitary given by Pek = e−k, k ∈ Z. Obviously, V is in

Q2 if and only if P is. We shall prove that P is not in Q2 in a while. At any rate,

we observe the equality V (S1V S
∗
1 + S2V S

∗
2 )

∗ = S1S
∗
2 + S2S

∗
1 ≐ f ∈ O2, which is

immediately verified, and fV = S1V S
∗
1 + S2V S

∗
2 = V f . Finally, it is worth noting

that U = λZ(1), and that P is the canonical intertwiner between λZ and ρZ. In this

picture, Q2 is thus the concrete C*-algebra on `2(Z) generated by C∗
r (Z) and the

copy of O2 provided by the canonical representation.

In spite of being weakly inner, λ̃f is an outer automorphism, as is its restriction

to O2. To prove that, we first need to show that the unitary V above is up to

multiplicative scalars the unique operator in B(`2(Z)) that implements the flip-

flop.

Proposition 5.6. If W ∈ B(`2(Z)) is such that ad(W ) ↾Q2= λ̃f , then W = λV

for some λ ∈ T.
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Proof. First note that we must have ad(W 2) = idB(`2(Z)) since the flip-flop is an

involutive automorphism and Q′′2 = B(`2(Z)). Hence W 2 is a multiple of 1, and

therefore there is no loss of generality if we also assume that W 2 = 1, i.e., W =W ∗.

From the relation WS1W = S2, we get S1We0 =We0. Hence We0 = λe−1 for some

λ ∈ T. From e0 =W
2e0 = λWe−1 we get We−1 = λ̄e0. We now show that either λ = 1

or λ = −1. Indeed, from UW = WU∗ it follows that We−1 = WU∗e0 = UWe0 =

U(λe−1) = λe0 = λ̄e0, which in turn implies that λ is real. Of course, the only case

we need to deal with is λ = 1. The conclusion is now obtained at once if we use the

equality WU = U∗W inductively, for Wek+1 =WUek = U
∗Wek = U

∗e−k−1 = e−k−2,

as maintained.

Remark 5.7. Of course, the uniqueness of V could also have been obtained faster

merely by irreducibility of Q2. However, the proof displayed above has the advan-

tage of showing how we came across the operator V .

Here finally follows the theorem on the outerness of the flip-flop.

Theorem 5.8. The extension of the flip-flop is an outer automorphism.

Proof. Thanks to the former result, all we have to prove is that P is not in Q2,

which entails checking that P cannot be a norm limit of a sequence xk of operators

of the form xk = ∑k ckSαkSβ∗kU
hk . Indeed, if this were the case, we should have

ε > ∥P−∑α,β,h cα,β,hSαS
∗
βU

h∥ for some finite sum of the kind∑α,β,h cα,β,hSαSβU
h,

with ε > 0 as small as needed. If so, we would also find the inequality

∥e−n − ∑
α,β,h

cα,β,hSαS
∗
βU

hen∥ = ∥Pen − ∑
α,β,h

cα,β,hSαS
∗
βU

hen∥ < ε.

Note though that this inequality becomes absurd as soon as ε < 1 and n is suffi-

ciently large, that is, n is bigger than the largest value of ∣h∣, because we would

have ∥e−n − ∑α,β,h cα,β,hSαS
∗
βU

hen∥
2 = 1 + ∥∑α,β,h cα,β,hSαS

∗
βU

hen∥
2 ≥ 1, since

∑α,β,h cα,β,hSαS
∗
βU

hen ∈H+.

Now, as we know λ̃f is outer, we would also like to raise the question of whether

there exists a representation of Q2 in which λ̃f is not unitarily implemented. The

answer would indeed complete our knowledge of λ̃f itself.

§5.2. A general result

We saw above that the flip-flop is an outer automorphism. This is not an isolated

case, for every automorphism that takes U to its adjoint must in fact be outer.

This is the content of the next result.
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Theorem 5.9. Every automorphism α ∈ Aut(Q2) such that α(U) = U∗ is an

outer automorphism.

