
Swelling-induced bending and pumping in homogeneous thin sheets
Michele Curatolo, and Paola Nardinocchi

Citation: Journal of Applied Physics 124, 085108 (2018); doi: 10.1063/1.5043580
View online: https://doi.org/10.1063/1.5043580
View Table of Contents: http://aip.scitation.org/toc/jap/124/8
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1389932160/x01/AIP-PT/JAP_ArticleDL_0618/AIP-3106_JAP_Special_Topics_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Curatolo%2C+Michele
http://aip.scitation.org/author/Nardinocchi%2C+Paola
/loi/jap
https://doi.org/10.1063/1.5043580
http://aip.scitation.org/toc/jap/124/8
http://aip.scitation.org/publisher/


Swelling-induced bending and pumping in homogeneous thin sheets

Michele Curatolo1,a) and Paola Nardinocchi2,b)

1Universit�a di Roma Tre, Roma, Italy
2Sapienza, Universit�a di Roma, Roma, Italy

(Received 11 June 2018; accepted 4 August 2018; published online 24 August 2018)

We realize steady curved shapes from homogeneous hydrogel flat structures which are in

contact with two environments at different chemical conditions. We numerically investigate the

behaviour of beam-like and plate-like structures during the transient state, which realize osmotic

pumps. Through numerical experiments, we determine the relationship between the difference in

the chemical potentials at the top and bottom of a beam and the curvature of the bent beam as

well as the Gaussian curvature of a spherical cap morphed from a flat plate. We also propose an

approximate modeling of both the beam and the plate, to evaluate explicitly that relationship and

show the good agreement between those formulas and the outcomes of the numerical simulations.

Published by AIP Publishing. https://doi.org/10.1063/1.5043580

I. INTRODUCTION

Hydrogels swell and contract in response to a wide

range of environmental stimuli and, due to their properties,

have been intensively studied as one of the most promising

materials for multifunctional devices. On the one hand, there

is a great choice both in the type of stimuli to employ and in

the arrangements of materials and geometric properties.1 On

the other hand, the ability of hydrogels to elastically undergo

large deformations and bifurcations widens the spectrum of

attainable configurations and effects.

The bending strategy is one of the programming strate-

gies that can be used for planning the morphing based on

out-of-plane bending of hydrogel-based slender structures. In

thin hydrogel structures arranged in the form of composites

which combine constituents with physical or chemical prop-

erties different one from each other, shape changes are trig-

gered by the differential swelling of the constituents,

combined with an interplay between geometry and mechan-

ics, which may also involve stability issues. As for the bi-

metal thermostats studied by Timoshenko, the curvature of a

hydrogel-based bilayer strip can be programmed; in the latter

case, through the control of the swelling ratios, which origi-

nate from different polymer compositions.2–4 Moreover, also

complex shape transformations can be programmed by

including additional control parameters into the program-

ming strategy, such as oriented fiber fields which make the

material response of the hydrogels anisotropic.5

An alternative strategy to realize bending in hydrogel

structures is based on a non-homogenous exposure of a

homogeneous structure to an activation stimulus, as experi-

enced in Refs. 6 and 7. This strategy allows realizing a tran-

sient gradient in swelling as the diffusion of the solvent

inside the material takes time. As the diffusion is completed,

a uniform swelling is attained through the material thickness,

and bending is inhibited.

We implemented a different strategy, considering a

homogeneous hydrogel structure which is in contact at its

top and bottom faces with two environments at different

chemical conditions and is not permeable at its edges. Water

diffuses into the hydrogel according to the opposite of the

gradient of the chemical potential, so realizing an osmotic

pump. Assuming that the chemical conditions of the two

environments remain unchanged, diffusion never stops; at

the steady state, a uniform water flux is attained through the

material thickness, and a bent shape with uniform curvature

is obtained. Homogeneous hydrogel beam-like structures

realize curved shapes, whereas plate-like structures morph

into spherical caps.

We numerically investigate the behaviour of the beam-

like and plate-like pumps during the transient state by means

of a finite element implementation of the mathematical

model. Through a series of numerical experiments, we deter-

mine the relationship between the difference in the chemical

potentials at the top and bottom of the structure and the cur-

vature of the bent beam as well as the Gaussian curvature of

the spherical cap. We also propose an extension of the beam-

like model presented by one of the authors in Ref. 2, to eval-

uate explicitly that relationship and show the good agree-

ment between those formulas and the outcomes of the

numerical simulations. Finally, inspired by the geometrical

issues presented in Ref. 8, and following the idea proposed

in Ref. 9, we also evaluate the elastic energy corresponding

to the spherical configuration attained by the plate and evalu-

ate explicitly the Gaussian curvature of the spherical cap as

the minimum of that energy. The comparison with the

numerical outcomes shows that, when the difference in the

chemical potentials at the top and bottom of the structure is

not too high, the explicit and the numerical solutions are in

good agreement.

