
Real-Time and Distributed Applications for
Dictionary-Based Data Compression

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—The greedy approach to dictionary-based static
text compression can be executed by a finite state machine.
When it is applied in parallel to different blocks of data
independently, there is no lack of robustness even on standard
large scale distributed systems with input files of arbitrary
size. Beyond standard large scale, a negative effect on the
compression effectiveness is caused by the very small size of
the data blocks. A robust approach for extreme distributed
systems is presented in this paper, where this problem is
fixed by overlapping adjacent blocks and preprocessing the
neighborhoods of the boundaries. Moreover, we introduce
the notion of pseudo-prefix dictionary, which allows optimal
compression by means of a real-time semi-greedy procedure
and a slight improvement on the compression ratio obtained
by the distributed implementations.

Keywords-data compression; decoding; real time application;
distributed system; scalability; robustness

I. INTRODUCTION

Real time algorithms are very important in the field of
data compression, expecially during the decoding phase, and
further speed-up can be obtained by means of distributed
implementations. We studied these topics in the context of
lossless compression applied to one-dimensional data and
preliminary results were presented in [1] and [2].

Static data compression implies the knowledge of the in-
put type. With text, dictionary-based techniques are particu-
larly efficient and employ string factorization. The dictionary
comprises typical factors plus the alphabet characters in
order to guarantee feasible factorizations for every string.
Factors in the input string are substituted by pointers to
dictionary copies and such pointers could be either variable
or fixed length codewords. The optimal factorization is the
one providing the best compression, that is, the one mini-
mizing the sum of the codeword lengths. Efficient sequential
algorithms for computing optimal solutions were provided
by means of dynamic programming techniques [3] or by
reducing the problem to the one of finding a shortest path
in a directed acyclic graph [4]. From the point of view of
sequential computing, such algorithms have the limitation
of using an off-line approach. However, decompression is
still on-line and a very fast and simple real time decoder
outputs the original string with no loss of information.
Therefore, optimal solutions are practically acceptable for

read-only memory files where compression is executed only
once. Differently, simpler versions of dictionary-based static
techniques were proposed, which achieve nearly optimal
compression in practice (that is, less than ten percent loss).
An important simplification is to use a fixed length code for
the pointers, so that the optimal decodable compression for
this coding scheme is obtained by minimizing the number
of factors. Such variable to fixed length approach is robust
since the dictionary factors are typical patterns of the input
specifically considered. The problem of minimizing the
number of factors gains a relevant computational advantage
by assuming that the dictionary is prefix-closed (suffix-
closed), that is, all the prefixes (suffixes) of a dictionary
element are dictionary elements [5], [6], [7]. The left to right
greedy approach is optimal only with suffix-closed dictionar-
ies. An optimal factorization with prefix-closed dictionaries
can be computed on-line by using a semi-greedy procedure
[6], [7]. On the other hand, prefix-closed dictionaries are
easier to build by standard adaptive heuristics [8], [9]. These
heuristics are based on an ”incremental” string factorization
procedure [10], [11]. The most popular for prefix-closed
dictionaries is the one presented in [12]. However, the
prefix and suffix properties force the dictionary to include
many useless elements, which increase the pointer size
and slightly reduce the compression effectiveness. A more
natural dictionary with no prefix and no suffix property is the
one built by the heuristic in [13] or by means of separator
characters as, for example, space, new line and punctuation
characters with natural language.

Theoretical work was done, mostly in the nineties, to
design efficient parallel algorithms on a random access
parallel machine (PRAM) for dictionary-based static text
compression [14], [15], [16], [17], [18], [19], [20], [21],
[22]. Although the PRAM model is out of fashion today,
shared memory parallel machines offer a good computa-
tional model for a first approach to parallelization. When we
address the practical goal of designing distributed algorithms
we have to consider two types of complexity, the inter-
processor communication and the input-output mechanism.
While the input/output issue is inherent to any parallel
algorithm and has standard solutions, the communication
cost of the computational phase after the distribution of

75

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the data among the processors and before the output of
the final result is obviously algorithm-dependent. So, we
need to limit the interprocessor communication and involve
more local computation to design a practical algorithm. The
simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no
communication cost. Parallel decompression is, obviously,
possible on this model [17]. With parallel compression, the
main issue is the one concerning scalability and robustness.
Traditionally, the scale of a system is considered large
when the number of nodes has the order of magnitude of a
thousand. Modern distributed systems may nowadays consist
of hundreds of thousands of nodes, pushing scalability well
beyond traditional scenarios (extreme distributed systems).

