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Abstract

Background: Long non-coding RNAs (IncRNAs) have emerged as new class of regulatory molecules in animals
where they regulate gene expression at transcriptional and post-transcriptional level. Recent studies also identified
INcRNAs in plant genomes, revealing a new level of transcriptional complexity in plants. Thousands of INcRNAs have
been predicted in the Arabidopsis thaliana genome, but only a few have been studied in depth.

Results: Here we report the identification of Arabidopsis INCRNAs that are expressed during the vegetative stage of
development in either the shoot apical meristem or in leaves. We found that hundreds of IncRNAs are expressed in

flowering in Arabidopsis.

these tissues, of which 50 show differential expression upon an increase in ambient temperature. One of these
INcRNAs, FLINC, is down-regulated at higher ambient temperature and affects ambient temperature-mediated

Conclusion: A number of ambient temperature responsive INCRNAs were identified with potential roles in the
regulation of temperature-dependent developmental changes, such as the transition from the vegetative to the
reproductive (flowering) phase. The challenge for the future is to characterize the biological function and molecular
mode of action of the large number of ambient temperature-regulated IncRNAs that have been identified in this

study.
Keywords: Long non-coding RNA (IncRNA), Ambient temperature response, Flowering time, Arabidopsis thaliana,
FLINC

Background intron in a protein-coding gene and; promoter IncRNAs

LncRNAs represent a new class of recently discovered
regulatory molecules. A key role for IncRNAs in the
transcriptional and post-transcriptional regulation of a
plethora of biological processes is emerging. LncRNAs
are defined as long RNA molecules (longer than 200 bp)
that do not code for a protein. They have been divided
in different categories based on their location in the
genome relative to protein-coding genes: natural anti-
sense transcripts (NATs) are IncRNAs transcribed on the
opposite strand of a protein-coding gene; long intergenic
RNAs (lincRNAs) are transcribed in intergenic regions;
intronic IncRNAs (iLncRNA) are transcribed from an
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(pLncRNAs), are transcribed from the promoter region
of a gene [1, 2].

In the past years, genome-wide studies have identified
many IncRNAs in the Arabidopsis thaliana (Arabidopsis)
genome, as well as in other plant species, including rice
and maize [1]; however the biological function of most of
these IncRNAs is not known [3]. Currently, only a small
number of IncRNAs has been functionally characterized
and the emerging picture shows that IncRNAs have
several modes of action, ranging from transcriptional
interference to chromatin looping and mRNA splicing [1,
2, 4]. Moreover, these IncRNAs act in a wide range of
biological processes. Some examples include the lincRNA
APOLO, which is involved in auxin response [5],
ELENA1, which functions in plant immunity [6], Enod40,
which plays a role in regulation of sucrose utilization in
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nodules [7] and IPS1, which acts as a mimic of a miRNA
target in the control of Pi homeostasis [8].

Vernalization, a long period of cold that is required by
many temperate plant species to make the transition from
the vegetative to the reproductive phase, is regulated by
IncRNAs. The first characterized IncRNAs in plant were
the IncRNAs transcribed from the FLOWERING LOCUS
C (FLC) locus: the NAT COOLAIR [9], the iLncRNA
COLDAIR [10], and more recently the pLncRNA
COLDWRAP [11] and NAT ASL [12]. These molecules
regulate the epigenetic silencing of FLC during
vernalization in response to winter cold. This, together
with the fact that the key regulators of flowering time in
the ambient temperature pathway, FLOWERING LOCUS
M (FLM) [13, 14], MADS AFFECTING FLOWERING 2
(MAF2) [15], MAF3, MAF4 and MAFS5 [16], all belong to
the FLC clade [17], prompted us to speculate a possible
role for IncRNAs in ambient temperature-mediated
development.

How plants are able to respond in a fast and dynamic
manner to continuous changes in ambient temperature
is a long-standing question in plant biology research. It
is also important, in light of global warming, to under-
stand how temperature affects plant development, as
temperature influences different aspects of plant biology
and development, including hypocotyl elongation, leaf
shape determination, flowering time control and patho-
gen responses [18, 19]. Current research on the role of
ambient temperature in plant development is mainly
focused on identification and characterization of protein
coding genes involved in this process. For example,
MADS-box transcription factor genes, the bHLH tran-
scription factor PHYTOCHROME INTERACTING FAC-
TOR 4 (PIF4) [20-23], the TEMPRANILLO genes [24]
and the MYB transcription factor EARLY FLOWERING
MYB PROTEIN (EFM) [25] have been shown to regulate
ambient temperature-mediated flowering. PIF4, together
with the photoreceptor phytochrome B (phyB), also
plays an important role in thermo-morphogenesis [26—
28]. Furthermore, there is an important role in ambient
temperature-mediated responses for various circadian
clock genes [29-31].

