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A B S T R A C T

In the study of food webs, the existence and explanation of recurring patterns, such as the scale

invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing

issues. Our study focused on litter-associated food webs and explored the influence of detritivore and

predator niche width (as d13C range) on web topological structure. To compare patterns within and

between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed

42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and

cornfield), using an experimental approach with litterbags. The results suggest that although web

differences exist between ecosystems, patterns are more similar within than between aquatic and

terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of

predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in

the community. The tendency was more marked in terrestrial ecosystems and can be explained by a

lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance

with these results, the number of links increased with the number of species but with a significantly

sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found

to be directly correlated to niche width, increased with the total number of species in terrestrial webs,

whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the

total number of species. In both types of ecosystem, web robustness to rare species removal increased

with connectance and the niche width of predators. In conclusion, although limited to litter-associated

macroinvertebrate assemblages, this study highlights structural differences and similarities between

aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in

determining the structure of detritus-based food webs and posing foraging optimisation constraints as a

general mechanistic explanation of food web complexity differences within and between ecosystem

types.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The study of similarities between aquatic and terrestrial food
webs has contributed significantly to our understanding of network
topology (Pimm et al., 1991; Riede et al., 2010; Shurin et al., 2006),
with particular emphasis on stability mechanisms and biodiversity
management (Ings et al., 2009; McCann, 2000). However, despite the
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ecological importance of these issues, questions remain regarding
the determinants of the number of links per species (i.e. linkage
density) and their role in web stability. In addition, the differences
and similarities in web topology between aquatic and terrestrial
environments have not yet been fully elucidated. Concerning the
relationship between the number of links and the number of species
in a web, two hypotheses have been proposed: the ‘link-species
scaling law’ predicts an average of two links per species in any given
food web (L/S � 2) whereas the ‘constant connectance’ hypothesis
(where C � L/S2 is constant) suggests that the number of links per
species is proportional to the number of species (Martinez, 1992).
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The latter hypothesis implies that average niche width increases
with the number of species. This is in contrast to the species packing
predicted by niche theory (Pianka, 1976; Winemiller et al., 2001),
while it is consistent with optimal foraging theory, which predicts an
increase in consumer diet breadth as the per capita levels of food
decrease (Calizza et al., 2012; MacArthur and Pianka, 1966; Pyke
et al., 1977).

To date, the role of niche width in web structure has mainly
been investigated by network topology models, some of which use
foraging theory as a mechanistic explanation (Beckerman et al.,
2006; Ings et al., 2009; Petchey et al., 2008; Williams et al., 2010).
Although the ecological niche concept has undergone a renais-
sance in recent years (Jackson et al., 2011), there have been few
field studies designed to measure the niche width of invertebrates
in food webs (e.g. Calizza et al., 2012; Woodward and Hildrew,
2002), and the mechanisms by which niche width regulates
detritus-based web topology remain uncertain.

Differences in carbon flow pathways and detritus accumula-
tions between aquatic and terrestrial webs have been observed.
Ultimately, these differences arise from the different chemical
composition of autotrophs, which influences consumption by
heterotrophs (Cebrian and Lartigue, 2004; Chase, 2000; Costantini
et al., 2008; Nowlin et al., 2008; Shurin et al., 2006). The source,
quantity and quality of detritus affect the population density,
feeding rates and trophic niche of detritivores and thus their
interactions with other species in the web. In fact, detritus
heterogeneity allows detritivores to specialise on a variety of
discrete resources represented by combinations of different
substrates and microorganisms, mainly fungi, with acknowledged
effects on both competitive interactions and predator foraging
behaviour (Calizza et al., 2012, 2013a; Costantini and Rossi, 1995,
2010). These interactions in turn regulate energy flows (Cebrian
and Lartigue, 2004; Cyr and Pace, 1993; Shurin et al., 2006) and
matter cycling rates in ecosystems (Calizza et al., 2013a; Costantini
and Rossi, 2010; Hladyz et al., 2009; Rossi et al., 2007).

Despite their importance and pervasiveness, there are fewer
complete topological descriptions of detrital webs than of other web
types (Calizza et al., 2012; Hildrew, 2009; Rooney and McCann,
2012; Tavares-Cromar and Williams, 1996), mainly owing to the
difficulties inherent in traditional web construction techniques
(Scheu, 2002). More recently, food webs have been studied using
stable isotope analysis (SIA), which, due to the natural variation of
d13C and d15N in space and between trophic levels, has been a useful
technique across ecosystem types (terrestrial, freshwater, marine)
and web compartments (i.e. primary producers vs. organic detritus)
(Fry, 2006; Mestre et al., 2013; Rossi et al., 2010). Since the stable
isotope ratios in an organism’s tissues derive from all the trophic
pathways that converge in that individual, they reveal the individual
and/or population trophic niche and position in the web (Hoein-
ghaus and Zeug, 2008; Layman et al., 2007a,b; Post, 2002; Romanuk
et al., 2006). Unlike gut contents, stable isotopes integrate feeding
over a relatively long time period, and therefore do not reflect
material ingested only occasionally by consumers. However,
isotopic variation depends not only on diet, but can also result
from inherent variation in consumers, associated with individual
physiology and variability in diet-tissue fractionation, as well as
from measurement errors (Barnes et al., 2008; Bearhop et al., 2002;
Vander Zanden et al., 2012 and literature cited therein). Bayesian
mixing models can be applied to the isotopic data to determine the
probability of a resource being a consumer’s food by incorporating
these isotopic signature uncertainties, thus providing more robust
information (Jackson et al., 2011; Parnell et al., 2010; Phillips, 2012).

