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Abstract

This paper situates itself in the theory of variable length codes and
of finite automata where the concepts of completeness and synchro-
nization play a central role. In this theoretical setting, we investigate
the problem of finding upper bounds to the minimal length of synchro-
nizing words and incompletable words of a finite language X in terms
of the length of the words of X. This problem is related to two well-
known conjectures formulated by Černý and Restivo, respectively. In
particular, if Restivo’s conjecture is true, our main result provides a
quadratic bound for the minimal length of a synchronizing pair of any
finite synchronizing complete code with respect to the maximal length
of its words.
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1 Introduction

The concepts of completeness and synchronization play a central role in For-
mal Language Theory since they appear in the study of several problems on
variable length codes and on finite automata [5]. According to a well-known
result of Schützenberger, the property of completeness provides an algebraic
characterization of finite maximal codes, which are the objects used in Infor-
mation Theory to construct optimal sequential codings.

Let X be a set of words on an alphabet A and let X∗ be its Kleene
closure. The set X is complete if any word on the alphabet A is a factor of
some word belonging to X∗, otherwise it is incomplete. In the latter case,
any word which is factor of no word of X∗ is said to be incompletable in X.

In [21], Restivo conjectured that a finite incomplete set X has always an
incompletable word whose length is quadratically bounded by the maximal
length of the words of X. Results on this problem have been obtained in
[6, 17, 18, 21]. The property of synchronization plays a natural role in Infor-
mation Theory where it is relevant for the construction of decoders that are
able to efficiently cope with decoding errors caused by noise during the data
transmission. A set X is synchronizing if there are two words u, v of X∗ such
that whenever ruvs ∈ X∗, r, s ∈ A∗, one has also ru, vs ∈ X∗. The pair of
words (u, v) is called a synchronizing pair of X.

In the study of synchronizing sets, the search for synchronizing words of
minimal length in a prefix complete code is tightly related to that of syn-
chronizing words of minimal length for synchronizing complete deterministic
automata and the celebrated Černý Conjecture [15] (see also [2, 3, 4, 7, 8,
9, 10, 11, 12, 15, 19, 20, 23] for some results on the problem). In particular,
in [3] (see also [4]), Béal and Perrin have proved that a complete synchro-
nizing prefix code X on an alphabet of d letters with n code-words has a
synchronizing word of length O(n2).

In this paper we are interested in finding upper bounds to the minimal
lengths of incompletable and synchronizing words of a finite set X in terms
of the size of X.

We recall that the size of X is the parameter `(X) defined as the maximal
length of the words of X.

Let L be a class of finite languages. For all n, d > 0, we denote by
RL(n, d) the least positive integer r satisfying the following condition: any
incomplete set X ∈ L on a d-letter alphabet such that `(X) ≤ n has an
incompletable word of length r. Similarly, we denote by CL(n, d) the least
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positive integer c satisfying the following condition: any synchronizing set
X ∈ L on a d-letter alphabet such that `(X) ≤ n has a synchronizing pair
(u, v) such that |uv| ≤ c.

In this context, the main result of this paper provides a bridge between
the parameters RL(n, d) and CL(n, d). More precisely, denoting by F and by
M the classes of finite languages and of complete finite codes respectively,
we show that, for all n, d > 0,

CM(n, d) ≤ 2RF(n, d+ 1) + 2n− 2.

In particular, if Restivo’s conjecture is true, the latter bound gives

CM(n, d) = O(n2),

thus providing a quadratic bound in the size of the set for the minimal length
of a synchronizing pair of a finite synchronizing complete code.

In the second part of the paper, we study the dependence of the param-
eters RL(n, d) and CL(n, d) upon the number of letters d of the considered
alphabet, by showing that both the parameters have a low rate of growth.
More precisely, we show that, for the class L of finite languages (resp., codes,
prefix codes), we have

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
,

and, for the class L of finite complete languages (resp., codes, prefix codes),
we have

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
.

A similar result is obtained also when L is the class of finite (not necessarily
complete) languages (resp., codes, prefix codes).

All the latter results were presented with a sketch of the proof in [13, 14].
The paper is structured as follows. In Section 2, some basic results about

complete and synchronizing codes as well as synchronizing automata and
Černý Conjecture are given. In Section 3 we describe our main result. In
Section 4, a study of the dependence of the parameters RL(n, d) and CL(n, d)
from the number d of letters of the alphabet is presented. Finally, in Section
5, some open questions about Restivo Conjecture are formulated.
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2 Preliminaries

In this section we shortly recall some basic results of the theory of automata
and of the theory of codes which will be useful in the sequel and we fix the
corresponding notation used in the paper. The reader can refer to [5, 16] for
more details.

