
Dottorato di Ricerca in Statistica Metodologica

Tesi di Dottorato XXX Ciclo – anno 2016 - 2017

Dipartimento di Statistica, Probabilità e Statistiche Applicate
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Abstract

Tree based methods for regression and classification have a long and successful his-
tory in statistics and data–analysis [5] and are essentially based on a recursive par-
tition of the covariate space, possibly driven by specific testing procedures design
to control branch creation. Starting from the conditional approach introduced in
[11] where the choice of the split–variable and the split–value are divided into two
different steps allowing an unbiased feature selection, in this work we introduce an
energy based testing scheme [27] to validate each of these phases. Energy methods
are based on metrics such as distance correlation which, under suitable conditions,
ensures the independence of the variables and are therefore more informative than
standard association measures. Moreover, as distance correlation measures can be
defined for (almost) any kind of variables [18], our proposed framework is flexible
enough to accomodate multiple types of covariates. We focus in particular on the
case of functional covariates, for which we show simulated and real data examples,
as well as comparisons with more established functional data analysis methods.





Introduction

The classification problem is one of the most important challenge for statistician,
starting from Fisher in [9], with the research of more complicated models for increas-
ingly complicated data. The complexity goes with the need to create models that
can also be understood by less experienced people, because the ultimate goal for
classification is to take decisions. For example one can imagine a financial company
that must choose whether to grant a certain loan or not and they are interested to
know if the applicant can return the money back with interest. They decide to lend
the money after the inclusion of certain characteristics in a decision model created
by past experiences analyzing some variables called covariates which may be of dif-
ferent types, this is the case of models for credit scoring where an application with
neural networks can be find in [33].
There are a wide variety of algorithms used for classification, such as logistic re-
gression model used for binary classification where an application for disease using
microarray data can be find in [16]; the natural extension for a multilabel class
problem of logistic regression model is the multinomial logistic model. The limit of
these models is that are related with the covariates with functional form, in other
words are not distribution free. In this case if the relationship assumed in the logis-
tic framework between dependent variables and covariates is not verified, the results
could be wrong.
The present dissertation introduces the existing methods for decision tree, where the
nature of dependent variable could be categorical or continuous and extend in the
case that the covariates are functions. The algorithm, first introduced in [5], called
CART (Classification and Regression Tree), works top-down starting from the root
where we have all observations; then two branches linking the children nodes to the
root where the global observation are divided in two dataset and the procedure is
iterated until the derived children nodes contain just one observation. This meth-
ods suffer of bias variable selection resolved in [11] where a testing procedure using
permutation test is proposed. As many existing classification or regression methods
are extended when the nature of the variables is functional, in this work a proce-
dure, following the unbiased framework, that allow to use multivariate functional
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covariates is proposed. The testing procedure is implemented using energy statistics
such as distance correlation [30]. The power of distance correlation test is related to
the fact that we can evaluate if there is association between the dependent variable
and the covariates, independently to the form of the covariates, because distance
correlation and more generally the energy statistics work with distances. In the
original work there are proof only for data where we can compute Euclidean dis-
tance, in other words just for continuous covariates, but in [18] there is an extension
to other metrics such as metric computed in Hilbert space where usually functional
data belong.
The present dissertation is organized as follows. In Chapter 1 there is an introduc-
tion to the methods that allow us to use functional data in statistical analysis and
in Chapter 2 energy statistics and distance correlation tests are introduced. The
proposed method is given in Chapter 3 after an introduction to classification tree
for non-functional covariates and several application on synthetic and real data are
showed for univariate and multivariate functional covariates compared with other
existing classification methods. In Chapter 4 an extension to the case that the de-
pendent variable is continuous is showed and it is compared with existing methods
for functional regression analysis.



Chapter 1

Functional Data Analysis

1.1 Functional Data Analysis Setup

Functional data analysis (FDA) has been recently developed and formalized, after
the publication of the monograph of Ramsey [21]. In this book the authors provide
a definition of functional objects and formalize several properties of functional data,
such as data representation, descriptive statistics, smoothing techniques and dimen-
sionality reduction.
In the traditional setup we have a sample space X and a parameter space Θ, and
the goal is to make inference on the unknown parameter θ ∈ Θ. Classical statistic
inference techniques treat data when the sample space is in Rd with d ≥ 1 and also
the parameter space can be multidimensional.
In FDA, sample space X belongs to an infinite d-dimensional space. In other words,
in FDA, the sample consists in a set of n functions X1(t), . . . , Xn(t) defined in a
compact subset of the real line, usually t ∈ [0, 1].
Data are often observed on a discrete grid t1, . . . , tn, that can be fine or sparse.
It is possible to consider all these values as a multivariate set, and analyze them
with standard multivariate techniques, while failing to account for pattern of de-
pendence that could exist between sequential observations. For this reason it is
possible to treat this type of data as a functional object which can be used to un-
derstand the underlying phenomenon. In a recent review a concise description of
functional data analysis is provided in [20]. The functions mentioned above can be
viewed as a realizations of a one dimensional stochastic process, assumed to be in
a Hilbert space, as L2(I). In this way, by definition, the process must necessarily
satisfy E [

∫
I X

2(t)dt] <∞. Normally we can not observe some latent or underlying
behavior of the process due to the discrete observation of the phenomenon, and



1.2 Summary statistics for functional data 2

we collect data during time or in fixed grid. Functional data can be observed in
a dense or sparse grid and may vary through observations. A general assumption
is that data are recorded on the same grid t1, . . . , tp for all n observations. If we
use an instrument as for EEG, the grid is equally spaced tj − tj−1 = tj+1 − tj. In
asymptotic this space tends to zero, and thus p goes to infinity. We have a high
dimensionality problem, but we can regularize the functions imposing smoothness
on the L2 process. As it usually occurs in statistics, data can be affected by an error
that can be viewed as random noise or measurement error; formally, we observe:

yi = xi(t) + εi (1.1)

A typical example of functional data in economics is intra-day stock quotes and con-
tinuous measurements of atmospheric monitoring networks in environmental studies.

1.2 Summary statistics for functional data

We hereby extend the concept of classical statistics to the case of functional data.
If we want to compute the mean of a functional object, we no longer have a point
estimation as the mean is now a function itself

X̄(t) = n−1
n∑
i=1
Xi(t) (1.2)

The mean function is obtained as the mean across observations at each grid value.
Analogous reasoning applies for the variance function

VX(t) = (n− 1)−1
n∑
i=1

(Xi(t)− X̄(t))2 (1.3)

The standard deviation function is the square root of the variance functions. we
can compute the analogues of covariance and correlation in functional framework as
follows:

COVX(t1, t2) = (n− 1)−1
n∑
i=1

(Xi(t1)− X̄(t1))(Xi(t2)− X̄(t2)) (1.4)

CORRx(t1, t2) = COVX(t1, t2)√
VX(t1)VX(t2)

(1.5)
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1.3 How to manage functional data

We introduced above the concept of functional data and some key summary statis-
tics. Yet, as already mentioned, we usually get to observe data on a discrete grid.
How we can represent data as functions? We use a linear combination of bases
functions to represent the data; we will consider the two most used: Fourier bases
and B-spline bases. Due to the continuous nature of time we cannot observe the
phenomenon at all points of T , but we can assume the existence of a function where
the data belong. We impose that functions have to be smooth and to validate this
property we need to check that functions have one or more derivatives.
A basis function is a set of known functions that we can use to approximate any
function taking a finite linear combination of the bases. The Fourier bases are

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), . . .

where ω = 2π/P is a constant that determines the period P of oscillation. We
can define now the linear expansion of the function

X(t) =
K∑
k=1

ckφk(t) = Φ(t)c (1.6)

where φk are the bases functions, ck are the coefficients and K is the number
of bases chosen. Since bases functions are mutually orthogonal, Φ′Φ is a diagonal
matrix. We have a potentially infinite-dimensional object, restricted to K, but we do
not consider the truncated expansion as a multivariate object. We obtain a perfect
interpolation when K = n. If K is accounted for as a parameter, we may estimate
it, based on data. Of course large values of K can interpolate better data but
sometimes too much in detail, while with lower values of K we can lose information
about nearest observations. In the left panel of Fig.1.1 we show a set of 5 Fourier
Bases.