In [23], an approximation scheme of optimal compres-
sion with static prefix-closed dictionaries was presented
for massively parallel architectures, using no interprocessor
communication during the computational phase since it is
applied in parallel to different blocks of data independently.
The scheme is algorithmically related to the semi-greedy
approach previously mentioned and implementable on ex-
treme distributed systems because adjacent blocks overlap
and the neighborhoods of the boundaries are preprocessed.
However, with standard large scale the overlapping of the
blocks and the preprocessing of the boundaries are not
necessary to achieve nearly optimal compression in practice.
Furthermore, the greedy approach to dictionary-based static
text compression is nearly optimal on realistic data for
any kind of dictionary even if the theoretical worst-case
analysis shows that the multiplicative approximation factor
with respect to optimal compression achieves the maximum
length of a dictionary element [9]. If the dictionary is
well-constructed by relaxing the prefix property, the loss
of greedy compression can go down to one percent with
respent to the optimal one. In this paper, we relax the prefix
property of the dictionary and present two implementations
of the greedy approach to static text compression with an
arbitrary dictionary on a large scale and an extreme dis-
tributed system, respectively. Moreover, we present a finite-
state machine implementation of greedy static dictionary-
based compression with an arbitrary dictionary that can be
relevant to achieve high speed with standard scale distributed
systems. We wish to point out that scalability cannot be
guaranteed with adaptive dictionary approaches to data
compression, as the sliding window method [24] or the
dynamic one [11]. Indeed, the size of the data blocks over
the distributed memory of a parallel system must be at least
a few hundreds kylobytes in both cases, that is, robustness is
guaranteed with scalability only with very large files [14],
[26]. This is still true with improved variants employing
either fixed-lenght codewords [27], [28] or variable-length
ones [29], [30], [31], [32], [33].

Finally, we introduce pseudo-prefix and pseudo-suffix
dictionaries and show that the algorithms computing optimal

factorizations with suffix-closed and prefix-closed dictionar-
ies still work. The advantage of using pseudo-prefix and
pseudo-suffix dictionaries is that we add to an arbitrary
dictionary only those prefixes or suffixes needed to guar-
antee the correctness of the optimal solution. This implies
a slight improvement on the compression ratio obtained
by the distributed implementations. Moreover, we show
the impossibility of real-time optimal factorizations if the
dictionary is arbitrary.

In Section II, we describe the different approaches to
dictionary-based static text compression. The previous work
on parallel approximations of optimal compression with
prefix-closed dictionaries is given in Section III. Section IV
shows the finite-state machine and the two implementations
of the greedy approach for arbitrary dictionaries. Experi-
ments are discussed in Section V. Section VI presents the no-
tion of pseudo-prefix and pseudo-suffix dictionaries, where
theoretical and further experimental results are discussed.
Conclusions and future work are given in Section VII.

II. DICTIONARY-BASED STATIC TEXT COMPRESSION

As mentioned in the introduction, the dictionary com-
prises typical factors (including the alphabet characters)
associated with fixed or variable length codewords. The
optimal factorization is the one minimizing the sum of the
codeword lengths and sequential algorithms for computing
optimal solutions were provided by means of dynamic
programming techniques [3] or by reducing the problem to
the one of finding a shortest path in a directed acyclic graph
[4]. When the codewords are fixed-length, with suffix-closed
dictionaries we obtain optimality by means of a simple left
to right greedy approach, that is, advancing with the on-line
reading of the input string by selecting the longest matching
factor with a dictionary element. Such a procedure can be
computed in real time by storing the dictionary in a trie
data structure. If the dictionary is prefix-closed, there is an
optimal semi-greedy factorization which is computed by the
procedure of Figure 1 [6], [7]. At each step, we select a
factor such that the longest match in the next position with
a dictionary element ends to the rightest. Since the dictionary
is prefix-closed, the factorization is optimal. The algorithm
can even be implemented in real time with a modified trie
data structure [7].

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

The semi-greedy factorization can be generalized to any
dictionary by considering only those positions, among the

76

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ones covered by the current factor, next to a prefix that
is a dictionary element [6]. The generalized semi-greedy
factorization procedure is not optimal while the greedy one
is not optimal even when the dictionary is prefix-closed. The
maximum length of a dictionary element is an obvious upper
bound to the multiplicative approximation factor of any
string factorization procedure with respect to the optimal so-
lution. We show that this upper bound is tight for the greedy
and semi-greedy procedures when the dictionary is arbitrary
and that such tightness is kept by the greedy procedure
even for prefix-closed dictionaries. Let baban be the input
string and let {a, b, bab, ban} be the dictionary. Then, the
optimal factorization is b, a, ban while bab, a, a, ..., a, ...a is
the factorization obtained whether the greedy or the semi-
greedy procedure is applied. On the other hand, with the
prefix-closed dictionary {a, b, ba, bab, bak : 2 ≤ k ≤ n},
the optimal factorization ba, ban is computed by the semi-
greedy approach while the greedy factorization remains the
same. These examples, obviously, prove our statement on
the tightness of the upper bound.

III. PREVIOUS WORK

Given an arbitrary dictionary, for every integer k greater
than 1 there is an O(km) time, O(n/km) processors dis-
tributed algorithm factorizing an input string S with a cost
which approximates the cost of the optimal factorization
within the multiplicative factor (k+m−1)/k, where n and
m are the lengths of the input string and the longest factor
respectively [14]. However, with prefix-closed dictionaries a
better approximation scheme was presented in [23], produc-
ing a factorization of S with a cost approximating the cost
of the optimal factorization within the multiplicative factor
(k + 1)/k in O(km) time with O(n/km) processors. This
second approach was designed for massively parallel archi-
tecture and is suitable for extreme distributed systems, when
the scale is beyond standard large values. On the other hand,
the first approach applies to standard small, medium and
large scale systems. Both approaches provide approximation
schemes for the corresponding factorization problems since
the multiplicative approximation factors converge to 1 when
km converge to n. Indeed, in both cases compression is
applied in parallel to different blocks of data independently.
Beyond standard large scale, adjacent blocks overlap and the
neighborhoods of the boundaries are preprocessed.