Despite the clear role for IncRNAs in cold temperature
signaling, their potential role as mediators of ambient
temperature responses remains unexplored.

Results

Identification of IncRNAs in Arabidopsis thaliana.

We used RNA-seq transcriptome analysis to identify
IncRNAs in shoot apical meristem (SAM)-enriched tissue
that might play a role in ambient temperature-mediated
developmental processes. We focused on transcripts
carrying a polyA tail and followed a TAIR10-guided
assembly approach using cufflinks. This approach allowed
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the identification of both known IncRNAs and annotation
of novel transcripts [32]. Strand-specific libraries were
generated from shoot apical meristem (SAM)-enriched
tissue of 5 weeks-old Arabidopsis Col-0 plants grown in
short-day conditions, and therefore still in the vegetative
stage. The SAM of plants grown in short-day conditions is
larger than the SAM of those grown in long-day condi-
tions [33], allowing the presence of a good proportion of
SAM tissue in the sampled material. Using this approach
we aimed to identify low-expressed transcripts in the
SAM. To annotate the transcripts, the “cuffcompare”
function of cufflinks was implemented, which classifies
transcripts base on their relationship with the TAIR10
reference genome annotation. A similar approach was
recently used successfully for the identification of
IncRNAs in the tomato genome [34].

We selected transcripts that belong to the class code
“x”, “i” and “u” (Table 1). The class code “x” defines
“Exonic overlap with reference on the opposite strand”,
and includes, among others, the Natural Antisense Tran-
scripts (NAT). The class code “i” defines “transcribed
genomic fragments falling entirely within a reference
intron”, which includes the intronic IncRNAs (iLncRNA).
Finally, the class code “u” defines the “unknown intergenic
transcript”, e.g. the long intergenic IncRNA (LincRNAs)
and the promoter IncRNAs (pLncRNAs). In total, we iden-
tified 2132 new putative IncRNA that belong to one of
these categories (Table 1 and Additional file 1: Table S1).

Only a few IncRNAs are annotated in the TAIR10
annotation. Therefore, we retrieved an extensive list of
14,954 RNAs annotated as IncRNAs from the Plant long
non-coding RNA database (PlncDB) [35] and compared
these with our identified putative IncRNA transcripts. In
total 644 of the 2132 IncRNA identified in our annota-
tion were also annotated in the PlncDB, 22 iLncRNA, 92
NATs and 530 lincRNAs (Additional file 1: Table S1).

Next, we compared the IncRNAs identified in our
analysis with the ones reported in the CANTATAdb 2.0
[36]. We found 321 transcripts to be also present ion the
CANTATA database, 10 iLncRNA, 38 NATs and 273
lincRNAs (Additional file 1: Table S1).

A new annotation of the Arabidopsis genome, Araportl],
was released recently [37]. This new annotation is based on
the analysis of a collection of RNA-seq experiments
performed on different tissues from plants grown under
different conditions. This approach allows us to identify

Table 1 putative INncRNAs

Category abbreviation  cufflink class  number
Natural antisense transcript  NAT X 367
long intergenic ncRNA LincRNA u 1591
intronic IncRNA iLncRNA i 174
2132 total
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new IncRNA transcripts expressed in specific conditions.
We investigated the overlap between our IncRNA annota-
tion and Araportl1 transcripts and found 457 IncRNAs in
both data sets (Additional file 1: Table S1).

Remarkably, 1323 IncRNAs were uniquely identified in
our analysis, highlighting the power of our approach in
isolating potentially new IncRNAs. Only a small number
of these are likely to be falsely assigned due to sequen-
cing or annotation errors. The identification of this
relatively large number of novel transcripts is likely due
to the fact that IncRNA are generally lowly expressed
and therefore, their identification is dependent on the
experimental setup used and tissues sampled for the
RNA isolation.