Coefficients may be derived using the Fast Fourier Transform that is very efficient
when data are equally spaced. Of course if the nature of data is periodic the Fourier
bases are the obvious candidate to represent the underlying functions.
The Spline method, on the other hand, was introduced in [7], to partition data based
on different points, called knots. These are linked by polynomial segments of order
m. As an example, in the right panel of Fig.1.1 we plot a cubic B-spline basis with
4 knots, delimited by the vertical dashed line. These segments are constrained to be
smooth at the joins. The first step requires specification of the number of interior
knots, that can be fixed or can vary across observations, sometimes it is useful to
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Figure 1.1: In the left panel a Fourier bases with 5 bases, in the right a cubic B-spline
with 4 knots

place more knots where there is marked curvature and fewer when the function
changes slowly. The basis is defined by the order of the polynomial segments m+ 1
and the number of knots. Normally fewer knots can approximate well functions.
In Fig.1.2 we plot an observation of the growth data from Berkley’s growth dataset
where there are measure of height for males and females aged from 1 to 18 years.
Due to non nonlinear relationship, we could image that a function can be used to
synthesize the overall observations. When 4 knots are considered (as in the left
panel), the estimated function fails to capture the last part of information at higher
values. Such behavior is captured by the cubic spline function if the number of knots
is increased to 10 (right panel).

1.3.1 Coefficient Estimation and Choice of Number of Bases

Remind that we want to estimate a function over discrete observed points with
relationship

yi = x(ti) + εi i = 1, . . . , n
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Figure 1.2: Function estimation using B-spline basis for the Barkley’s growth data,
using different number of knots equally spaced

with
x(t) =

K∑
k=1

ckφk = c′Φ

We can use ordinary least squares to estimate coefficient vector c minimizing the
sum of squares error

SSE(y|c) =
n∑
i=1

[
yi −

K∑
k=1

ckφk(ti)
]2

= (y−Φc)′(y−Φc) (1.7)

Following the standard least squares minimization procedure, we derive this quan-
tity and we equal it to zero, to obtain an estimate for c

2ΦΦ′c− 2Φy = 0

The following estimates for the vector of coefficients c and for the predicted value
of y result:

ĉ = (Φ′Φ)−1Φy and ŷ = Φĉ = Φ(Φ′Φ)−1Φy (1.8)
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This procedure is sound if the components εi, i = 1, . . . , n are normally distributed
with zero mean and equal variance σ2. This is not our case, as the erratic component
likely shows autocorrelation and we have to resort to other methods to estimate the
coefficients. We extend the method sketched above by adding a symmetric, positive
definite matrix W of weights that can capture different relationship between error
terms. We want to minimize

SSE(y|c) = (y−Φc)′W(y−Φc) (1.9)

As weighted matrix we can take the variance-covariance matrix of the residual W =
Σε, if known, or we can estimate it.

All these methods belong to the general class of linear smoothing methods defined
as

x̂(ti) =
n∑
l=1

Si(tl)yl (1.10)

Equivalently specified in matrix form:

x̂(t) = Sy (1.11)

where S is called the hat matrix, that converts observed y values to fit values ŷ.

If we choose a large number of basis K we can better fit data, but we can fit also
undesired noise in data, i.e. overfitting. Instead a sufficiently small value for K can
lead us to miss important feature of smooth function. For this reason we look at
the variance-bias trade off. The bias is defined as

Bias(x̂(t)) = x(t)− E [x̂(t)] (1.12)

Usually bias decrease when K → n and is equal to zero if K = n. The variance is
defined as

V (x̂(t)) = E
[
{x̂(t)− E [x̂(t)]}2

]
(1.13)

In contrast to bias, the variance increases if K → n. For a complete evaluation we
use the L2 loss function

MSE(x̂(t)) = E
[
{x̂(t)− x(t)}2

]
that can be decomposed in

MSE(x̂(t)) = V (x̂(t)) +Bias(x̂(t))2 (1.14)
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The equation in 1.14 is very familiar to statisticians. Usually, when we have
unbiased estimator we can work simply on the variance, but in this case we have
some bias and that ought to be accounted for. In other words variance and bias
are inverse function of the same parameter, bias decrease with model complexity
and variance increase otherwise. The best choice of K is obtained when the MSE,
Eq.1.14 above combining variance and bias, is minimum. We show this property
with Vancouver precipitation data, where we collect the precipitation in mm for all
day in Vancouver. We fit data using B-spline bases, taking x(t) as ”true” function,
then we compute error ε = y−x(t). Then we simulate 1000 records of data, starting
from the ”true” function randomly rearranging the ”true” error . For each simulation
we fit the function using Fourier bases. As we can see from Fig.1.3 the bias decreases
as K grows, while the variance increases. The obvious best choice for K is at the
minimum of the MSE curve (blue line).

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Bias−Variance trade off
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Figure 1.3: Bias-variance trade off in Vancouver precipitation data, compute with
1000 simulation.

1.3.2 Roughness Penalty

In the previous section we illustrated that Fourier bases are useful when the functions
to be estimate are periodic, instead B-spline are more flexible and can be used also
for non periodic data. Fitting the basis expansion by least squares method that do
not allow to a direct control of smoothing.
The method of roughness penalty can approximate discrete data by a function. This
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way, we seek to optimize a fitting criterion while accounting for the information on
smoothing.
A complete unbiased estimation of x(t) leads to a high variance; we fit perfectly
the data but observe a rapid local variation of the curve. As we showed before ,
MSE bears information about bias and variance. In some cases, adding some bias
might significantly reduce sample variance. We quantify roughness using the second
derivative [D2x(t)]2, that gives us information about the curvature of function at
point t. The penalty term is given by the integral of such second derivative

PEN2(x) =
∫ [

D2x(s)
]2
ds (1.15)

Highly variable functions will have high values of PEN2(x). As a consequence,
piecewise linear curves will be penalized over smooth functions.

We modify the least squares criterion accordingly, , defining the penalized residual
sum of squares

PENSSEλ(x|y) = [y− x(t)]′W [y− x(t)] + λPEN2(x) (1.16)

We estimate the function x(t) such that it minimizes the penalized residual sum
of squares. The non-negative term λ is called smoothing parameter. For larger value
of λ we put more weights on the roughness penalty term and for λ→∞ the fitted
curve yields standard linear regression. Conversely, for small values of λ the function
is more variable, and for λ→ 0 the estimated function perfectly interpolates data.
By remembering that x(t) = ∑K

k=1 ckφk(t) = c′Φ(t), we can express the penalty
term in a matrix form

PEN2(x) =
∫ [

D2x(s)
]2
ds

=
∫ [

D2c′Φ(s)
]2
ds

=
∫ [

c′D2Φ(s)D2Φ′(s)c
]
ds

= c′
[∫

D2Φ(s)D2Φ′(s)ds
]
c

= c′Rc (1.17)

where R =
∫
D2Φ(s)D2Φ′(s)ds is the penalty matrix. The penalized least

squares criterion becomes

PENSSE2(y|c) = (y−Φc)′W (y−Φc) + λc′Rc (1.18)
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For the coefficients estimation we need to derive the equation with respect to vector
c in 1.18 and match it to zero. The estimation is

ĉ = (Φ′WΦ + λR)−1 Φ′Wy (1.19)

The smoothing matrix, that maps data into fit is defined by

Sφ,λ = Φ (Φ′WΦ + λR)−1 Φ′W (1.20)

if λ → 0 we have the original least square criterion. We can compute analytically
the matrix R when we use Fourier and B-spline bases, generally, if other bases are
involved, we can approximate it with numerical algorithm. We obtain the degree of
freedom of a spline smooth taking the trace of the smoothing matrix

df(λ) = tr(Sφ,λ) (1.21)