Proof. All we have to prove is that there is no unitary W ∈ Q2 such that WUW ∗ =

U∗. To this aim, we will be working in the canonical representation. If W ∈ B(H)

is a unitary operator such that WUW ∗ = U∗, then we have WUW ∗ = PUP, hence

PWU(PW )∗ = U , which says that PW commutes with U . Therefore, PW = f(U)

for some f ∈ L∞(T) with ∣f(z)∣ = 1 a.e. with respect to the Haar measure of T,

hence W = Pf(U). Then we need to show that such a W cannot be in Q2. If f is a

continuous function, there is not much to say, for Pf(U) ∈ Q2 would immediately

imply that P = Pf(U)f(U)∗ is in Q2 as well, which we know is not the case. The

general case of an essentially bounded function is dealt with in much the same way,

apart from some technicalities to be overcome. Given any f ∈ L∞(T) and ε > 0,

thanks to Lusin’s theorem we find a closed set Cε ⊂ T such that µ(T∖Cε) < ε and

f ↾Cε is continuous. This in turn guarantees that there exists a continuous function

gε ∈ C(T,T) that coincides with f on Cε by an easy application of the Tietze

extension theorem. If Pf(U) is in Q2, then Pf(U)gε(U)∗ is also in Q2. Note that

fḡε = 1+ hε, where hε is a suitable function whose support is contained in T∖Cε.
In particular, we can rewrite Pf(U)gε(U)∗ as P +Phε(U). If the latter operator

were in Q2, then we could find an operator of the form ∑α,β,h cα,β,hSαS
∗
βU

h such

that ∥P +Phε(U)−∑α,β,h cα,β,hSαS
∗
βU

h∥ < ε. If N is any natural number greater

than the maximum value of ∣h∣ as h runs over the set the above summation is

performed on, we should have ∥PeN + Phε(U)eN −∑α,β,h cα,β,hSαS
∗
βU

heN∥ < ε,

namely

∥e−N +Phε(U)eN − ∑
α,β,h

cα,β,hSαS
∗
βU

heN∥ < ε.

But then we should also have

∥e−N +Phε(U)eN − ∑
α,β,h

cα,β,hSαS
∗
βU

heN∥ ≥ ∥e−N − ∑
α,β,h

cα,β,hSαS
∗
βU

heN∥

− ∥Phε(U)eN∥.

Hence

ε > ∥e−N +Phε(U)eN − ∑
α,β,h

cα,β,hSαS
∗
βU

heN∥ ≥ 1 − ∥Phε(U)eN∥.

The conclusion is now reached if we can show that ∥Phε(U)eN∥ is also as small

as needed. But the norm ∥Phε(U)eN∥ is easily computed in the Fourier trans-

form of the canonical representation, where it takes the more workable form

(∫ ∣hε(z
−1)z−N ∣2 dµ(z))1/2 and is accordingly smaller than 2µ(T ∖Cε)

1/2 ≤ 2ε1/2.

The above inequality becomes absurd as soon as ε is taken small enough.
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As a straightforward consequence, we can immediately see that the class of the

flip-flop in Out(Q2) does not coincide with any of the classes of the gauge automor-

phisms. In other terms, the automorphisms α̃z ○ λ̃
−1
f are all outer, sending U in U∗.

Furthermore, if we now denote by χ−1 the automorphism such that χ−1(S2) ≐ S2

and χ−1(U) ≐ U−1 = U∗, then the above result also applies to χz ≐ χ−1 ○ α̃z, which

is outer as well for the same reason. Also note that χz(S2) = zS2. More interest-

ingly, if z is not 1, the corresponding χz yields a class in Out(Q2) other than the

one of the flip-flop. To make sure this is true, we start by noting that χ−1 and λ̃f
do not commute with each other. Even so, they do commute in Out(Q2), in that

they even yield the same conjugacy class. Indeed, we have ad(U∗) ○ χ−1 = λ̃f , or

equivalently λ̃f ○ χ−1 = ad(U∗), which in addition says that λ̃f ○ χ−1 has infinite

order in Aut(Q2) while being the product of two automorphisms of order 2. From

this our claim follows easily. For, if χz ○ λ̃f is an inner automorphism, the iden-

tity χz ○ λ̃f = χ̃z ○ χ−1 ○ λ̃f = χ̃z ○ ad(U) implies at once that χ̃z is inner as well,

which is possible for z = 1 only. However, the classes [χz] and [λ̃f ] do commute

in Out(Q2), because χz ○ λ̃f ○ χ
−1
z ○ λ̃f = ad(U2). In order to prove that Out(Q2)

is not abelian, we still need to sort out a new class of outer automorphisms. This

will be done in the next sections.