In this study, we performed SIA coupled with qualitative gut
content analysis and applied Bayesian mixing models to describe
detritus-based food webs and explore the influence of detritivore
and predator guild niche width on web topology across aquatic and
terrestrial habitats. Specifically, in order to elucidate similarities
between aquatic and terrestrial food webs, we compared covaria-
tion patterns and determined sources of possible differences
within and between these two major types of ecosystem. In
accordance with optimal foraging theories (Pyke et al., 1977) and
both model and experimental food web studies (Beckerman
et al., 2006; Calizza et al., 2012; Petchey et al., 2008), we assumed
that decreasing per capita food level increases the niche width of
predators and prey and thus the number of links in a web. We
hypothesised that this would influence the link-species rela-
tionship and other link-related web properties such as web
compartmentalization and robustness to species loss. Specifi-
cally, we expected the link-species relationship to be char-
acterised by a sharper slope at lower food levels, which may
explain differences between ecosystem types. Testing this
hypothesis entailed combining information on food niche width,
web topology and food level (as number of prey per predator and
amount of detritus per detritivore) from very different habitats
(lake, lagoon, beech forest and cornfield). We used litterbags to
collect macroinvertebrates and constructed 42 experimental
macroinvertebrate detritus-based food webs at the local scale,
which also enabled us to examine intra-habitat web variability
(Jana and Bairagi, 2014; Thompson and Townsend, 2005). We
measured web structural parameters including linkage density
(L/S), mean chain length and connectance. To compare niche
width across habitats and trophic levels, and to avoid potentially
spurious relationships with web parameters arising from the use
of topological-based niche metrics such as the number of prey
species (or number of links) in a predator diet, we measured
trophic niche as d13C variation (Layman et al., 2007a,b; Sanders
et al., 2014).

2. Materials and methods

2.1. Habitat description

Lake: Lake Bracciano is an oligo-mesotrophic volcanic lake,
located 32 km northwest of Rome at 160 m above sea level (Lazio,
Italy, 428050N, 128120E), included in a Regional park since 1999. The
lake has a surface area of 57 km2, a perimeter of about 31.5 km and
a maximum depth of 165 m. Three small towns border the lake:
Bracciano, Anguillara Sabazia and Trevignano Romano. Fifteen
sampling sites were chosen in the riparian belt along the
perimeter, taking into account sources of intra-habitat variability:
the geological substratum (chaotic tuff vs. leucitic lavas), depths
(0.7 and 3 m), bottom slope, and exposure to sun and wind (i.e.
effective fetch). The lake is also characterised by very uneven
vegetation and detritus accumulation, which determine isotopi-
cally different litter mixtures and variable organic matter
percentages in sediments (see also Rossi et al., 2010), both known
to be important drivers of invertebrate food web structure (Berg
and Bengtsson, 2007; Calizza et al., 2012).

Lagoon: The Lagoon of Santa Gilla, adjacent to the city of Cagliari
(Sardinia, Italy, 398130N, 98030E), is a non-tidal lagoon of about
4000 ha consisting of two main areas: one, extending along a N-S
axis, is well-connected to the sea whereas the other, extending
along an E-W axis, is more confined and includes salt pans (Saline
di Macchiareddu). Salinity, depth and vegetation are the main
sources of intra-habitat variability. The study was carried out
across the lagoon at eight sampling points (four for each area), two
of which were close to salt pans.

Beech forest: The study was carried out in the catchment basin of
Lake Vico, a volcanic area located about 50 km north of Rome
(Lazio, Italy, 428190N, 128100E). Since 1982 this area has been part
of a Regional Reserve including the lake (510 m above sea level)
and Mount Venere (851 m above sea level). The Reserve includes
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low-elevation (‘depressed’) mixed beech wood, dominated by
Fagus sylvatica (CORINE code 41.181), and pure beech stands
growing from 550 to 850 m above sea level in deep, fertile volcanic
soils. The three sampling sites were located at three different
altitudes and slopes and were characterised by different litter
accumulations. Another two sampling sites were abandoned since,
being located in a more frequented area, litterbags were interfered
with by persons unknown.

Cornfield: The study was carried out near Lleida (Catalunya,
Spain, 418380N, 08350E) in harvested experimental cornfields
surrounded by abandoned fields. Sampling was conducted in
sixteen plots, which had been cultivated in the previous year with
three different corn varieties with different growing cycles, and were
positioned at the opposite edges and in the centre of the fields.

The number of sampling sites in each ecosystem varied in
accordance with habitat size, physical habitat and resource supply
(both quality and quantity).

2.2. Macroinvertebrate and detritus sampling

Macroinvertebrate samplings were carried out simultaneously
in each ecosystem and replicated in June, July and August 2008
using litterbags (2.0 cm mesh size), each containing 25 grams (dry
weight) of the dominant leaf litter in each habitat (Alnus glutinosa,
Phragmites communis, Zea mays and Fagus sylvatica for the lake,
lagoon, cornfield and beech forest respectively).

Each litterbag was incubated for one week with a sporal
suspension of one of eight dominant saprophytic fungal species,
previously isolated from the respective native plant detritus in
accordance with Sabetta et al. (2000) so as to obtain eight different
fungal-colonised patches per habitat (Arsuffi and Suberkropp,
1985; Calizza et al., 2013a) with a fungal mass comparable to the
natural litter of each ecosystem (Litter quality in supplemental
content: Table S1). Five replicate litterbags per fungus were
randomly deployed at each sampling site, at least 15 m apart from
each other. After seven days’ exposure underwater or 14 days’
exposure on the soil (sufficient to observe full macroinvertebrate
colonisation while limiting litter decomposition and fungal
contamination) the litterbags were retrieved and the associated
macrofauna were identified to the lowest possible taxonomic level
common to all webs and counted. All genera and the majority of
families were represented by only one species, with a few
exceptions such as the larvae of Chironomidae. Although not all
macroinvertebrates were identified to species level, in the text the
word ‘species’ may also refer to higher taxonomic ranks. Speci-
mens of abundant species and those of low-resolved taxa known to
include species with different feeding habits (detritivorous or
predaceous), such as the larvae of Trichoptera, Diptera and
Chironomidae, were fixed in 10% formaldehyde for qualitative
gut content analysis; the remaining individuals were left for a few
hours in glass bowls to empty their guts for SIA. Isotopic and gut
content data were compared in order to ensure unambiguous
feeding habit classification, corroborated by the absence of d13C
and d15N outliers in each group.

Samples of detritus from the upper sediment or soil layer (5 cm
thick) were collected at each sampling site, ergosterol concentra-
tion as a marker of fungal mass on detritus was determined after
reflux in methanol (Sabetta et al., 2000) and the organic content of
detritus, bulk sediment and soil was assessed after oven drying
(72 h at 60 8C) and muffle furnace combustion (5 h at 500 8C).