λ is unknown, and thus we have to estimate it with cross-validation method. The
idea is to divide original data in two set. The first, called training sample, where
we fit the model and the second, called validation sample. Not considering data we
use to fit model can allow us to generalize the model.
The extreme situation where we leave only one observation out and considering
as validation sample the n − 1 observation the model, is called leave-one-out cross
validation. For each validation sample we compute the error sum of squares and
we sum over all obtained values. We apply this procedure over a grid of values for
λ. Two problems can be detected: first, for a big sample, such procedure may be
computationally expensive and, as a second point, minimization of the error term
resulting from cross-validation might lead to under-smoothing the data because the
method sometimes fits the noise or high frequency variation. The generalized cross-
validation is less subject to under smooth data and it is expressed

GCV (λ) = n−1SSE

[n−1tr(I− Sφ,λ)]2

=
(

n

n− df(λ)

)(
SSE

n− df(λ)

)
(1.22)

The minimization of GCV with respect to λ will involve a large number of values of
λ, using a grid or numerical optimization algorithm.
An example for the method is showed for phoneme data contained in R package
fda.usc [8]. The dataset contains 250 curves for 5 different phoneme classes. The
discrete observations measure the log-periodograms for frequencies in interval [1 :
150]. In the left panel of Fig. 1.4 three discrete observations and relative estimated



1.3 How to manage functional data 10

function are showed. In the right panel the GCV for different values of λ, each curve
indicates a different number of bases, cubic B-spline bases are used. The minimum
of combination between λ and J is given for values 64 and 27 respectively. Looking
at discrete data we could expect large value for λ due the excessive roughness of
original signal, in other words the method of roughness penalty tends to penalize
this deviations in amplitude. Increasing the number of bases, that in B-spline bases
corresponds to increasing the number of interior knots, it gives us a worse result
gradually. The reason is that the method tends to estimate the relative noise beyond
the signal.
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Figure 1.4: Discrete observations and estimated functions for 3 sample members.
The generalized Cross-Validation function for different values of λ and for different
number of bases. The optimal value for λ is 64 and for J is 27. Cubic B-spline are
used for this example.



Chapter 2

Energy Statistics

Energy statistics are defined as functions of distances between statistical observa-
tions, based on the notion of Newton’s gravitational potential energy which is a
function of the distance between bodies. In [30] the authors give us an overview
of energy statistics . They show tests based on energy statistics may be regarded
as more general and more powerful than classical tests based on quantities such as
correlation, F-statistic, etc. The general intuition behind energy statistics is to treat
statistical observations as heavenly bodies with a statistical potential energy, which
is zero if and only if a statistical null hypothesis is true.
In classical statistics we suppose data are (approximately) normally distributed so
it is possible to apply the theory of Gaussian distributions for inference. Also when
the data are not normal and n is large we can apply the limit theory and treat
the data as normal. When data are not just real numbers but functions or graphs,
what is the solution? In this case simple operations, as addition or multiplications,
could be a big problem. We can solve it if the observations are elements of a metric
space, so we can overcame the difficulties working directly with the (nonnegative)
distances. Now we have real numbers and we can make inference on these distances,
called energy inference.
While normal theory methods such as two-sample-t-test are used to compare means,
the energy approach wants to test the equality of distributions and it can detect any
difference between them. Working with distances, the energy statistics are invariant
to any transformation of the original data, which includes translation, reflection and
angle-preserving rotation of coordinate axes. We show also the energy counterparts
of variance, covariance and correlation, named distance variance, distance covariance
and distance correlation. The distance correlation coefficient will be equal to zero
if and only if the variables are independent, in contrast with Pearson’s correlation
coefficient that sometimes is equal to zero when the variables are dependent (as it
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is the case for non-normal data).
For data X = X1, . . . , Xn and Y = Y1. . . . , Yn in Euclidean spaces, define the dis-
tance of X and Y as

D := 2
n∑
i=1

n∑
j=1
|Xi − Yj| −

n∑
i=1

n∑
j=1
|Xi −Xj| −

n∑
i=1

n∑
j=1
|Yi − Yj| (2.1)

D is always nonnegative and it is the square of a metric in the space of samples
of size n. For statistical purposes we could work with powers of distances |Xi−Yj|α,
with 0 < α < 2. The distance matrix now has the form:

Dα := 2
n∑
i=1

n∑
j=1
|Xi − Yj|α −

n∑
i=1

n∑
j=1
|Xi −Xj|α −

n∑
i=1

n∑
j=1
|Yi − Yj|α (2.2)

The choice of α derived that in this range Dα remains a square of a metric.
We define now the (potential) energy of X with respect Y or otherwise, that take
their values in a metric space with a generic distance function δ:

ε(X, Y ) = 2E[δ(X, Y )]− E[δ(X,X ′)]− E[δ(Y, Y ′)] (2.3)

where X ′ and Y ′ are iid clones of X and Y respectively and E|X|d <∞, E|Y |d <∞
.
The following properties of energy are the baseline of next step:

1. ε(X, Y ) ≥ 0

2. ε(X, Y ) = 0⇐⇒ X
d= Y

All Euclidean spaces, all separable Hilbert space, all Hyperbolic spaces and many
graphs with geodesic distances are metric spaces where these properties are verified
[18]. A necessary and sufficient condition for property 1 is the conditional negative
definiteness of δ.

For a d-dimensional sample X1, . . . , Xn and for a symmetric kernel function of
Euclidean distances between sample elements h : Rp×Rp → R, energy statistics are
U-statistics or V-statistics based on distances:

Un = 1
n(n− 1)

n∑
i=1

n∑
j=1
h(Xi, Xj) (2.4)

or
Vn = 1

n2

n∑
i=1

n∑
j=1
h(Xi, Xj) (2.5)

An example of U-statistics for dispersion is Gini’s mean difference
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1
n(n− 1)

n∑
i=1

n∑
j=1
|Xi −Xj| (2.6)

The widely used distance is the L2-distance. Let F is the cumulative distribution
function (cdf) and Fn the relative empirical cdf, the L2-distance is defined as∫ ∞

−∞
(Fn(x)− F (x))2dx (2.7)

This distance is not distribution-free and critical values depend on F . This problem
can be solved substituting dx by dF (x) in order to obtain∫ ∞

−∞
(Fn(x)− F (x)2dF (x) (2.8)

When d > 1 the main problem is that this distance is not rotation invariant; this
could be a problem if we want to test multivariate normality.

Denote the characteristic function of the probability density function f and g

by f̂ and ĝ. The Fourier transform of the cumulative distribution function F (x) =∫ x
−∞ f(u)du is f̂(t)/(it), where i =

√
−1. Now we can write the distance between

the cdf of X and Y as

2π
∫ ∞
−∞

(F (x)−G(x))2dx =
∫ ∞
−∞

|f̂(t)− ĝ(t)|2
t2

dt

Then the energy distance can be defined

2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d = 1
cd

∫
Rd

|f̂(t)− ĝ(t)|2

|t|1+d
d

dt

where cd = π(1+d)/2

Γ( 1+d
2 )

The energy distance ε(X, Y ) ≥ 0 and exactly equal to zero if and only if when X

and Y are identically distributed.