Because one of the key developmental processes
regulated by ambient temperature is flowering time
control, we initially compared the genomic location of
the IncRNAs in relation to the localization of key flower-
ing time genes. A thorough investigation revealed that
22 IncRNAs are located nearby a flowering time gene
[38], such as the lincRNA AtLncl134 located in ABRE
BINDING FACTOR 4 (ABF4), the AtLnci860, AtLncl98
and AtLnc236, located respectively in the promoters of
MADS AFFECTING FLOWERING 2 [15, 39, 40],
FLAVIN-BINDING, KELCH REPEAT, F Box 1(FKFI) [41,
42] and EARLY FLOWERING IN SHORT DAYS (EFS)
[43] (Additional file 2: Table S2).

LncRNA expression is modulated by ambient temperature
To identify IncRNAs that are responsive to an ambient
temperature change, we compared the transcriptome of
plants that were grown in short day condition at 16 °C
and then moved to 25 °C with the transcriptome of
plants grown continuously at 16 °C. For this purpose,
tissue was collected at one, three and 5 days after the
temperature increase, as described previously [44].
When grown in short-day conditions meristem size is
increased, providing a relative higher amount of meri-
stematic tissue to study the effect of a change in ambient
growth temperature on the expression of meristematic
IncRNAs. Using this approach, we found 50 IncRNAs
(11 NATs, two intronic IncRNA and 37 lincRNAs) that
were significantly differentially- expressed (log, fold
change> |1|, p-value <0.01) in at least one time point
upon the temperature change (Additional file 3: Table S3).
Among the temperature responsive IncRNAs are AtLnc2
(Fig. 1a), an antisense RNA of CYTOCHROME P450
FAMILY 78, SUBFAMILY A, POLYPEPTIDE &8
(CYP78A84), which plays a role in reproduction [45],
AtLncl20 a LincRNA located nearby the MADS-box
transcription factor AGL97 (Fig. la), and AtLncll28
located in the intron of HOMOLOGUE OF CYANOBAC-
TERIAL RBCX 1 (RBCX1), coding for a RUBISCO chap-
eron involved in cold response [46, 47]. We observed that
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expression of 28 of the differentially expressed IncRNAs
(DEInc) was repressed upon an increase in growth
temperature, while 22 IncRNAs showed an increase in
expression (Fig. 1b-c). The majority of DElnc (36%) are
differentially expressed at all time-points, while 16% of the
DElnc are only differentially expressed 1 day after the
temperature switch, showing a rapid and transient
temperature response. 20% of the DElnc appeared to
be differentially expressed at day five only, showing a
late and probably indirect response to the temperature
change (Fig. 1d).

Subsequently, co-regulation was investigated for NATs
and lincRNAs (Additional file 4: Table S4). In the case of
NATs we compared their expression level to the
expression of their corresponding sense transcript while
for the lincRNAs to their two direct flanking protein
coding genes. In general, we observed a positive Pearson
correlation between sense and antisense transcript and
we found the expression of the sense transcript was
either not changed or changed in the same direction as
the NAT (Additional file 4: Table S4). We also observed
correlation (with prevalence of positive correlation) for
most of the lincRNAs with at least one of the flanking
genes, suggesting co-regulation between the IncRNAs
and the protein coding genes located nearby (Additional
file 4: Table S4). For example, AtLnci444 showed a posi-
tive correlation with both the two direct flanking protein
coding genes, C-REPEAT/DRE BINDING FACTOR 1
(CBFI) and CBF3, genes involved in response to low
temperature [48-51], while AtLnc488 showed a negative
correlation with the transcription factor TEOSINTE
BRANCHEDI1/CYCLOIDEA/PCF 15 (TCP1I5) [52, 53].

AtLnc428 plays a role in temperature-mediated flowering
We selected five ambient temperature responsive
IncRNA for further functional characterization. We
focused on IncRNAs for which a T-DNA insertion line is
available in the predicted transcript or promoter region.
We hypothesized that the promoter T-DNA insertions
will affect the IncRNA expression level or pattern. We
investigated the role of the temperature responsive
AtLnc2, AtLncl20, AtLnc213, AtLnc428 and AtLncl524
in the regulation of temperature-mediated flowering. Ex-
pression of AtLnc2 and AtLncl20 is up-regulated upon
temperature increase while expression of AtLnc213,
AtLnc428 and AtLncl524 is down-regulated (Additional
file 3: Table S3).

