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Abstract  

 

The identification of new therapeutic strategies against osteosarcoma (OS), the most common 

primary bone tumor, continues to be a primary goal to improve the outcomes of patients 

refractory to conventional chemotherapy. OS originates from the transformation of mesenchymal 

stem cells (MSCs) and/or osteoblast progenitors, and the loss of differentiation is a common 

biological OS feature which strong significance in predicting tumor aggressiveness. Thus, restoring 

differentiation through epigenetic reprogramming is potentially exploitable for therapeutic 

benefits. Here, we demonstrated that the novel non-nucleoside DNMT inhibitor (DNMTi) MC3343 

affected tumor proliferation by blocking OS cells in G1 or G2/M phases and induced osteoblastic 

differentiation through the specific re-expression of genes regulating this physiological process. 

While MC3343 has a similar antiproliferative effect as 5azadC, the conventional FDA-approved 

nucleoside inhibitor of DNA methylation, its effects on cell differentiation are distinct. Induction of 

the mature osteoblast phenotype coupled with a sustained cytostatic response was also 

confirmed in vivo when MC3343 was used against a patient-derived xenograft (PDX). In addition, 

MC3343 displayed synergistic effects with doxorubicin (DXR) and cisplatin (CDDP), two major 

chemotherapeutic agents used to treat OS. Specifically, MC3343 increased stable DXR bonds to 

DNA, and combined treatment resulted in sustained DNA damage and increased cell death. 

Overall, this non-nucleoside DNMTi is an effective novel agent and is thus a potential therapeutic 

option for OS patients who respond poorly to pre-adjuvant chemotherapy.
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Introduction  

Osteosarcoma (OS), the most common primary bone tumor, occurs mainly in children and 

adolescents and therefore has an important social impact despite its rarity (1). To date, the most 

effective therapeutic strategy against OS is surgical resection combined with chemotherapy (2, 3). 

This multidisciplinary approach has increased the survival of patients with localized tumors over 

the past few decades, achieving a 5-year survival rate of up to 70% (4, 5). However, outcomes for 

patients with metastasis at diagnosis or for those who fail first-line treatment remain 

unsatisfactory (6). The multiple and complex genetic aberrations that characterize OS have 

prevented the identification of specific, common oncogenic drivers (7) and the successful 

application of targeted therapies, thwarting any improvement in survival (8). The adoption of 

immunotherapy with checkpoint inhibitors may also be relevant in the treatment of patients with 

sarcomas, as an increasing number of successes in other tumors have been reported. Such 

impressive results, however, have not been replicated in OS, and novel therapeutic approaches 

are therefore urgently needed. OS is thought to originate from the transformation of 

mesenchymal stem cells (MSCs) and/or osteoblast progenitors in any phase of differentiation (9). 

Transformation generates a block in normal development coupled with abnormal proliferation 

processes, and differentiation loss is a widespread biological feature of these tumors and has a 

strong prognostic significance (10). Thus, restoring differentiation by unlocking the stops driven by 

genetic and epigenetic alterations may be exploited as a therapeutic opportunity. Several lines of 

evidence have indicated that chromatin modifications in cancer versus normal MSCs include 

increased gene-specific DNA methylation and increased histone methylation, while the loss of DNA 

methylation occurs in normal processes of MSC differentiation [for a review see (11)]. Here, we 

analyzed the effects of a novel non-nucleoside DNA methyltransferase inhibitor (DNMTi), the N-(3-

(2-amino-6-methylpyrimidin-4-ylamino)phenyl)-3-(quinolin-4-ylamino)benzamide MC3343, on cell 

proliferation, survival and differentiation in a representative panel of OS patient-derived cell lines 

and xenografts. DNA hypermethylation is a common feature in tumor development. In humans, 

DNA methylation occurs at the C-5 position of cytosines, mainly in a CpG dinucleotide context, and 

is catalyzed by members of the DNMT family of enzymes that transfer a methyl group from S-

adenosyl-methionine (AdoMet) to the DNA cytosine C5 (12, 13). Catalytically active DNMTs 

(DNMT1, DNMT3a and DNMT3b) share common features, especially a regulatory N-terminal 
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domain and a catalytic C-terminal domain, which are conserved among different species. DNMT1, 

the first purified and characterized and most abundant DNMT in somatic cells, has a greater 

affinity for hemi-methylated DNA rather than un-methylated DNA. DNMT1 acts mainly after DNA 

replication to methylate the newly synthesized strand and is typically known as a maintenance 

methyltransferase (13). DNMT1 is essential during developmental stages and in adult somatic cells 

to ensure cell proliferation and survival (14). In cancer cells, disruption of DNMT1, either 

genetically or pharmacologically through the use of DNMTis, is sufficient to stop the growth of 

tumors (12), reverse the un-differentiated state, and inhibit the invasiveness of cells, thus 

providing a very interesting therapeutic target (15). DNMTis are currently classified as nucleoside 

analogs, such as azacitidine (5azaC, Vidaza®) and decitabine (5azadC,Dacogen®), or non-nucleoside 

obtained by repositioning old drugs (e.g., hydralazine, procainamide, curcumin, and 

epigallocatechin gallate) or by identifying new drugs (e.g., RG-108, nitrophenyl-flavones, Δ2-

isoxazolines, and SGI-1027) (12, 16). The first category of drugs has been approved for the 

treatment of myelodysplasia and several solid tumors including some cases of neuroblastoma, 

despite their poor bioavailability, chemical instability and toxic side effects (17-19). To date, 