§6. Notable endomorphisms and automorphism classes

§6.1. Endomorphisms and automorphisms ααα such that α(S2) = S2α(S2) = S2α(S2) = S2

For any odd integer 2k+1, whether it be positive or negative, the pair (S2, U
2k+1)

still satisfies the two defining relations of Q2. This means that the map that takes

S2 to itself and U to U2k+1 extends to an endomorphism of Q2, which will be

denoted by χ2k+1. Trivially, this endomorphism extends the identity automorphism

of C∗(S2). A slightly less obvious thing to note is that these endomorphisms

cannot be obtained as extensions of endomorphisms of O2. Indeed, χ2k+1(S1) =

χ2k+1(US2) = U
2k+1S2, and U2k+1S2 is not in O2: if it were, we would also find

that S∗1U
2k+1S2 = S∗2U

∗UU2kS2 = S∗2S2U
k = Uk would be in O2, which it is not.

In this way, we get a class of endomorphisms χ2k+1, k ∈ Z with χ1 = id and χ−1

being clearly an automorphism of order 2. All these endomorphisms commute with

one another and we have χ2k+1 ○ χ2h+1 = χ(2k+1)(2h+1) for any k, h ∈ Z. Phrased

differently, the set {χ2k+1 ∶ k ∈ Z} is a semigroup of proper endomorphisms of Q2.

One would like to know whether the endomorphisms singled out above give the

complete list of the endomorphisms of Q2 fixing S2. In other words, the question

is whether the set

U2 ≐ {V ∈ U(Q2) ∣ V 2S2 = S2V, S2S2
∗
+ V S2S

∗
2V

∗
= 1}
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contains elements other than the U2k+1 with k ∈ Z above. As a matter of fact,

answering this question in its full generality is not an easy task. An interesting if

partial result does surface, though, as soon as we introduce an extra assumption.

Going back to the endomorphisms χ2k+1, we next show that they are all proper

apart from χ±1. The proof cannot be considered quite elementary, in that it uses

the maximality of C∗(U).

Proposition 6.1. None of the endomorphisms χ2k+1 are surjective if 2k+1 ≠ ±1.

Proof. Let A ⊂ Q2 be the C∗-subalgebra of those x ∈ Q2 such that χ2k+1(x) ∈

C∗(U). We clearly have C∗(U) ⊂ A. By simplicity ofQ2 the endomorphism χ2k+1 is

injective, which means A is still commutative. Therefore, by maximality of C∗(U),

we must have A = C∗(U). From this it now follows that U is not in the range of

χ2k+1, for the restriction χ2k+1 ↾C∗(U) is induced, at the spectrum level, by the

map T ∋ z ↦ z2k+1 ∈ T.

In addition, in the canonical representation the endomorphisms χ2k+1 cannot

be implemented by any unitary W ∈ B(`2(Z)). Indeed, we can state the following

result.

Proposition 6.2. Let 2k + 1 be an odd integer different from 1. Then there is no

unitary V in B(`2(Z)) such that V S2 = S2V and V UV ∗ = U2k+1.

Proof. The proposition is easily proved by reductio ad absurdum. Let V be such

a unitary as in the statement. From V S2e0 = S2V e0 we deduce that V e0 is an

eigenvector of S2 with eigenvalue 1. Without loss of generality, we may assume

that V e0 = e0. Now,

V eh = V U
he0 = U

(2k+1)hV e0 = U
(2k+1)he0 = e(2k+1)h, h = 0,1,2, . . . ,

and, similarly,

V e−h = e−(2k+1)h, h = −1,−2, . . . .

To conclude, it is now enough to observe that V is not surjective whenever 2k+1 ≠

−1, whereas the case of 2k + 1 = −1 leads to V being equal to P, which does not

belong to Q2.

Rather than saying what the whole U2 is, we shall focus on its subset U2 ∩

C∗(U) instead, which is more easily dealt with. This task is accomplished by the

next result.

Theorem 6.3. The set U2 ∩ C
∗(U) is exhausted by the odd powers of U , i.e.,

U2 ∩C
∗(U) = {U2k+1 ∶ k ∈ Z}.
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Proof. Let W ∈ U2∩C
∗(U). Then there exists a function f ∈ C(T,T) such that W =

f(U). The condition S2W =W 2S2 can be rewritten as S2f(U) = f(U)2S2. On the

other hand, we also have S2f(U) = f(U2)S2. Therefore f(U2)S2 = f(U)2S2, i.e.,

f(U2) = f(U)2. Accordingly, the function f must satisfy the functional equation

f(z2) = f(z)2. Being continuous, our function f must be of the form f(z) = zn for

some integer n ∈ Z, see Appendix A. This means that W = Un. If we also impose

the condition on the ranges S2S
∗
2 +U

nS2S
∗
2U

−n = 1, we finally find that n is forced

to be an odd number, say n = 2k + 1.