Wild-type and T-DNA insertion plants were grown for
3 weeks at 16 °C in long day conditions, and were phe-
notyped for their flowering time response after the
switch in growth temperature to 25 °C and in compari-
son to plants that were maintained at 16 °C. Flowering
time was quantified by counting rosette leaf number
(RLN) and the number of days from sowing to the
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Fig. 1 Identification of ambient temperature-responsive INcRNAs. a. Example of a IncRNA identified in our strand-specific RNA-seq experiment.
Protein coding genes and IncRNA are shown in grey and black respectively. In blue are reads mapping to the forward strand and in purple are
reads mapping to the reverse strand from RNA-seq on plants growing at 16 °C in short day. b. Heat map showing IncRNA that are significantly
(adj p-value < 0.01) differentially expressed (log2 fold change > |1]) in at least in one time point upon a temperature change from 16 °C to 25 °C.
c. Histogram showing the number of IncRNAs whose expression is up-regulated and down-regulated at each time point after the temperature
change. d. Venn diagram showing the overlap in differentially expressed IncRNA at each time point
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appearance of the main inflorescence (days after sowing;
DAS). We measured the effect of temperature on flower-
ing time as the ratio of RLN or DAS between mutant
and Col-0 plants growing at 16 °C and 25 °C. Genotypes
with complete temperature insensitivity will show a ratio
of 1 [54]. Among the five lines tested, only the line car-
rying a T-DNA insertion in the AtLnc428 locus showed
a significant change in temperature-mediated flowering
compared to the wild-type (Additional file 5: Figure S1
and Fig. 2). We found AtLnc428 mutant plants to be sig-
nificantly less sensitive to temperature-mediated flower-
ing (Fig. 2a-c) and, for this reason, renamed this IncRNA

‘FLOWERING LONG INTERGENIC NON CODING
RNA (FLINC).

FLINC is an intergenic IncRNA located in chromo-
some 1 between At1g56233, a gene coding for a
defensin-like (DEFL) family protein and At1g56240, a
gene coding for a phloem protein 2-B13. At1¢56233 and
At1g56240 are located respectively at 1.5 kb and 3.2 kb
from FLINC (Additional file 6: Figure S2A). The effect of
T-DNA insertion in FLINC on expression of FLINC was
examined by qPCR by comparing wild-type and mutant
plants in a segregating population (Additional file 6:
Figure S2B). No FLINC expression was observed in



Severing et al. BMC Plant Biology (2018) 18:145

Page 5 of 10

[
*
*
*

N N Y N
=) o o o

o

Rosette leaf number (RLN)

WT flinc

e 2 *
S N ]
3 2]
z ..
5 210 E——
> b 1.21 1.10
2 8
il o
3 3
% o5 - o5 -
WT flinc WT flinc
c d
-
j
_# :
Z 1
|
S
@
Qo
E B l
S N A
< '
8 = | T
o 81 fe—
5 E =
o
[r=
# Ll ) 16C 25C 16C 25C 16C 25C 16C 25C 16C 25C
o o o o Col-8 line 1 line 2 line 3 line 4
25°C 16°C 25 c16°C RatioRLN: 126  1.31 134 135 149

op

Number of days after sowing (DAS)

Fig. 2 FLINC plays a role in temperature-mediated flowering. a. Flowering time measured as rosette leaf number (RLN) for FLINC wild-type and
mutant plants growing at 16 °C and 25 °C in long day conditions. The experiment was performed using four biological replicates with 13 plants
per replicate for each genotype/condition. b. Flowering time measured as days after sowing (DAS) for FLINC wild-type (WT) and mutant plants
growing at 16 °C and 25 °C in long day conditions. The experiment was performed using four biological replicates with 13 plants per replicate for
each genotype/condition. ¢. Eight weeks-old FLINC WT and mutant plants grown at 16 °C and 25 °C in long day conditions. d. Flowering time in
RLN for four independent T2 lines overexpressing FLINC (FLINC-OE) at 16 °C (blue) or 25 °C (red) in long day conditions. Box-plot showing the
distribution of ca. 40 plants per replicate for each genotype/condition. FLINC-OE plants are more sensitive to temperature than the WT as shown

by the higher RLN ratio. *** indicates significant differences at p-value < 0.0001, ** indicates significant differences at p-value < 0.001, and *
indicates significant differences at p-value < 0.05 according to the Student t-test

plants with the T-DNA insertion, suggesting that the
flinc mutant is a full knock-out. We also examined
the effect of the FLINC T-DNA insertion on the ex-
pression of the genes flanking FLINC in all above
ground tissues of 2 weeks-old plants in the vegetative
stage of development. At1g56233 expression could not
be detected in either wild type Col-0 or flinc plants,
and we did not observe any significant change in the
expression of Atl1g56240 (Additional file 6: Figure
S2C). This result indicates that the T-DNA insertion
does not affect the expression of the genes flanking
FLINC in the investigated material.