2.1 Complete and synchronizing sets

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ε.
The length of a word w ∈ A∗ is the integer |w| inductively defined by |ε| = 0,
|wa| = |w|+ 1, w ∈ A∗, a ∈ A. Given w ∈ A∗ and a ∈ A, we denote by |w|a
the number of occurrences of the letter a in w. For any finite set of words
W we denote by `(W ) the maximal length of the words of W . The number
`(W ) will be called the size of W . Given words u,w ∈ A∗, u is said to be
a factor of w if w = αuβ, for some α, β ∈ A∗. The set of all factors of w is
denoted by Fact(w). Given a set of words W , the set of the factors of all the
words of W is denoted by Fact(W ). Similarly, given a word w, a word u is
said to be a prefix of w if w = uβ, for some β ∈ A∗. A set X is said to be
prefix if no word of X is a prefix of another word of X.

Definition 1 Let X be a subset of A∗. A pair of words (r, s) is an X-
completion of a word w if rws ∈ X∗. A word having an X-completion
is a completable word of X; conversely, a word with no X-completion is
an incompletable word of X. The set X is complete if all words of A∗ are
completable words of X; X is incomplete, otherwise.

Another crucial notion of this paper is that of synchronizing set.

Definition 2 Let X be a subset of A∗. A pair (u, v) ∈ X∗ × X∗ is a syn-
chronizing pair of X if for every X-completion (r, s) of uv, one has

ru, vs ∈ X∗ .

The set X is synchronizing if it has a synchronizing pair.

Example 1 Consider the set

X = {aa, ab, ba, baa, bbb}
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on the alphabet A = {a, b}. The pair (b, aa) is a X-completion of the word
bbabb. Indeed, one has b bbabb aa ∈ X∗.

One easily verifies that all words of A∗ of length 6 have an X-completion.
On the contrary, the word v = abbabba has no X-completion. Thus, v is an
incompletable word of X of minimal length.

It is not difficult to verify that the pair (ab, ba) is a synchronizing pair of
the set X. Thus, X is a synchronizing set.

The notion of synchronizing pair of a set is strictly related to that of con-
stant. A word c of X∗ is said to be a constant of X if, for every u1, u2, u3, u4 ∈
A∗ such that u1cu2, u3cu4 ∈ X∗, one has u1cu4, u3cu2 ∈ X∗. The following
result holds.

Lemma 1 Let X be a subset of A∗. If (u, v) is a synchronizing pair of X,
then uv is a constant of X. Conversely, if c is a constant of X, then (c, c)
is a synchronizing pair of X.

2.2 Complete and synchronizing codes

The notions of complete and synchronizing sets provide a rich structure in the
case that the set is a code. It is worth to shortly describe some fundamental
results on such sets. A set X of words over an alphabet A is said to be a
(variable length) code over A if it fulfills the unique factorization property,
that is, for every word u ∈ X∗, there exists a unique sequence x1, . . . , xk of
words of X such that u = x1 · · ·xk. A well-known example of codes is given
by all prefix set which are distinct from {ε}.

The notion of code is strictly related to the one of monomorphism of
free monoids. Indeed, let A and B be two alphabets. As is well known, a
morphism h : A∗ → B∗ is injective if and only if the letters of A have distinct
images and h(A) is a code.

In the sequel, a monomorphism h : A∗ → B∗ such that h(A) is a prefix
code will be called prefix encoding.

The notion of complete code is related to that of maximal code. Indeed,
a regular code X is complete if and only if it is maximal (that is, it is not a
subset of another code on the same alphabet). Moreover, a prefix code Y on
an alphabet A is complete if and only if any word of A∗ is a prefix of a word
of X∗ (see, e.g., [5]).
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2.3 Synchronizing automata and the Černý conjecture

As usually, by finite non-deterministic automaton we mean a 5-tuple A =
〈Q,A, δ, I, F 〉, where Q is a finite set of elements called states, A is the input
alphabet, δ : Q × A −→ P(Q) is the transition function, and I, F ⊆ Q are
the sets of initial and terminal states (here, P(Q) denotes the power set of
Q).

With any automaton A is naturally associated a directed labelled finite
multigraph G(A) = (Q,E), where the set E of edges is defined as

E = {(p, a, q) ∈ Q× A×Q | q ∈ δ(p, a)}.

However, in this paper, we will consider only automata such that I =
F = {1}, that is, with a unique initial and final state denoted 1. Such an
automaton will be simply identified by the 4-tuple A = 〈Q,A, δ, 1〉. The
language accepted by such an automaton is L(A) = X∗, where X is the set
of the labels of the paths in the graph G(A), with origin and goal in the state
1, but with no intermediate vertex equal to 1.

The canonical extension of the map δ to the set Q × A∗ will be still
denoted by δ. Moreover, if P is a subset of Q and u is a word of A∗, we
denote by δ(P, u) and δ(P, u−1) the sets:

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

If no ambiguity arises, the sets δ(P, u) and δ(P, u−1) are denoted Pu and
Pu−1, respectively.

An automaton A = 〈Q,A, δ, 1〉 is said to be transitive if the graph G(A)
is strongly connected. It is not difficult to verify that any automaton A is
equivalent to a transitive automaton whose graph is the strongly connected
component of G(A) containing the state 1. For this reason, in the sequel, we
will consider only transitive automata.