DNMTis have been scarcely investigated in OS; most existing studies involve two approved 

nucleoside inhibitors, 5azaC and 5azadC (4, 20-25), and scarce data are available regarding non-

nucleoside DNMTis. To improve the efficacy and DNMT-selectivity of non-nucleoside analogs, we 

chemically manipulated the SGI-1027 structure (26) by preparing all of its regioisomers, as well as 

some truncated and symmetric bis-quinoline and bis-pyrimidine analogs to test against DNMT1 

and DNMT3a, and identified MC3343 as the best inhibitor (27). MC3343 is a strong DNA binder, 

showing preferential binding to DNA in CG-rich regions, and destabilizes the DNMT1-AdoMet DNA 

complex (28). Here, MC3343 efficiently inhibited OS cell proliferation, induced the specific re-

expression of osteoblastogenesis genes, and acted synergistically with doxorubicin (DXR) and 

cisplatin (CDDP). We found that MC3343 improved the accessibility of DXR to DNA and 

significantly increased DXR-induced DNA damage and cell death.  
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Materials and Methods  

Chemicals 

MC3343 was prepared as previously reported (27, 28). 5azadC was purchased from Sigma-Aldrich . 

Stock solutions were prepared in DMSO and stored at −20°C. 

 

DNMT1 and DNMT3a assays in a cell-free context 

DNMT1 and DNMT3a enzyme inhibition assays were performed according to Valente et al. (27). A 

detailed description is provided in the Supplementary Materials and Methods. 

 

DNMT activity assay in a cell context 

DNMT activity was measured using an EpiQuik DNA Methyltransferase Activity/Inhibition Kit 

(Epigentek). Cells were treated with MC3343 (1-10 μM) or 5azadC (0.1-10 μM) for 48 h, and 5 g 

of nuclear extracts isolated using the EpiQuik Nuclear Extraction Kit (Epigentek) was added to each 

reaction well according to the manufacturer’s protocol. Absorbance was determined using a 

microplate spectrophotometer at 450 nm (GloMax luminometer, Promega). The data are 

expressed as the mean ± SE of three independent experiments. 

 

Cell lines 

The patient-derived human OS cell lines Saos-2, U-2OS and MG-63 were obtained from American 

Type Culture Collection (1992). The patient-derived OS cell lines IOR/OS9, IOR/OS10, IOR/OS14, 

IOR/OS20, and IOR/SARG were established and previously characterized at the Laboratory of 

Experimental Oncology of Rizzoli Orthopedic Institute (29). Cell lines were profiled for the DNA 

copy number changes (30) and DNA methylation status at approximately 27,000 CpG sites (31). 

The cell lines PDX-OS#1-C4 and PDX-OS#2-C2 were obtained from OS patient-derived xenografts 

(PDXs) after four or two passages in the animal, respectively (2015). All cell lines were tested for 

mycoplasma contamination (Mycoalert Mycoplasma Detection Kit, Lonza) before use and 

authenticated by short-tandem repeat polymerase chain reaction (STR PCR) analysis; detailed 

information is provided in the Supplementary Materials and Methods. All cell lines were 

immediately amplified to constitute liquid nitrogen stocks and were never passaged for more than 

1 month upon thawing. Cells were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) 

supplemented with 10% heat-inactivated FBS (Lonza), penicillin (20 U/mL) and streptomycin (100 

μg/mL) (Sigma-Aldrich) in a 37°C humidified at 5% CO2. 
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Cell culture experiments 

To perform cell culture experiments, 2x105 cells/well were plated, and DNMTi MC3343 (1-30 μM) 

or 5azadC (0.1-30 μM) was added after 24 h. Cells were exposed for up to 96 h before being 

counted by Trypan blue vital cell count (Sigma-Aldrich). In parallel, cells were treated with DMSO-

containing medium as a control. The highest final concentration of DMSO in the medium was 

<0.005%, and DMSO had no effect on cell growth inhibition. In combination experiments, cells 

were treated for 96 h with MC3343 alone (control) or in combination with a fixed ratio of DXR 

(Pfizer), CDDP (Sandoz) and methotrexate (MTX, Sigma-Aldrich). For cell cycle analysis after 24-48 

h of treatment, 5-bromo-2’-deoxyuridine (BrdU, Sigma-Aldrich) labeling was used to assess cell 

proliferation. Then, the cells were processed for indirect immunofluorescence staining using 

anti-BrdUmAb (1:8; BD-Biosciences, #347580) as a primary antibody, anti-mouse FITC as a 

secondary antibody (1:100; Thermo Scientific, #31569) and 20 μg/mL propidium iodide for the 

analysis of DNA content before flow cytometry analysis (Sysmex, Partec). To measure the 

intranuclear uptake of DXR, living cells were exposed to DXR (1-10 μM for 30-60 min at 37°C) (32) 

with or without MC3343 (10 μM) or 5azadC (1 μM). -H2AX expression and quantification was 

assessed by flow cytometry after staining with an anti- H2AX antibody (Ser139, 1:50, Cell Signaling 

Technology, #9718) and anti-rabbit FITC as a secondary antibody (1:80; DAKO, #F0205). 