2.3. Stable isotope analysis

Animals and detritus from sediments and soil were separate-
ly freeze-dried and ground to a fine homogeneous powder in a
ball-mill (Fritsch, Pulverisette 23 with a zirconium oxide ball).
Samples of 0.18 mg of each single individual when possible (or
single taxon after pooling similarly-sized individuals to achieve
sufficient mass) and samples of 0.9 mg of detritus from
sediments or soil were then analysed in 3.5 mm � 5 mm tin
cups using a continuous flow isotope ratio mass spectrometer
coupled with an elemental analyzer (IRMS Finnigan Delta Plus
and Flash EA 1112 series, Thermo Fisher Scientific, Waltham, MA,
U.S.A). The C and N isotopic content was expressed in ‘d’ units as
the relative difference (in parts per thousand) between the
sample and conventional standards (atmospheric N2 for N; PD-
belemnite [PDB] carbonate for C) in accordance with the formula
dR(%) = [(Rsample � Rstandard)/Rstandard] *103 (Ponsard and Arditi,
2000), where R is the heavy-to-light isotope ratio of the element
(R = 13C/12C or 15N/14N). The outputs were standardised with
atmospheric Nitrogen and C12H14N4O4 (cyclohexanone-2,4-
dinitrophenylhydrazone). All samples were analysed twice
and values were averaged.

2.4. Data analysis

2.4.1. d13C and d15N distribution in the communities

To compare the isotopic niches of the various communities,
community-wide metrics were applied to macroinvertebrate isotopic
data in accordance with Jackson et al. (2011) and Layman et al. (2007a),
using stable isotope Bayesian ellipses in R (SIBER) in the R statistical
computing package (R Development Core Team, 2012). Stable isotope
values were bootstrapped to 100,000 iterations. The community niche
space was calculated as the standard ellipse area (SEAc where ‘‘c’’
stands for ‘‘corrected’’ by degree of freedom; SIBER analysis, Jackson
et al., 2011), which provides significant information on the distribution
of isotopic values because it is less sensitive to sample size than the
total area (TA) used by Layman et al. (2007a), and is equivalent to
standard deviation but is valid for bivariate data (Brind’Amour and
Dubois, 2013; Jackson et al., 2011; Syväranta et al., 2013).

The d15N range (NR) in the community niche space represented
the vertical structure of the web, providing information on the
magnitude of chain length. It was measured separately for
detritivores and predators to take account of the magnitude of
intra-guild d15N variation.

Large differences in d15N values were observed within habitats,
which were probably not only associated with diet but also with
nutritional, water and salt stresses as well as heterogeneous fungal
colonisation of detritus (Adams and Sterner, 2000; Barnes et al.,
2007; Costantini et al., 2014). For this reason, only d13C values were
used for determining the niche width of predaceous and
detritivorous guilds, which was expressed as d13C range (CR),
i.e. the difference between species with the highest and lowest
d13C values within each guild at each sampling site (Calizza et al.,
2013b; Jackson et al., 2012; Layman et al., 2007a). In order to
account for potential habitat-driven differences in d13C we used a
relative measure of CR (indicated as CR*), obtained by dividing
each CR value by the highest CR value within a given habitat. In
addition, the niche width (as d13C range) of local populations of
large-sized species was calculated as the difference between
individuals with the highest and lowest values at each sampling
site where the number of sampled individuals was >30.

2.4.2. Web construction and metrics

Web construction was based on (i) species’ mean abundances
on each fungal-colonised patch and (ii) diet, derived from SIA, gut
contents (data were only confirmatory and are not reported here)
and bibliographical analysis including our own observations and
testing (Costantini and Rossi, 2001, 2010; Mulder et al., 2013).

Individuals of all taxa from each patch-scale web, subjected to
SIA, were classified into isotope classes marked by intervals of
3.4 � 1.0% for N and 1.2 � 0.4% for C, while foreguts from individuals



L. Rossi et al. / Ecological Complexity 23 (2015) 14–24 17
fixed in formaldehyde were dissected and the contents classified under
a microscope into 5 major food sources: amorphous detritus, algae, leaf
tissue, fungi and animals (taxonomically identified only when
possible). Isotopic and gut data were then matched and checked with
existing literature to determine all potential sources of each consumer.
Predator diets within each food web were then refined with Bayesian
mixing models, which used d13C and d15N values and yielded output
values in the form of probability distributions (central tendency values
and credibility intervals). The SIAR model was fitted using standard
MCMC (Markov Chain Monte Carlo) methods with Metropolis–
Hastings steps, which produce plausible values for dietary source
proportions using a Dirichlet prior distribution (Parnell et al., 2010).
Thus, while d13C range (CR) provided a measure of resource use on a
continuous axis common to all species and was used to measure niche
width, mixing models took account of the number and relative
importance of items in their diet and were used to construct the food
webs. In our study, predator–prey links were based on the presence or
absence of a species in the diet of another species, by assigning 1 or 0 in
a binary matrix and assembling a food web diagram from these trophic
linkages. Detritivore-basal resource links were determined on the basis
of the occurrence of detritivorous species on the eight fungal-litter
patches (Calizza et al., 2012, 2013a) and natural detritus was used as
the isotopic baseline at each sampling site.

After constructing the 42 binary matrices, web topology was
analysed by calculating: (1) species richness, S; (2) the number of
consumer-resource links, L; (3) linkage density, L/S; (4) mean chain
length as the average number of links per chain; (5) connectance
as Cmin = 2L/([S(S � 1)]); (6) web compartmentalization as

C ¼ 1=ðSðS � 1ÞÞ
XS

i¼1

XS

j ¼ 1
i 6¼ j

si j (Pimm and Lawton, 1980), where

S = the number of taxa, sij = S1/S2, with S1 = the number of
taxa linked to taxa i and j, and S2 = the number of taxa linked
to either taxon i or taxon j; (7) species overlap as

ai j ¼
P

h pih p jh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

h p2
ih p2

jh

q
(Pianka, 1976), where pih and pjh

represent the proportions of species i and j on resource h; (8) web
robustness to bottom-up extinctions (sensu Dunne, 2009), as the
proportion of rare species whose removal induced the loss of 50%
(removed species + secondary extinctions) of total species, mathe-
matically determined by sequential species deletion starting from the
rarest.