II. THEORETICAL BACKGROUND

Swelling and de-swelling dynamics is studied starting

from the multiphysics model presented and discussed in Ref.

10 and successively refined in Refs. 11–13. The water-polymer
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mixture is modeled as a homogenized continuum body,

allowing for a mass flux of the solvent, as also proposed in

Refs. 14–17.

The dry-reference state Bd of the gel is chosen as one of

the reference configurations of the continuum body, identi-

fied with the region of the Euclidean space E; Xd 2 Bd � E is

a material point and t 2 T is an instant of the time interval

T . We introduce two state variables: the displacement field

udðXd; tÞ from Bd ð½ud� ¼ mÞ,18 which gives the actual posi-

tion E�x ¼ Xd þ udðXd; tÞ of the point Xd at time t, and the

molar water-concentration per unit dry volume cdðXd; tÞ
([cd]¼mol/m3). The two state variables are coupled through

the following volumetric constraint:

Jd ¼ det Fd ¼ Ĵ dðcdÞ ¼ 1þ Xcd; (2.1)

implying that any change in volume of the gel is accompa-

nied by an equivalent uptake or release of water content.

Therein, Fd ¼ Iþrud is the deformation gradient and X is

the molar volume of the water ([X]¼m3/mol).

We assume that the free energy w per unit dry-volume

depends on Fd through an elastic component we, and on cd

through a polymer-water mixing energy wm: w ¼ we þ wm, as

prescribed by the Flory–Rehner thermodynamic model.19,20

Moreover, we introduce a relaxed free-energy wr, which

includes the volumetric constraint, as

wrðFd; cd; pÞ ¼ weðFdÞ þ wmðcdÞ � pðJd � Ĵ dðcdÞÞ; (2.2)

with the pressure p as the reaction to the volumetric con-

straint, which maintains the volume change Jd due to the dis-

placement equal to the one due to solvent absorption or

release Ĵ dðcdÞ.
The constitutive equation for the dry-reference stress

Sd ð½Sd� ¼ Pa ¼ J=m3Þ (the stress at the dry configuration

Bd) and for the chemical potential l ([l]¼ J/mol) are

derived from (2.2), which yields

Sd ¼ ŜdðFdÞ � p F?d ¼
@we

@Fd
� p F?d; (2.3)

l ¼ l̂ðcdÞ þ p X ¼ @wm

@cd
þ p X; (2.4)

F?d ¼ Jd F�T
d being the adjoint of the deformation gradient

Fd. We assume that the elastic component we of the free

energy has a neo-Hookean form, and the polymer-water mix-

ing energy wm has the Flory–Huggins form

weðFdÞ ¼
Gd

2
ðFd � Fd � 3Þ; wmðcdÞ ¼

RT

X
hðcdÞ; (2.5)

with

hðcdÞ ¼ X cd log
X cd

1þ X cd
þ v

X cd

1þ X cd
; h½ � ¼ 1; (2.6)

G ([G]¼ J/m3) being the shear modulus of the dry polymer,

Rð½R� ¼ J=ðK molÞÞ the universal gas constant, T (½T� ¼ K)

the temperature, and v the Flory parameter. Using

(2.4)–(2.6), we can obtain the constitutive equations specific

to our energy choice (2.5)

ŜdðFdÞ ¼ Gd Fd;

l̂ðcdÞ ¼ l̂ðJdÞ ¼ R T log
Jd � 1

Jd
þ 1

Jd
þ v

J2
d

� �
;

(2.7)

where, with a light abuse of notation, we wrote the relation

for the chemical potential l ¼ l̂ðcdÞ in terms of Jd as l̂ðJdÞ
by exploiting the volumetric constraint (2.1) between the

determinant Jd of the deformation gradient and the water

concentration per unit dry volume.