To decode the compressed files on a distributed system,
it is enough to use a special mark occurring in the sequence
of pointers each time the coding of a block ends. The input
phase distributes the subsequences of pointers coding each
block among the processors. Since a copy of the dictionary
is stored in every processor, the decoding of the blocks
is straightforward. In the following two subsections, we
describe the two approaches. Then, how to speed up the
preprocessing phase of the second approach is described in
the last subsection. Next section will argue that we can relax

the requirement of computing a theoretical approximation of
optimal compression since, in practice, the greedy approach
is nearly optimal on data blocks sufficiently long. On the
other hand, when the blocks are too short because the scale
of the distributed system is beyond standard values, the
overlapping of the adjacent blocks and the preprocessing
of the neighborhoods of the boundaries are necessary to
garantee the robustness of the greedy approach.

A. Standard Scale Distributed Systems

We simply apply in parallel the optimal compression
to blocks of length km. Every processor stores a copy
of the dictionary. For an arbitrary dictionary, we execute
the dynamic programming procedure computing the optimal
factorization of a string in linear time [3] (the procedure in
[4] is pseudo-linear for fixed-length coding and, even, super-
linear for variable length). Obviously, this works for prefix-
and suffix-closed dictionaries as well and, in any case, we
know the semi-greedy and greedy approaches are imple-
mentable in linear time. It follows that the algorithm requires
O(km) time with n/km processors and the multiplicative
approximation factor is (k +m− 1)/k with respect to any
factorization. Indeed, when the boundary cuts a factor the
suffix starting the block and its substrings might not be in
the dictionary. Therefore, the multiplicative approximation
factor follows from the fact that m − 1 is the maximum
length for a proper suffix as shown in Figure 2 (sequence of
plus signs in parentheses). If the dictionary is suffix-closed,
the multiplicative approximation factor is (k + 1)/k since
each suffix of a factor is a factor.

+(+++++++)
———————/——————————–

Figure 2. The making of the surplus factors.

The approximation scheme is suitable only for standard
scale systems unless the file size is very large. In effect, the
block size must be in the order of kilobytes to guarantee
robustness. Beyond standard large scale, overlapping of
adjacent blocks and a preprocessing of the boundaries are
required as we will see in the next subsection.

B. Beyond Standard Large Scale

With prefix-closed dictionaries a better approximation
scheme was presented in [23]. During the input phase
blocks of length m(k + 2), except for the first one and
the last one that are m(k + 1) long, are broadcasted to
the processors. Each block overlaps on m characters with
the adjacent block to the left and to the right, respectively
(obviously, the first one overlaps only to the right and the
last one only to the left). We call a boundary match a factor

77

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

covering positions in the first and second half of the 2m
characters shared by two adjacent blocks. The processors
execute the following algorithm to compress each block:

• for each block, every corresponding processor but
the one associated with the last block computes the
boundary match between its block and the next one
ending furthest to the right, if any;

• each processor computes the optimal factorization from
the beginning of its block to the beginning of the
boundary match on the right boundary of its block (or
the end of its block if there is no boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 3. The making of a surplus factor.

Stopping the factorization of each block at the beginning
of the right boundary match might cause the making of
a surplus factor, which determines the multiplicative ap-
proximation factor (k + 1)/k with respect to any other
factorization. Indeed, as it is shown in Figure 3, the factor
in front of the right boundary match (sequence of x’s) might
be extended to be a boundary match itself (sequence of
plus signs) and to cover the first position of the factor after
the boundary (dotted line). Then, the approximation scheme
produces a factorization of S with a cost approximating the
cost of the optimal factorization within the multiplicative
factor (k + 1)/k in O(km) time with O(n/km) processors
(we will see in the next subsection how the preprocessing
can be executed in O(m) time).

In [23], it is shown experimentally that for k = 10 the
compression ratio achieved by such factorizarion is about the
same as the sequential one and, consequently, the approach
is suitable for extreme distributed systems, as we will explain
in the next section.

C. Speeding up the Preprocessing

The parallel running time of the preprocessing phase
computing the boundary matches is O(m2) by brute force.
To lower the complexity to O(m), an augmented trie data
structure is needed [1]. For each node v of the trie, let
f be the dictionary element corresponding to v and a an
alphabet character not represented by an edge outgoing
from v. Then, we add an edge from v to w with label a,
where w represents the longest proper suffix of fa in the
dictionary. Each processor has a copy of this augmented
trie data structure and first preprocess the 2m characters

overlapped by the adjacent block on the left boundary and,
secondly, the ones on the right boundary. In each of these
two sub-phases, the processors advance with the reading of
the 2m characters from left to right, starting from the first
one while visiting the trie starting from the root and using
the corresponding edges. A temporary variable t2 stores the
position of the current character during the preprocessing
while another temporary variable t1 is, initially, equal to t2.
When an added edge of the augmented structure is visited,
the value t = t2−d+1 is computed where d is the depth of
the node reached by such edge. If t is a position in the first
half of the 2m characters, then t1 is updated by changing its
value to t. Else, the procedure stops and t2 is decreased by
1. If t2 is a position in the second half of the 2m characters
then t1 and t2 are the first and last position of a boundary
match, else there is no boundary match.

IV. THE GREEDY APPROACH

We provide a finite-state machine implementation of the
greedy approach with an arbitrary dictionary. Then, we show
the two implementations on standard large scale and extreme
distributed systems.