2.4.3. Statistics

Results in the text are reported as mean � 1 SE. Means were
compared by t-test, and Pearson’s correlation coefficient was
determined to evaluate the relationships between variables where
possible. When necessary, data were log-transformed in order to
better normalise distributions before analysis. When the assumption
of equality of variances was not respected, or log-transformation of
data did not allow data normalisation, the unequal variance t-test and
Mann–Whitney U-test were used respectively. The paired t-test was
used in order to compare detritivore and predator CR values. Due to
imbalances in the data associated with the different number of
sampling sites between habitats, regression models with a 95%
confidence band and regression model interaction with dummy
variables (1 = terrestrial, 0 = aquatic) were performed in order to
compare patterns of covariation, with significant model interaction
terms denoting differences between, and therefore similarity within,
the two types of ecosystem. The regressions of pooled samples are
reported in the text or in Figures only for cases when the small
samples (the lagoon and the beech forest) fell into the 95% prediction
confidence band of the regression lines of the more numerous
samples (the lake and the cornfield respectively). Log-transformed
data were used to compare regression slopes.
Analysis of similarities (ANOSIM) was used to compare the
species assemblages of sampling sites within each habitat. The
SIMPER test (SIMilarity PERcentage), based on Bray–Curtis
distance and species abundance, was used to quantify mean
community dissimilarity between sampling sites within each
habitat. This test gives a measure, expressed as a percentage, of
taxonomical dissimilarity between species assemblages: the
higher the value obtained for a given habitat, the more different
the communities across sampling sites.

Differences in the isotopic distribution of taxa in the bi-plot
space (d13C and d15N) between sampling sites within each habitat
were tested by PERMANOVA based on Euclidean distances
(Anderson, 2001).

3. Results

3.1. d13C and d15N distribution and guild niche width

Average organic matter content in sediments and soils (AFDM%)
did not differ among ecosystems whereas it varied considerably
within ecosystems, particularly the aquatic ones (Table 1). The
niche space of aquatic communities was characterised by higher
average d13C values than terrestrial ones, consistent with the
higher average d13C values detected in sediment detritus
compared to that of soils (�18.48 � 1.89% and �25.56 � 2.13%
respectively; Fig. 1). Overall, the niche space of aquatic communities,
measured as SEAc, was narrower (Mann–Whitney test U = 82.5
p < 0.001) and more variable in space than terrestrial ones (Table 1). A
clear isotopic divergence was observed between the sampling sites of
the lagoon, whereas the 3 beech forest communities were isotopically
more homogeneous than the others (Fig. 1). The isotopic distributions
of taxa in the C and N biplot space differed significantly among
sampling sites within all habitats (PERMANOVA, Lake: F = 5.5
p < 0.0001; Lagoon: F = 47.9 p < 0.0001; Corn field: F = 2.3
p < 0.001; Beech forest: F = 3.9 p < 0.01). Within ecosystem types,
the lake and cornfield communities had wider niche spaces than the
lagoon and beech forest communities respectively (lake vs. lagoon:
t = 2.8 p < 0.05; corn field vs. beech forest: t = 13.5 p < 0.001). No
relationship was found between the community niche space and the
total number of species (r = 0.19 df = 40 p = n.s.).

Terrestrial detritivores and predators displayed higher d15N
enrichment with respect to their resources than their aquatic
counterparts (Fig. 2). The isotopic distance from the predator with
the highest d15N value to the basal resource (D15N%) was related to the
mean food chain length in the web (r = 0.59 p < 0.001 df = 40; Table 1).

Terrestrial communities also exhibited broader predator
trophic niche width (as CR) (t-test t = 6.4 p < 0.0001) and higher
species overlap (as mean a) (t-test t = 4.6 p < 0.0001) (Table 1;
Fig. 2), which were positively related only in this ecosystem type
(r = 0.63 df = 17 p < 0.01). The niches of aquatic and terrestrial
detritivores were much broader than those of predators (paired
t-test t = 5.9 p < 0.0001) and broader in aquatic than in terrestrial
webs, although the difference was not statistically significant
(t-test n.s.). In both types of web an inverse relationship was found
between the relative CR values (CR*) of predators and prey
(r = �0.53 df = 17 p < 0.05 and r = �0.37 df = 21 p = 0.08 for
terrestrial and aquatic webs respectively). The differences in niche
width between environmental types at each trophic level reflected
differences in per capita resource availability: the lower the levels
of food the broader the average niche of the guild (Fig. 2).

3.2. Food webs and niche width

Web size was comparable across habitats (13–19 taxa per
patch-web in the lake, 17–25 in the lagoon, 13–17 in the cornfield
and 23–26 in the beech forest), but significant differences were



Table 1
Food web and community descriptors for 42 invertebrate communities from four habitats.

Habitat #Web AFDM% N8 ind. PPR SEAc (%) L/S Cmin C Chain Length R

Total Predator–Prey MCL D15N max (%)

LAKE 1 19.7 557.5 � 102.2 0.12 9.9 2.0 0.2 0.33 0.23 1.7 5.8 0.19

2 25.2 732.5 � 124.8 0.11 9.3 2.1 0.5 0.33 0.26 1.7 6.0 0.50

3 2.6 650.0 � 75.0 0.12 11.6 2.8 0.6 0.35 0.29 1.9 5.8 0.40

4 2.1 418.8 � 44.3 0.28 11.0 2.9 1.0 0.38 0.41 2.0 7.1 0.45

5 22.4 332.1 � 10.7 0.22 9.9 2.0 0.8 0.31 0.44 1.6 5.8 0.50

6 2.4 260.8 � 29.3 0.10 12.0 1.9 1.4 0.24 0.22 1.8 7.3 0.34

7 1.8 394.6 � 44.5 0.28 18.8 1.9 1.4 0.27 0.21 1.8 7.0 0.46

8 1.7 206.7 � 31.6 0.18 19.4 2.1 0.5 0.28 0.42 1.6 6.1 0.27

9 5.2 456.3 � 100.8 0.09 9.6 1.6 0.3 0.23 0.24 1.6 5.6 0.45

10 1.8 376.0 � 20.1 0.30 9.1 1.2 1.1 0.17 0.15 1.8 4.1 0.37

11 4.2 601.0 � 50.3 0.22 6.2 1.8 0.9 0.20 0.15 1.8 4.1 0.36

12 34.2 190.6 � 23.8 0.17 3.1 1.7 0.5 0.24 0.23 1.8 4.1 0.29

13 2.7 1544.8 � 195.9 0.08 6.5 1.9 0.7 0.25 0.19 1.8 5.1 0.40

14 2.7 682.3 � 56.2 0.31 6.7 1.1 0.7 0.16 0.18 1.5 5.2 0.37

15 10.1 470.8 � 68.5 0.14 7.6 2.4 0.8 0.29 0.22 1.8 6.3 0.45

Mean � S.E. 9.3 � 2.8 525.0 � 84.8 0.18 � 0.02 10.0 � 1.1 2.0 � 0.1 0.8 � 0.1 0.27 � 0.02 0.26 � 0.02 1.8 � 0.03 5.7 � 0.3 0.39 � 0.02