It is worth noting that, with these choices, the dissipation

principle is reduced to the following inequality:

hdðFd; cd; pÞ � rlðcd; pÞ � 0; lðcd; pÞ ¼ l̂ðcdÞ þ p X;

(2.8)

hd½hd� ¼ mol=ðm2 sÞ being the reference solvent flux. We

assume that it has the following representation form:

hd ¼ hdðFd; cd; pÞ ¼ �MðFd; cdÞrðl̂ðcdÞ þ p XÞ; (2.9)

with the mobility tensor MðFd; cdÞ as a positive definite ten-

sor [[M]¼mol2/(s m J)]. In particular, we also assume that

M is isotropic and linearly dependent on cd, and diffusion

always remains isotropic during any process.10,14,16,17 These

assumptions determine the representation of the mobility

tensor in terms of the inverse of the Cauchy–Green strain

tensor Cd as

MðFd; cdÞ ¼
D

RT
cdC�1

d ; Cd ¼ FT
d Fd; (2.10)

with D ([D]¼m2/s) the diffusivity.

Finally, the balance equations of the model are

0 ¼ div Sd and _cd ¼ �div hd; (2.11)

on Bd � T . They are supplemented by the boundary condi-

tions on @tBd � T and @uBd � T ,

Sd m ¼ t and ud ¼ �ud; (2.12)

respectively; and on @qBd � T and @cBd � T ,

�hd �m ¼ qs and l̂ðcsÞ þ p X ¼ le; (2.13)

respectively, with cs the concentration field on @cBd which is

assigned implicitly by controlling the external chemical

potential le. The initial conditions,

ud ¼ udo and cd ¼ cdo; (2.14)

on Bd � f0g make the problem doable: udo and cdo are the ini-

tial values of the fields ud and cd, respectively. Everywhere, a

dot denotes the time derivative and div the divergence opera-

tor. Equations (2.11) describe the balance of forces and the bal-

ance of water concentration; they are coupled through the

volumetric constraint (2.1) and the constitutive equations

(2.3)–(2.6). Equations (2.12) are the mechanical boundary con-

ditions on the traction t and/or displacement �ud, with m denot-

ing the outward unit normal. Equations (2.13) are the chemical

boundary conditions on boundary solvent source qs ¼ �hd �m
(½qs�¼mol/(m2s)2 (Ref. 21) and/or concentration �cd which is
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assigned implicitly by controlling the external chemical poten-

tial le. In (2.12) and (2.13), notation @sBd with s¼ t, u, q or c
refers to the portion of the boundary of Bd where traction t,

displacement �ud , solvent source qs, and concentration �cd are

prescribed, respectively. Finally, Eqs. (2.14) are the initial con-

ditions for the state variables ud and cd.

An easy solution of the stress-diffusion problem corre-

sponds to a body which is embedded into a bath of assigned

chemical potential le and attains a swollen stress-free state.

Then, Fd ¼ koI, Sd ¼ 0, and

R T log
k3

o � 1

k3
o

þ 1

k3
o

þ v

k6
o

 !
þ pX ¼ le; (2.15)

and ko identifies the uniform swelling ratio corresponding to

a given shear modulus Gd once the external chemical poten-

tial le and the Flory parameter v have been fixed.

When ko � 1 (that is, 1=ko 	 1), Eq. (2.15) can be

approximated, by estimating the leading order term in the

asymptotic expansion up to O ð1=k8
oÞ, as

ko ¼
RT

X
1=2� v

Gd

� �1=5

; (2.16)

corresponding to le¼ 0.

III. SWELLING AND DE-SWELLING CYCLES

We are interested in steady solutions of the problem

(2.11)–(2.13), that is, such that div hd¼ 0, corresponding to

constraints and load free boundaries, that is, t¼ 0 on

@Bd � T , and induced by swelling paths. The goal is to

investigate the relationship between the curving of an ini-

tially flat and dry hydrogel structure and the change in the

environmental conditions around it.

We start considering a thin hydrogel structure Bd , repre-

sented as a beam in its stress-free and dry state embedded

into a dry environment in the cartoon in Fig. 1 (top left). We

change the chemical conditions of the environment by con-

trolling the chemical potential on the bottom and top of the

structure whereas assuming impermeable edges. So, the

hydrogel may go from its flat dry to a flat fully wet state

(Fig. 1, bottom right), when it is assumed as completely

embedded in a homogeneously hydrated environment.

Likewise, we can identify two curved steady states when the

hydration conditions of the environment at the top and bot-

tom of the beam are different (Fig. 1, top right and bottom

left). In the last cases, the beam works as a pump draining

water from the wet to the dry face of the beam.

The modeling of the swelling and de-swelling cycles is

based on the theoretical background illustrated in Sec. II.