A. The Finite-State Machine Implementation

We show the finite-state machine implementation pro-
ducing the on-line greedy factorization of a string with
an arbitrary dictionary. The most general formulation for
a finite-state machine M is to define it as a six-tuple
M = (A,B,Q, δ, q0, F) with an input alphabet A, an
output alphabet B, a set of states Q, a transition function
δ : QxA → QxB∗, an initial state q0 and a set of accepting
states F ⊆ Q. The trie storing the dictionary is a subgraph
of the finite-state machine diagram. It is well-known that
each dictionary element is represented as a path from the
root to a node of the trie where edges are labeled with an
alphabet character (the root representing the empty string).
The edges are directed from the parent to the child and the
set of nodes represent the set of states of the machine. The
output alphabet is binary and the factorization is represented
by a binary string having the same length as the input
string. The bits of the output string equal to 1 are those
corresponding to the positions where the factors start. Since
every string can be factorized, every state is accepting. The
root represents the initial state. We need only to complete the
function δ, by adding the missing edges of the diagram. The
empty string is associated as output to the edges in the trie.
For each node, the outgoing edges represent a subset of the
input alphabet. Let f be the string (or dictionary element)
corresponding to the node v in the trie and a an alphabet
character not represented by an edge outgoing from v. Let
fa = f1 · · · fk be the on-line greedy factorization of fa and
i the smallest index such that fi+1 · · · fk is represented by a
node w in the trie. Then, we add to the trie a directed edge
from v to w with label a. The output associated with the

78

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge is the binary string representing the sequence of factors
f1 · · · fi. By adding such edges, the machine is entirely
defined. Redefining the machine to produce the compressed
form of the string is straightforward.

B. The Distributed Implementations

In practice, greedy factorization is nearly optimal. As
a first approach, we simply apply in parallel left to right
greedy compression to blocks of length km. With standard
scale systems, the block size must be the order of kilobytes
to guarantee robustness. Each of the O(n/km) processors
could apply the finite-state machine implementation to its
block. Beyond standard large scale, overlapping of adjacent
blocks and a preprocessing of the boundaries are required
as for the optimal case. Again, during the input phase
overlapping blocks of length m(k + 2) are broadcasted
to the processors as in the previous section. On the other
hand, the definition of boundary match is extended to
those factors, which are suffixes of the first half of the 2m
characters shared by two adjacent blocks. The following
procedure, even if it is not an approximation scheme from
a theoretical point of view, performs in a nearly optimal way:

• for each block, every corresponding processor but the
one associated with the last block computes the longest
boundary match between its block and the next one;

• each processor computes the greedy factorization from
the end of the boundary match on the left boundary of
its block to the beginning of the boundary match on
the right boundary.

The approach is nearly optimal for k = 10, as the approx-
imation scheme of the previous section. The compression
ratio achieved by such factorizarion is about the same as
the sequential one. Considering that typically the average
match length is 10, one processor can compress down to 100
bytes independently. This is why the approximation scheme
was presented for massively parallel architecture and the
approach, presented in this section, is suitable for extreme
distributed systems, when the scale is beyond standard large
values. Indeed, with a file size of several megabytes or
more, the system scale has a greater order of magnitude
than the standard large scale parameter. We wish to point
out that the computation of the boundary matches is very
relevant for the compression effectiveness, when an extreme
distributed system is employed, since the sub-block length
becomes much less than 1K. With standard large scale
systems the block length is several kilobytes with just a few
megabytes to compress and the approach using boundary
matches is too conservative. After preprocessing, each of
the O(n/km) processors could apply the finite-state machine
implementation to its block. However, blocks are so short
that it becomes irrelevant. On the other hand, with standard

scale systems and very large size files the application of the
finite-state machine in parallel to the distributed blocks plays
an important role to achieve high speed.

C. Speeding up the Preprocessing

To lower the time of the preprocessing phase to O(m),
the same augmented trie data structure, described in the
previous section, is needed but, in this case, the boundary
matches are the longest ones rather than the ones ending
furthest to the right. Then, besides the temporary variables
t1 and t2, employed by the preprocessing phase described
in the previous section, two more variables τ1 and τ2 are
required and, initially, equal to t1 and t2. Each time t1 must
be updated by such preprocessing phase, the value t2−t1+1
is compared with τ2 − τ1 before updating. If it is greater or
τ2 is smaller than the last position of the first half of the 2m
characters, τ1 and τ2 are set equal to t1 and t2−1. Then, t1
is updated. At the end of the procedure, τ1 and τ2 are the
first and last positions of the longest boundary match. We
wish to point out that there is always a boundary match that
is computed, since the final value of τ2 always corresponds
to a position equal either to one in the second half of the
2m characters or to the last position of the first half.

V. EXPERIMENTAL RESULTS

Suffix-closed and prefix-closed dictionaries have been
considered in static data compression because they are
constructed by the LZ77 [24] and LZ78 [11] adaptive
compression methods, when reading a typical string of a
given source of data. When the input string to compress
matches the characteristics of a dictionary given in advance
and already filled with typical factors, the advantage in
terms of compression efficiency is obvious. However, the
bounded size of the dictionary (typically, 216 factors) and
its static nature imply a lack of robustness and the adaptive
methods might result more effective in some cases, even
if the type of data is known and the dictionary is very
well constructed. We experimented this with the ”compress”
command line on the Unix and Linux platforms, which is
the implementation of a variant of the LZ78 method, called
the LZC method. LZC builds a prefix-closed dictionary of
216 factors while compressing the data. When the dictio-
nary is full, it applies static dictionary greedy compression
monitoring at the same time the compression ratio. When the
compression ratio starts deteriorating, it clears the dictionary
and restarts dynamic compression alternating, in this way,
adaptive and non-adaptive compression. We experimented
that, when compressing megabytes of english text with a
static prefix-closed dictionary optimally, there might be up
to a ten percent loss in comparison with the compression
ratio of the LZC method [23]. However, as we pointed out
earlier, there is no scalable and robust implementation of the
LZC method on a distributed memory system (except for
the static phase of the method as shown in [26]), while a

79

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nearly optimal compression distributed algorithm is possible
with no scalability and robustness issues if we accept a ten
percent compression ratio loss as a reasonable upper bound
to the price to pay for it [23].