Our results indicate a role for FLINC in the regulation
of ambient temperature-mediated flowering. To confirm

this observation, we generated plants overexpressing the
IncRNA under control of the constitutive CaMV35S
promoter and analyzed their flowering behavior at
different ambient temperature conditions (Fig. 2d). In
contrast to the flinc T-DNA insertion line, we found
that plants overexpressing the IncRNA transcript are
more sensitive to a temperature change than wild-type
plants, and providing additional evidence for the role of
FLINC in the control of ambient temperature-mediated
flowering.

In our RNA-seq experiment, FLINC was down-regulated
upon the temperature change under short day conditions
(Additional file 3: Table S3). Because flowering time
investigations were performed under long day conditions,
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we examined the effect of an increased ambient
temperature on FLINC expression under these conditions.
This analysis revealed a similar response upon an increase
of temperature from 16 °C to 25 °C as was observed in the
initial experiment under short day conditions (Additional
file 6: Figure S2E), suggesting that regulation of FLINC
expression by temperature is not day-length dependent.

Since a number of genes involved in the ambient
temperature pathway are circadian-regulated or code for
circadian clock components [55], we monitored the
expression of FLINC in a 24 h-time course. We found
that FLINC expression is not influenced by the circadian
rhythm (Additional file 6: Figure S2F).

We also examined the FLINC expression profile
during Arabidopsis development and in different
Arabidopsis tissues (Additional file 6: Figure S2G and
Figure S2H). We found that FLINC 1is expressed
broadly in the plant, suggesting that FLINC plays a
more extensive role during development than just the
control of flowering.

To shed some light on the molecular basis of the flinc
phenotype, we investigated the expression of selected
flowering-related genes in wild type and 3 weeks-old
flinc plants grown in long day conditions at 16 °C. These
include the flowering repressors FLC and FLM, the
florigen FLOWERING LOCUS T (FT) and the floral
integrators APETALA 1 (API), SUPRESSOR OF COST-
ANS 1 (SOCI), LEAFY (LFY) and TERMINAL FLOWER 1
(TFL1) (Additional file 7: Figure S3A). We detected higher
expression of FT in flinc than in the Col-0 wild type,
in agreement with the early flowering phenotype of
flinc (Fig. 2a).

LncRNAs have been show to exert their effect in
numerous ways, including nucleotide pairing with
mRNAs [1] of protein-coding genes or miRNAs.
Therefore, we searched for regions homologous to
FLINC within the Arabidopsis genome. We found ten
regions with partial sequence homology to FLINC, of
which five are located within protein coding genes.
However, for none of these five genes differential
expression was found in flinc in comparison to Col-0
wild type (Additional file 8: Table S5).

To obtain insight in conservation of FLINC, we
searched for FLINC-related IncRNAs in genomes of
other plant species using Blast and found various
similar genes (e-value < 0.001), e.g. in the close Arabi-
dopsis relatives Arabis alpina and Brassica rapa, but
also in less-related species such as Solanum pennelli
and Vitis vinifera (Additional file 7: Figure S3C).
These results point to positive selection on FLINC.
Further research is needed to confirm the proposed
role of FLINC in ambient temperature-mediated flow-
ering time control in Arabidopsis and to explore the
function of the closely related genes in other species.
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Discussion
The discovery of IncRNAs as regulatory molecules
revealed a new layer of complexity in gene expression
regulation. So far, only few of the thousands of identified
IncRNAs in plants have been functionally characterized.
Nevertheless, these studies revealed that IncRNAs play a
role in many different biological processes, from lateral
root development to photomorphogenesis [1, 2]. We
identified new Arabidopsis IncRNAs in SAM-enriched
tissue and show ambient temperature-sensitive expres-
sion for a small subset of these IncRNAs. Furthermore, we
showed that one of these IncRNAs, FLINC, regulates
temperature-mediated flowering in Arabidopsis. Previous
studies showed that expression of the IncRNAs tran-
scribed from the FLC locus, COOLAIR [9], COLDAIR
[10], ASL [12] and COLDWRAP [11], is regulated by a
prolonged period of cold (4 °C). By contrast, FLINC
expression is affected rapidly by a milder change of
temperature. FLINC is an intergenic IncRNA and at this
moment it is not clear which genes are regulated by
FLINC. Thus, further research is needed to elucidate
FLINC’s molecular mode of action. The observation that
FT is higher expressed at low temperature in flinc mutant
plants, suggests that FLINC acts prior to the integration of
the environmental signals by FT. Next, the two transcrip-
tion factors with a known role in temperature-mediated
flowering time control, SOC1 [56] and AGAMOUS-LIKE
15 (AGL15) [57], bind to the FLINC locus suggesting a
regulatory interaction. Moreover, the presence of sequence
conservation in different plant species points to positive
selection and a potential conserved role for FLINC in
ambient temperature-mediated flowering time control.
Advances in RNA sequencing technology allow a more
precise identification of IncRNA transcripts. Thanks to
the use of strand specific RNA-seq data, it is now pos-
sible to identify transcripts derived from the opposite
stand and therefore, get insight into expression profiles
of NATs. The current sequence depth that can be
obtained facilitates identification of low abundant
transcripts, including as numerous IncRNAs. LncRNA
expression appeared to be heavily responsive to environ-
mental conditions, including temperature (this study) or
drought [58], suggesting a role for these molecules in
plant adaptation to the environment. The tissue-specific
and environmental regulation of IncRNAs illustrates
the need for defined experiments to identify all
IncRNA-encoding genes in the genome.