Key elements of the computational implementation are the

tackling of the chemical boundary conditions (2.13), which

also involve the assignment of an external chemical potential

le. First, as it is not possible to control either the solvent

source qs at the surface or the surface concentration cs, as is

done in real experiments, we control the chemical potential

le of the bath. Equation (2.4), when evaluated at the bound-

ary @Bc, relates cs to le. It is a highly non-linear equation

which cannot be solved explicitly for cs. On the other hand,

the control of the state variable cs, through Eq. (2.13)2, forces

the surface flux source qs to be viewed as an unknown a pri-
ori reaction. The a posteriori evaluation of qs yields poor

approximations and suggested to us the following integral

implementation of the boundary conditions (2.13):

0 ¼
ð
@cBd

l̂ðcsÞ þ p X� le½ � � ~cs; (3.1)

0 ¼
ð
@cBd

ðcd � csÞ~qs þ qsð~cd � ~csÞ½ �; (3.2)

which enforce the constraint cd¼ cs by considering qs as an

additional state variable, having the role of a Lagrange multi-

plier, and provides a better numerical evaluation of the

boundary source qs.

In the following analysis, some of the physical quanti-

ties are fixed and get the values shown in Table I.

A. Beam-like pumps

We consider a beam-like body whose aspect ratio is

h/l¼ 0.1, h being its thickness and width and l its length. The

surface boundary @B is composed of a top @Bt surface and a

bottom @Bb permeable surface and of the edges which are

not permeable: qs¼ 0. We start from a dry state which is also

stress-free and induce a swelling process through a change in

FIG. 1. Cycle of hydration and de-hydration of a gel: a homogeneous

straight beam is embedded in a dry environment (top left panel); due to a

change in the bath in contact with the top of the beam, it swells and attains a

steady bent state (top left panel); a further change in the bath induces further

swelling and a steady straight state is got (bottom right panel); a last change

in the bath determines a swelling which brings the beam at a steady bent

state with curvature opposite (bottom left panel). Colour code refers to Jd

values. We assumed: Gd ¼ 108 Pa and �l ¼ 0.
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the external conditions on the top surface. The corresponding

steady state is a curved beam with constant curvature which

works as a pump draining water from the top to the bottom

surface. We assume to have infinite reservoirs in contact

with the top and bottom surfaces; hence, we do not deal with

any problems induced by the pump effect on a confined vol-

ume of water (see Ref. 13 for a detailed analysis of this kind

of effect).

Anyway, the analysis of the steady curved state shows a

few interesting characteristics. As first, the driving force of

the process is the mismatch Dle ¼ lt
e � lb

e between the

chemical potential’s values at the top and bottom surfaces.

We observe that increasing the mismatch makes the pattern

of the chemical potential l across the beam thickness steeper

and steeper (Fig. 2). Moreover, due to the non-uniformity of

the deformation field across the thickness and to the constitu-

tive equations (2.9) and (2.10), the pattern of l across the

thickness of the beam is never linear, as it is sometimes

assumed in literature.22

Second, the intensity of the pump, which can be mea-

sured by the amount of water crossing the top or the bottom

surface per unit of time

_Vs ¼
ð
@Bt

qsdAd; _Vs

� �
¼ m3=s; (3.3)

varies along the process. Figure 3 shows as along the transient

the two quantities are not the same: the ingoing (solid red

line) and outgoing (solid orange line) fluxes are always oppo-

site in sign at the top and bottom surfaces, respectively and, at

any time t, the difference between the two quantities delivers

the amount of water absorbed by the beam (grey area). At the

steady state, the two fluxes are equal and the amount of

absorbed water is zero; hence, the beam works just as an

osmotic pump draining water from the top to the bottom. In

representing the transient process (Fig. 3), a characteristic

time tc has been introduced as tc ¼ ððlþ 2hÞ=3Þ2=D to evi-

dence the duration of the transient part of the process with

respect to the full time interval t¼ tc.
Finally, the steady configuration attained by the beam is

characterized by a constant curvature which can be measured

in terms of the mismatch Dle. Figure 4 shows as higher is

the mismatch, higher is the beam curvature (red and blue

circles). Moreover, it also shows that softer beam (red

circles) realizes higher curvature than stiffer beam (blue

circles). Red and blue solid lines in Fig. 4 represent the beam

curvature corresponding to the same shear moduli corre-

sponding to red and blue circles, as delivered by the explicit

analysis presented in Sec. IV.

TABLE I. Numerical values of the parameters.