A prefix-closed dictionary D in [23] was filled up with
216 elements, starting from the alphabet (each of the 256
bytes). Then, for each of the most common subbstrings
listed in [9], every prefix of length less or equal to ten was
added to D. On the other hand, for each string with no
capital letters and less than eleven characters in the Unix
dictionary of words, we added every prefix of length less or
equal to six. For every word in the Unix dictionary inserted
in D, a space was concatenated at the end of the copy in
D. Another copy ending with the new line character was
inserted if the word length is less than six. Finally, it was
enough to add a portion of the words with six characters
plus a new line character to fill up D. The average optimal
compression ratio we obtained with this dictionary is 0.51,
while the greedy one is even 0.57. On the other hand,
the LZC average compression ratio is 0.42. It turned out
that both gaps are consistently reduced when the prefix
property of the dictionary is relaxed. A not prefix-closed
dictionary D′ was filled up with 216 elements, starting from
the alphabet and the 477 most common subbstrings listed in
[9]. Then, we added each string with no capital letters and
less than ten characters from the Unix dictionary of words.
Again, for every word in the Unix dictionary inserted in
D′, a space was concatenated at the end of the copy in
D′. Finally, it was enough to add a portion of short words
with a new line character at the end to fill up D′. With
such dictionary, the loss on the compression ratio goes down
from ten to five percent with respect to the adaptive LZC
compression. Moreover, the greedy approach has just a one
percent loss with respect to optimal, as shown in Figure 4.
This is because the dictionary is better constructed. In Figure
4, we also show the compression effectiveness results for the
two approaches with or without boundaries preprocessing
(that is, for an extreme or a standard distibuted system). The
two approaches perform similarly and have a one percent
loss with respect to sequential greedy, whether the dictionary
is prefix-closed or not.

Figure 4. Compression ratios with english text.

We observed in the introduction that for read-only mem-
ory files, speeding up decompression is what really matters
in practice. In this context, the results presented in this paper
suggest a dynamic approach (that is, working for any type
of input), where the dictionary is not given in advance but

learned from the input string and, then, used staticly to com-
press the string. This models a scheme where compression is
performed only once with an off-line sequential procedure
reading the string twice from left to right in such a way
that decompression can be parallelized with no scalability
issues. The first left-to-right reading is to learn the dictionary
and better ways than the LZC algorithm exist since the
dictionary provided by LZC, after reading the entire string,
is constructed from a relatively short suffix of the input. A
much more sophisticated approach employs the LRU (least
recently used) strategy [9]. With such strategy, after the
dictionay is filled up elements are removed in a continuous
way by deleting at each step of the factorization the least
recently used factor which is not a proper prefix of another
one. A relaxed version of this approach was presented in
[34], that is easier to implement, and experimental results
show that the compression ratio with this type of dictionary
goes down to 0.32 for english text [35]. This performance
is kept if the greedy approach is applied staticly during the
second reading of the string, using the dictionary obtained
from the first reading. Moreover, if the compression is
applied independently to different blocks of data of 1Kb or
to smaller blocks after the boundaries preprocessing, there
is still just a one percent loss on the compression ratio.

VI. PSEUDO-PREFIX AND PSEUDO-SUFFIX
DICTIONARIES

We partially relax the suffix and prefix properties to keep
respectively optimal the greedy and semi-greedy approaches
by introducing pseudo-suffix and pseudo-prefix dictionaries.
Then, we give an insight of why optimal factorizations can
be computed in real time with pseudo-prefix and pseudo-
suffix dictionaries while this is not possible if the dictionary
is arbitrary. Finally, we present experimental results using
pseudo-prefix dictionaries.

A. Introducing Pseudo-Prefix and -Suffix Dictionaries

Given a finite alphabet A, let p and s be a prefix and
a suffix of a string x ∈ A∗ such that x = ps. Then, we
call p the complementary prefix of s with respect to x.
Accordingly, we call s the complementary suffix of p with
respect to x. We say a dictionary D is pseudo-prefix if:

• let p be a prefix of x ∈ D such that the complementary
suffix s with respect to x is a prefix of an element in
D. Then, p ∈ D.

Accordingly, we say a dictionary is pseudo-suffix if:

• let s be a suffix of x ∈ D such that the complementary
prefix p with respect to x is a suffix of an element in
D. Then, s ∈ D.

80

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We prove, now, the optimality of the on-line greedy
factorization approach with pseudo-suffix dictionaries.

Theorem 1. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-suffix dictionary. For every x ∈ A∗, the on-line
greedy factorization of x is optimal.