Conclusions

The discovery of IncRNA as regulatory molecules
revealed a new layer of complexity in the regulation of
gene expression, and functional studies in plants re-
vealed roles for IncRNAs in various biological processes.
Here we show that IncRNA expression is influenced by



Severing et al. BMC Plant Biology (2018) 18:145

ambient temperature changes and identified a significant
role in ambient temperature-mediated flowering time
the FLINC IncRNA. The challenge for the future is to
decipher the biological function and molecular mode of
action of ambient temperature responsive IncRNAs.

Methods

RNA-seq experiments

RNA-seq data were generated previously by Pajoro et al.,
2017 [44]. In brief, plants were grown under short day
conditions (8 h light, 16 h dark) on rock-wool in growth
cabinets with LED lamps with light intensity of
200 pmol m-2 s-1 and 75% relative humidity at 16 °C for
5 weeks. Nutrients were supplied by sub-irrigation with
Hyponex. After 5 weeks, plants were either left at the
same temperature or moved to 25 °C (6 h after lights
on). Three biological samples were generated for each
condition. For each sample, tissue from ca. 10 plants
was collected 4 hours after light on. Using jeweler’s
forceps, leaves were removed to obtain SAM-enriched
tissue. Total RNA was extracted using the Invitek
InviTrap Spin Plant RNA Mini Kit (REF: 1064100300)
according to the manufacturer’s protocol. DNase treat-
ment was performed to remove genomic DNA. DNase I
digestion was performed on total RNA using Turbo
DNase from Ambion according to the manufacturer’s
protocol. RNA integrity was checked on a by agarose gel
electrophoresis after DNase I treatment. Samples were
prepared for Illumina sequencing using the Illumina
TruSeq Stranded mRNA Sample Prep kit (REF:
15032613) according to the manufacturer’s protocol,
which generates polyadenylated transcripts. Libraries
were analyzed on the Bioanalyzer and quantified using a
Qubit fluorometer before pooling for sequencing on an
[llumina HiSeq2500. Two lanes were used on a 125 bp
paired-end (PE) run.

RNA-seq data analysis

RNA-seq reads were mapped against the Arabidopsis
genome version TAIR1O (www.arabidopsis.org) using
TopHat2 [59]. To identify un-annotated transcripts,
reference based full length transcript reconstruction was
performed separately for each sample using Cufflinks
with strand-specific awareness [32]. Cuffmerge, which is
part of the cufflinks package, was finally used for

Table 2 IncRNAs T-DNA insertion lines
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merging the individual cufflinks results into an overall
set of full-length transcripts. The function “Cuffcom-
pared” was used to compare the newly annotate tran-
scripts with the TAIR10 reference annotation. We
selected transcripts that belong to the class code “x”, “I”
and “u”. The class code “x” defines “Exonic overlap with
reference on the opposite strand”, to this class belong
e.g. the Natural Antisense Transcripts (NAT). The class
code “i” defines “transcribed genomic fragments falling
entirely within a reference intron”, to this class belong
the intronic IncRNAs (iLncRNA). Finally, the class code
“u” defines the “unknown intergenic transcript”, to this
class belong e.g. the long intergenic IncRNA (LincR-
NAs). To retrieve differentially expressed transcripts
upon the temperature changes, the number of fragments
mapping to the newly annotated transcripts was deter-
mined using HTseq count [60]. Differentially expressed

genes were detected using DESeq2 [61].