An automaton A = 〈Q,A, δ, 1〉 is said to be unambiguous if for all u, v ∈
A∗ there is at most one state q ∈ Q such that q ∈ δ(1, u) and 1 ∈ δ(q, v).
This is equivalent to say that any word of L(A) is the label of a unique path
of G(A) with origin and goal in the state 1.

We say that an unambiguous automaton A = 〈Q,A, δ, 1〉 is synchronizing
if there exist two words w1, w2 ∈ A∗ such that Qw1 ∩Qw−12 = {1}.

The automaton A is deterministic if for all q ∈ Q and for all a ∈ A,
Card(qa) ≤ 1.
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The automaton A is complete if for all u ∈ A∗, the set Qu is non-empty.
The properties of automata defined above reflects some properties of the

minimal generating set X of the accepted language X∗. Some of them are
summarized in the following lemma.

Lemma 2 Let X ⊆ A∗ be the minimal generating set of X∗ (that is, X ∩
X2X∗ = ∅).

1. The set X is a regular code if and only if X∗ is accepted by an unam-
biguous automaton A = 〈Q,A, δ, 1〉.

2. The set X is a prefix code if and only if X∗ is accepted by a deterministic
automaton A = 〈Q,A, δ, 1〉.

3. The set X is incomplete if and only if X∗ is accepted by a transitive
incomplete automaton A = 〈Q,A, δ, 1〉. Moreover, in such a case, a
word w ∈ A∗ has an X-completion if and only if Qw 6= ∅.

4. The set X is a regular synchronizing code if and only if X∗ is accepted
by a transitive synchronizing unambiguous automaton A = 〈Q,A, δ, 1〉.
Moreover, in such a case, a pair (u, v) ∈ X∗ × X∗ is a synchronizing
pair of X if and only if Qu ∩Qv−1 = {1}.

As is well known, a deterministic automaton A is synchronizing if and
only if there is a word u such that the set Qu is reduced to a single state.

Such a word is said to be a synchronizing word of A. The following cele-
brated conjecture has been raised in [15].

Černý Conjecture. Each synchronizing and complete deterministic au-
tomaton with n states has a synchronizing word of length (n− 1)2.

Let us recall an important problem related to the Černý Conjecture. Let
G be a finite, directed multigraph with all its vertices of the same outdegree.
Then G is said to be aperiodic if the greatest common divisor of the lengths
of all cycles of the graph is 1. The graph G is called a AGW-graph if it
is aperiodic and strongly connected. The reason why such graphs take this
name is due to the fact that these structures were first introduced and studied
in the context of Symbolic Dynamics by Adler, Goodwyn and Weiss in [1].

A synchronizing coloring of G is a labeling of the edges of G that trans-
forms it into a complete, deterministic and synchronizing automaton. The
Road coloring problem asks for the existence of a synchronizing coloring for
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every AGW-graph. In 2007, Trahtman proved the following remarkable re-
sult [22].

Theorem 1 Every AGW-graph has a synchronizing coloring.

We recall that by the well known Kraft-McMillan Theorem (see, e.g.,
[5]), integers k1, . . . , kn, d > 0 are the code-word lengths of a maximal (or,
equivalently, complete) prefix code over d letters if and only if they satisfy
the condition

n∑
i=1

d−ki = 1. (1)

We conclude this section with an application of Trahtman Road-coloring
Theorem, which furnishes a characterization of the code-word lengths of finite
complete synchronizing codes.

Proposition 1 Let k1, . . . , kn, d > 0 be such that

gcd(k1, k2, . . . , kn) = 1 ,
n∑

i=1

d−ki = 1.

Then k1, . . . , kn are the code-word lengths of a synchronizing complete prefix
code over d letters.

Proof Let A be a d-letter alphabet. By Kraft-McMillan Theorem, there
exists a prefix code X = {x1, . . . , xn} over A such that, for every i = 1, . . . , n,
|xi| = ki. Moreover, such a code is maximal and, consequently, complete.

By Lemma 2, X∗ is accepted by a complete deterministic automaton AX .
Let G be the underlying graph of AX , i.e., the graph obtained from AX

by ripping off all the labels of its edges. Since gcd(k1, k2, . . . , kn) = 1, G is
an AGW-graph. By Theorem 1, there exists a synchronizing coloring A′ of
G. Let L be the language recognized by A′. Again by Lemma 2, L = Y ∗ for
a suitable prefix complete synchronizing code Y . Moreover, by construction,
one has Y = {y1, . . . , yn} with |yi| = |xi| = ki for every i = 1, . . . , n, |yi| = ki.

2

Remark 1 It is worth noticing that the code-word lengths of any finite
synchronizing complete code over d letters satisfies both the conditions of
Proposition 1.
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Indeed, as a straightforward consequence of Kraft-McMillan Theorem,
the second condition is verified by any maximal (or, equivalently, complete)
finite prefix code over d letters.