Short interfering RNA (siRNA)-mediated knockdown of DNMT1 and DNMT3a was performed with 

siRNAs from Thermo Scientific Dharmacon; SMART POOL siGENOME_siRNA (FE5M004605010020 

for DNMT1 and FE5M006672030020 for DNMT3a). siGENOME_non targeting_siRNA was used as 

control (FE5D0012061320). siRNAs (25 nM and 50 nM) were transfected into Saos-2 and PDX-

OS#1-C4 cells using the transfection agent TransIT-x2 System (Mirus, #MIR6000) according to the 

manufacturer’s instructions.  For details please refer to Supplementary Material and Methods. 

 

OS differentiation toward osteoblasts 

Four days after seeding, OS cells were exposed to specific osteogenic medium (IMDM 

supplemented with 2% FBS, 5 mM β-glycerophosphate and 50 μg/mL ascorbic acid, Sigma-Aldrich) 

without (control) or with MC3343 (1-5 μM) or 5azadC (0.1-0.5 μM) and maintained in 

differentiating conditions for up to 21 days. The medium was renewed every 4 days, and cells 

were harvested at various time points to collect total RNA and verify bone mineralization. Specific 

osteoblastic markers were evaluated by quantitative real-time PCR (RT-qPCR) as previously 
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described (33). The primers or assays (Applied Biosystems) used are as follows: GAPDH forward: 

5’-GAAGGTGAAGGTCGGAGTC-3’, reverse: 5’-GAAGATGGTGATGGGATTTC-3’ and probe: 5’-

CAAGCTTCCCGTTCTCAGCC-3’; OCN, forward: 5’-GGGCTCCCAGCCATTGAT-3’ and reverse: 5’-

CAAAGCCTTTGTGTCCAAGCA-3’; ALPL (Hs01029144_m1); and COL1A2 (Hs01028970_m1). 

Amplification reactions were performed using a ViiA7™ Real-Time PCR System (Life Technologies). 

Osteoblastic differentiation was assessed after 7-14 days by alkaline phosphatase (ALPL) staining 

using a Leukocyte Alkaline Phosphatase Kit (Sigma-Aldrich) according to the manufacturer’s 

instructions. To visualize bone mineralization, the plates were stained with 40 mM Alizarin red 

stain (ARS, Sigma-Aldrich). ARS was extracted from the monolayer and transferred to a 96-well 

plate for reading at 550 nm (GloMax luminometer, Promega). For a more general view of the 

osteogenic differentiation of OS cells, the Human Osteogenesis RT2 Profiler PCR Array (Qiagen-SA 

Biosciences) was used. 

 

Immunofluorescence staining 

Cells were seeded on coverslips and treated with increasing concentrations of MC3343 for up to 

72 h, fixed with 4% paraformaldehyde and permeabilized with 0.15% Triton X-100/PBS. The 

samples were incubated with anti-DNMT1 (sc-271729), anti-DNMT3a (sc-20703), anti-DNMT3b 

(sc-130740) antibodies (1:50, Santa Cruz) or with an MIB-1 antibody (1:50; Calbiochem-

Novabiochem, NA21-2) and visualized with an ECLIPSE 90i microscope (Nikon, Tokyo, Japan) 

equipped with Plan Apo VC 60X oil NA 1.4. Images were captured under identical conditions using 

a digital color camera (Nikon DS5 MC) and NIS-Elements AR3.10 software (Nikon). The percentage 

of Ki-67-positive cells in samples of at least 500 cells was quantified and expressed as the Ki-67 

labeling index (LI). 

 

Western blotting 

Subconfluent cells were treated as described above and processed for Western blotting following 

standard procedures. The following primary antibodies were used: anti-DNMT1 (1:1000, Bethyl 

Laboratories, A300-041A-M); anti-DNMT3a (1:1000, sc-20703), anti-DNMT3b (1:1000, sc-130740), 

anti-Cyclin D1 (1:2000, sc-753), and anti-GAPDH (1:5000, sc-25778) (all purchased from Santa Cruz 

Biotechnology); anti-pRbs (S807/811, S795, 1:1000, Rb sampler kit, #9969); anti-Rb (1:1000, 

#9309); anti-PARP (1:1000, #9542); and anti-cleaved caspase-3 (Asp175, 1:500, #9661) (all from 

Cell Signaling Technology); and anti-actin (1:1000, Merck Millipore, MAB1501). Anti-rabbit or anti-
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mouse secondary antibodies conjugated to horseradish peroxidase (1:1000-1:20000, GE 

Healthcare) were used, and bands were visualized with enhanced chemiluminescence (ECL) 

western blotting detection reagents (EuroClone). 