2.1 Testing for equal distributions

In [27] the authors introduce a new method to test the equality of distributions in
a two-sample context. The existing methods have been explored in the classical
literature, with a major focus on the univariate case. The main test for comparing
distributions in the univariate case are Kolmogorov-Smirnov and Cramér-von Mises
tests, which are not distribution free for the extension in the multivariate framework.
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Other distribution-free tests were proposed in the past using the nearest neighbors
in the Euclidean distance metric. In two-sample context we have two independent
samples X = X1, . . . , Xn1 and Y = Y1. . . . , Yn2 such that each observation belongs
to Rd with d ≥ 1 with different size n1 6= n2 and we want to test

H0 : F1 = F2 (2.9)

where F1 and F2 are the cdfs of X and Y respectively. The obvious alternative is
F1 6= F2. The natural extension for a k-sample test is

H0 : F1 = · · · = Fk (2.10)

The alternatives hypothesis are Fi 6= Fj at least one pair, 1 ≤ i ≤ j ≤ k.
The Eq. (2.3) serves as the base for the following procedure within the two-sample
framework using the Euclidean distance as δ. Let µXY = E||X − Y ||, µX = E||X −
X ′||, µY = E||Y − Y ′||, then the expected value of the energy distance is

E[ε(X,Y)] = n1n2

n1 + n2

(
2µXY −

n1 − 1
n1

µX −
n2 − 1
n2

µY

)
= n1n2

n1 + n2
(2µXY − µX − µY ) + n2µX

n1 + n2
+ n1µY
n1 + n2

If X d= Y all mean values are equal, implying quantity 2µXY − µX − µY is equal
to zero and

E[ε(X,Y)] = n2µX + n1µY
n1 + n2

= µXY = E||X − Y ||

IfX and Y are not identically distributed it follows from Property 2 that the quantity
2µXY −µX −µY = c ≥ 0. In other words, let n = n1 +n2, the expected value of the
energy distance E[ε(X,Y)] is asymptotically a constant proportional to n. If n tends
to infinity not only the expected value, but also ε(X,Y) converges in distribution
to infinity under the null hypothesis. Hence large values of ε(X,Y) correspond to
different distribution for X and Y . Next we formalize the test statistics that allows
us to accept or refuse the equality in distribution. Consider the same two-sample
framework with different sample sizes n1 and n2, the test statistics is

εn1,n2 = n1n2

n1 + n2
( 2
n1 + n2

n1∑
i=1

n2∑
j=1
||Xi − Yj|| −

− 1
n2

1

n1∑
i=1

n2∑
j=1
||Xi −Xj|| −

1
n2

2

n1∑
i=1

n2∑
j=1
||Yi − Yj||)

To obtain a p-value from this test we need to know the joint distribution of
random variables X and Y to derive the distribution of the test statistics, that is
usually unknown. We describe the permutation method that allow us to obtain a
p-value without the knowledge of the distribution of the test statistics in 2.3.
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2.2 Distance Correlation

In this section we provide the definition of distance covariance and distance correla-
tion that measure the dependence between random vector X ∈ Rp and Y ∈ Rq with
finite first moments in arbitrary dimension. The distance covariance is defined as a
measure of the distance between the joint characteristic function and the product
of the characteristic function of X and Y , as the square root of

V2(X, Y ) = ||f̂X,Y (t, s)− f̂X(t)f̂Y (s)||2 (2.11)

By definition of the norm || · || , it is clear that V2(X, Y ) ≥ 0 and V2(X, Y ) = 0 if
and only if X and Y are independent. Distance variance is defined as the square
root of

V2(X,X) = ||f̂X,X(t, s)− f̂X(t)f̂X(s)||2 (2.12)

We can define the distance correlation (dCor) between random vectors X and Y as
the nonnegative number R(X, Y )

R2(X, Y ) =
{ V2(X,Y )√

V2(X)V2(Y )
V2(X)V2(Y ) > 0

0 V2(X)V2(Y ) = 0
(2.13)

Let f̂nX(t), f̂nY (s), f̂n,Y (t, s) th empirical characteristic functions, we can consider
the distance between these quantity as an estimation of distance covariance. An
important result is given in [31] where we can relate sample characteristic functions
to distances, then

||f̂nX,Y (t, s)− f̂nX(t)f̂nY (s)||2 = S1 + S2 − 2S3 (2.14)

where
S1 = 1

n2

n∑
k,l=1
|Xk −Xl|p|Yk − Yl|q (2.15)

S2 = 1
n2

n∑
k,l=1
|Xk −Xl|p

1
n2

n∑
k,l=1
|Yk − Yl|q (2.16)

S3 = 1
n3

n∑
k=1

n∑
l,m=1

|Xk −Xl|p|Yk − Ym|q (2.17)

First we compute all the pairwise distances between sample observations of X,
following we compute all the pairwise distances between the observation in Y . We
compute Euclidean distance for X sample

akl = |Xk −Xl|, for k, l = 1, . . . , n (2.18)
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Similarly we compute distances for sample Y

bkl = |Yk − Yl|, for k, l = 1, . . . , n (2.19)

We can compute row means, column means and global mean for each sample as

āk = 1
n

n∑
i=1

aki, ā = 1
n2

n∑
k,l=1

akl for k, l = 1, . . . , n (2.20)

In the same way we obtain b̄l and b̄ for the Y sample. Then we can define the
centered matrix as

Akl = akl − āk − āl + ā Bkl = bkl − b̄k − b̄l + b̄ (2.21)

We obtain the centered distance matrix Akl and Bkl such that their row and column
sum to zero. The sample distance covariance is given by the square root of

V2
n(X, Y ) = 1

n2

n∑
k,l=1

AklBkl (2.22)

The sample distance correlation is defined as

R2
n(X, Y ) =

{ V2
n(X,Y )√
V2

n(X)V2
n(Y )

V2
n(X)V2

n(Y ) > 0

0 V2
n(X)V2

n(Y ) = 0
(2.23)

In [31] is shown that we have almost sure convergence:

lim
n→∞

V2
n(X, Y ) = V2(X, Y ) (2.24)

lim
n→∞

R2
n(X, Y ) = R2(X, Y ) (2.25)

Under dependence of (X,Y) the statistic nV2
n(X, Y )→∞ as n→∞, so a test that

rejects independence for a large value of this statistic is consistent against dependent
alternatives.
In [29] the authors show that for high dimension data the sample distance correlation
coefficient tends to 1 also in the case that X and Y are independent, in other words

R2
n(X, Y ) −→p,q,→∞ 1 (2.26)

They proposed a modification such that under independence where a transformation
of the distance correlation converges, when p, q → ∞, to a T-student distribution.
The authors re-arranging the centered distance matrix in the following way:

A∗kl =
{

n
n−1

(
Akl − akl

n

)
k 6= l

n
n−1 (āi − ā) k = l

B∗kl =
{ n

n−1

(
Bkl − bkl

n

)
k 6= l

n
n−1

(
b̄i − b̄

)
k = l

(2.27)
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The modified distance covariance is

V∗n(X, Y ) = U
∗
n(X, Y )
n(n− 3) = 1

n(n− 3)

∑
k,l=1

A∗klB
∗
kl −

n

n− 2

n∑
k=1

A∗kkB
∗
kk

 (2.28)

and E [U∗n(X, Y )] = n(n − 3)V(X, Y ) so V∗n(X, Y ) is an estimator of the squared
distance covariance. The modified distance correlation is defined as

R∗n(X, Y ) = V∗n(X, Y )√
V∗n(X)V∗n(Y )

(2.29)

and if p, q tend to infinity, under the independence hypothesis the quantity

T =
√
ν − 1 R∗n√

1− (R∗n)2
(2.30)

converges in distribution to T-student with ν−1 degrees of freedom where ν = n(n−3)
2 .

Asymptotically the quantity
√
ν − 1R∗n is distributed as a standard normal.