In order to verify the first one, let X be a finite synchronizing complete
code, (u, v) ∈ X∗ ×X∗ be a synchronizing pair of X, a ∈ A be a letter, and
(r, s) be an X-completion of the word uvauv. Then, one has ruvauvs ∈ X∗
and, consequently, ru, vau, vs ∈ X∗. One derives that the greatest common
divisor m of the code-word lengths of X has to divide |u|, |v|, |vau| and also
|vau| − |u| − |v| = 1. Thus, m = 1.

3 The main result

The main result of this paper is related to a problem that was formulated in
[21] by Restivo. Let L be a class of finite languages. For all n > 0 we set

RL(n) = sup
d≥1

RL(n, d) , CL(n) = sup
d≥1

CL(n, d) .

In [21], it was conjectured that if F is the class of all finite languages, then
RF(n) ≤ 2n2.If we restrict ourselves to prefix codes, we get

Proposition 2 ([21]) Let P be the class of finite prefix codes. Then

RP(n) ≤ 2n2.

However, in the general case, the previous bound was disproved in [17]. A
more general and larger counterexample is given in [18]. We can thus state
a slightly weaker version of the problem as follows.

Conjecture 1 (Restivo’s Conjecture) Let F be the class of all finite lan-
guages. Then RF(n) = O(n2).

In this context, the main result of this paper is the following.

Proposition 3 LetM be the class of complete finite codes. For all n, d > 0,

CM(n, d) ≤ 2RF(n, d+ 1) + 2n− 2.

Before proving Proposition 3, it is convenient to discuss some interesting
consequences of this result. First, if Restivo’s conjecture is true, we get

CM(n) = O(n2).
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Moreover, the bound above would be sharp, as we explain below. Consider
the prefix code Xn = aAn−1 ∪ bAn−2 on the alphabet A = {a, b}. The
minimal automaton accepting X∗n has been studied in [2], where it has been
proved that the minimal length of its synchronizing words is n2 − 3n + 3.
From this, one derives that any synchronizing pair (w1, w2) of Xn verifies
|w1w2| ≥ (n − 1)2. In particular, a synchronizing pair of Xn of minimal
length is ((abn−2)n−1, ε). This provides the lower bound

CM(n, 2) ≥ CP(n, 2) ≥ (n− 1)2,

for the parameter CM(n, 2).
It is also worth to do a remark on a recent result by Béal and Perrin. In [3]

(cf. also [4]), it is proved that a synchronizing complete prefix code X with n
code-words has a synchronizing word of length 2(n−2)(n−3)+1. This result
is derived from an upper bound to the length of shortest synchronizing words
of synchronizing one-cluster automata. However, in view of Proposition 3
and Restivo’s conjecture, this bound seems of no help in obtaining a good
evaluation of the parameter CP(n, 2), as one may have n ' 2`(X). This
suggests that a bound in term of the size of X may be more informative than
a bound in terms of the cardinality.

3.1 Proof of Proposition 3

Let us now proceed to prove Proposition 3. For this purpose, let X be a finite
complete synchronizing code over a d-letter alphabet A and let n = `(X).
Let AX = 〈Q,A, δ, 1〉 be the unambiguous automaton that accepts X∗ (see
Lemma 2). The proof of Proposition 3 is based upon the following lemma.

Lemma 3 Let (v1, v2) be a synchronizing pair of X. There exist words
w1, w2 ∈ A∗ such that

|w1|, |w2| ≤ RF(n, d+ 1), Qw1 ⊆ Qv1, Qw2
−1 ⊆ Qv−12 .

Indeed, assume that Lemma 3 holds. As X is complete, the word w1w2 has
an X-completion (r, s). With no loss of generality, we may suppose that
|r|, |s| ≤ n − 1. Since (v1, v2) is a synchronizing pair, in view of Lemma 2,
one has

Q(rw1) ∩Q(w2s)
−1 ⊆ Qw1 ∩Qw2

−1 ⊆ Qv1 ∩Qv2−1 = {1}.
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Moreover, the word rw1w2s ∈ X∗ is accepted by AX and therefore there
is a state q ∈ Q such that q ∈ 1rw1 and 1 ∈ qw2s. Thus, q ∈ Q(rw1) ∩
Q(w2s)

−1 ⊆ {1}, that is, q = 1. This proves that rw1, w2s ∈ X∗ and by
Lemma 2 (rw1, w2s) is a synchronizing pair of X. Moreover |rw1w2s| ≤
2RF(n, d+1)+2n−2. By the arbitrary choice of the maximal synchronizing
code X, one derives Proposition 3.

Now, our main goal is to prove Lemma 3. For the sake of simplicity, we
will prove the existence of the word w1 that fulfills the conditions of Lemma
3 since the proof of the existence of the word w2 can be obtained by using a
symmetric construction. The main tool of this proof is a new automaton we
construct below.

Let (v1, v2) be a synchronizing pair of X. If v1 = ε, the statement is
trivially verified by w1 = v1. Thus we assume v1 6= ε and set v1 = ua, with
u ∈ A∗ and a ∈ A.