 

Patient-derived xenografts (PDXs) from primary human OS and in vivo treatments 

Rag 2-/-; Il2rg-/- breeders were kindly provided by Drs. T. Nomura and M. Ito of the Central 

Institute for Experimental Animals (Kawasaki, Japan) (34). Mice were then bred in our animal 

facilities under sterile conditions. Male mice aged 5-11 weeks, were used to generate PDXs by 

subcutaneous xenografts of OS fragments at the level of interscapular brown fat. PDX-OS#1 was 

derived from a primary high-grade osteoblastic OS. Pharmacological treatments began when the 

tumor reached a volume of 0.01 cm3. Tumor size was measured using a caliper, and tumor volume 

was calculated according to the following formula: tumor volume=π[√(a×b)]3/6, where a =maximal 

tumor diameter and b=tumor diameter perpendicular to a. The animals were randomized to 

receive intraperitoneal injections of 0.8 mg/kg 5azadC, peritumoral injections of 20 mg/kg MC3343 

or the vehicle control (PBS:DMSO 1:1) 5 days a week. DXR was administered intraperitoneally for 

two consecutive days (50 μg/injection). Mouse body weights and tumor volumes were measured 

at least once a week.  

 

Immunohistochemistry and von Kossa staining 

An avidin-biotin-peroxidase procedure was used to immunostain formalin-fixed, paraffin-

embedded PDX cells. After antigen retrieval with a citrate buffer solution (pH 6.0), the slides were 

stained with an MIB-1 antibody (1:100; Calbiochem-Novabiochem, NA21-2) or anti-DNMT1 (1:50; 

Santa Cruz, sc-271729). 

To visualize calcium deposits, von Kossa staining was performed. Tissue sections were treated with 

a 2% silver nitrate solution (Sigma-Aldrich) according to the manufacturer’s protocol and 

counterstained with Nuclear Fast Red (Sigma-Aldrich). 

 

Statistical analyses 

The data are presented as the mean ± SE for in vitro and in vivo studies. Correlations between two 

variables were obtained by Pearson’s test, and IC50 (concentration required to inhibit cell 

proliferation by 50%) values were calculated from the linear transformation of dose-response 

curves. To define drug–drug interactions (synergism: combination index (CI) < 0.9; additivity: 0.90 
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< CI < 1.10; antagonism: CI > 1.10) (35) CalcuSyn software (Biososoft) was used. Differences among 

means were analyzed by Student’s t tests or chi square tests.  

 

Ethics statement 

Animal experiments were performed following the European directive 2010/63/UE and Italian law 

DL 26/2014. Experimental protocols were reviewed and approved by the Institutional Animal Care 

and Use Committee (“Comitato per il Benessere Animale”) of the University of Bologna and the 

Italian Ministry of Health with letter 782/2015-PR (Responsible Researcher Prof. Patrizia Nanni). 

The ethics committee of the Rizzoli Institute approved the studies (0018587/2016) and patient-

informed consent forms were obtained for the establishment of PDX models,. 
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Results  

 

The non-nucleoside DNMTi MC3343 efficiently inhibits OS cell proliferation and induces 

osteoblastic differentiation 

In cell-free assays, MC3343 displayed increased potency against DNMT1 compared with RG-108 

and SGI-1027, with an EC50 (effective concentration needed to inhibit 50% of the enzyme effect) of 

5.7 μM, which is 68-fold more potent than RG-108 and 2-fold more effective than SGI-1027. 

Against DNMT3a, the potency (EC50 = 1.7 μM) of MC3343 was 290-fold higher than that of RG-108 

but 2-fold less than that of SGI-1027 (Supplementary Table S1) (27). In the representative Saos-2 

OS cells, MC3343 induced dose- and time-dependent decreases in DNMT1, DNMT3a and DNMT3b 

protein levels (Fig. 1A-B) as well as enzyme activity (Fig. 1C). The effects were similar to those 

observed after treatments with the well-known nucleoside analog demethylating agent 5azadC 

(Fig. 1). Ten human OS cell lines, 8 derived directly from patients and 2 from PDX-OS mouse 

models, were exposed to MC3343, and the results were compared with those of 5azadC (Table 1). 

The IC50 values ranged from 5-15 μM for MC3343 and from 0.5- to->30 μM for 5azadC. Sensitivity 

to MC3343 inversely correlated with the expression of DNMT1 and DNMT3a (r=-0.640 or -0.637, 

respectively, p<0.05, Pearson’s correlation test), and this inverse relationship was not observed for 

5azadC. To sustain the specific effects of DNMT inhibition on OS cell growth, we also silenced 

DNMT1, DNMT3a, or both and verified the impact on Saos-2 growth under standard conditions 

(Supplementary Fig. S1A- B).  

Analysis of the cell cycle and apoptosis indicated that both MC3343 and 5azadC slowed cell 

proliferation (Ki-67) (Fig. 2A) and, accordingly, induced cyclin D1 downregulation and decreased 

the phosphorylation of the retinoblastoma gene product (pRb) (Fig. 2B). Cell cycle analysis 

indicated that MC3343 increased the percentage of cells in G0/G1 or G2/M phases of the cell cycle 
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(Fig. 2C), confirming its antiproliferative effect. In contrast, no induction of apoptosis was 

observed for either MC3343 or 5azadC. Along with the loss of expression of many genes encoding 

cell cycle regulators, epigenetic modifications also have pronounced effects on regulating cell fate 

and differentiation. To investigate the effects of MC3343 on OS differentiation, we took advantage 

of the osteoblastic-like Saos-2 OS cell line, which can differentiate toward an osteogenic lineage 

when maintained in low-serum medium supplemented with ascorbic acid (50 μg/mL) and β-

glycerophosphate (5 mM) (36). Osteoblasts produce and secrete proteins that constitute bone 

matrix, such as collagens and osteocalcin (OCN), and are essential for osteoid extracellular matrix 