The result obtained above can also be stated in terms of endomorphisms of

Q2. With this in mind, we need to introduce a bit of notation. In particular, we

denote by EndC∗(S2)(Q2,C
∗(U)) the semigroup of those endomorphisms of Q2

that fix S2 and leave C∗(U) globally invariant.

Corollary 6.4. The semigroup EndC∗(S2)(Q2,C
∗(U)) identifies with {χ2k+1 ∶ k ∈

Z}. As a result, we also have

AutC∗(S2)(Q2,C
∗
(U)) = {id, χ−1} ≅ Z2.

The previous result might possibly be improved by dropping the hypothesis

that our endomorphisms leave C∗(U) globally invariant also. This is in fact a

problem we would like to go back to elsewhere.

§6.2. Automorphisms ααα such that α(U) = Uα(U) = Uα(U) = U

In this section we study those endomorphisms and automorphisms Λ ∈ End(Q2)

such that Λ(U) = U . Of course, the problem of describing all of them amounts to

determining the set

S2 ≐ {W ∈ Q2 ∶W
∗W = 1, WU = U2W, WW ∗

+UWW ∗U∗
= 1}.

Curiously enough, it turns out that S2 can be described completely, which is what

this section is chiefly aimed at. We start our discussion by sorting out quite a

simple class of automorphisms of that type. Given a function f ∈ C(T,T), we de-

note by βf the automorphism of Q2 given by βf(U) = U and βf(S2) = f(U)S2,

which is well defined because the pair (f(U)S2, U) still satisfies the two defining

relations of Q2. Note that βf ○βg = βf ⋅g so that we obtain an abelian subgroup of

AutC∗(U)(Q2) and that a constant function f(z) = w gives back the gauge auto-

morphism α̃w. Furthermore, we have the following result, which gives a sufficient

condition on f for the corresponding βf to be outer. As the condition is not at

all restrictive, the correspondence f ↦ βf , which is one to one, provides plenty of

outer automorphisms.
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Proposition 6.5. If f ∈ C(T,T) is such that f(1) ≠ 1, then βf is an outer auto-

morphism.

Proof. If V ∈ Q2 is a unitary such that βf = ad(V ), then V commutes with U and

therefore it is of the form g(U) for some g ∈ C(T,T) by maximality of C∗(U). The

condition βf(S2) = ad(V )(S2) yields the equation f(U)S2 = g(U)S2g(U)∗, i.e.,

f(U)S2 = g(U)g(U2)∗S2. But then g and f satisfy the relation f(z) = g(z)g(z2)

for every z ∈ T. In particular, the last equality says that f(1) = g(1)g(1) = 1.

However, the condition spotted above is not necessary. This will in turn result

as a consequence of the following discussion. We will be first concerned with the

problem as to whether an automorphism βf may be equivalent in Out(Q2) to a

gauge automorphism. If so, there exist z0 ∈ T and W ∈ U(Q2) such that WUW ∗ =

U and Wf(U)S2W
∗ = z0S2. As usual, the first relation says that W = h(U) for

some h ∈ C(T,T), which makes the second into h(U)f(U)h(U2)∗ = z0, that is, h

satisfies the functional equation h(z)f(z)h(z2) = z0. The latter says in particular

that z0 is just f(1). We next show that there actually exist many continuous

functions f for which there is no continuous h that satisfies

(6.1) h(z)h(z2
) = f(z)f(1) ≐ Ψ(z).

Note that Ψ(1) = 1 and that there is no loss of generality if we assume h(1) = 1 as

well. By evaluating (6.1) at z = −1 we find h(−1) = 1 provided that f(−1) = f(1).

Remark 6.6. By density, the continuous solutions of the equation h(z)h(z2) =

Ψ(z) are completely determined by the values they take at the 2nth roots of unity.

Furthermore, the value of such an h at a point z with z2n = 1 is simply given by the

interesting formula h(z) = 1

∏n−1k=0
Ψ(z2k ) . The latter is easily reached by induction

starting from the relation h(z2) = h(z)Ψ(z).

Here is our result, which provides examples of βf not equivalent with any of

the gauge automorphisms. Let f ∈ C(T,T) be such that f(eiθ) = 1 for 0 ≤ θ ≤ π

and f(eiθ) = −1 for π + ε ≤ θ ≤ 2π − ε with 0 < ε ≤ π
4

. Then we have the following.