Parameter Symbol and value

Dis-affinity v ¼ 0.4

Molar volume X ¼ 1.8 � 10�5 m3/mol

Diffusivity D ¼ 10�9 m2/s

Temperature T ¼ 293 K

Length l ¼ 1 cm

FIG. 2. Pattern of the chemical potential l across the thickness of the beam for

different values of Dle: higher Dle steeper the pattern and more bent the beam

(see the insets). Colour code refers to values of Jd. We assumed: Gd¼ 105 Pa.

FIG. 3. Amount of water crossing the top ( _V st) and bottom ( _V sb) surface per

unit of time (solid red and orange lines) and absorbed into the beam (grey

area) along the process. After a time t< 0.6 tc the process is steady: the

ingoing and outgoing fluxes are equal. We assumed: Gd ¼ 105 Pa.

FIG. 4. Beam curvature j versus the mismatch Dle is represented as a red

and blue circle, depending on the value of the shear modulus. Red and blue

solid lines represent the beam curvature corresponding to the same shear

moduli as delivered by the explicit analysis presented in Sec. IV.
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B. Plate-like pumps

We consider a plate-like body whose aspect ratio is

h/l¼ 0.1, l being the length of plate’s sides, having the edges

which are not permeable and the top @Bt and bottom @Bb

faces which are permeable surfaces. We start from a dry state

which is also stress-free and induces a process like the one

described for the beam-like body. At the steady state, the flat

sheet is dome-shaped, characterized by an almost constant

Gaussian curvature K, and drains water from the top to the

bottom surface. The Gaussian curvature of the curved sur-

face is represented in Fig. 5 (top panel) in terms of the mis-

match Dle through the mean value �K on the middle surface

of the plate (blue circles) and the value K? at the middle

point of the middle plane (red diamonds). The two values are

very close up to certain values of Dle; then, they start going

far one from each other and the difference between �K and K?

increases with Dle. Indeed, for large Dle we have a large

stretching of the middle plane and the Gaussian curvature

takes extremely high values on the boundary of the dome-

like shape, which also loses its spherical symmetry, as Fig. 5

(bottom panel) shows through a colour code corresponding

to the local value of K. The solid line in Fig. 5 (top panel)

corresponds to the explicit solution presented in Sec. IV.

At the steady state, the plate realizes shows a gradient of

chemical potential l across the thickness going from the bot-

tom value (lb
e , red) to the top value (lt

e, blue) [Fig. 5 (middle

panel)].

IV. STEADY BENDING IN HOMOGENEOUS HYDROGEL
BEAMS AND PLATES

We propose an approximate analysis of the steady solu-

tions of the stress–diffusion problem of the homogeneous

hydrogel beam borrowed from the study proposed for bilay-

ered beams embedded in a homogeneous bath in Ref. 2 (see

also Refs. 3, 4, and 23). Therein, bending was induced by

embedding into a bath of assigned chemical potential le¼ 0

a bilayer beam made by two layers of different materials: the

ratio b¼ ht/h between the thickness of the top layer and the

beam thickness and the ratio a¼Gt/Gb between the shear

moduli of the two layers played a key role in the analysis.

Only the longitudinal deformation k of the beam was taken

into account in the description of the bent state. It was multi-

plicatively decomposed in a uniform free-swelling ratio that

would take place if the part were free from the rest of the

beam and a further elastic component. In particular, the uni-

form free-swelling components of each part were determined

from the appropriate mechano–chemical equilibrium equa-

tions as if the beam was made of two independent layers free

to swell as much as they like, according to the shear modu-

lus. On its side, the elastic deformations resulted from the

multiplicative decomposition once the global compatibility

of the bending deformation has been ensured. These latter

determined internal stresses corresponding, in the absence of

external forces, to null forces and torques on each cross sec-

tion of the beam. The analysis delivered a Timoshenko-like

formula for the swelling-induced curvature j of the beam

axis, as well as a formula for the swelling-induced stretch Ko

of the beam axis.

In the present problem, we have a homogeneous beam

whose steady state is curved and characterized by a hydration

level which is not uniform across the thickness. As it is

expected, the chemical potential is not homogeneous neither

linear along the thickness (see Fig. 2), going from the value lb
e

at the bottom to the value lt
e at the top. As described by the

cartoon in Fig. 6, we identify two layers of thickness ht¼bh
(top layer) and hb ¼ ð1� bÞh (bottom layer) where the chemi-

cal potential is constant and equal to the top and bottom values,

respectively, by introducing the piecewise constant function

FIG. 5. Gaussian curvature K versus the mismatch Dle is represented

through the mean value �K of K on the middle surface of the plate (blue

circles), the value K? at the middle point of the middle plane (red diamonds);

the red solid line represents the Gaussian curvature as delivered by the

explicit analysis presented in Sec. IV (top panel). Steady curved shape of a

square plate: colour code refers to chemical potential (middle panel) and to

Gaussian curvature (bottom panel). We assumed: Gd ¼ 105 Pa.
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lcstðx3Þ ¼
lt

e for h=2� bh < x3 < h=2;

lb
e for � h=2 < x3 < h=2� bh;