2.3 An Extension of Analysis of Variance

In [28] the authors proposed the nonparametric extension using distance correlation
of the analysis of variance. For aK independent samplesA1, . . . , AK with cumulative
distribution F1, . . . , FK and size n1, . . . , nK respectively, the hypothesis for equal
distribution is:

H0 : F1 = . . . = FK (2.31)

and the alternative hypothesis is that there exist one Fj 6= Fk for some 1 ≤ j < k ≤
K. The test statistic proposed for testing equality of distributions is

Fα = Sα(K − 1)
Wα(N −K) (2.32)

where N = ∑K
k=1 nk, Sα is the between-sample measure of dispersion and Wα is the

within-sample measure of dispersion defined as

Sα(A1, . . . , AK) =
∑

1≤j<k≤K

(
nj + nk
N

)
dα(Aj, Ak) (2.33)

and
Wα =

K∑
j=1

nj
2 gα(Aj, Aj) (2.34)

gα is a distance computed between two objects (in our case will be functions) and

dα(Aj, Ak) = njnk
nj + nk

[2gα(Aj, Ak)− gα(Aj, Aj)− gα(Ak, Ak)] (2.35)
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The distribution of test statistic defined in 2.32 cannot be derived analytically, except
in particular cases, and support the alternatives hypothesis for large value of Fα.
We can compute the p-value for this specific test via permutation implementation
that allow us to find the result for the test without the knowledge of the exact
distribution of Fα.
Define ν = 1, . . . , N the label associated to each observations and let π(ν) denote a
permutation of the elements of ν. Under the null hypothesis the statistics computed
for every permutation π of ν are identical distributed to the observed test statistic.
It is not necessary to take all the permutations but just a small number R (normally
between 99 and 999)

1. Compute the observed statistic Fα = Fα(A, ν)

2. For each replicate r = 1, . . . , R generate a random permutation πr = π(ν) and
compute the test statistic F (r)

α = Fα(A, πr)

3. Compute the empirical p-value

p̂ =

{
1 +∑R

r=1 I(F (r)
α ≥ Fα)

}
R + 1 (2.36)

At each permutation the value of the test statistic F (r)
α changes, but under H0

the distribution of Fα does not change. Define the sequence of test statistics of
permuted data as F (1)

α , . . . , F (R)
α . Since the label is meaningless under H0, the ranks

of Fα, F (1)
α , . . . , F (R)

α are uniformly distributed. In other words if it is possible to order
these values, the test statistic computed in the original sample could be everywhere
in the ordered sample.
The p-value is the fraction of times that the permuted statistic test F (r)

α is large than
Fα. We reject the null hypothesis when the empirical p-value is less than α′. There
are not approximations or asymptotic theory applications and the distribution of
the test statistics Fα and the distribution assumed in the null hypothesis do not
matter.
An extension of distance correlation to functional data can be find in [10] where
an application to multivariate functional data is showed. The authors prove the
power of distance correlation in contrast with the functional canonical correlation
who is not able to capture non-linear relationship between multivariate functional
variables.



Chapter 3

Classification Energy Tree

In this chapter we introduce the classification tree algorithms and some existing
methods for classification when data are functions. Then a new method for classi-
fication is proposed using distance correlation tests to measure association between
the response variable and the functional covariates. Several application to simu-
lated data are showed, ending with an application to real data for ECG measured
on patients who may have a disease called LBBB.

3.1 Classification Tree Algorithms

In a sample of dimension n we observe a dependent variable yi = {0, 1, . . . ,M} ∈ Y
and a set of covariates X = (X1, . . . , Xp) ∈ X . The aim of classification is to classify
each observation starting from the observed value for the covariates. In statistics,
classification problems are widely treated, Fisher [9] in 1936 introduced a method
extended by the formalization of linear discriminant analysis [13]. Often the as-
sumptions of multivariate normality and a common covariance matrix for LDA are
not realistic for real data. Several methods are proposed to classify data, such as
logistic regression model or support vector machine [4], but we focus on classifiers
based on binary decision tree which makes no assumptions about the form of the
underlying distribution.
The first idea of this approach can be find in Automatic Interaction Detection algo-
rithms in [25] who had a series of developments such as CHAID used when explana-
tory variables are categorical [15]. The theory of classification tree-structured model
was first introduced in the influential paper CART (Classification and Regression
Trees) [5]. The algorithm usually works top-down, choosing one of p variables, then
find the best value that splits data into two subsets, and iteratively repeats the
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procedure. For example in Fig 3.1 we show graphically the output for classification
tree for Iris data. We have measure for petal and sepal width and length and the
class of iris flowers: setosa, versicolor and virginica. In the first node we can see
the distribution of each class in the dataset, then two branches that connect the
child nodes to father node. The first variable chosen is Petal Length, that is used to
split the dataset in two subsets defined by the threshold value 2.4. For observations
greater than the threshold we have only observations with state ”Setosa”, then the
child node is pure, in other words we have only one class in the child node and
we have no reason to split again. A different situation applies to the second child
node, we could split again and we repeat the procedure. The variable chosen at
second step is Petal Length and for a threshold value of 4.8 we partition the second
subset in two subsets. The resulting nodes are almost pure, where two classes are
present but the number of observation of one of them is negligible and the algorithm
decides to not split again. In mathematical terms we have to find a function d(x)
that maps each point in X data into Y . The usual form of d(x) for classification
aim is the expected misclassification cost. We have M distinct values in Y and
can create a partition of X into M disjoint pieces Am = {x : d(x) = m} such that
∪Mm=1Am = X . CART algorithms choose the combination between variable and ob-
served values for each variable in X that optimizes a node impurity criterion such
as Gini index i(t) = 1−∑M

m=1 p
2(m|t) where t is a node and p(m|t) is the proportion

of of observations that belongs to class m in node t. For a split that divides data in
two nodes named tL and tR of proportional dimension pR and pL respectively, the
algorithm selects the split that maximizes the decrease in impurity

i(t)− pL(tL)− pR(tR) (3.1)

As a remark, the procedure that leads to select a split suffers of bias toward variables
[17].
Since the size of tree can increase without limits, a procedure called pruning has
been proposed to reduce the size with optimal dimension. Define the cost-complexity
criterion

Ra = MC + aL (3.2)

where MC is the misclassification rate in root node and L is the number of leaves
in the tree. The idea is to have low values for MC, while penalizing on the number
of leaves in the tree. If we define T0 as the biggest tree, we have to find a sub-tree
Ta that minimizes Eq.3.2, choosing a by Cross-Validation.

In [11], the authors show a method that allows us to avoid the major problems
encountered by classification trees: bias variable selection and overfitting. The
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Petal.Length < 2.4

Petal.Length < 4.8
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Figure 3.1: Classification tree example on iris data

CART algorithm and the following developments have not statistical evaluation at
each step, and they have not a defined stopping rule. The basic idea of the unbiased
procedure is to divide the unique step of search of variable selection and split value
into two different phases. The first step is to test the global null hypothesis that
there is not association between response variable and the covariates, H0 = ⋂p

j=1H
j
0

where
Hj

0 = D(Y |Xj) = D(Y ) (3.3)

Where D(Y |Xj) is the conditional distribution of the response variable with respect
the jth covariates.
If we are not able to reject the global null hypothesis we stop the algorithm. Oth-
erwise, if we reject the global null hypothesis at a significance level α we select the
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variable with lowest p-value obtained from every single test. The association be-
tween response variable and each covariates is measured with a statistic, a linear
functional of the form::

Tj(Y,X,w) = vec

(
n∑
i=1
wigj(Xji)h(Yi, (Y1, . . . Yn))T

)
∈ Rpjq (3.4)

where w is a vector of weights, gj is a non-random transformation of Xj and h is the
influence function. The distribution under Hj

0 depends on the joint distribution of
(Y,X) that is unknown. A permutation test is implemented fixing the covariates and
conditioning on all permutations of response variable. The derivation of conditional
expectation µj and covariance Σj under H0 given all possible permutations, showed
in [26], allows us to standardize the linear statistics T ∈ Rpq. An example of
univariate statistic that map the observed multivariate linear statistics into the real
line, is the maximum of the absolute value of the standardized linear statistics

cmax(t, µ,Σ) = max
k=1,...,pq

∣∣∣∣∣∣(t− µ)k√
(Σ)kk

∣∣∣∣∣∣ (3.5)

where cmax depends on data by t and µ and Σ are fixed.
If the Xj are measured at different scale we cannot directly compare each test
statistic in an unbiased way. For this reason we compare the P-value computed at
each test that are not inflected by the measurement scale. The procedure works as
follows. As a first step, we select variable Xj∗ , with j∗ = argminj=1,...,pPj where

Pj = PHj
0

(c(Tj(Y,X,w), µ,Σ) ≥ c(tj, µ,Σ)|S(Y,X,w)) (3.6)

where S(Y,X,w) is the set of all possible permutation of Y . For a global testing,
a multiple test procedure based on P1, . . . , Pp is used, such as Bonferroni adjusted
p-values. We reject H0 when the minimum of the adjusted p-values defined as