Proposition 6.7. If f ∈ C(T,T) is a function as above, then the associated βf is

not equivalent to any gauge automorphism.

Proof. With the above notation, suppose that h(z) is a solution of (6.1) such

that h(1) = h(−1) = 1, which is not restrictive. Since Ψ(i) = Ψ(eiπ/2) = 1 and

h(i2) = h(−1) = 1, we immediately see that h(i) = 1. As Ψ(z) = 1 for 0 ≤ θ ≤ π, by

using the functional equation we find that h(eiπ/2
n

) = 1 for any n ∈ N. Consider

then z = e5iπ/4. We have Ψ(e5iπ/4) = −1 and h(e2(5iπ/4)) = h(i) = 1, which in turn
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gives h(e5iπ/4) = −1. By induction we also see h(e5πi/2n+2) = −1. This proves that

any solution h of the functional equation with f as in the statement cannot be

continuous.

We can now devote ourselves to answering the question of whether Out(Q2)

is abelian. It turns out that it is not. Our strategy is merely to show that automor-

phisms βf corresponding to suitable functions f do not commute in Out(Q2) with

the flip-flop. To begin with, if βf does commute with λ̃f in Out(Q2), then there

must exist a unitary V ∈ Q2 such that λ̃f ○β
f ○ λ̃f = ad(V ) ○βf . Exactly as above,

the unitary V is then a continuous function of U , say V = h(U). In addition, we

also have

f(U∗
)S2 = h(U)f(U)S2h(U)

∗
= h(U)f(U)h(U2

)
∗S2,

and so we find that f and h satisfy the equation f(z̄) = h(z)f(z)h(z2) for every

z ∈ T, which can finally be rewritten as f(z̄)f(z) = h(z)h(z2), to be understood as

an equation satisfied by the unknown function h, with f being given instead. We

next exhibit a wide range of continuous functions f for which the corresponding

h does not exist. To state our result as clearly as possible, we fix some notation

first. Let f ∈ C(T,T) be such that f(ei9π/8) = i, and f(z) = 1 everywhere apart

from a sufficiently small neighborhood of z = ei9π/8.

Proposition 6.8. If f ∈ C(T,T) is as above, then βf does not commute with the

flip-flop in Out(Q2).

Proof. Repeat almost verbatim the same argument as in the previous proposition,

now verifying that h(eπi/2
n

) = 1 first and then h(e9πi/2n+3) = −1.

Notably, this also yields the announced result on Out(Q2).

Theorem 6.9. The group Out(Q2) is not abelian.

Now we have got a better guess of what S2 might be, we can finally prove that

it is in fact exhausted by isometries of the form f(U)S2, where f is a continuous

function onto T. This still requires some preliminary work. First observe that

given any s ∈ S2, a straightforward computation shows that both s∗S2 and s∗S1

commute with U , but then by maximality of C∗(U) we can rewrite them as h(U)

and g(U) respectively, with h and g being continuous functions.

Lemma 6.10. There exists a continuous function f such that s = f(U)S2.

Proof. We start with the equality s∗ = s∗(S1S
∗
1 +S2S

∗
2 ) = (s∗S1)S

∗
1 + (s∗S2)S

∗
2 , in

which we substitute the above expressions. This leads to s∗ = g(U)S∗1 + h(U)S∗2 ,

i.e., s = S1g(U)∗ + S2h(U)∗ = US2g(U)∗ + h(U2)∗S2 = (Ug(U2)∗ + h(U2)∗)S2.

Therefore, our claim is true with f(z) = zg(z2) + h(z2).
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Lemma 6.11. With the notation set above, for every z ∈ T we have ∣h(z)∣2 +

∣g(z)∣2 = 1.

Proof. It is enough to rewrite the equality s∗s = 1 in terms of h and g.

Lemma 6.12. With the notation set above, for every z ∈ T we have zh(z)g(z) +

g(z)h(z) = 0.

Proof. Once again it is enough to rewrite the equality s∗Us = 0, which is merely

the orthogonality relation between s and Us, in terms of h and g.

We are at last in a position to prove the main result on S2.

Theorem 6.13. If s ∈ S2, then there exists an f ∈ C(T,T) such that s = f(U)S2.

Proof. At this stage, all we have to do is prove that ∣f(z)∣2 = 1. But

∣f(z)∣2 = (g(z2)z + h(z2)) (g(z2
)z + h(z2

)) = 1 + zg(z2)h(z2
) + z̄g(z2

)h(z2
) = 1.