(ECM) mineralization, a process mediated by alkaline phosphatase (ALPL). Accordingly, we 

evaluated the effects of MC3343 on the expression of osteoblast differentiation genes, such as 

collagen type I alpha 2 chain (COL1A2), ALPL and OCN, by RT-qPCR; these data were analyzed 

together with the amount of mineralized ECM evaluated by ARS staining. In total, 1 μM of MC3343 

(corresponding to the IC30 values) inhibited cell proliferation and significantly increased ECM 

mineralization (Fig. 3A and B). Moreover, we demonstrated decreased expression of COL1A2, an 

early marker of osteoblast differentiation, and upregulation of ALPL and OCN, markers of 

intermediate and terminal differentiation, respectively (Fig. 3C and D). Notably, 5azadC had a 

similar effect on cell proliferation but was unable to drive OS cells towards a specific 

differentiation profile. After exposure to 5azadC, Saos-2 cells did not mineralize in vitro (Fig. 3B), 

and ALPL and other osteoblastic markers were unmodified (Fig. 3C and D). To further confirm that 

the effects of MC3343 are indeed due to specific inhibition of DNMT, we silenced DNMTs using 

siRNAs and verified that DNMT deprivation under differentiating conditions inhibited cell 

proliferation (Supplementary Fig. S1C) and induced osteoblastic differentiation, as shown by 

increased ALPL activity and matrix mineralization (Supplementary Fig S1D and E). The different 

effects of MC3343 and 5azadC on differentiation were confirmed in a cell line derived from a PDX-
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OS (PDX-OS#1-C4) (Fig. 3C and D) and were even clearer with the Human Osteogenesis RT² 

Profiler™ PCR Array, which allows for a quick and reliable gene expression analysis of 84 genes 

related to osteogenic differentiation. Under differentiating conditions on day 7, exposing Saos-2 

cells to MC3343 induced the expression (>1.4-fold) of several genes involved in ossification. In 

particular, activation of several osteoblastic differentiating mediators was evident, including 

augmented bone morphogenetic proteins (BMPs; increased BMP1, BMP2, and BMP 5) and 

receptors (BMPR1A, 1B); upregulated growth factors involved in the early induction of 

osteoblastogenesis, such as basic fibroblast growth factor 2 (FGF2), receptor activator of nuclear 

factor kappa-B ligand (TNFSF11) and insulin-like growth factor 1 (IGF1); increased transcriptional 

factors (SOX9, TWIST1 and SPP1); and bone gamma-carboxyglutamate protein (BGLAP, also known 

as OCN), which encodes a highly abundant bone protein secreted by osteoblasts that regulates 

bone remodeling (Supplementary Table S2). In addition, MC3343 repressed chordin (CHRD), which 

encodes a secreted BMP antagonist protein, resulting in enhanced bone regeneration. Gene 

repression was also observed for matrix metallopeptidase 10 (MMP10), growth differentiation 

factor 10 (GDF10) and vascular endothelial growth factor receptor (FLT1), which are all involved in 

tumor malignancy. Globally, 30 genes were found to be upregulated and 8 genes were repressed 

after MC3343 exposure (Supplementary Table S2). In contrast, 5azadC induced generalized but 

rather undefined re-expression of the genes (76/84, 90% induced; 0/84, 0% repressed). 

Differences between the two agents were more evident on day 14, where MC3343 repressed 

19/84 genes and induced only 8/84 genes, while 5azadC continued to induce generalized re-

expression of the genes (65/84, 77%). Specifically, repression induced by MC3343 involved genes 

expressed in chondrocytes or osteoclasts, such as those encoding cartilage oligomeric matrix 

protein (COMP), type I collagens, and calcitonin receptor (CALCR), indicating that the compound 
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specifically drives OS cells toward the osteoblast fate. In contrast, all these genes were 

upregulated by 5azadC, supporting its undefined action (Supplementary Table S2). 

 

MC3343 reduces PDX OS growth and induces differentiation 

Given that PDXs preserve the tumor genomic profiles of patients and cancer biology better than 

patient-derived cell lines (37), the therapeutic potential of MC3343 was investigated against PDX-

OS#1 xenografts. Mice were treated with 20 mg/kg MC3343 or 0.8 mg/kg 5azadC when a tumor 

volume of 0.01 cm3 was reached. Peritumoral MC3343 administration was chosen as the first 

attempt to achieve a higher local concentration and test the direct activity of only the drug and 

not its metabolites. MC3343 was well tolerated, with no significant changes in mouse weights 

(Supplementary Fig. S2A), and significantly reduced tumor growth, which reproduced the effects 

observed with 5azadC (Fig. 4A, p<0.05 Student’s t test). The significant inhibition of cell 

proliferation was confirmed by Ki-67 evaluation (Fig. 4B). Consistent with the in vitro data, only 

MC3343, not 5azadC was able to drive osteoblast differentiation, despite their similar effects on 

cell growth. Osteoblast differentiation was proven by von Kossa staining for calcium deposits and 

increased OCN positivity after MC3343 treatment (Fig. 4C). Mineralized matrix induction by 

MC3343 may have limited the shrinkage of the tumors, which resulted in their having dimensions 

similar to those treated with 5azadC, masking the additional value of the compound.  