Proof. The pseudo-suffix property implies, as the suffix
property, that the on-line greedy approach selects, at each
step, the factor ending furthest to the right. Indeed, assume
that the factor selected by the greedy choice at the i-th
step of the process ends to the right of the i-th factor of
the optimal solution (which is always true at the first step).
Then, there is a suffix s of the i+1-th factor of the optimal
solution with a complementary prefix that is a suffix of
the factor selected by the greedy choice at the i-th step.
It follows that s is a dictionary element. Therefore, the
on-line greedy approach selects, at each step, the factor
ending furthest to the right and its optimality follows. q. e. d.

With the next theorem, we prove the optimality of the semi-
greedy factorization process with pseudo-prefix dictionaries.

Theorem 2. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-prefix dictionary. For every x ∈ A∗, the
semi-greedy factorization of x is optimal.

Proof. The pseudo-prefix property implies, as the prefix
property, that the semi-greedy approach selects, at each step,
a factor such that the longest match in the next position
with a dictionary element ends to the rightest. This is true
at the first step, since for each suffix of the greedy factor
that is a prefix of a dictionary element the complementary
prefix is a dictionary element. Then, inductively, it is true
for every step and the optimality follows. q. e. d.

It follows from the two theorems above and the
results shown in the previous section that, as for prefix-
closed and suffix-closed dictionaries, real-time optimal
factorizations are possible with pseudo-prefix and pseudo-
suffix dictionaries. Moreover, an optimal factorization
using a pseudo-suffix dictionary is implementable with a
finite state machine. However, the making of a pseudo-
prefix dictionary is much simpler than the making of a
pseudo-suffix one. Indeed, let D be an arbitrary dictionary
stored in a trie and add prefixes of its elements to make it
pseudo-prefix. The most natural way to do this is to visit
the trie with a depth-first search. For each path from the
root to a node representing a string not in D, such string
is added to D if a descendant of the node is in D. The
running time for such procedure is about the dictionary size
times the depth of the trie.

B. Canonical Factors

We prove a property concerning optimal factorizations
with pseudo-prefix and pseudo-suffix dictionaries. This
property was previously proved for prefix-closed dictionaries
in [18] and it gives an insight of why optimal factorizations
can be computed in real time with this type of dictionary.
First, we prove the property for pseudo-prefix dictionaries.

Theorem 3. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-prefix dictionary. Let k be the number of
factors of an optimal factorization of a string s ∈ A∗. Then,
for 1 ≤ i ≤ k, there is an optimal factorization such that
its i-th factor is a substring of the i-th factor of every other
optimal factorization of s.

Proof. First of all, given two optimal factorizations
s = f1

1 · · · f1
k = f2

1 · · · f2
k we prove that f1

i and f2
i overlap

for 1 ≤ i ≤ k. Given any substring f of s, denote with
first(f) and last(f) the first and the last position of
s covered by f . Then, suppose last(f2

i) < first(f1
i)

for some i with 1 < 1 < k. Let j be such that
first(f1

j) ≤ last(f2
i) ≤ last(f1

j). It follows from the
optimality of the two factorizations and the pseudo-prefix
property that last(f1

j) < last(f2
i+1). Denote with pref(f1

j)
the prefix of f1

j such that last(pref(f1
j)) = last(f2

i). Then,
pref(f1

j) ∈ D since D is pseudo-prefix. It follows that
the factorization f1

1 · · · f1
j−1pref(f

1
j)f

2
i+1 · · · f2

k comprises
less than k phrases since j < i. Therefore, f1

i and f2
i must

have a not empty intersection. Suppose now that, for every
optimal factorization s = f1 · · · fk, first(fi) ≤ first(f1

i)
and last(fi) ≥ last(f2

i). Denote with pref(f1
i) the

prefix of f1
i such that last(pref(f1

i)) = last(f2
i). Then,

pref(f1
i) ∈ D since D is pseudo-prefix. It follows that

f1
1 · · · f1

i−1pref(f
1
i)f

2
i+1 · · · f2

k is an optimal factorization
of s, with pref(f1

i) substring of the i-th factor of every
other optimal factorization. q. e. d.

In the next theorem, we prove the property for pseudo-suffix
dictionaries with similar arguments.

Theorem 4. Given a finite alphabet A, let D ⊆ A∗

be a pseudo-suffix dictionary. Let k be the number of
factors of an optimal factorization of a string s ∈ A∗. Then,
for 1 ≤ i ≤ k, there is an optimal factorization such that
its i-th factor is a substring of the i-th factor of every other
optimal factorization of s.

Proof. First of all, given two optimal factorizations
s = f1

1 · · · f1
k = f2

1 · · · f2
k we prove that f1

i and f2
i

overlap for 1 ≤ i ≤ k. Given any substring f of s,
denote with first(f) and last(f) the first and the last
position of s covered by f , as in Theorem 3. Then,
suppose last(f2

i) < first(f1
i) for some i with 1 < 1 < k.

81

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let j be such that first(f1
j) ≤ last(f2

i) ≤ last(f1
j). It

follows from the optimality of the two factorizations and
the pseudo-suffix property that first(f1

j) > first(f2
i−1).