(

x3¼ 0 being the geometrical beam axis. The value of the

parameter b which determines the two layers’s thicknesses

comes from the following identity:ð
Bd

l
X

dV ¼ lt
e

X
Vt þ

lb
e

X
Vb; (4.1)

Vt ¼ bhLw and Vb ¼ ð1� bÞhLw being the volumes of the

top and bottom layer, respectively, and l the not homoge-

neous chemical field across the beam. Identity (4.1) says that

the amount of work required to move all the volume of sol-

vent from the top to the bottom face in the actual beam [left

hand-side of identity (4.1)] is equal to the work done in the

beam once assumed the chemical potential separately homo-

geneous in the two layers identified by the parameter b [right

hand-side of identity (4.1)].24 It can be written as

ðh=2

�h=2

lðx3Þdx3 ¼ lt
eb hþ lb

eð1� bÞ h: (4.2)

To determine the parameter b from the identity (4.2), we

need the explicit representation of the chemical potential

field l across the beam, and we get an approximate expres-

sion for l into few steps. First, inspired by the numerical

results, we explicitly represent lðx3Þ by a quadratic function

of x3 as

lðx3Þ ¼ l0 þ x3l1 þ x2
3l2; (4.3)

in terms of the three scalars l0, l1, and l2. Second, we deter-

mine the three scalars by requiring that the following key

boundary conditions are satisfied. The first two conditions

are

lðh=2Þ ¼ lt
e and lð�h=2Þ ¼ lb

e : (4.4)

The third condition comes from the solvent flux hd ¼ qe3

which is constant across the beam at the steady state, hence,

such that

qðh=2Þ ¼ qð�h=2Þ: (4.5)

On the other hand, from Eqs. (2.9) and (2.10), we get

qðx3Þ ¼ �
D

RT

cdðx3Þ
k2

3ðx3Þ
l0ðx3Þ; (4.6)

and with this, Eq. (4.5) can be written as

cd

k2
3

l0
� �

h=2

¼ cd

k2
3

l0
� �

�h=2

: (4.7)

Finally, we assume that k3ðh=2Þ ¼ kot and k3ð�h=2Þ ¼ kob,

with kot ¼ kotðGd; lt
eÞ and kob ¼ kobðGd; lb

eÞ the swelling

ratios which satisfy the equations

GdX
koi
þ RT log 1� 1

ðkoiÞ3

 !
þ 1

ðkoiÞ3
þ v

ðkoiÞ6

 !
¼ li

e;

(4.8)

with i¼ t, b; and that 1þ Xcdðh=2Þ ¼ ðkotÞ3, and 1

þXcdð�h=2Þ ¼ ðkobÞ3. With this, Eq. (4.7) can be written as

l0ðh=2Þ ¼ Co l0ð�h=2Þ; (4.9)

with25

Co ¼
ðkotÞ2ððkobÞ3 � 1Þ
ðkobÞ2ððkotÞ3 � 1Þ

; (4.10)

and it prescribes that the third condition which added to the

first two conditions given by Eq. (4.4) allows determining

the unknown coefficients li with i¼ 0, 1, 2. With this, Eq.

(4.1) allows to determine b as

b ¼ 2þ Co

3ð1þ CoÞ
: (4.11)

From now on, we view the homogeneous beam as a bilayer

beam whose layers of thickness ht¼bh and hb are swollen

up to a level determined by the chemical potential le at the

top and bottom face, as Eq. (2.15) prescribes: precisely, we

have l ¼ lt
e and l ¼ lb

e in the top and bottom layer, respec-

tively (see Fig. 6). As in Ref. 2, we assume that the longitu-

dinal deformation kðx3Þ ¼ K0ð1� x3K0jÞ of the beam can

be viewed as the product of the free-swelling ratio due to the

hydration level and an elastic component which deliver inter-

nal stresses. So, given the free-swelling ratios kot and kob

above introduced, the corresponding elastic deformations

ket ¼ kk�1
ot and keb ¼ kk�1

ob are determined from the multipli-

cative decomposition in terms of Ko and j.