 

MC3343 synergizes with DXR and CDDP in OS cells 

In vitro, MC3343 was found to synergize with DXR and CDDP (CI: 0.580±0.02 for DXR; CI= 

0.784±0.01 for CDDP) but not MTX (CI: 1.317±0.08) in PDX-OS#1-C4, 5azadC induced sub-additive 

effects when combined with DXR (CI: 1.500±0.254), while silencing of DNMT1 or DNMT3a 

potentiated the cytotoxic effects of DXR (IC50 values: 18.05±4.27 ng/ml when cells were 
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transfected with SCR vs 2.40±0.42 ng/ml or 1.79±0.58 ng/ml when cells were silenced for DNMT1 

or DNMT3a, respectively) again mirroring the effects of MC3343 (Supplementary Fig. S1G) The 

advantage of using combined treatments was confirmed in vivo, when MC3343 was administered 

in combination with DXR (Fig. 5A). Tumor growth was significantly inhibited when both drugs were 

administered together, with improved efficacy being observed compared to the single agents. 

Reduced body weights were observed in mice receiving the combined treatment (Supplementary 

Fig. S2B).  

As recently observed (38, 39), epigenetic drugs are capable of increasing chromatin accessibility to 

conventional chemotherapeutic agents, significantly enhancing their effects. Taking advantage of 

DXR autofluorescence, we measured the fluorescence signals in cell nuclei with or without 

MC3343 or 5azadC or siRNAs against DNMT1 or DNMT3a. Given that the fluorescence signal of 

DXR is extinguished once the drug forms a stable bond with DNA (40), stabilized nuclear 

fluorescence associated with a significant decrease in the signal at 580 nm, as determined by flow 

cytometry (32), was observed when cells were simultaneously exposed to DXR and MC3343 

compared with DXR alone but not when cells were exposed to DXR and 5azadC (Fig. 5B). Similar 

results were obtained when cells were simultaneously exposed to DXR and siRNA against DNMT1 

or DNMT3a compared to SCR (Supplementary Fig. S1F). Accordingly, the percentage of sub-G0 

cells was increased when DXR was given in association with MC3343 but not when the drug was 

administred with 5azadC (Fig. 5C). To further demonstrate that MC3343 but not 5azadC sustains 

DXR activity, we analyzed DXR-induced DNA damage represented by phosphorylated γH2AX foci 

(Fig. 5D). γH2AX foci were clearly evident after 1 hour of DXR treatment and were maintained up 

to 48 h after DXR washout when cells were exposed to MC3343 while the kinetics of γH2AX foci 

was not modified when cells were exposed to 5azadC, (Fig. 5D). This result indicates that inhibition 

of DNMTs by MC3343 limited the efficacy of the DNA damage repair process and accordingly, the 
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percentage of growth inhibition shifted from 32% to 65% when PDX-OS#1-C4 cells were exposed 

to 1 μM DXR alone or DXR and MC3343 in combination for 24 h. 
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Discussion  

Strategies based on the use of agents promoting cell differentiation have been successfully applied 

to only hematological cancers thus far (41-43). However, differentiation-based therapies would be 

highly desirable for solid tumors, especially for pediatric cancers or tumors resistant to traditional 

treatments (44). Several epigenetic regulators have emerged as valuable drivers of malignancy 

reversion and cell differentiation, and consequently, their pharmacological inhibitors have entered 

clinical evaluation (45). Among multiple mechanisms participating in the epigenetic regulation of 

gene expression in cancer, aberrant DNA methylation is recognized as being highly involved in the 

development and progression of human malignancies. Thus, DNMTs appear to be promising 

therapeutic targets. Here, we present the anti-proliferative and pro-differentiation effects of the 

novel non-nucleoside DNMTi MC3343, an analog of the quinoline-based inhibitor SGI-1027 (26), 

on OS. Tested in patient-derived cell lines and xenografts, the compound severely limited cell 

proliferation while increasing the expression of genes specifically related to osteoblastogenesis 

and inducing matrix mineralization. Compared to 5azadC, MC3343 had similar antiproliferative 

effects but was more potent in promoting differentiation. Analysis of genes involved in 

osteoblastogenesis after treatment indeed demonstrated the gene-specificity of MC3343, which 

appeared to reactivate the cascade of regulatory genes associated with osteoblastic 

differentiation that is aberrantly silenced in OS. This specific effect was not observed for 5azadC, 

which induced only general, rather unspecific re-expression of genes. The specific induction of 

osteoblastic differentiation is indeed very relevant for OS, which should be considered a 

differentiation disease (46). Transformation is thought to occur in MSCs and/or osteoprogenitors 

in any phase of differentiation (9, 47) and blocks the highly structured process that leads to the 

normal terminal differentiation of osteoblasts (46). OS molecular features suggest that both 

genetic and epigenetic disruptions of osteoblast differentiation pathways may occur during tumor 
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development. In particular, OS cells showed more hypermethylated genes than hypomethylated 

genes (31, 48), thus supporting the use of a DNMTi in this disease. Here, we demonstrated that 

differentiation was stimulated in vitro and in vivo by MC3343, which restored the balance between 

proliferation and differentiation, promoted OS cells toward the mature osteoblast phenotype and 

limited tumor growth. Although conventional OSs are high-grade, poorly differentiated lesions, 

well-differentiated, low-grade OSs exist and display more favorable clinical outcomes (49). As in 

leukemia, pro-differentiating agents may thus be exploited to transform severe cancers into more 

amenable afflictions (17). In addition to inhibiting the growth of OS PDXs, DNMT blockade with 