Denote with suff(f2
i) the suffix of f2

i such that
first(suff(f2

i)) = first(f1
j). Then, suff(f2

i) ∈ D
since D is pseudo-suffix. It follows that the factorization
f1
1 · · · f1

j−1suff(f
2
i)f

2
i+1 · · · f2

k comprises less than k
phrases since j < i. Therefore, f1

i and f2
i must have a not

empty intersection. Suppose now that, for every optimal
factorization s = f1 · · · fk, first(fi ≤ first(f1

i) and
last(fi) ≥ last(f2

i). Denote with suff(f2
i) the suffix

of f2
i such that first(suff(f2

i)) = first(f1
i). Then,

suff(f2
i) ∈ D since D is pseudo-suffix. It follows that

f1
1 · · · f1

i−1suff(f
2
i)f

2
i+1 · · · f2

k is an optimal factorization
of s, with suff(f2

i) substring of the i-th factor of every
other optimal factorization. q. e. d.

Given a finite alphabet A, a dictionary D ⊆ A∗ and
a string s ∈ A∗, let a string f ∈ A∗ be the i-th factor of
an optimal factorization of s with respect to D for some
positive integer i less or equal to the optimal cost k. Then,
we call f canonical if it is the substring of the i-th of every
other optimal factorization of s. We proved, in the two
theorems above, that if the dictionary is pseudo-prefix or
pseudo-suffix then, given any input string, for every positive
integer between 1 and the optimal factorization cost there
is a canonical factor. The presence of these cannical factors
gives an insight of why a real-time factorization is possible
for this type of dictionaries since it proves that in order to
determine the next factor of an optimal factorization we
need to process only the current one.

Now, we show the impossibility of a real-time optimal
factorization for every input string if the dictionary is
arbitrary, by presenting an example where the dictionary
is {a, b, ai, aj , ak(j−i)b2} with ki < j. Then, we consider
two strings s1 and s2 sharing the same prefix akj but
with two different complementary suffixes equal, respec-
tively, to ak(j−i)b2 and b2. Then, the optimal factorization
is aj , ..., aj , ak(j−i)b2 for s1 and ai, ..., ai, ak(j−i)b2 for
s2. This proves that any approach to produce an optimal
factorization is not independent from the maximum factor
length L of the dictionary and that the complexity of the
optimal factorization problem is Ω(nL), where n is the input
string length.

C. Experimental Results

The results presented in Figure 4 for a not prefix-closed
dictionary D′ are reported again in Figure 5 as results
for a not pseudo-prefix dictionary, since the dictionary D′

described in the previous section was not pseudo-prefix
as well. If we add prefixes to D′ to make it pseudo-
prefix, optimal compression is the same as before and
greedy is basically optimal (less than one percent loss),
as shown in Figure 5. We also show that the compression

effectiveness results for the pseudo-prefix dictionary with or
without boundaries preprocessing (that is, for an extreme or
a standard distibuted system) have a one percent loss with
respect to sequential greedy, so the pseudo-prefix dictionary
has a better performance.

Figure 5. Compression ratios with english text.

Now, we consider the off-line dynamic approach reading
twice the input, which can be applied in the case of read-
only memory files. The dictionary, bounded by the LRU
strategy, is not pseudo-prefix if it is learned by the heuristic
in [13]. We mentioned in the previous section the average
compression ratio for english text is 0.32 and if the compres-
sion is applied independently to different blocks of data of
1Kb or to smaller blocks after the boundaries preprocessing,
there is still just a one percent loss on the compression ratio.
This loss disappears if we make the dictionary pseudo-prefix
and apply the approximation scheme in [23] to optimal
compression.

VII. CONCLUSION

We presented parallel implementations of the greedy
approach to dictionary-based static text compression suit-
able for standard and non-standard large scale distributed
systems. In order to push scalability beyond what is tradi-
tionally considered a large scale system, a more involved
approach distributes overlapping blocks to compute bound-
ary matches. These boundary matches are relevant to main-
tain the compression effectiveness on a so-called extreme
distributed system. If we have a standard small, medium or
large scale system available, the approach with no boundary
matches can be used. The absence of a communication
cost during the computation guarantees a linear speed-up.
Moreover, the finite state machine implementation speeds
up the execution of the distributed algorithm in a relevant
way when the data blocks are large, that is, when the size of
the input file is large and the size of the distributed system
is relatively small. Finally, we introduced the notion of
pseudo-prefix dictionary, which allows optimal compression
by means of a real-time semi-greedy procedure and a slight
improvement on the compression ratio obtained by the
distributed implementations. As future work, experiments
on parallel running times should be done to see how the
preprocessing phase effects on the linear speed-up when
the system is scaled up beyond the standard size and
how relevant the employment of the finite state machine
implementation is when the data blocks are small.

82

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] S. DeAgostino, ”The Greedy Approach to Dictionary-Based
Static Text Compression on a Distributed System,” Pro-
ceedings International Conference on Advances Engeneering
Computing with Applications to Sciences, 2014, pp. 1-6.

[2] S. DeAgostino, ”Approximating Dictionary-Based Optimal
Data Compression on a Distributed System,” to appear in
Proceedings ACM International Conference on Computing
Frontiers, 2015.

[3] R. A. Wagner, ”Common Phrases and Minimum Text Stor-
age,” Communications of the ACM, vol. 16, 1973, pp. 148-
152.

[4] E. J. Shoegraf and H. S. Heaps, ”A Comparison of Algorithms
for Data Base Compression by Use of Fragments as Language
Elements,” Information Storage and Retrieval, vol. 10, 1974,
pp. 309-319.

[5] M. Cohn and R. Khazan, ”Parsing with Suffix and Prefix Dic-
tionaries,” Proceedings IEEE Data Compression Conference,
1996, pp. 180-189.