Let a′ be a symbol not belonging to A and let A′ = A∪{a′}. We consider
a new automaton A′ = 〈Q,A′, δ′, 1〉 where the transition map δ′ is defined as
follows: for every q ∈ Q and a ∈ A, δ′(q, a) = δ(q, a) and

δ′(q, a′) =

{
δ(q, a) ∪ {1} if q /∈ δ(Q, u),

δ(q, a) \ {1} if q ∈ δ(Q, u).
(2)

It is useful to remark that, for all q ∈ Q and for any word w ∈ A∗, δ′(q, w) =
δ(q, w). It is also useful to remark that, by construction, the automaton A′ is
still transitive. Let Y be the minimal generating set of the language accepted
by A′. Thus, LA′ = Y ∗ and Y ∩ Y 2Y ∗ = ∅.

Now we prove some combinatorial properties of the set Y .

Lemma 4 The set Y is incomplete.

Proof By (2) one has δ′(Q, ua′) = δ(Q, ua) \ {1} = δ(Q, v1) \ {1} and
δ′(Q, v−12 ) = δ(Q, v−12 ). Taking into account that (v1, v2) is a synchronizing
pair of X, one derives

δ′(Q, ua′) ∩ δ′(Q, v−12 ) = δ(Q, v1) ∩ δ′(Q, v−12 ) \ {1} = ∅ .

It follows that δ′(Q, ua′v2) = ∅. This equation proves that the automaton A
is not complete. Thus, by Lemma 2, Y is an incomplete set. 2

Lemma 5 It holds that `(Y ) ≤ `(X).
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Proof In order to prove the statement, it is enough to show that, for every
y ∈ Y, there exists x ∈ X with |y| ≤ |x|.

Let y = a1 · · · ak ∈ Y , with ai ∈ A′, for i = 1, . . . , k. Since Y ∩Y 2Y ∗ = ∅,
in the graph of A′ there is a path

c′ = 1
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk

ak−→ 1,

where, for every i = 1, . . . , k, qi 6= 1. Let us now construct a path c in the
graph of AX such that ||c|| = x ∈ X, with |x| ≥ |y|, so completing the proof.

By the definition of A′, any edge p
b−→ q of the graph of A′ with b 6= a′

is also an edge of the graph of A. Moreover, if p
a′−→ q is an edge of the

graph of A′ with q 6= 1, then p
a−→ q is an edge of the graph of A. Thus, by

replacing in c′, every transition qi
a′−→ qi+1, by qi

a−→ qi+1 and deleting the
last edge qk

ak−→ 1, we find a path

d = 1
b1−→ q1

b2−→ q2
b3−→ · · · bk−1−→ qk

bk−→ 1,

of the graph of A. Since A is transitive, one can catenate d with a simple
path from qk to 1. In such a way, we obtain a path c of the graph of A
starting and ending in 1, with all intermediate states distinct from 1 and
length ≥ k+ 1. As is well known, as A is unambiguous, the label x of such a
path is a word of the minimal generating set X of X∗. Since |x| ≥ k+1 = |y|,
this completes the proof. 2

Lemma 6 Let v be an incompletable word of Y of minimal length. There
exists a word w1 ∈ A∗ such that

|w1| ≤ |v|, Qw1 ⊆ Qv1.

Proof Let v be an incompletable word of Y of minimal length, with the
number |v|a′ as small as possible. Then, by Lemma 2, one has δ′(Q, v) = ∅.

The letter a′ necessarily occurs in v, since by the completeness of A, one
has δ′(Q, r) = δ(Q, r) 6= ∅ for all r ∈ A∗. Thus, we can write v = u1a

′u2,
with u1 ∈ A∗ and u2 ∈ A′∗.

Recall that v1 = ua, with u ∈ A∗, a ∈ A. Let us verify that δ(Q, u1) ⊆
δ(Q, u). Indeed, suppose the contrary. Then, by (2), one has

δ′(Q, u1a
′) = δ(Q, u1a) ∪ {1} = δ′(Q, u1a) ∪ {1}
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and consequently, δ′(Q, u1au2) ⊆ δ′(Q, u1a
′u2) = ∅. Thus, u1au2 is an in-

completable word of Y , but this contradicts the minimality of |v|a′ .
We conclude that δ(Q, u1) ⊆ δ(Q, u) and therefore taking w1 = u1a and

recalling that v1 = ua, one has δ(Q,w1) ⊆ δ(Q, v1) and |w1| ≤ |v|. The
statement follows. 2

Let us finally remark that Lemma 5 and Lemma 6 yield

|w1| ≤ RF(n, d+ 1), Qw1 ⊆ Qv1.

The proof of Lemma 3 is thus complete.
If we restrict ourselves to prefix codes, we obtain a tighter bound.

Proposition 4 Let MP be the class of complete finite prefix codes. For all
n, d > 0,

CMP(n, d) ≤ RF(n, d+ 1) .

Proof Let X be a maximal prefix code. Then, X is accepted by a complete
deterministic automaton AX . Moreover, X has a synchronizing pair (v1, v2)
with v2 = ε. Thus, Qv1 = Qv1 ∩Qv−12 = {1}. By Lemma 3, there is a word
w1 ∈ A∗ such that

|w1| ≤ RF(n, d+ 1) , Qw1 = {1} .