Padj = 1− (1− P )p (3.7)

are less than α [24]. The splitting criteria follows the concept of the variable selec-
tion, once we have a selected variable j∗ we can formalized a linear statistics similar
to eq. 3.4 for all possible subsets A in space X ∗

TAj∗(Y,X,w) = vec

(
n∑
i=1
wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . Yn))T

)
∈ Rq (3.8)

that define a two sample statistics. Therefore we can compute the conditional ex-
pectation µA and conditional covariance ΣA and we choose the best subset A∗ such
that

A∗ = argmaxAc(tj∗ , µ∗j ,Σ∗j) (3.9)
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3.2 Classification Methods for Functional Vari-
able

In literature several methods for classification are extended when covariates are func-
tional. In [2] an extension for logistic regression is proposed for a binary response
variable yi, that without loss of generality shall take value 0 or 1. We can asso-
ciate the response variable to a functional covariates {xi(t), t = 1, . . . , T} and we
consider the the functional logistic model

log
(

πi
1− πi

)
= β0 +

∫
xi(t)β(t)dt (3.10)

where πi = P (Yi = 1|xi) is the probability of Y conditional on a fixed value xi ∈
Xi. We can expand the parameter function β(t) using a basis Φ(t) = (1, φ1(t), . . . , φm(t))
as

β(t) = β0 +
m∑
k=1

βkφk(t) (3.11)

An extension to multinomial logistic model is shown in [19]. Other methods to
classify data such as Linear Discriminant Analysis are developed in [14].
The thesis focuses in classification within the framework of tree-based methods and
an extension is proposed [3] that use representative curves to classify data: the al-
gorithm starts computing representative curves with a clustering approach, then we
partition data computing distances between observations and representative curves.
Therefore a impurity measure score such as Gini index is computed and if this par-
tition produces an improvement on Gini index we iterate the procedure, otherwise
we stop the algorithm. This method has not statistical validation for the improve-
ment of purity measure (such as in CART algorithm) and there is not extension
for a multivariate functional observations. In the R package fda.usc [8] we can find
a method that uses coefficients computed after the basis expansion and computes
CART algorithm using coefficients as multivariate data.

3.3 Classification energy tree for functional vari-
ables

We propose a procedure that follow the unbiased framework introduced in [11] com-
bined with the approach in [23], where the authors proposed a clustering method for
curves after transforming and smoothing, and we consider the use of multivariate
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functional covariates. We have a dependent variable Y = {0, 1, . . . ,M} and a set of
functional covariates {Xk}k=1,...p where

Xik = fik(t) + εk εk ∼ N (0, σ2
k) i = 1, . . . , n k = 1, . . . , p (3.12)

Remember that we observe discrete values for each observation equally spaced for
simplification in t1, . . . , tm and we can derive the bases expansion using a set of bases
and computing the coefficients using the methods proposed in Chapter 1. The first
steps are to transforming and smoothing, choosing the number of basis according
to the methods introduced in 1.3.2. We refer always to a cubic B-spline basis and
the number of bases is given by the sum of the order of the B-spline (in this case 3)
plus one and the number of the interior knots

J = 4 + Number of interior knots (3.13)

At the end of the smoothing process we have a functional observation defined as
f̂Jik(t) = ∑J

j=1 θ̂ijkφj(t), for i = 1, . . . , n k = 1, . . . , p.
The next step is to global test if there is association between the response variable
and the functional covariates. For this purpose we use the extension of analysis
of variance using distance correlation introduced in 2.3 based on permutation test
based on distances computed from functional observations using Simpson’s rule [8],
which is a L2 weighted distance

dij = ||fi(t)− fj(t)||2 =
(

1∫ b
a w(t)dt

∫ b

a
|fi(t)− fj(t)|2w(t)dt

) 1
2

(3.14)

We obtain a sequence of p-value P1, . . . , Pp that we adjust Bonferroni correction as
in Eq.3.7. If none of the adjusted p-values is lower than the significance level α
then the algorithms stops, otherwise we select the functional covariates fk∗ with the
minimum adjusted p-value P adj

k∗ , rejecting the hypothesis that there is not difference
between classes.
Next we need to split the data into two subsets and we use the estimated coefficients
obtained from the basis expansion. We use again the analysis of variance with
distance correlation on coefficients θ̂k∗1, . . . , θ̂k∗J . The sequential tests give us a
sequence of p-value Pk∗1, . . . , Pk∗J where we use the Bonferroni correction and we
select the coefficient with the minimum adjusted p-value Pk∗j∗ . The final step is
to find the coefficient that split data. We ordered the values of selected coefficient
θ̂1k∗j∗ ≤ . . . ≤ θ̂nk∗j∗ . We select the coefficient that minimizes the entropy as

θ̂i∗k∗j∗ = min
i=1,...,n

(
−

M∑
m=1

pim log pim
)

(3.15)

where pim are the proportions of labels of classes. The procedure repeat iteratively
the algorithm on each subset until the stopping rule is verified, in other words we
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are not able to reject the null hypothesis, or the node is pure.
All the nodes and the split decision are computed modifying an existing code in
partykit R package [12]. The algorithm outline is showed below

1. Transform data (Xik(t1), . . . , Xik(tm))→
(
θ̂ik1, . . . θ̂ikm

)
for i = 1, . . . , n k =

1, . . . , p

2. Smooth data f̂Jik = ∑J
j=1 θ̂ijkφj(t), for i = 1, . . . , n k = 1, . . . , p

3. Global test if there is association between Y and {Xk}k=1,...,p

4. Choose the functional covariates f̂Jik∗ associated the minimum adjusted P-value

5. Choose coefficient θ̂k∗j∗ associated with the minimum adjusted P-value

6. Split data for the observed coefficient value that minimizes the entropy

7. Iterate the procedure on the two obtained subsets

For a complete evaluation of different methods for classification we predict the
class label starting from ”new” observations, usually we partition data in train and
test subsets and use the test dataset for this purpose. For comparison with the other
methods we compute the overall accuracy starting from the confusion matrix for a
multiclass framework defined in Tab.3.1 computing

Acc =
∑M
j=1 njj

ntest
(3.16)

where ntest is the dimension of the test dataset

True
class

Class 1 n11 n12 . . . n1M

Class 2 n21 n22 . . . n2M
... ... ... ... ...

Class M nM1 nM2 . . . nMM

Class 1 Class 2 . . . Class M
Predicted class

Table 3.1: Confusion matrix for a multiclass classification framework
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3.4 Simulation study

In this section we show different applications to simulated univariate and multi-
variate functional covariates where we evaluate the classification power using the
train and test framework for a repeated simulated data. On test subset we esti-
mate the class membership with selected model and we compute the accuracy of the
estimation.

3.4.1 Univariate Functional Covariate

We applied the classification energy tree to a simulated CBF dataset proposed in
[22] where we compute signals for cylinder, bell. funnel classes of the form

ci = (6 + η)χ[a,b]i + εi (3.17)
bi = (6 + η)χ[a,b]i(i− a)/(b− a) + εi (3.18)
fi = (6 + η)χ[a,b]i(b− i)/(b− a) + εi (3.19)

where i = 1, . . . , 128, a is an integer value randomly selected from uniform distri-
bution on the interval [16, 32], b− a is also an integer valued selected from uniform
distribution on [32, 96], η and εi ∼ N (o, σ2) and χ[a,b]i is the characteristic function
on the interval [a, b]. For each class we simulate n = 266 observations that we show
in fig.3.2 when σ2 = 1. We simulate M = 100 dataset and we randomly divide data
into train and test subsets of dimension 70 % and 30% respectively. The first step is
to transforming and smooth data using a cubic B-spline as base functions. The num-
ber of interior knots and for λ is chosen by Generalized Cross Validation following
the procedure introduced in 1.3.2, in Fig. 3.3 we show the result of the transfor-
mation and smoothing step for a simulated dataset. After the transformation and
smoothing step, for each train data we execute the classification energy tree model
(we show an output in Fig.3.4). For a comparison we repeat the classification with
other methods already existing such as classification tree implemented in [8] and
functional multinomial logistic model. In fig 3.4 we show the output for one of the
simulated CBF dataset where we can see that the first chosen coefficient is the 5th
and the split value is 3.04. We consider the prediction accuracy defined in Eq.3.16
and in tab 3.2 we show the mean and the standard deviation of accuracy computed
at each test dataset and for different values of σ . The classification energy tree has
the highest accuracy mean for prediction aim and this mean decrease as σ increase.
We can compare the tree methods for functional data with a measure called depth
of a decision tree, that is the length of the longest path from a root to a termi-
nal node. We compare with the other classification tree method proposed and we