Flowering time assay

Seeds of T-DNA insertion lines (Table 2), were obtained
from the Nottingham Arabidopsis Stock Center (NASC).
Plants were genotyped using the primers listed in Table
2. The progeny of mutant and wild-type plants from the
segregating population was used in the flowering time
experiments for AtLnc213 and AtLnc428. Since AtLnc2,
AtLnc120 and AtLnc1524 homozygous T-DNA insertion
lines were obtained from the Stock Center, Col-8
wild-type plants were used as comparison. For flowering
time analyses, plants were randomly arranged in trays
and grown in growth cabinets, as described above, but
in long day-conditions (16 h light, 8 h dark). After 3
weeks of growth at 16 °C, half of the plants were moved
to the 25 °C growth cabinet with the same day length,
light intensity and humidity conditions. Flowering time
was quantified by determining the time until the macro-
scopic appearance of the first flower bud (days after
sowing, DAS; screening was done every day), and by
counting rosette leaf numbers (RLN) per plant after
bolting of all plants in the tray. Four biological replicates
were used, with 13 plants per replicate for each geno-
type/condition. Data are shown as the average of ratios
between the replicates. Student’s t-tests were calculated
with GraphPad QuickCalcs.

INcRNA T-DNA line primer LP primer RP

AtLnc2 SALK_006791 TACTCCATGCATTGATGCTTG AAACACTGACTTGACGGCATC
AtLnc120 SALK_056929 AGCAGCGACGACATTATCAAC CATCGTCTTCTTCTTCCGTTG
AtLnc213 SALK_009581 AGGAGGTTGAGAGCAAGGAAG CGGTAACTGAATCAAAGCCAC
AtLnc428 SALK_025080 AACAATTAGGCAAGGTTTGGG TTCATCATAGTCTCCATCGGG
Atlnc1524 SAIL_896_E02 TGAAGCGAACCTACATCTTGG ACCTAGCATCGTAGGTAGGCG
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Expression profile by qRT-PCR

Plant were grown under long day conditions (16 h light,
8 h dark) at 21 °C as described above. Three biological
samples were generated for each condition tested, unless
stated otherwise. For each sample, tissue from ca. 10
plants was collected using jeweler’s forceps. Total RNA
was extracted and DNAse-treated as described above.
cDNA was synthetized using the iScript kit from
BIORAD (Cat. No. 1708890) using one pg of total RNA.
Gene expression was measured by quantitative RT-PCR
(qPCR) using the iQ™ SYBR® Green Supermix from
BIORAD (Cat. No. 1708885). The qPCR primers are
listed in Additional file 9: Table S6. Relative expression
was calculated using TIP41 as reference gene for
normalization and the formula 2’(ACttarget e
Normalized fold expression was calculated by setting the
wild-type (WT) value to one.

Generation of FLINC overexpression lines

Gateway cloning was used to generate the FLINC over-
expression construct. The FLINC transcript was ampli-
fied by PCR from c¢DNA and cloned into the
pDONR201 entry vector using a BP reaction. The entry
vector was then recombined with the destination vector
pB7FWG2 carrying the CaMV35S promoter. The result-
ing expression vector with the p35S:FLINC construct
was transformed into Arabidopsis Col-0 plants by floral
dip. Transformed plants were selected on media with 10
pg/ml of phosphinothricin.

Identification of protein coding genes with sequences
homologous to FLINC

We used the BLASTN software [62] with default param-
eter to identify Arabidopsis protein coding genes with
sequence similarity to FLINC. The genome coordinates
that matched the FLINC sequence were compared to the
coordinates of the Arabidopsis gene models using the
Bedtools intersect software [63] and the gene coordi-
nates as reference and —F 1 parameter. To identify
sequences similar to FLINC in other plant species, we
used Blastn software (NCBI) [64] with the parameter
optimized for ‘somewhat similar sequences’. Only spe-
cies with an e-value < 0.001 were considered.