MC3343 also increased the chemo-sensitivity of OS cells to DXR and CDDP, two major drugs used 

in the treatment of OS patients that require access to DNA for activity, but not to MTX, a 

dihydrofolate reductase inhibitor that kills tumor cells by affecting folate homeostasis. The lack of 

synergism between MC3343 and MTX further supported the unique mechanism of action of 

MC3343. Pharmacological manipulation of DNMTs may potentiate the efficacy of cytotoxic agents 

that act by targeting DNA either by inducing chromatin de-condensation and increasing drug 

associations to DNA (38, 39) or by reverting the epigenetic silencing of genes involved in cell cycle 

regulation, DNA repair and apoptosis (50), which are known to largely affect tumor cell sensitivity 

to agents causing DNA damage. We showed that MC3343 as well as siRNA against DNMTs, was 

capable of increasing stable DXR bonds with DNA, and the combination of MC3343 and DXR 

consequently enhanced DXR-induced DNA damage and cell death and had increased efficacy 

against tumor growth. Generally, it is certainly true that differentiated cells are usually less 

sensitive to cytotoxic therapies due to their limited proliferative ability. However, MC3343, while 

acting as a purely cytostatic agent when used alone, increased the apoptotic activity of agents 

affecting DNA. Notably, none of these effects have been observed with 5azadC, further supporting 

the use of the novel DNMT inhibitor MC3343 in the treatment of OS.  
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Overall, these results demonstrate at a preclinical level that the novel DNMT inhibitor MC3343 is a 

very promising option for OS differentiation therapy and may be ideally considered an adjuvant 

agent in the treatment of patients with a poor response to pre-adjuvant chemotherapy, evaluated 

as a percentage of necrosis at the time of surgery (51, 52), and with unfavorable prognoses. For 

effective translation to preclinical studies, it will be important to fine-tune the drug dosing and 

timing strategies to improve outcomes and reduce toxicity. The demonstration that MC3343 

treatment increases the efficacy of DXR and CDDP in killing OS cells offers the possibility of 

reducing the toxicity and side effects of these agents, valuable extra benefits for teenage and 

young adult OS patients. Nonetheless, the identification of key features able to predict which 

patients are likely to respond or become resistant to these drugs is highly desirable. While our 

preliminary data on a panel of 10 lines indicated a direct relationship between MC3343 sensitivity 

and DNMT1/DNMT3a expression, this relationship requires validation. In addition, considering 

that differentiated cells may be less sensitive to cytotoxic drugs, a careful evaluation of drug 

schedule and treatment timing is necessary before any possible clinical application.  
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Table 1. In vitro efficacy of MC3343 and 5azadC in relation to the basal level of DNMTs 

expression in OS cell lines. 

Cell line IC50*, μM DNMT1** DNMT3a** DNMT3b** MC3343 5azadC 
Saos-2  5.6±1.6 0.7±0.1 0.50±0.04 1.02±0.04 0.39±0.08 
IOR/OS14 5.3±0.2 >30 0.47±0.05 0.81±0.01 0.60±0.11 
MG-63 6.1±0.7 0.23±0.2 1.05±0.13 0.72±0.21 0.39±0.14 
IOR/OS9 8.6±1.5 6.6±3.9 0.38±0.14 0.33±0.19 0.23±0.10 
IOR/OS10 7.7±3.1 0.9±0.6 0.25±0.08 0.31±0.12 0.35±0.23 
U-2 OS 11.8±2.5 0.7±0.2 0.17±0.17 0.13±0.16 0.72±0.10 
IOR/OS20 14.5±2.1 13.3±3.5 0.20±0.08 0.20±0.09 0.51±0.15 
IOR/SARG 5.1±0.2 5.5±0.8 0.59±0.03  2.07±0.04 1.28±0.52 
PDX-OS#1-C4*** 6.3 ± 0.4 0.5 ±0.3 0.54±0.17 0.32±0.10 0.17±0.19 
PDX-OS#2-C2*** 6.1±1.6 15.4±1.6 0.47±0.10 1.47±0.12 0.65±0.12 

 

* Cells were exposed to increasing concentrations of MC3343 or 5azadC for 96 h. Data represent 
the mean ± SE of three independent experiments. IC50= drug concentration inducing 50% of 
growth inhibition with respect to the control (untreated cells). 

** DNMTs expression values are indicated as densitometry records (normalized to actin signals: 
OD*mm2/OD*mm2 actin) ± SE 

*** PDX-OS#1-C4 and PDX-OS#2-C2 indicated cell lines obtained from the fourth or second 
passage in the mice of PDX-OS#1 and PDX-OS#2, respectively.   
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Figure legends  

Figure 1. MC3343 efficiently inhibits the activity and expression of DNMTs in OS cells. A, B, 

Western blot analysis (A) and immunofluorescence staining (B) of DNMT1, DNMT3a and DNMT3b 

in untreated (CTRL), MC3343-treated (3-10 μM) and 5azadC-treated (1-10 μM) Saos-2 cells. Equal 

loading was monitored by anti-actin blotting. Digital images were acquired under identical 

conditions at the same time using image analysis software (NIS Elements, Nikon). Scale bars: 20 

μm. C, Effects on DNMT activity measured by the EpiQuik DNA Methyltransferase Activity assay 

(*p<0.05; **p<0.01, Student’s t test).  