27 Classification Energy Tree

show in Tab 3.3 and we observe that the proposed method has greater size with
respect the already existing method, this lead to a conclusion that our algorithm
can capture some dynamics that our method manages to capture certain dynam-
ics otherwise neglected by the regression tree and this can be reflected also on the
prediction performance. As expected, the depth of both methods increase as the
variance term increase.
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3.4.2 Multivariate Functional Covariates

We extend the process to multivariate functional covariates, simulating datasets that
have three functional covariates and a dependent variable Y ∈ {R,B,G}, in other
words we consider a three class problem as in the univariate case. For each class we
simulate n observations that follow a centerline of the form

X(t) = m(t) + ε(t) where Cov(ε(t), ε(s)) = Cov(s, t) (3.20)

In Tab.3.4 we show the centerline for each class and for the simulated covariates we
use different values for a and b. For the covariance functions we sample α and β

from a uniform distribution in [0, 1], a is sampled from discrete uniform in [1, 4] and
b from a uniform in [1, 4] with a covariance of the form Cov(s, t) = αe−β|s−t| and
t = 1, . . . , 100. We add some random noise to obtain a complete evaluation, so we
finally observe

X∗k = Xk(t) +N (0, σ2) for k = 1, 2, 3 (3.21)

In Fig.3.5 we show the simulated multivariate functional data for three classes and
σ = 0.1. The different colors indicates the class membership and the column indi-
cates the covariates membership.

Table 3.4: Centerline formula for each class
Class Centerline
R cos(a+ bπt)
B sin(a+ bπt)
G cos(a+ bπt) sin(a+ bπt)

We simulated M = 100 datasets and, following the procedure, the first step is to
transform and smooth the discrete data according with the usual framework. We
use the estimated function in classification energy tree algorithm. For the aim of
classification we split, as in the univariate case, the dataset in train and test subset,
respectively of dimension 70% and 30%. We repeat the simulation and classification
for each simulated dataset and we show in Fig.3.6 an output of classification energy
tree. The tab 3.6 shows the results of different methods for the simulated datasets,
as in the previous case we can see that classification energy tree has the highest
accuracy for prediction with respect the other methods.
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3.5 A case study

We present the power of the classification tree framework explained and motivated
above for a real dataset. We have a sample of 100 patients and on each of them
we detect an 8-lead ECG, the signals have been registered and smoothed over an
evenly spaced grid of 1024 time points at 1kHz. The peculiarity is that the patients
are 50% healthy while the remaining half has a disease called Left-Bundle-Branch-
Block (LBBB), which results in irregularities in ECG traces and this will be our
response variable Y with two levels: Healty and LBBB; the data are furnished in R
package roahd [32] . We observe 8 curves for each patient, so the dimension of the
multivariate functional is 8 {Xk}k=1,...,8and, as already said, the data are smoothed
with an unknown method. The data are showed in Fig. 3.7 where the blue line
indicates the healthy patients and the purple the LBBB. Graphically we can see
the difference between curves traces of two classes at some point of the ECG. But,
since in our algorithm we need to know the coefficients of the expansion in basis,
we re-smooth data using cubic B-spline method. The aim is to classify correctly
the belonging of the curves to the right class and to avoid overfitting we decide to
use a 10-fold Cross Validation. In other words we partition the complete dataset in
ten equal subsets, 1/10 of the original dataset will compose the test subset and the
rest 9/10 will be the train subset. We run classification energy tree and the other
methods used in simulation study to the train subset and we make prediction on
test subset. We repeat the procedure changing the test subset and one of the 9/10
of the train data, in this way all the partition will compose the train and test data
in turn. At the end we predict the belonging to the class for all sample observations,
comparing with the true observed values for the response variable. In Fig. 3.8 the
output for 1-fold is showed. The first functional variable chosen is the third, that, as
we can see from the original curves, are very different among classes. The algorithm
keep on until the children nodes are pure or we have not sufficient difference between
classes. In Tab. 3.7 we show the confusion matrix for the classification Energy Tree,
where the diagonal element indicates the correct classification. The accuracy for the
proposed method is 0.95, greater than the accuracy for functional tree and functional
multinomial logit model that are equal to 0.84 and 0.71 respectively.

Table 3.7: Confusion matrix for predicted values of dependent variable versus the
true values

Healthy LBBB
Healthy 46 1
LBBB 4 49
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Figure 3.2: Cylinder, Bell, Funnel dataset. The bold line in each plot represent a
single observation. In the bottom right we show the mean function for each class.
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Figure 3.4: Output of classification energy tree for a train simulated data of Saito
dataset. In each node we indicate the combination between functional covariates
and chosen coefficient, also the p-values obtained from energy test are showed. In
the branches are indicated the chosen values of the splits.
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Figure 3.5: Simulated data for 3 variate functional variables for 3 classes with σ =
0.1. The red observations are from first class, blue observations are from second class
and green observations are from third class. The bold line in each plot represents a
single observation for the different classes and for the covariates
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Figure 3.6: Output of classification energy tree for a train simulated data of a 3
variate functional data. In each node we indicate the combination between func-
tional covariates and coefficient selected at each step, and the p-values obtained
from energy test
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Figure 3.7: Data of 8-lead ECG detected on 100 patients, the blue lines are the
healthy patients and the purple are the patients with LBBB disease.



3.5 A case study 40

V
3.

bs
pl

4.
16

p 
<

 0
.0

01

1

≤
−

62
5.

89
4

>
−

62
5.

89
4

N
od

e 
2 

(n
 =

 4
2)

LBBBHealty

00.
2

0.
4

0.
6

0.
8

1

V
5.

bs
pl

4.
17

p 
<

 0
.0

01

3

≤
−

88
8.

06
4

>
−

88
8.

06
4

N
od

e 
4 

(n
 =

 4
)

LBBBHealty

00.
2

0.
4

0.
6

0.
8

1

V
7.

bs
pl

4.
18

p 
<

 0
.0

01

5

≤
49

9.
64

>
49

9.
64

V
6.

bs
pl

4.
33

p 
=

 0
.0

16

6

≤
11

8.
33

6
>

11
8.

33
6

N
od

e 
7 

(n
 =

 7
)

LBBBHealty
00.

2

0.
4

0.
6

0.
8

1
N

od
e 

8 
(n

 =
 3

5)

LBBBHealty

00.
2

0.
4

0.
6

0.
8

1
N

od
e 

9 
(n

 =
 2

)

LBBBHealty

00.
2

0.
4

0.
6

0.
8

1

Figure 3.8: Output of regression energy tree for 8-lead ECG detected on 100 patients
for 1 fold.



Chapter 4

Regression Energy Tree

In this chapter we define the general class of functional linear and we compare
them with the proposed method of regression energy tree, modifying the procedure
proposed in Chap. 3 when the response variable is continuous. We compare these
methods measuring the prediction performance.