D% 95.0 87.3 72.8 84.0 60.6 89.2 57.8 65.4 25.7 43.4 62.0

LAGOON 16 17.6 202.8 � 47.1 0.04 7.0 1.5 1.4 0.15 0.10 1.8 4.6 0.33

17 5.9 618.0 � 68.5 0.11 6.7 1.6 0.8 0.20 0.17 1.8 3.7 0.43

18 5.3 115.0 � 19.9 0.19 4.0 2.0 0.7 0.17 0.17 1.9 7.1 0.28

19 5.2 191.0 � 49.1 0.15 6.8 1.5 0.4 0.15 0.42 2.1 4.6 0.39

20 2.9 271.0 � 34.5 0.09 9.7 1.7 0.6 0.19 0.15 1.9 8.3 0.25

21 2.6 32.8 � 5.8 0.14 5.3 1.0 0.2 0.10 0.11 2.0 7.0 0.27

22 2.9 179.3 � 37.7 0.08 5.7 1.7 0.1 0.19 0.15 2.1 11.7 0.25

23 2.6 20.0 � 6.2 0.04 7.1 1.0 0.4 0.10 0.11 1.8 5.1 0.23

Mean � S.E. 5.6 � 1.8 203.7 � 66.5 0.11 � 0.02 6.5 � 0.6 1.5 � 0.1 0.6 � 0.1 0.16 � 0.01 0.17 � 0.04 1.5 � 0.2 6.5 � 0.9 0.30* � 0.03

D% 85.0 96.8 81.5 58.8 48.6 89.7 47.2 75.5 53.3 68.1 46.8

CORN FIELD 24 6.6 84.5 � 17.5 0.69 13.4 1.4 0.9 0.23 0.12 1.9 5.7 0.32

25 6.6 104.3 � 48.8 0.67 15.3 1.8 1.3 0.29 0.18 1.6 5.2 0.39

26 8.4 56.5 � 24.6 0.70 20.3 1.5 1.2 0.21 0.19 1.9 6.1 0.40

27 5.8 90.1 � 23.3 0.63 14.0 1.9 1.4 0.25 0.15 1.9 7.5 0.34

28 5.8 67.0 � 16.4 1.15 20.8 1.9 1.4 0.27 0.17 2.0 8.6 0.42

29 4.9 103.2 � 19.5 0.88 15.9 2.0 1.8 0.21 0.22 1.9 8.6 0.31

30 5.6 155.6 � 50.9 1.15 18.2 2.1 1.7 0.26 0.16 2.2 9.4 0.33

31 6.7 64.7 � 17.4 1.24 25.1 2.1 0.8 0.32 0.21 1.9 6.4 0.50

32 6.4 120.1 � 8.5 1.00 18.6 1.8 0.8 0.22 0.24 2.1 7.3 0.19

33 6.6 78.3 � 18.1 2.31 14.4 1.2 1.0 0.19 0.23 1.9 5.6 0.31

34 5.3 67.4 � 20.3 0.78 23.7 1.6 1.4 0.24 0.18 2.0 9.6 0.32

35 7.4 94.7 � 15.5 0.53 15.5 1.7 0.7 0.28 0.19 1.7 7.2 0.26

36 5.1 54.1 � 7.7 0.58 18.1 1.5 1.0 0.23 0.11 2.1 7.9 0.43

37 5.9 85.1 � 19.8 0.78 13.5 2.1 1.1 0.26 0.17 2.1 8.6 0.32

38 7.5 183.2 � 24.0 0.50 15.9 2.1 1.1 0.25 0.16 2.1 9.3 0.40

39 6.9 113.7 � 14.9 0.30 18.3 2.1 1.3 0.26 0.14 2.2 9.3 0.36

Mean � S.E. 6.3 � 0.2 95.2 � 8.8 0.87 � 0.12 17.6 � 0.9 1.8 � 0.1 1.2 � 0.1 0.25 � 0.01 0.17 � 0.01 2.0 � 0.05 7.6 � 0.4 0.35 � 0.02

D% 41.7 70.4 87.0 46.6 45.5 61.1 39.7 54.4 29.6 45.8 61.8

BEECH FOREST 40 7.5 40.3 � 4.6 0.64 5.0 2.5 1.0 0.20 0.16 2.1 7.5 0.22

41 9.3 32.3 � 6.1 0.59 5.7 2.3 1.2 0.21 0.17 2.2 8.8 0.26

42 6.4 30.9 � 4.8 0.50 5.1 2.0 0.5 0.21 0.12 1.9 9.5 0.27

Mean � S.E. 7.7 � 0.8 34.5 � 3 0.58 � 0.04 5.3 � 0.2 2.3 � 0.2 0.9 � 0.2 0.21 � 0.01 0.15 � 0.01 2.1 � 0.1 8.6 � 0.6 0.25 � 0.01

D% 31.2 23.3 22.4 12.3 22.0 56.9 6.1 26.9 12.5 20.4 18.5

AFDM%: organic matter content in sediment as percentage; N8 ind.: mean (�S.E.) number of individuals per litterbag; PPR: predator–prey ratio in terms of number of individuals;