Then, assuming zero out-of-plane stresses, the corre-

sponding longitudinal stresses rt and rb on the cross-sections

of the top and bottom layers, respectively, are evaluated as

rtðx1; x3Þ ¼ 3Gdðkðx1; x3Þk�1
ot � 1Þ; (4.12)

for ðh=2� b hÞ < x3 < h=2; and

rbðx1; x3Þ ¼ 3Gdðkðx1; x3Þk�1
ob � 1Þ; (4.13)

FIG. 6. Chemical potential l changes across the thickness from the bottom

value lb
e (red) to the top value lt

e (blue) (left side of the cartoon). This distribu-

tion is replaced by one that is piecewise constant (right side of the cartoon).
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for �h=2 < x3 < ðh=2� b hÞ, where, due to the material

incompressibility, 3Gd identifies the corresponding Young

modulus.

We looked for free-swelling solutions of the gel beam

problem: under no external loads, the resultant Fðkob; kotÞ of

the stresses and the resultant moment Mðkob; kotÞ of the

stresses on the gel beam have to be identically null, that is,

Fðkob; kotÞ ¼ 0 and Mðkob; kotÞ ¼ 0: (4.14)

Equation (4.12) delivers a linear system of two equations in

K0 and K1¼jK2
0 where, differently from the situation stud-

ied in Ref. 2, the parameter b is not geometrically but ther-

modynamically determined. Moreover, the two layers of

the beam being made of the same material, the ratio a
between the shear moduli of the two layers is 1 and the

bending is driven by the mismatch Dle. The solution deliv-

ers the beam stretching K0 and curvature j as the following

functions:

K0 ¼ K0ðkot; kob; bÞ and j ¼ jðkot; kob; bÞ; (4.15)

explicitly represented in the Appendix. Given the relations

R T log
k3

om � 1

k3
om

þ 1

k3
om

þ v

k6
om

 !
þ GdX

kom
¼ lm

e (4.16)

(m¼ b, t) between the free-swelling stretches kot and kob

and the top and bottom chemical potential lt
e and lb

e , and

fixed lb
e , Eq. (4.15) delivers K0ðGd;DleÞ and jðGd;DleÞ.

Fixed the value lb
e ¼ �11 000 J/mol, the beam curvature is

so evaluated starting from the value Dle ¼ 0 corresponding

to lt
e ¼ �11 000 J/mol. It is represented by the solid lines in

Fig. 4 for Gd¼ 105 Pa (red) and Gd¼ 108 Pa (blue); it can be

appreciated the good agreement between the explicit and the

numerical solution which is excellent for values of Dle not

too much high.

A. Cutting a beam out of the plate

As the last step, we propose an explicit formula deliv-

ering the Gaussian curvature of the plate-like pump at the

steady state. In this case, the body is modeled within the

setting of non-Euclidean plates as a shell with its first and

second natural fundamental forms. The first and second

fundamental forms a and b contain all the information

about lateral distances between points and local curvature,

respectively; the natural forms �a and �b represent the lat-

eral distances and curvatures that would make the sheet

locally stress-free, and they are determined by the specific

stimulus which in this case is the mismatch Dle. Due to

the differential isotropic expansion of the two layers due

to the swelling, the lateral distances would like to stretch

by ao while the midplane would like to bend with a curva-

ture bo in every direction, and �a and �b have the following

form:

�a ¼ a2
o

1 0

0 1

� �
and �b ¼ bo

1 0

0 1

� �
: (4.17)

It is not usually possible for a sheet to realize both natural

forms, due to the Gauss-Codazzi-Mainardi equations, and

this is the case of our plate which has to match different

planes across the thickness which would like to swell accord-

ing to a different value of the chemical potential. However,

as a beam is able to adopt its natural shape with longitudinal

axis stretch and curvature equal to K0 and j, respectively,

without any need of satisfying additional constraints, we pro-

ceed by cutting a beam from the plate disk and by measuring

its deformed shape. This will provide a straightforward way

to evaluate the natural stretch and curvature of the disk8,9

ao ¼ K0ðGd; l
b
e ;DleÞ; bo ¼ jðGd; l

b
e ;DleÞ: (4.18)