As an immediate consequence, we finally gain full information on AutC∗(U)(Q2).

Theorem 6.14. The equalities

EndC∗(U)(Q2) = AutC∗(U)(Q2) = {βf ∶ f ∈ C(T,T)}

hold. In particular, the semigroup EndC∗(U)(Q2) is actually a group isomorphic

with C(T,T).

Remark 6.15. The bijective correspondence f↔βf is also a homeomorphism be-

tween C(T,T) equipped with the uniform convergence topology and AutC∗(U)(Q2)

endowed with the norm pointwise convergence.

We end this section by proving that AutC∗(U)(Q2) is in addition a maximal

abelian subgroup of Aut(Q2).

Theorem 6.16. The group AutC∗(U)(Q2) is maximal abelian in Aut(Q2).

Proof. We have to show that if α ∈ Aut(Q2) commutes with any element of

AutC∗(U)(Q2) then α is itself an element of the latter group. Now, the equal-

ity α ○ad(U) = ad(U) ○α gives ad(α(U)) = ad(U). Therefore, α(U) = zU for some

z ∈ T by simplicity of Q2. The conclusion is then achieved if we show that actually

z = 1. Exactly as above, we also have ad(α(g(U))) = ad(g(U)) for any g ∈ C(T,T).

Again, thanks to simplicity we see that g(zU) = g(α(U)) = α(g(U)) = λg(U) for

some λ ∈ T, possibly depending on g. In terms of functions, we find the equality
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g(zw) = λgg(w), which can hold true for any g ∈ C(T,T) only if z = 1. Indeed,

when z ≠ 1 is not a root of unity, the characters wn are the sole eigenfunctions of

the unitary operator Φz acting on L2(T) as (Φzf)(w) ≐ f(zw). Finally, the case

of a z that is a root of unity is dealt with similarly.

Remark 6.17. The findings above are worth comparing with a result obtained

in [16] that the group of automorphisms of O2 fixing the diagonal D2 is maximal

abelian too.

Moreover, the theorem enables us to thoroughly describe the automorphisms

that send U to its adjoint, which have been shown to be automatically outer.

Theorem 6.18. If α is an automorphism of Q2 such that α(U) = U∗, then

α(S2) = f(U)S2 for a suitable f ∈ C(T,T).

Proof. Just apply the former result to λ̃f ○ α.

Finally, the automorphisms βf can also be characterized in terms of the

Cuntz–Takesaki generalized correspondence we discussed at the end of Section 4.1.

Indeed, they turn out to be precisely those Λ ∈ End(Q2) for which the correspond-

ing W ≐ U∗u∗Λ(U)u equals 1, where u stands for uΛ for brevity. For W = 1 we

find, in fact, the equality S2uUu
∗ = U2S2 = S2U , whence uUu∗ = U . Therefore by

maximality there exists a function f ∈ C(T,T) such that u = f(U), i.e., Λ = βf .

§6.3. Automorphisms ααα such that α(U) = zUα(U) = zUα(U) = zU

The following discussion addresses the problem of studying those automorphisms

Λ of Q2 such that Λ(U) = zU , with z ∈ T. We start tackling the problem by

defining two operators acting on `2(Z). The first is the isometry S′z, which is given

by S′zek ≐ z
ke2k. The second is the unitary Uz, which is given by Uzek ≐ z

kek. The

following commutation relations are both easily verified:

� UzU = zUUz

� UzS2 = S
′
zUz

The first relation can also be rewritten as ad(Uz)(U) = zU . We caution the reader

that at this level ad(Uz) makes sense as an automorphism of B(`2(Z)) only, be-

cause we do not know yet whether Uz sits in Q2. If it does, the first relation says,

inter alia, that Q2 also contains a copy of the non-commutative torus Az in a

rather explicit way, which is worth mentioning. In order to decide what values of z

do give a unitary Uz belonging to Q2, the first thing to note is that if Uz is in Q2,

then it must be in the diagonal subalgebra D2, as shown in the following lemma.

Lemma 6.19. If Uz is in Q2, then Uz ∈ D2.



Inner Structure and Automorphisms of Q2 83

Proof. A straightforward application of the equality D′2 ∩ Q2 = D2, as Uz is in

D′2 = `∞(Z).