SEAc: corrected isotopic standard ellipse area; L/S: feeding linkage density; Cmin: connectance; C: compartmentalization; MCL: mean number of links per chain; D15N (%) max:

max d15N–min d15N within each patch-scale community; R: web robustness (*: R = 0.36 � 0.02 if two sites close to salt pans are excluded). D%: intra-habitat variability of each

parameter as (max-min)/max � 100.
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observed in community abundances and composition within the
four ecosystems (Table 1; one-way ANOSIM p < 0.05 for each
habitat). Specifically, the degree of taxonomical dissimilarity between
sampling sites was higher in aquatic communities than in terrestrial
ones (SIMPER test, Lake = 55.7% and Lagoon = 75.0% vs. Corn-
field = 49.3% and Beech forest = 40.1%). Such values imply substantial
turnover of species across sampling sites within all habitats.
Furthermore, a higher proportion of predaceous taxa was observed
in terrestrial than aquatic communities, as both number of taxa
(Predator–detritivore taxa ratio = 1.41 � 0.11 vs. 0.27 � 0.03; t-test
t = 12.4 p < 0.0001) and number of individuals (Predator–detritivore
abundance ratio = 0.82 � 0.11 vs. 0.16 � 0.02, t-test t = 10.6 p < 0.0001).
The cumulative species lists with feeding habits are shown in Table 2.
Forty-two patch-scale webs (one per sampling site: 15 for the
lake, 8 for the lagoon, 16 for the corn-field and 3 for the beech-forest)
were analysed; for simplicity the summary-web of each ecosystem
(i.e. a meta-web obtained by cumulating all taxa and all patch-scale
feeding links identified within each habitat) is shown in the
Supplemental content (Fig. S1). The patch-scale webs differed
significantly between ecosystem types in terms of compartmentali-
zation, chain length, linkage density and robustness (Table 1).
Compartmentalization was highest and directly related to connec-
tance in the lake, and in both aquatic ecosystems it was inversely
associated with the CR of predators (r = �0.61 df = 13 p < 0.05 and
r = �0.77 df = 6 p < 0.05 in the lake and lagoon respectively). In
terrestrial webs, chains were longer than in aquatic ones, in terms of



Fig. 1. Standard Ellipse Areas (SEAc) and density plots showing confidence intervals of 42 communities from 4 different habitats. (Note that habitats have different d13C and

d15N scales). Red point indicates mean SEAc values obtained after 105 reiterations using Bootstrap calculation. Grey shades from dark to light represent 50%, 75% and 95%

credibility intervals.
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average number of links per chain (Mann–Whitney test U = 88
p < 0.001), and their length increased with the number of species, S
(r = 0.46 df = 17 p < 0.05).

The number of links (L) increased with S in both web types but
with significantly different regression slopes (Fig. 3). While the
relationships lay between the L = S2 and L = S-1 limits in both cases,
they followed an L-S scaling law in aquatic webs (t = 0.73 df = 48 n.s.)
Fig. 2. Bi-plot graph of aquatic (A) and terrestrial (T) species (mean � S.E.) based on CR an

d15N of detritus. Brackets near symbols show availability of resources for each category.
but not in terrestrial ones (t = 9.40 df = 44 p < 0.01). Accordingly,
connectance ranged between 0.1 and 0.4 (scaling negatively with S)
in the former (r = �0.65 df = 21 p < 0.001) and between 0.2 and 0.3
(regardless of web size) in the latter. Only in terrestrial webs did
linkage density (L/S) increase with S (r = 0.68 p < 0.01 df = 17).

The L/S of predators (predator–prey links) was on average
higher in terrestrial than in aquatic webs (Table 1; t-test t = 4.0
d d15N enrichment, calculated as difference between maximum d15N of consumers and



Table 2
List of invertebrate taxa collected in four ecosystems and shown in meta-webs in Fig. S1, Supplemental material (code number in column #). p = predators, d = detritivores.

LAKE # LAGOON # CORNFIELD # BEECH FOREST #

TRICLADIDA TRICLADIDA OLIGOCHAETA GASTROPODA

Dugesia sp. p 2 Dugesia sp. p 2 Lumbricidae d 13 Limacidae d 26

HYRUDINEA NEMATODA d 24 GASTROPODA ISOPODA

Erpobdella sp. p 4 OLIGOCHAETA d 20 Helicidae d 14 Trachelipus arcuatus d 23

OLIGOCHAETA d 18 POLICHAETA p 3 ISOPODA Philoscia muscorum d 21

GASTROPODA Neanthes succinea p 4 Armadillidium vulgare d 15 Porcellio scaber d 24

Bithynia tentaculata d 7 HYRUDINEA ARACHNIDA ARACHNIDA

Lymnaea auricularia d 14 Erpobdella sp. p 7 Trombidiformes p 7 Nemastoma sp. p 7

Musculium sp. d 20 GASTROPODA Araneae p 3 Araneae p 13

Valvata piscinalis d 12 Bittium reticulatum d 15 Pseudoscorpiones p 2 Dysdera sp. p 11

Physa acuta d 13 Hydrobia sp. d 18 EMBIOPTERA d 12 Pseudoscorpiones p 12

Planorbis planorbis d 10 Hydrobidae d 16 BLATTOIDEA Trogulidae p 14

Theodoxus fluviatilis d 11 Lymnaeidae d 17 Blattidae d 11 Euscorpius sp. p 15

Acroloxus lacustris d 16 Potamididae d 14 LEPIDOPTERA (l.) HYMENOPTERA

AMPHIPODA BIVALVIA Noctuidae d 19 Ichneumon sp. p 2

Echinogammarus veneris d 6 Abra segmentum d 29 DIPLURA d 10 Formicidae p 5

DECAPODA AMPHIPODA COLEOPTERA COLEOPTERA

Palaemonetes antennarius d 19 Phtisica marina d 12 Carabidae (l.) p 6 Lampyris noctiluca (l.) p 8

ARACHNIDA Corophium sp. d 13 Harpalus sp. p 9 Trechus quadristriatus p 1

Hydracarina p 1 Gammarus insensibilis d 19 Staphylinidae p 8 Staphylinidae sp.1 p 3

DIPTERA (l.) d 15 Stenothoe monoculoides d 23 DERMAPTERA Staphylinidae sp.2 p 16

Ortocladiinae (l.) d 17 Microdeutopus gryllotalpa d 21 Forficulidae p 5 Curculionidae d 19

TRICHOPTERA Talitrus saltator d 28 DIPTERA DIPTERA (l.) d 17

Ecnomus tenellus (l.) p 3 DECAPODA Cecidomyiidae (l.) p 1 Nematocera (l.) d 25

Leptoceridae sp. (l.) d 8 Carcinus mediterraneus p 1 COLLEMBOLA d 18 RAPHIDIOPTERA (l.) p 4