Assuming as usual for non-Euclidean plates, a Kirchhoff-Love

energy density, the energy of the plate can be written as

�U ¼
ð
ðtrða� �aÞ2 þ tr2ða� �aÞÞ

ffiffiffi
�a
p

dA

þ
ð
ðtrðb� �bÞ2 þ tr2ðb� �bÞÞ

ffiffiffi
�a
p

dA;

being �U ¼ 8Uð1� �2Þ=Eh, E and l the Young and Poisson

moduli, and a and b the first and second fundamental forms

of the midsurface of the deformed plate, respectively. We

follow Ref. 9 and assume a metric with constant Gaussian

curvature in Gaussian normal coordinates (see also Ref. 26);

we also assume that � ’ 1=2 and E ’ 3G. So, the total

dimensionless energy for the square disk of side l is

�U ¼ 1

9
L4K�2

0

ð
r4dAþ h2AK�2

0 ðL� jÞ2; (4.19)

being K0 and j given by Eq. (4.15), and L the principal cur-

vature of the sphere. Following Ref. 9, we also assumed that

the Gaussian curvature can be approximated as

K ¼ det b=det a ’ L2

K4
o

: (4.20)

Minimization of the total energy �U with respect to L yields

�L
3 þ c4ð�L � �jÞ ¼ 0; (4.21)

being �L ¼ Lh; �j ¼ jh, and

c4 ¼ h4

S4
; S4 ¼ 2

9

1

A

ð
r4dA: (4.22)

Moreover, it holds

A ¼ l2; S4 ¼ 56

405
l4; c4 ¼ 405

56

h4

l4
: (4.23)

Equation (4.21) can be solved explicitly and delivers
�L ¼ �LðjÞ. From there, using Eq. (4.20), we get

K ¼ KðK0; jÞ; (4.24)

which can be ultimately expressed in terms of the mismatch

Dle using Eqs. (4.15) and (4.16). In Fig. 5, we represented

the function K(Dle), corresponding to a fixed value of
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Gd¼ 108 Pa. The agreement with the mean values of K as

well as with the Gaussian curvature at the middle of the plate

is good if the mismatch Dle does not grow too much.

Indeed, for large Dle we have: (1) �K and K? differs a lot due

to the large values attained by the Gaussian curvature on the

corner of the plate; (2) the stretching of the midsurface

increases and the approximation (4.20) does not hold any

more.

V. CONCLUSIONS

In the last few years, swelling-induced morphing of flat

thin sheets has attracted more and more attention of the sci-

entific community which has elaborated accurate numerical

tools to implement a stress diffusion model which is thermo-

dynamically consistent with the Flory-Rehner thermodynam-

ics and able to describe the huge deformation occurring in

swelling processes (see Refs. 10–13 and 27). Moreover, in

some distinguished cases, also explicit formulas have been

proposed able to catch the morphing behaviour of swelling

thin sheets under some limitations (see Refs. 2–4 and 23).

However, typically almost all of the analyses refer to a

situation which is completely homogeneous on the boundary

of the body and the driving force which realizes that the

morphing of flat sheets in curved configuration is the swell-

ing mismatch in different parts of the body. Prototypical

problems are concerning bending in layered beams and

plates.

Here, we studied a different kind of problem where

morphing of homogeneous beams and plates is driven by dif-

ferent environment conditions: a mismatch in the chemical

potential on the opposite faces of the structure drives a swell-

ing and determines curved steady states. We proposed both

theoretical and computational approaches to describe the

behaviour of these hydrogel devices, getting interesting

insights into their performances.
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APPENDIX: BEAM’S STRETCHING AND CURVATURE

Equation (4.14) delivers the beam stretching K0 and cur-

vature j as

K0 ¼ K0ðkot; kob; bÞ and j ¼ jðkot; kob; bÞ; (A1)

with

K0ðkot; kob; bÞ ¼ ðb4k3
ot þ ðb� 1Þ4k3

ob

þbð1� bÞaðbÞk2
obkot

þbð1� b3Þkobk
2
otÞDðkot; kob; bÞ�1; (A2)

K1ðkot; kob; bÞ ¼ �6bðb� 1Þkobkot

� ðkob � kotÞðhDðkot; kob; bÞÞ�1; (A3)

jðkot; kob; bÞ ¼
K1ðkot; kob; bÞ
K0ðkot; kob; bÞ2

; (A4)

and

Dðkot; kob; bÞ ¼ b4k2
ot þ ðb� 1Þ4k2

ob

þbð1� bÞdðbÞkobkot; (A5)

where we set a(b)¼ 3 þ b(b � 3) and d(b)¼ 2b2 � 2b þ 4.

The free-swelling stretches kot and kob come from the chemi-

cal equilibrium equation (4.8) in terms of the shear modulus

of the beam and the top and bottom chemical potential lt
e

and lb
e .
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