The second thing to note is that the unitary representation T ∋ z ↦ Uz ∈

U(B(`2(Z))) is only strongly continuous. This implies that not every Uz is an

element of Q2. The representation z ↦ Uz is only strongly continuous, which

means the set {Uz}z∈T is not separable with respect to the norm topology, whereas

Q2 obviously is. The next result provides a first answer to the question of whether

Uz belongs to D2 . More than that, it also gives an explicit formula for Uz.

Proposition 6.20. If z ∈ T satisfies z2n = 1 for some natural number n, then Uz
is in D2.

Proof. Obviously only primitive roots have to be dealt with. But for such roots, say

z = ei2π/2
k

, the unitary Uz may in fact be identified to the sum ∑
2k−1

j=0 zjPj , where

the projection Pj belongs to D2, being more explicitly given by Pi1i2⋯ik , where

the multi-index (i1, i2, . . . , ik) ∈ {1,2}k is the jth with respect to the lexicographic

order in which 2 < 1 and the multi-index itself is read from right to left.

The automorphisms obtained above are of course of finite order. More pre-

cisely, the order of ad(Uz) is just the same as the order of the corresponding z. In

other words, what we know is that the automorphism of C∗(U) induced by the

rotation on T by a 2nth root of unity extends to an inner automorphism of Q2,

whose order is still finite, being just 2n. Due to the lack of norm continuity of the

representation z → Uz, though, the case of a general z is out of the reach of the

previous proposition and must be treated separately with different techniques. To

begin with, we recall a result whose content should be well known. Nevertheless,

we do include a proof, not only for the sake of completeness but also to set some

notation that we shall need in the following considerations.

Lemma 6.21. Any projection P ∈D2 is in the linear algebraic span of {SαS
∗
α}α∈W2 .

Proof. It is convenient to realize D2 as the concrete C∗-algebra C(K), with the

spectrum K being given by the Tychonoff product {1,2}N. If we do so, the pro-

jections of D2 are immediately seen to identify with the characteristic functions of

the clopens of K, and these are clearly the cylinder sets in the product space. The

conclusion now follows, noting that for any multi-index α ∈W2 the characteristic

function of a cylinder Cα = {x ∈ K ∶ x(k) = αk for anyk = 0,1, . . . , ∣α∣} corresponds

indeed to SαS
∗
α.

At this point, it remains to show that Uz does not belong to D2 for any other

values of z ∈ T. Although this could be done by means of explicit computations,
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as it was in an early version of this paper, we prefer to present a rather elegant

method suggested by the referee.

The Cantor set K = {0,1}N can also be realized as the ring of 2-adic integer

numbers Z2 via the bijective correspondence K ∋ x = {xn}
∞
n=0 ↔ ∑

∞
n=0 xn2n ∈ Z2.

In this picture, the former digit 2 has to be replaced by 0. Accordingly, as of

now we think of D2 as C(Z2). Furthermore, as Z2 is by definition the completion

of Z under the metric induced by the 2-adic absolute value, any f ∈ C(Z2) is

uniquely determined by its restriction to Z ⊂ Z2. This gives an isometric inclusion of

D2 ≅ C(Z2) into C(Z) ⊂ `∞(Z), which is nothing but the canonical representation

of D2 on `2(Z). To see this, it is enough to note that the generating projections

SαS
∗
α are indeed the characteristic functions of the subsets {2nk + l ∶ k ∈ Z} ⊂ Z,

where n = ∣α∣ and l = ∑
n−1
j=0 αj2

j . Phrased differently, we have obtained the following

useful characterization.

Lemma 6.22. Let f ∈ `∞(Z) ⊂ B(`2(Z)). Then f is in D2 if and only if f ∶ Z→ C
extends to a continuous function f̃ ∶ Z2 → C.

We are now in a position to state and prove the main result of the present

subsection.

Theorem 6.23. Let z ∈ T. Then Uz ∈ D2 if and only if z is a root of unity of

order a power of 2.

Proof. Thanks to Lemma 6.22, it is enough to make it plain when Z ∋ k ↦ zk ∈ C
extends to a continuous function of Z2. It is easily seen that this is the case if and

only if z is a dyadic root of unity.

For those z ∈ T such that Uz lies in Q2 we can say a bit more.

Proposition 6.24. Let z ∈ T be a dyadic root of unity and let α ∈ Aut(Q2) be

such that α(U) = zU . Then there exists an f ∈ C(T,T) such that α(S2) = f(zU)S′z.

Proof. By its very definition, ad(Uz−1) ○ α(U) = U . Therefore, we must have

ad(Uz−1)○α = βf for some f ∈ C(T,T). But then f(U)S2 = β
f(S2) = Uz−1α(S2)Uz,

i.e., α(S2) = Uzf(U)S2Uz−1 = f(zU)UzS2Uz−1 = f(zU)S′z.