This implies that w1 ∈ X∗ and (w1, ε) is a synchronizing pair of the prefix
code X. This proves the statement. 2

Example 2 Consider the prefix code

X = {a, baaa, baab, bab, bb} .

The automata AX and A′ are represented in Figure 2. One obtains

Y = {a, ba′, bb, baa′, bab, ba′a′, ba′b, baaa, baab,
baa′a, baa′b, ba′aa, ba′ab, ba′a′a, ba′a′b},

so that `(Y ) = `(X) = 4. The word aaa′ is Y -incompletable and, conse-
quently, (aaa, ε) is a synchronizing pair of the code X.

13
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Figure 1: Automata of Example 2

4 Reduction to the binary case

The aim of this section is to study how much the parameters RL(n, d) and
CL(n, d) vary according to the number d of letters of the alphabet. We start
to analyze the parameter RL(n, d). In the sequel, B denotes the binary
alphabet B = {a, b}. The following lemma will be useful in the sequel. It
gives an interesting insight on the structure of the completions of words in a
complete regular set. As far as we know, it seems to be a new result.

Lemma 7 Let Y ⊆ A∗ be a complete regular set. Then any word w of A∗

has a Y -completion (y, s) with y ∈ Y ∗.

Proof We define an infinite sequence ((un, vn))n≥0 as follows: (u0, v0) is a
Y -completion of w; for all n > 0, (un, vn) is a Y -completion of the word

wv0wv1 · · ·wvn−1w.

By Myhill-Nerode Theorem (see, e.g., [5]), Y ∗ is union of congruence classes
of a congruence of finite index ≡ . Thus, one has uh ≡ uk for some h, k with
k > h ≥ 0. By construction,

x = ukwv0wv1 · · ·wvk ∈ Y ∗ and z = uhwv0wv1 · · ·wvh ∈ Y ∗.

One can write x = yws, with y = ukwv0wv1 · · ·wvh and s = vh+1wvh+2 · · ·wvk,
so that (y, s) is a Y -completion of w. Moreover, one has y ≡ z and, conse-
quently, y ∈ Y ∗. This concludes the proof. 2

Lemma 8 Let h : A∗ → B∗ be a prefix encoding and Y ⊆ A∗. The set h(Y )
is complete if and only if Y and h(A) are complete.
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Proof (⇐) Let w ∈ B∗. Since h(A) is complete, one has rws = h(u) ∈
h(A∗), for some r, s ∈ B∗ and u ∈ A∗. Since Y is complete, one has puq ∈
Y ∗, where p, q ∈ A∗, thus yielding h(puq) = h(p)rwsh(q) ∈ h(Y ∗). Hence
(h(p)r, sh(q)) is a h(Y )-completion of w.

(⇒) The fact that h(A) is complete follows straightforwardly from the
inclusion B∗ ⊆ Fact(h(Y ∗)) ⊆ Fact(h(A∗)).

Let us prove that Y is complete. Let w ∈ A∗. Since h(Y ) is complete, by
Lemma 7, one has h(u)h(w)s = h(v), for some u, v ∈ Y ∗ and s ∈ B∗. Since
h is a prefix encoding, one has v = uwr, for some r ∈ A∗. The latter implies
that (u, r) is a Y -completion of w. 2

By encoding a d-letter alphabet on a suitable complete binary prefix code
one obtains

Proposition 5 Let L be the class of finite languages (resp., codes). Then

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
. (3)

Proof Let A be a d-letter alphabet and let X be a finite incompletable
language over A of size n. Set m = dlog2 de, γ = 2m+1 − d and let k1, . . . , kd
be the positive integers defined by

ki =

{
m if i ≤ γ ,

m+ 1 if γ < i ≤ d .
(4)

One easily checks that
d∑

i=1

ki = 1. (5)

Thus, by Kraft-McMillan Theorem, k1, . . . , kd are the code-word lengths of a
synchronizing prefix code Y over a binary alphabet B. Moreover, (5) ensures
that Y is maximal and, consequently, complete.

Now, let h : A∗ → B∗ be a monomorphism such that h(A) = Y . Then,
for every a ∈ A, we have

blog2 dc ≤ |h(a)| ≤ dlog2 de. (6)

By (6) the size of h(X) is not greater than ndlog2 de. By Lemma 8, since X
is incompletable, h(X) is incompletable as well. Let v be an incompletable
word in h(X) of minimal length. Hence we have

|v| ≤ RL(dlog2 den, 2). (7)

15



Since Y = h(A) is a complete prefix code, the word v is a prefix of a word
of Y ∗. Thus, vs = h(u) for some u ∈ A∗ and s ∈ B∗. Moreover, taking u
of minimal length, one may assume that u = u′a, with u′ ∈ A∗, a ∈ A, and
|h(u′)| < |v|. In view of (6), one derives

|u| ≤
⌈
|v|

blog2 dc

⌉
. (8)

Let us check that u is incompletable in X. By contradiction, deny. Then
r′us′ ∈ X∗, for some r′, s′ ∈ A∗. Consequently, h(r′us′) = h(r′)vsh(s′) ∈
h(X∗), thus implying that v is completable in h(X).