EPHEMEROPTERA (l.) d 9 ISOPODA CHILOPODA COLLEMBOLA d 18

ODONATA Sphaeroma ephippium d 27 Geophilidae 4 BLATTOIDEA

Crocothemis sp. (l.) p 5 Sphaeroma hookeri d 26 DIPLOPODA Ectobius sp. d 20

Sphaeroma monodi d 25 Julidae d 16 CHILOPODA

Idotea baltica d 22 Polydesmidae d 17 Geophilus sp. p 9

DIPTERA Cryptops sp. p 6

Chironomidae (l.) d 9 Lithobius sp. p 10

COLEOPTERA DIPLOPODA

Berosus sp. d 11 Polyxenus sp. d 22

Coleostoma sp. d 10

Dytiscus sp. p 6

Dytiscus sp. (l.) p 5

CNIDARIA

Actinidae p 8
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p < 0.001) and was negatively associated with the L/S of
detritivores (detritivore-resource links) in both web types
(r = �0.60 df = 17 p < 0.01 for terrestrial webs and r = �0.54
df = 21 p < 0.01 for aquatic webs). At each trophic level, L/S was
strongly related to the CR* (Fig. 4a and b). With both guilds, CR*
increased with the number of taxa belonging to the guild as a
proportion of the total taxa in the web, S, and the increase was
sharper in terrestrial than aquatic webs (Fig. 4c and d;
Homogeneity of slopes; Detritivores: F = 5.2 p < 0.05; Predators
F = 4.4 p < 0.05). At the single species level, the d13C range
increased with the number of taxa in the guild, as observed
particularly for the most abundant and widespread species in the
study habitats (i.e. Diplopoda in the cornfield, r = 0.78 n = 9
p < 0.05, P. muscorum in the beech forest, r = 0.99 n = 3 p < 0.10; E.

veneris in the lake, r = 0.84 n = 6 p < 0.05; n = number of sampling
sites with at least 30 large-sized individuals).

Web robustness to rare species loss was on average higher in
aquatic than in terrestrial webs (Table 1) and in both web types it
increased with connectance (aquatic webs: r = 0.47 df = 21
p < 0.05; terrestrial webs: r = 0.55 df = 17 p < 0.05) and predator
CR* (aquatic webs: r = 0.47 df = 21 p < 0.05; terrestrial webs:
r = 0.51 df = 17 p < 0.05).

4. Discussion

Understanding the complexity of biological communities,
particularly the patterns and dynamics underlying ecosystem
structure and functioning, represents a major challenge in ecology
(Allesina and Bodini, 2005; Anand et al., 2010; McCann, 2000).
Food webs reflect a key aspect of this ecological complexity,
making it possible to investigate ecosystems starting from the
description of species interactions and identity. However, the
spatial patchiness of local conditions is a recurrent ecosystem
feature that has strong influence on local patterns of species
interactions (Calizza et al., 2015; Careddu et al., 2015; Jana and
Bairagi, 2014) and contributes to overall biocomplexity even in
apparently uniform habitats, with important consequences for the
interpretation of food web patterns at the habitat scale (Thompson
and Townsend, 2005). In our comparative study, observations were
based on 42 patch-scale litter-associated macroinvertebrate webs
in four different habitats, thoroughly reconstructed using common
sampling and data treatment protocols in accordance with an
experimental approach. Despite the different size of the study
habitats, the use of consistent spatial (i.e. patch-scale) and
temporal (i.e. seasonal) resolution excluded the influence of the
varying sampling scale on food web size and complexity (Ings et al.,
2009). Specifically, larger spatial scales could erroneously lead us
to merge feeding interactions between taxa that do not co-occur at
the local scale at which macroinvertebrates actually operate. This
in turn could generate artefacts and putative food webs that are
more complex than those really occurring on the local level
(Thompson and Townsend, 2005), and obscure local dynamics and
patterns of species interactions (Brose et al., 2004; Holt, 2002). In
our study, simultaneous samplings in each habitat during a limited
time period reduced biases arising from temporal variability
(Ings et al., 2009; Tavares-Cromar and Williams, 1996), while



Fig. 3. Relationships between number of links and species in terrestrial (T) and aquatic (A) webs. Closed symbols = terrestrial webs, open symbols = aquatic webs. Upper line is

prediction of ‘constant connectance’ hypothesis (links scaling as S2) and lower line is prediction of link-species scaling (fixed number of links per species).
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environmental differences and the distance between sites, along
with the limited vagility of macroinvertebrates, preserved data
independence. This is supported both by the high taxonomical
dissimilarity between the patch-scale webs (particularly the aquatic
ones) and the presence of isotopically different communities within
ecosystems, which can be associated with heterogeneous spatial
distributions of basal resources, as clearly observed in lake, cornfield
and lagoon. Comparisons limited to the dimensional class of
macroinvertebrates not only reduced potential biases associated
with pseudo-replication but they also reduced biases related to large
body-size differences between species (Shurin et al., 2006). Some
habitat-related difference in taxonomic resolution remained but,
given the similar size ranges of these litter-associated webs, it could
not have significantly affected our comparisons across ecosystems.
Indeed, although differences in taxonomic resolution have been
suggested as a potential bias in web comparison (Ings et al., 2009),
key food web parameters have been shown to be mostly unaffected
by species aggregation (Dunne et al., 2002; Martinez, 1992; Williams
and Martinez, 2000), particularly regarding linkage density and web
connectance (Hall and Raffaelli, 1991; Martinez, 1993; Sugihara
et al., 1989). In addition, taxonomic resolution did not differ between
trophic levels, thereby excluding guild-related asymmetries that
potentially could have weakened topological comparisons (Ings
et al., 2009). It was also consistent within each habitat, and thus
unlikely to significantly affect comparisons of niche-web metrics
covariance patterns across ecosystems.

Although our study focused on smaller webs than other recent
community-wide studies, the results show differences in the
topological properties of these litter-associated webs that can best
be explained by variations in the niche width of detritivores and
their predators, in accordance with optimal foraging theory, which
predicts that niche width increases as per capita level of food
decreases (Pyke et al., 1977). In detrital food webs, the abundance
and food niches of detritivores are also influenced by resource
quality, which depends on substrate biochemistry and fungi, with
important effects on both predator and detritivore foraging
behaviour (Calizza et al., 2013a; Reinolds, 2014). However, high
predator-to-prey abundance ratios in the two terrestrial ecosys-
tems cannot be ascribed to lower litter quality for detritivores, as
fungal mass was higher than in the two aquatic ecosystems and
C:N was high only in the cornfield. The lower fungal mass in
aquatic environments has been reported elsewhere (Van Ryck-
egem et al., 2007), as has the lower prevalence of detritivores
(prey) in terrestrial webs (Schoener, 1989). The prey-poor
conditions, promoting intraguild predation, can explain the longer
food chains in terrestrial habitats (Calizza et al., 2012; Kondoh and
Ninomiya, 2009; Pimm, 1982).