Remark 6.25. We have already seen that if Uz ∈ Q2 then S′z ∈ Q2. The converse,

too, is true. In fact, one can easily observe that Uz = S
∗
2S

′
z, hence the claim follows.

In particular, whenever Uz is not in Q2, the corresponding ad(Uz) understood as

an automorphism of the whole B(`2(Z)) does not even leave Q2 globally invariant.
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Appendix A. The functional equation f(z2) = f(z)2f(z2) = f(z)2f(z2) = f(z)2 on the torus

This appendix presents a self-contained treatment of the functional equation f(z2)

= f(z)2, of which we made intensive use in the previous sections. Although the

following facts might all be well known, we do include complete arguments, because

their proofs are not to be easily found in the literature, however carefully examined.

Proposition A.1. Let f be a continuous function from T to T such that f(z2) =

f(z)2 for every z ∈ T. Then there exists a unique n ∈ Z such that f(z) = zn.

Proof. Thanks to the compactness of T and the continuity of f , the winding num-

ber of f is a well-defined integer n ∈ Z; for details see, e.g., Arveson’s book [2,

Chap. 4, pp. 114–115]. The new function g(z) ≐ z−nf(z) still satisfies our equa-

tion. Furthermore, the winding number of g is zero by construction. Therefore,

there exists h ∈ C(T,R) such that g(z) = e2πih(z) for every z ∈ T. Rephrasing the

equation in terms of h, we find that h(z2) − 2h(z) must be an integer for every

z ∈ T. By connectedness, the function h is thus a constant. Obviously there is

no lack in generality if we also assume h(z2) − 2h(z) = 0 for every z ∈ T. Being

bounded, the function h is then forced to be identically zero, which finally leads

to f(z) = zn for every z ∈ T.

The above proposition can be regarded as a one-variable description of the

characters of the one-dimensional torus. It is worth pointing out, though, that it no

longer holds true as soon as T is replaced by the additive group R. In other words,

there do exist continuous functions f ∶ R → T such that f(2x) = f(x)2 other than

ft(x) ≐ e
itx, which are obtained by exponentiating non-linear continuous functions

g ∶ R→ R such that g(2x) = 2g(x) for every x ∈ R. However, any such g cannot be

everywhere differentiable with continuous derivative at 0.

The proof given above can be further simplified if we assume that f satisfies

a stronger functional equation, i.e., f(zn) = f(z)n for every n ∈ N and z ∈ T.

Proposition A.2. If f ∈ C(T,T) satisfies f(zn) = f(z)n for every z ∈ T and

n ∈ N, then there exists a unique k ∈ Z such that f(z) = zk.

Proof. Obviously, it is enough to prove that f(zw) = f(z)f(w) for any z,w ∈ T.

Let z be a fixed element of T, and let Cz ⊂ T be the set Cz ≐ {w ∈ T ∶ f(zw) =

f(z)f(w)}. From the equality f(zn) = f(z)n we may note that Cz contains the

set {zn ∶ n = 0,1,2, . . .}. By continuity of f we have in addition that Cz is closed.

Hence Cz = T if z = e2iπθ, with θ being irrational. In other words, for such z, we

have f(zw) = f(z)f(w) for any w ∈ T. The full conclusion is now easily reached

by density.
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Remark A.3. The continuity assumption cannot be left out in either of the above

propositions. To see this, let R ⊂ T be the set ∪nHn, where Hn ⊂ T is the subgroup

of the nth roots of unity. The function f that is 1 on R and f(z) = z on its

complement still satisfies f(zn) = zn for every n ∈ N, as easily verified. Due to

the density of R in the torus, this function is nowhere continuous. Nevertheless,

it is equal to the character z almost everywhere. This seems to indicate that any

measurable solution of the equation might equal a character almost everywhere. At

any rate, it is worth pointing out that the solutions of the equation f(zn) = f(z)n

do not enjoy automatic continuity, unlike the solutions of the equation f(zw) =

f(z)f(w), which are of course even automatically differentiable.
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[7] R. Conti, J. H. Hong and W. Szymański, Endomorphisms of the Cuntz algebras, in Non-
commutative harmonic analysis with applications to probability III, Banach Center Publ.
96, Polish Academy of Sciences, Institute of Mathematics, 2012, 81–97. Zbl 1259.46047
MR 2986820
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