Now (3) easily follows from the latter, (7) and (8). 2

Let us now analyze the parameter CL(n, d). The following lemma is useful
for this purpose. It is algebraically similar to Lemma 8.

Lemma 9 Let h : A∗ → B∗ be a monomorphism and let Y ⊆ A∗ be a
complete set. The set h(Y ) is synchronizing if and only if Y and h(A) are
synchronizing.

Proof (⇐) By hypothesis and Lemma 1, there exists a word y ∈ Y ∗ which
is a constant of Y ∗. Similarly, there exists a word h(u) ∈ h(A∗), with u ∈ A∗,
which is a constant of h(A∗). Since Y is complete, there exist words r, s ∈ A∗
such that rus ∈ Y ∗. Let ζ = h(rus) ∈ h(Y ∗). Obviously, ζ is a constant of
h(A∗).

Let us prove that ζh(y)ζ ∈ h(Y ∗) is a constant of h(Y ∗). For this purpose,
let α1, α2, α3, α4 ∈ B∗ be such that α1ζh(y)ζα2, α3ζh(y)ζα4 ∈ h(Y ∗). Let
us prove that (α1, α4) and (α3, α2) are h(Y )-completions of ζh(y)ζ. By the
latter condition and since ζ is a constant of h(A∗), one has α1ζ ∈ h(A∗)
so that α1ζ = h(β1), for some β1 ∈ A∗. Similarly, one has ζα2 = h(β2),
α3ζ = h(β3), ζα4 = h(β4), for some β2, β3, β4 ∈ A∗. The previous two
conditions now imply h(β1yβ2), h(β3yβ4) ∈ h(Y ∗). Since h is an injective
map, the latter implies that β1yβ2, β3yβ4 ∈ Y ∗. Since y is a constant of
Y ∗, one thus have β1yβ4, β3yβ2 ∈ Y ∗ so that h(β1yβ4), h(β3yβ2) ∈ h(Y ∗), so
implying that (α1, α4) and (α3, α2) are h(Y )-completions of ζh(y)ζ.

(⇒) Let (h(y1), h(y2)) be a synchronizing pair of h(Y ), with y1, y2 ∈
Y ∗. One easily proves that (y1, y2) is a synchronizing pair of Y . Indeed,
if ry1y2s ∈ Y ∗, with r, s ∈ A∗, one gets h(ry1y2s) ∈ h(Y ∗) which yields
h(ry1), h(y2s) ∈ h(Y ∗). Since h is an injective map, from the latter we get
ry1, y2s ∈ Y ∗. Thus Y is a synchronizing set.
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Let us prove now that h(A) is a synchronizing set of B∗ as well. More pre-
cisely, let us prove that the pair (h(y1), h(y2)) above considered, is a synchro-
nizing pair of h(A). For this purpose, let r, s ∈ B∗ such that rh(y1)h(y2)s ∈
h(A∗). Hence there exists t ∈ A∗ such that rh(y1y2)s = h(t). On the other
hand, since Y is complete, there exist words t1, t2 ∈ A∗ such that t1tt2 ∈ Y ∗,
which implies h(t1tt2) = h(t1)rh(y1)h(y2)sh(t2) ∈ h(Y ∗). Since (h(y1), h(y2))
is a synchronizing pair of h(Y ∗), one derives h(t1)rh(y1), h(y2)sh(t2) ∈
h(Y ∗). Thus, one has

h(t1), h(t1)rh(y1), rh(y1)h(y2)s, h(y2)sh(t2), h(t2) ∈ h(A∗). (9)

Taking into account that h(A) is a code and, consequently, there is a unique
factorization of the word h(t1)rh(y1)h(y2)sh(t2) as product of words of h(A),
one derives

rh(y1), h(y2)s ∈ h(A∗) .

Hence, (h(y1), h(y2)) is a synchronizing pair of the code h(A). This completes
the proof. 2

As an application of the two lemmas above, by encoding a d-letter al-
phabet on a suitable complete binary synchronizing code, one obtains the
following result:

Proposition 6 Let L be the class of finite complete languages (resp., codes,
prefix codes). Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
. (10)

Proof Let A be a d-letter alphabet and let X be a finite complete synchro-
nizing language over A of size n.

First, we consider the case that d is not a power of 2. Set m = blog2 dc,
γ = 2m+1 − d and let k1, . . . , kd be the positive integers defined by (4). One
easily checks that both the conditions of Proposition 1 are satisfied. Thus,
k1, . . . , kd are the code-word lengths of a synchronizing complete prefix code
Y over a binary alphabet B.

Now, let h : A∗ → B∗ be a monomorphism such that h(A) = Y . Then
(6) is verified by every a ∈ A, so that the size of h(X) is not greater than

17



ndlog2 de. Since X is a synchronizing and complete set and Y is a synchro-
nizing and complete code, by Lemma 8 and Lemma 9, one has that h(X) is
a synchronizing and complete set as well. Moreover, if X is a code (resp., a
prefix code), then h(X) is a code (resp., a prefix code), too.