Although models of real food webs have successfully invoked
the niche concept (Williams et al., 2010), and individual diet
breadth models based on foraging theory have been proposed to
predict connectance in natural food webs and the degree to which
it scales with species richness (Beckerman et al., 2006; Petchey
et al., 2008), food niche width has rarely been measured in the field
to assess its implications for web structure (Layman et al., 2007b;
Winemiller et al., 2001). One exception is the work of Quevedo
et al. (2009), who showed that intra-population niche partitioning
in generalist predators can promote compartmentalization. Our
results demonstrate that web compartmentalization was higher in
the lake and covaried with connectance in both aquatic webs. Here,
compartmentalization increased with decreasing predator niche
width, a result of falling predator-to-prey abundance ratios
(Bolnick, 2001; Svanbäck and Persson, 2004).

It was proposed over two decades ago that connectance
declines with species richness, but more recently, it has been
noted that the number of feeding links per species increases with
species richness, implying constant connectance. Link-species
scaling is still a subject of debate among ecologists (Hildrew, 2009;
Riede et al., 2010). Bengtsson (1994) demonstrated that since most
web properties are related to species richness, for proper
comparative analyses of food webs it is important to control for
effects of web size and other confounding variables. In spite of
comparable web size ranges and common web construction
methods, in our study we observed that linkage density increased
with S in terrestrial food webs, while it remained roughly constant



Fig. 4. Relationship of relative CR (CR*) of detritivores and predators to (a and b) linkage density (L/S) and (c and d) number of predators and prey taxa as proportion of total

taxa in community. Closed symbols = terrestrial webs, open symbols = aquatic webs.
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in aquatic ones, implying declining connectance, as already
observed in streams (Hildrew, 2009; Schmid-Araya et al., 2002)
and other food web types (Ings et al., 2009). Both alternatives
imply that L increases with S: in nature, the exact form of increase
and the power function are determined by the mix of species, with
diets that either vary or remain the same as other species are added
to the web (Havens, 1992). The differential responses of species to
resource level could then explain the differences observed in the
scaling properties of the studied webs. In our study, the niche
width of both predators and prey increased with the number of
taxa in the guild as proportion of total taxa in the community, in
accordance with optimal foraging theory. However, the rate of
increase was higher in terrestrial communities, particularly among
predators, which had narrower niches than detritivores. In aquatic
webs, the higher per capita level of prey, promoting diet
specialisation and consequent web compartmentalization, may
explain the slower rate of predator niche enlargement. The low
assimilation efficiencies of terrestrial detritivores (Shurin et al.,
2006) are probably the cause of the somewhat sharper niche
enlargement compared to aquatic detritivores with decreasing per

capita levels of food.
Niche enlargement in terrestrial webs is associated with an

increase in species overlap with S, which is in contrast with the
predictions of species packing theory (Winemiller et al., 2001). The
inverse relationship between predator and prey d13C ranges
indicated that consumer isotopic variability is not a direct
consequence of variation in the isotopic signatures of prey items
(Hoeinghaus and Zeug, 2008). On the contrary, it further supports
the optimal foraging hypothesis: prey with larger niches,
particularly detritivores, being more vagile are easily detected
by predators, thus favouring their access to food and specialisation
(Pyke et al., 1977; Calizza et al., 2013a).

Niche width also plays a role in web robustness, defined as the
proportion of primary species removals that lead to 50% total species
loss (Dunne, 2009). Some authors have stated that the removal of
highly-connected species results in much higher rates of secondary
extinctions and more rapid fragmentation of webs than the removal
of random species (Dunne et al., 2002; Dunne, 2009; Solé and
Montoya, 2001). However, Allesina et al. (2009) observed that highly
connected species are not necessarily the most important as they
may hold many redundant links that can be removed without
secondary impacts, and they considered only functional links as
important. To date, two distinct approaches have therefore been
used to test robustness to species loss: the node-oriented approach
and the functional connection-oriented approach. However, when a
system is perturbed it is the rarest species that are usually the first to
be lost (Petchey et al., 1999; Raffaelli, 2004). In our study, the
bottom-up robustness of webs to rare species loss increased with
connectance in both ecosystem types, in accordance with a random
species loss model (Dunne, 2009). It also declined with decreasing
isotopic niche width of predators, which indicates that with the loss
of prey species, communities with specialist predators are
structurally more vulnerable.

5. Conclusion

Despite the fundamental importance of the detritus compart-
ment in ecosystems (Rooney and McCann, 2012), classical food
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web study methods often do not consider the full biological
complexity from small organisms to predators at the top of the
food chain (Middelburg, 2014). Our experimental approach using
litterbags sought to explore also the complex interactions at the
base of the detritus-based food webs, by including decomposer
fungi-detritus combinations as key elements of the trophic
mosaics that mediate trophic links between detritivores and
detritus in all natural habitats (Calizza et al., 2013a; Costantini and
Rossi, 1995, 2010; Potapov et al., 2013). In addition, the isotopic
measurement of niche width enabled comparisons between
predator and prey guilds and unbiased assessment of the
relationship between niche width and web topological parameters.
The results suggest that although web differences exist between
brackish and freshwater ecosystems, patterns are more similar
within than between aquatic and terrestrial web types. Crucial
differences derive from the trophic niche width of predators:
narrower trophic niches fragment aquatic networks into weakly
interconnected clusters (i.e. higher compartmentalization), while
lower prey level in terrestrial networks promotes faster niche
broadening as the number of predators proportionally increases.
As niche width is related to the number of links per species, this can
explain the different types of relationship between the number of
links and species richness, and the increasing sensitivity of webs to
rare species removal with the decreasing niche width of predators.

Although limited to macroinvertebrate assemblages, our results
provide field evidence of the central role of niche width in
determining the structure of detritus-based food webs, posing
foraging optimisation constraints as a general mechanistic
explanation of food web complexity across ecosystems, a thorough
understanding of which would benefit from further investigations
of species interaction strength and energy flow patterns.
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