4.1 Functional Linear Model

The tree framework can be applied also when the dependent variable is continuous,
Y ∈ R, modifying partially the procedure proposed before. The natural competitor
of regression tree for functional data is the functional linear model [21] defined as

Yi = β0 +
∫
Xi(t)β(t)dt+ εi (4.1)

where β0 is the intercept term, Xi(t) is the functional covariate, β(t) is the functional
parameter and εi is the error term assumed to be normal with null mean and common
variance σ2. As usual in the functional context we can use the basis expansion for
both terms

X(t) =
K1∑
k=1

ckφk(t) β(t) =
K2∑
k=1

vkψk(t) (4.2)

The functional regression term can be written∫
Xi(t)β(t)dt = X∗i Jφ,ψB

∗
i (4.3)

Where X∗i = [ci1, . . . , ciK1] and B∗i = [vi1, . . . , viK2] and Jφ,ψ =
∫
φ(t)ψ′(t)dt. Co-

efficients and number of bases can be chosen with methods already introduced in
Chapter 1 via the bias-variance trade-off or the roughness penalization and we can
estimate parameters using the multivariate regression framework. Note that if we
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choose the same basis for data and coefficients the integral Jφ,ψ is the identity ma-
trix.
In [6] is introduced a functional linear model using principal components method
for parameter estimation, assuming that functional data and functional parameter
can be written respectively as

Xi(t)
∞∑
k=1

γikνk β(t) =
∞∑
k=1

βkνk (4.4)

where γik = 〈Xi(t), νk〉 and βk = 〈β(t), νk〉 and 〈·〉 denotes the inner product. We can
estimates β(t) using few principal components obtained via spectral decomposition
of the covariance function. The number of chosen principal components kn lead
to a truncation and the direct consequence is that βk = 0 for k > kn. We can
approximate the integral in Eq 4.1 by

Ŷ = 〈X, β〉 =
kn∑
k=1

γikβ̂k (4.5)

where β̂1 = γT
·1Y

nλ1
, . . . , β̂kn = γT

·kn
Y

nλkn
, λi are the eigenvalues of the principal components.

The choice of number of components is done by cross validation that minimized the
predictive power defined as

PCV (kn) = 1
n

n∑
i=1

(
Yi − 〈Xi, β(i,kn)〉

)2
(4.6)

4.2 Regression Energy Tree Algorithm

We build the regression tree using the same framework of decision tree in Chap.3.
The first step is to transform and smooth data, then we measure the association
between the response variable Y and the functional transformed and smooth co-
variates f̂J(t) using distance correlation test introduced in Chap.2.2, where distance
correlation is computed in our case as

R∗n(Y, f̂Jk (t)) (4.7)

where
√
ν − 1R∗n with ν = n(n−3)

2 asymptotically follow a standard normal distribu-
tion. Repeating this procedure for each of the covariates we have the usual sequence
of p-values, which must be correct to avoid the multiplicity problem with the Bon-
ferroni correction. Again, if the minimum adjusted p-value given by the test is
less than the significance level α we reject the hypothesis of independence between
the response variable Y and the functional covariates f̂Jk (t). Of course we use the
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distances computed for the response variable and the distances for the functional
covariates such as

d1
ij(Y ) = ||Yi − Yj||2 (4.8)

d2
ij(f̂Jk (t)) = ||fik(t)− fjk(t)||2 =

(
1∫ b

a w(t)dt

∫ b

a
|fik(t)− fjk(t)|2w(t)dt

) 1
2

(4.9)

to test the association between the response variable Y and the covariates. In order
to binary split data we use the same method used in 3.3. We choose the coefficient
of the basis expansion for split data, recomputing the distance correlation test,
searching for an association between the response variable and one of the coefficients.
In other words we compute

R∗n(Y, θ̂j) for j = 1, . . . , J (4.10)

Obviously we still have to consider the multiplicity problem and we correct the
obtained p-values with Bonferroni correction. We select coefficient with minimum
adjusted p-value on condition that is less than α, In other words we take θ̂j∗k∗

associated with the padjj∗k∗ = minj=1,...J P
adj
jk∗ and on condition that padjj∗k∗ ≤ α . The

final step is to choose a value between the observed n values of coefficient θ̂j∗k∗ to
split data in two subsets and in contrast with the classification method (for the
nature of the response variable), we choose the value that minimizes the variances
of response variable Y in the two subsets. Eventually we recursively apply the
procedure in the obtained subsets, stopping it when we accept the hypothesis of
independence. In the following list we summarize the procedure:

1. Transform data

(Xik(t1), . . . , Xik(tm))→
(
θ̂ik1, . . . θ̂ikm

)
for i = 1, . . . , n

k = 1, . . . , p

2. Smooth data

f̂Jik =
J∑
j=1

θ̂ijkφj(t), for i = 1, . . . , n k = 1, . . . , p

3. Global test if there is association between Y and {Xk}k=1,...,p.
Distance Correlation test with distances computed with Simpson’s rule for the
functional covariates and Euclidean for the dependent variable Y
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4. Choose the functional covariates f̂Jik∗ associated the minimum adjusted P-value
using Bonferroni correction conditionally that is less than α

5. Choose coefficient θ̂j∗k∗ associated with the minimum adjusted P-value if less
than α

6. Partition data for the observed coefficient value that minimizes the variances
of Y in the subsets

7. Iterate the procedure on the two obtained subsets

4.3 Simulation Study

We simulate regression functional data according to synthetic data showed in [23]
from the regression model

Yij = f(tij) + εij (4.11)

with j = 1, . . . ,m and tjm = j/m The regression functions for f are

F1(t) =
(2− 5t

2

)
∧
((5t− 2

3

)2
+ sin 5πt

2

)
(4.12)

F2(t) = −F1(t) (4.13)

F3(t) = cos 2πt (4.14)

F4(t) = −F3(t) (4.15)

The error term εij is assumed to be normal with zero mean and variance σ2. We
simulate 50 observations for each of the four curve shapes F1,F2,F3 and F4 over
m = 50 design points. The response variable is taken as Yi = µi(F (t1), . . . , F (tm))
with F taking one of the four shapes. The 200 non constant curves are showed
in Fig.4.1. We repeat the simulation framework used in the classification setting,
generating M = 100 datasets for different noise level. We execute the regression
energy tree and the functional regression method presented in this chapter and as
comparison for the fitted model we compute the mean square error prediction (MEP)
in according with [1] defined as

MEP =
(

n∑
i=1

(Yi − Ŷi)2

n

)
/V ar(Y ) (4.16)

In Fig.4.2 we show the output for one of the simulated data and we can see in the
terminal nodes that the recursive partitioning seems to partition data in crescent
order and with a low variance in each terminal node.



45 Regression Energy Tree

In Tab4.1 the results of obtained MEP for each methods and for different noise levels
are showed, and the Regression Energy Tree seems to perform better with respect
the functional linear models proposed. When the noise levels increases, The MEP
grows and the difference between methods performance is reduced.
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Figure 4.1: Simulated regression functional data for the four shapes defined in Eq.
4.12 for a noise level of σ = 0.5
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Figure 4.2: Output of regression energy tree for a simulated dataset with noise level
of σ = 0.5



Conclusions and Additional
Consideration

Nowadays the increasing information available requires to build more complicated
model for more complicated data. The usual theory of multivariate analysis can
lead to erroneous evaluations. The functional data analysis allow to treat data as
functions taking account the dependence between observations on the same individ-
ual.
In this work we proposed a method for classification and regression using a tree-
based model when the covariates are functions. The algorithm follows a procedure
that select the functional variable more associated with the response variable that
can be continuous or categorical. This association is measured with energy test such
as distance correlation test and DISCO (an extension of analysis of variance in the
energy framework). This step allow us to add a statistical evaluation at each stage
of the algorithm, contrary to what happens in the most known method of decision
tree CART.
The application of several simulated dataset, where functional covariates can be
univariate or multivariate, shows the highest performance in predictive terms com-
pared to other classification and regression methods for functional data, this can be
explained by the use of the energy test that can capture the non-linear relationship
between the response variable and the functional covariates.
Keep in mind the simplicity of the output that can be understood even by people
who do not have sufficient knowledge of statistical insights.
Before concluding, we want to add some considerations. It could be interesting to
use a functional split instead the numeric that we used. This can lead to increase
the prediction performance for the proposed method. Due to the general nature of
energy test, that can be used for a wide range of variables as we need only distances
between observations, it is possible to have functional or even a multivariate func-
tional dependent variable, conditionally that we use an homogeneity measure for
the dependent variable. We can build an ensemble of tree using bagging or boosting
to increase the prediction performance. Further development can be obtained by
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considering other complicated covariates, such as graphs, provided that we identify
a split value.
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