Let (h(u), h(v)) be a synchronizing pair of h(X), u, v ∈ X∗. Hence we
have

|h(uv)| ≤ CL(ndlog2 de, 2). (11)

It is easily checked that (u, v) is a synchronizing pair of X. Indeed, let ruvs ∈
X∗, with r, s ∈ A∗. Hence h(ruvs) ∈ h(X∗) so that h(ru), h(vs) ∈ h(X∗).
Since h is an injective mapping, we conclude that ru, vs ∈ X∗.

Hence, by taking account of (6), (11), one gets (10).
Finally, let us treat the case where d = 2m. Let k1, . . . , kd be the sequence

of positive integers defined as: for every i = 1, . . . , d,

ki =


m− 1 if i = 1 ,

m+ 1 if i = 2, 3 ,

m if i = 4, . . . , d .

As before, one easily checks that the sequence of lengths k1, . . . , kd defined
above satisfy both the conditions of Proposition 1. Thus, k1, . . . , kd are the
code-word lengths of a synchronizing complete prefix code Y over a binary
alphabet B. Moreover, for every a ∈ A, we have

blog2(d− 1)c ≤ |h(a)| ≤ dlog2(d+ 1)e.

From that point on, one proceeds by using the same argument of the previous
case. The proof of the statement is now complete. 2

A similar bound can be found also in the case where completeness is not
required:

Proposition 7 Let L be the class of finite languages (resp. codes, prefix
codes). Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

dlog2(d+ 1)e

⌉
. (12)

Proof Let X ⊆ Bm, with m ≥ 1 such that am /∈ X and am−1b, bam−1 ∈ X.
It is easily checked that X is a prefix synchronizing code endowed with the
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synchronizing pair (bam−1, am−1b). Let A be a d-letter alphabet and let Y be
a synchronizing set over A such that `(Y ) ≤ n. We will find a synchronizing
pair of Y .

We may suppose that Y 6⊆ a∗ since otherwise it has a synchronizing pair
(u, v) with |uv| ≤ CL(n, 1) ≤ CL(n, 2). Let (y1, y2) be a synchronizing pair
of Y . With no loss of generality, we may assume that ab ∈ Fact(y1y2), for
two suitable distinct letters a, b. Let m = dlog2(d + 1)e and let us consider
the monomorphism h : A∗ → B∗ generated by a bijective mapping between
A and a subset of the set X defined above such that

h(a) = bam−1, h(b) = am−1b.

Let us prove that (h(y1), h(y2)) is a synchronizing pair of h(Y ) so that h(Y )
is a synchronizing set. For this purpose, let rh(y1)h(y2)s ∈ h(Y ∗) with
r, s ∈ B∗. By costruction, we know that y1y2 = αabβ, where α, β ∈ A∗. The
latter implies that

rh(y1)h(y2)s = rh(α)bam−1am−1bh(β)s ∈ X∗ .

Since (bam−1, am−1b) is a synchronizing pair of X and X is a uniform length
code, from the latter equation one has r, s ∈ X∗ and thus r = h(r′) and
s = h(s′) with r′, s′ ∈ A∗. Hence rh(y1)h(y2)s = h(r′y1y2s

′) ∈ h(Y ∗). By the
injectivity of h, one has r′y1y2s

′ ∈ Y ∗. Since (y1, y2) is a synchronizing pair
of Y , one derives r′y1, y2s

′ ∈ Y ∗ and thus rh(y1), h(y2)s ∈ h(Y ∗).
Now, using an argument similar to that used in the proof of Proposition

6 and by remarking that, for every w ∈ A∗, |h(w)| = |w|dlog2(d + 1)e, one
proves (12). 2

5 Conclusions

In this paper we have studied the minimal lengths of incompletable and
synchronizing words of a finite set X in terms of the size of X. In particular,
we have shown some relations among the parameters RF(n, d) and CM(n, d)
bounding, respectively, the minimal lengths of incompletable words in sets
of size n and the minimal lengths of synchronizing pairs in maximal codes of
size n.

As we have seen, Restivo conjectured a quadratic bound to the minimal
length of incompletable words of any finite incompletable set. However, up
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to now, such a bound has been found only for prefix codes. Thus, we may
consider the following unanswered questions, most of which may be viewed
as weaker versions of Restivo’s Conjecture. We recall that with F we have
denoted the class of all finite sets.

1. Does RF(n) <∞ for all n holds true?

2. Find a polynomial upper bound to RF(n).

3. Find a polynomial upper bound to RF(n, 2).

4. Let Fk be the class of all k-word languages (k ≥ 2). Evaluate RFk
(n).

5. Does RFk
(n) = RFk

(n, 2) holds true?

6. Let C be the class of finite codes. Find a polynomial upper bound to
RC(n).

7. Let P be the class of finite prefix codes. Find the exact value of RP(n)
for all n.
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