 

Figure 2. MC3343 inhibits OS cell proliferation. A, Percentage of Ki-67-positive cells among 

untreated (white bars), MC3343 (3-10 μM; light and dark grey respectively) or 5azadC treated (1-

10 μM for Saos-2 and IOR/OS9 cells or 0.1-1 μM for MG-63 cells; light and dark grey respectively) 

OS cells ( *p<0,05, **p<0.01, *** p< 0.001, Student’s t test). B, Western blot analysis of DNMT1, 

cyclin D1, pRb (S795, S807/811) and total Rb after 48 h of exposure to MC3343 or 5azadC. Equal 

loading was monitored by anti-actin blotting. Blots are representative of at least two independent 

experiments. C, Cell cycle analysis of three representative OS cell lines after 48 h of exposure to 

MC3343 as determined by flow cytometry. 

 

Figure 3. MC3343 drives OS cells toward an osteoblast-differentiated phenotype. A, Evaluation 

of Saos-2 cell growth after exposure to MC3343 or 5azadC in differentiating medium by vital 

counting with Trypan blue. Data are presented as the mean ± SE of three separate experiments 

(*** p< 0.001, Student’s t test). B, Mineralized matrix formation by Saos-2 cells after exposure to 

MC3343 or 5azadC in differentiation medium as measured by ARS quantification. Data are 

normalized to cell number and are presented as the mean ± SE of three separate experiments (*** 
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p< 0.001, Student’s t test). C, RT-qPCR expression of representative osteoblast differentiation 

markers in Saos-2 or PDX-OS#1-C4 cells after treatment with MC3343 or 5azadC in differentiating 

conditions. PDX-OS#1-C4 cell line is derived from the fourth in vivo passage of PDX-OS#1. COL1A2, 

ALPL, and OCN are displayed to indicate the early, intermediate and late stages of the osteoblastic 

differentiation process, respectively. Expression levels of target genes (RQ) were normalized to 

GAPDH expression level and the results are expressed as: 2-ΔΔCt, where ΔCt = Ct target gene – Ct 

GAPDH and ΔΔCt = ΔCt sample - ΔCt calibrator (untreated cells at each time point). All samples 

were run in triplicate for each experiment. Data are presented as the mean ± SE of three separate 

experiments (* p<0.05, ** p<0.01, *** p< 0.001, Student’s t test) D, Evaluation of ALPL activity by 

histochemical analysis after 14 days of exposure to MC3343 or 5azadC in differentiating 

conditions. Representative images are shown (NIS Elements, Nikon). Scale bars: 200 μm.  

 

Figure 4. MC3343 inhibits tumor growth and induces osteoblastic differentiation in OS PDXs. A, 

Inhibition of PDX-OS#1 tumor growth in vivo. Drugs were administered as follows: 20 mg/kg 

MC3343 (n = 7) or 0.8 mg/kg 5azadC (n = 4) daily 5 times/week for 14 days. Student’s t test: * p< 

0.05; ** p< 0.01; compared with the controls (vehicle n = 8). Data are presented as the mean 

tumor volume ± SE. B, Percentage of Ki-67-positive cells in untreated and treated tumors (** 

p<0.01, *** p< 0.001, Student’s t test). C, Representative immunohistochemical images of DNMT1, 

Ki-67, OCN and von Kossa staining in untreated and treated tumors are shown. Scale bars: 50 μm. 

 

Figure 5. MC3343 potentiates OS cell sensitivity to cytotoxic agents acting by targeting DNA. A, 

In vivo inhibition of PDX-OS#1 tumor growth by the MC3343 and DXR combination. Drugs were 

administered as follows: DXR (50 μg/injection for 2 days, n = 5), MC3343 (20 mg/kg for 14d, n = 5), 

DXR + MC3343 (n = 8). Student’s t test: * p < 0.05; ** p < 0.01; *** p <0.001 compared to 
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untreated mice (n = 9). B, Mean fluorescence intensity (MFI) of DXR within nuclei of PDX-OS#1-C4 

cells treated with DXR (10 μM) alone or in combination with MC3343 (10 μM) or 5azadC (1 μM) 

quantified by NIS-Elements AR 3.10 (Nikon) software. Plots are presented as the mean ± SE after 1 

h of drug exposure; ***p<0.001, Student’s t test. Representative images are shown. Scale bars: 20 

μm. C, Percentage of subG0 PDX-OS#1-C4 cells upon treatment with DXR (1 μM) for 3 h and 

subsequent washout with IMDM (CTRL), MC3343 (10 μM) or 5azadC (1 μM) for 24 h. D, γ-H2AX 

immunofluorescence staining in PDX-OS#1-C4 cells after 1 h of exposure to 1 μM DXR and 

washout with complete medium with or without MC3343 (10 μM) or 5azadC (1 μM) for 6-48 h. 

The percentage of positive cells was obtained by flow cytometry analysis (*p<0.05, Student’s t 

test). Representative images are shown. Scale bars: 20 μm.  
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