Additional files

Additional file 1: TableS1. LncRNAs annotation. List of INcRNAs
retrieved in this study and corresponding identification in the Plant long
non-coding RNA database (PIncDB) and Araport11. (XLSX 422 kb)
Additional file 2: TableS2. List of INcCRNAs located within a 5 kb region
of a gene involved in flowering time regulation. (XLSX 15 kb)
Additional file 3: Table S3. Differentially expressed INcRNAs (DEInc). List
of IncRNAs differentially expressed between 16 °C and 25 °C day 1, 16 °C
and 25 °C day 3, 16 °C and 25 °C day 5. DEInc are defined as transcripts
with a change in expression of log2 Fold Change |1| and adjusted p-
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value according to the BH method for controlling false discovery < 0.05.
(XLSX 14 kb)

Additional file 4: Table S4. Pearson correlation between IncRNAs and
protein coding genes. For the NATs expression value of the
corresponding sense transcript while for the lincRNAs the expression
value of their two direct flanking protein coding genes in our data set
was used. NA, indicates absence of detectable expression in our RNA-seq.
(XLSX 15 kb)

Additional file 5: Figure S1. Temperature induced flowering for T-DNA
insertion lines. Col-8 plants were used for comparison with AtLnc2 (A),
AtLnc120 (B), and AtLnc1524 (D) T-DNA insertion lines, while wild-type
and T-DNA carrying plants from segregating population were compared
for AtLnc213 (C). The experiment was performed using four biological
replicates with 13 plants per replicate for each genotype/condition. The
T-DNA insertion did not affect temperature-induced flowering in any of
these mutants since no significant difference was observed in the ratio of
flowering time at the different temperatures between wild-type and
mutant plants. (TIF 642 kb)

Additional file 6: Figure S2. A. FLINC location in the genome. B. FLINC
expression in WT and flinc mutant plants. The graph shows the average
of three biological replicates, each composed of a pool of 10 2 weeks-old
plants. Plants were growing at 21 °C in long day conditions. Bars indicate
SEM of the replicates. Plants with a T-DNA insertion in the IncRNA locus
do not show detectable expression of the IncRNA transcript. C.
At1g56233 expression in WT and flinc mutant plants. The graph shows
the average of three biological replicates, each composed of a pool of 10
2 weeks-old plants. Plants were growing at 21 °C in long day conditions.
Bars indicate SEM of the replicates. No significant difference in At1g56233
expression was observed in flinc, p-value equals 0.3439 according to the
T-test. D. FLINC expression in WT and FLINC-OE plants. A pool of 10 2
weeks-old plants growing on selection medium at 21 °C in long day was
used for the analysis. E. FLINC expression measured by gPCR in plants
growing at 16 °C and 25 °C in long days. Expression is relative to the level
at 16 °C. Bars indicate SEM of two biological replicates, each composed
of a pool of seven plants. FLINC expression is significantly lower at 25 °C
compared to 16 °C (p-value = 0.0467, Students’ t-test). F. FLINC expression
during a 24 h time course in plants grown at 21 °C in long days. The
graph shows the average of four biological replicates, each composed of
a pool of 25 ten days-old plants. Plants were growing at 21 °C in long
day conditions. Bars indicate SEM of the replicates. G. FLINC expression
measured by qRT-PCR in different plant tissues. The graph shows the
average of three biological replicates, each composed of a pool of 6 to 8
plants for all tissues, except for ‘siliques’ and ‘stems’, for which only two
biological replicates were used. Bars indicate SEM between the replicates.
Plants were growing at 21 °C in long day conditions. H. FLINC and AP1
expression measured by qPCR in rosettes during a development time
course at 21 °C in long day conditions. The graph shows the average of
three biological replicates, each composed of a pool of 6 to 8 plants. Bars
indicate SEM between the replicates. (PDF 476 kb)

Additional file 7: Figure S3. A. Expression of flowering-related genes in
WT and flinc plants. Expression was measured by qPCR in rosettes of
twenty days-old WT and flinc grown at 16 °C in long day conditions.
Material was harvested at ZT6. The graph shows the average of three
biological replicates, each composed of a pool of 10 plants. Bars indicate
SEM of the replicates. B. Expression of genes with sequence similarity to
FLINC in wild-type (WT) and flinc mutant plants (Mut), as measured by
gPCR. The graph shows the average of three biological replicates, each
composed of a pool of 10 two weeks-old plants growing at 21 °C in long
day. Bars indicate SEM of the replicates. C. FLINC sequences are also
found in other plant species. (PDF 561 kb)

Additional file 8: Table S5. Arabidopsis thaliana genomic region with
sequence homology to FLINC. (XLSX 11 kb)

Additional file 9: Table S6. List of primers used for gPCR. (XLSX 9 kb)
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