[6] M. Crochemore and W. Rytter, Jewels of Stringology, World
Scientific, 2003.

[7] A Hartman and M. Rodeh, ”Optimal Parsing of Strings,”
Combinatorial Algorithms on Words (eds. Apostolico, A.,
Galil, Z.), Springer, 1985, pp. 155-167.

[8] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression,
Prentice Hall, 1990.

[9] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[10] A. Lempel and J. Ziv, ”On the Complexity of Finite Se-
quences,” IEEE Transactions on Information Theory, vol. 22,
1976, pp. 75-81.

[11] J. Ziv and A. Lempel, ”Compression of Individual Sequences
via Variable-Rate Coding,” IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[12] T. A. Welch, ”A Technique for High-Performance Data Com-
pression,” IEEE Computer, vol. 17, 1984, pp. 8-19.

[13] V. S. Miller and M. N. Wegman, ”Variations on Theme by
Ziv - Lempel,” Combinatorial Algorithms on Words (eds.
Apostolico, A., Galil, Z.), Springer, 1985, pp. 131-140.

[14] L. Cinque, S. De Agostino, and L. Lombardi, ”Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,” Mathematics in Computer Science, vol. 3,
2010, pp. 391-406.

[15] S. De Agostino, Sub-Linear Algorithms and Complexity
Issues for Lossless Data Compression, Master’s Thesis, Bran-
deis University, 1994.

[16] S. De Agostino, Parallelism and Data Compression via Tex-
tual Substitution, Ph. D. Dissertation, Sapienza University of
Rome, 1995.

[17] S. De Agostino, ”Parallelism and Dictionary-Based Data
Compression,” Information Sciences, vol. 135, 2001, pp. 43-
56.

[18] S. De Agostino S. and J. A. Storer, ”Parallel Algorithms
for Optimal Compression Using Dictionaries with the Prefix
Property,” Proceedings IEEE Data Compression Conference,
1992, pp. 52-61.

[19] D. S. Hirschberg and L. M. Stauffer, ”Parsing Algorithms for
Dictionary Compression on the PRAM,” Proceedings IEEE
Data Compression Conference, 1994, pp. 136-145.

[20] D. S. Hirschberg and L. M. Stauffer, ”Dictionary Compres-
sion on the PRAM,” Parallel Processing Letters, vol. 7, 1997,
pp. 297-308.

[21] H. Nagumo, M. Lu, and K. Watson, ”Parallel Algorithms for
the Static Dictionary Compression,” Proceedings IEEE Data
Compression Conference, 1995, pp. 162-171.

[22] L. M. Stauffer and D. S. Hirschberg, ”PRAM Algorithms
for Static Dictionary Compression,” Proceedings International
Symposium on Parallel Processing, 1994, pp. 344-348.

[23] D. Belinskaya, S. De Agostino, and J. A. Storer, ”Near
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecture,” Proceedings IEEE
Data Compression Conference, 1995, pp. 172-181.

[24] A. Lempel and J. Ziv, ”A Universal Algorithm for Sequen-
tial Data Compression,” IEEE Transactions on Information
Theory, vol. 23, 1977, pp. 337-343.

[25] S. DeAgostino, ”Parallel Implementations of Dictionary Text
Compression without Communication,” London Stringology
Days, 2009.

[26] S. DeAgostino, ”LZW Data Compression on Large Scale and
Extreme Distributed System,” Proceedings Prague Stringol-
ogy Conference, 2012, pp. 18-27.

[27] Y. Matias and C. S. Sahinalp, ”On the Optimality of Parsing in
Dynamic Dictionary-Based Data Compression,” Proceedings
SIAM-ACM Symposium on Discrete Algorithms, 1999, pp.
943-944.

[28] M. Crochemore, A. Langiu, and F. Mignosi, ”Note on the
Greedy Parsing Optimality for Dictionary-Based Text Com-
pression,” Theoretical Computer Science, vol. 525, 2014, pp.
55-59.

[29] M. Crochemore, L. Gianbruno, A. Langiu, F. Mignosi, and A.
Restivo, ”Dictionary-Simbolwise Flexible Parsing,” Journal of
Discrete Algorithms, vol. 14, 2012, pp. 74-90.

[30] A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini, ”Bi-
criteria Data Compression,” Proceedings SIAM-ACM Sym-
posium on Discrete Algorithms, 2014, pp. 1582-1585.

[31] P. Ferragina, I. Nitto, and R. Venturini, ”On Optimally Par-
titioning a Text to Improve Its Compression,” Algorithmica,
vol. 61, 2011, pp. 51-74.

83

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] P. Ferragina, I. Nitto, and R. Venturini, ”On the Bit-
Complexity of Lempel-Ziv Compression,” SIAM Journal on
Computing, vol. 42, 2013, pp. 1521-1541.

[33] A. Langiu, ”On Parsing Optimality for Dictionary-Based Text
Compression - the Zip Case”, Journal of Discrete Algorithms,
vol. 20, 2013, pp. 65-70.

[34] S. DeAgostino and R. Silvestri, ”Bounded Size Dictionary
Compression: SCk-Completeness and NC Algorithms,” In-
formation and Computation, vol. 180, 2003, pp. 101-112.

[35] S. DeAgostino, ”Bounded Size Dictionary Compression: Re-
laxing the LRU Deletion Heuristic,” Proceedings Prague
Stringology Conference, 2005, pp. 135-142.

84

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

