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Abstract

The goal of this research is to design global and robust attitude control sys-

tems for launch vehicles in exoatmospheric flight. An attitude control system

is global when it guarantees that the vehicle converges to the desired attitude

regardless of its initial condition. Global controllers are important because

when large angle maneuvers must be performed, it is simpler to use a single

global controller than several local controllers patched together. In addition,

the designed autopilots must be robust with respect to uncertainties in the pa-

rameters of the vehicle, which means that global convergence must be achieved

despite of those uncertainties. Two designs are carried out. In the first one

possible delays introduced by the actuator are neglected. The design is per-

formed by using a Lyapunov approach, and the obtained autopilot is a standard

proportional-derivative controller. In the second one, the effects of the actuator

are considered. Then the design is based on robust backstepping which leads to

a memory-less nonlinear feedback of attitude, attitude-rate, and of the engine

deflection angle. Both autopilots are validated in a case study.
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1. Introduction

Designing an autopilot for a launch vehicle is a challenging task due to its

nonlinear and time-varying properties (see [1]). Several attitude controllers have

been proposed over the years. For example, baseline Proportional-Derivative

(PD) controllers are designed in [1, Section 5.3]. An intelligent adaptive au-5

topilot is presented in [2]. Paper [3] proposes a design based on adaptive pre-

dictive control. Model reference adaptive control is employed in [4] to design

PD and Proportional-Integral-Derivative (PID) autopilots. In addition, in the

last decades many designs based on modern robust control have been proposed.

For instance, H∞ control is used in [5, 6, 7], whereas µ-synthesis in employed10

in [8]. In paper [9] a method known as Wave-Based Control is applied to de-

signing an autopilot capable of compensating for the effects of fuel-sloshing. All

the above design methods are based on linearized models of the vehicle. As a

results, those methods assure only local convergence. Then, from an analytical

standpoint, the attitude is guaranteed to converge to the desired one only if the15

initial condition of the vehicle is sufficiently close to that attitude.

The goal of the present work is to address the latter issue by designing au-

topilots that achieve global convergence so that it is analytically assured that

the desired attitude is reached starting from any initial condition. Global au-

topilots are particularly convenient when a launch vehicle must perform large20

angle maneuvers. In fact, in such a scenario, one can use a single global at-

titude controller instead of several local controllers patched together through

some scheduling strategy. The latter fact simplifies the actual implementation

of the autopilot on the on board computer. In addition, the designed autopilots

must be robust with respect to uncertainties in the parameters of the vehicle,25

which means that global convergence must be achieved despite of those uncer-

tainties. The latter uncertainties are a consequence of slow variations of some

parameters during flight and of limited accuracy in the determination of their

values.
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A global autopilot has been recently presented in [10]. The latter controller30

has been designed for the atmospheric flight of a launch vehicle modeled as a

rigid body. In this paper global autopilot design is carried out for an upper

stage of a launch vehicle flying above atmosphere. Global attitude controllers

are more useful during the exoatmospheric flight than during the atmospheric

one. This is a consequence of the fact that they are especially suited for per-35

forming large angle maneuvers which can occur only above the atmosphere. In

fact, during the atmospheric flight launch vehicles cannot perform those ma-

neuvers because of constraints imposed by aerodynamic loads. In particular,

large angle maneuvers often occur at the beginning of the exoatmospheric flight

for the following reason. During atmospheric flight launch vehicles are mostly40

guided in gravity turn mode to reduce the aerodynamic load [11, 12]. Thus,

at the beginning of the exoatmospheric flight, it often happens that the vehi-

cle is distant from the desired trajectory, and consequently large angle attitude

maneuvers are necessary for having it converge to that trajectory. Additional

differences of this research with respect to [10] are as follows. The designs in45

this study take into account the limit values for the engine deflection angle, and

one of the designs considers the effects of the electrohydraulic actuator on the

vehicle dynamics. Both latter aspects have been neglected in [10].

In this work a motion occurring on a vertical plane is considered since the

flight of most launch vehicles is basically confined to such a plane (see [13,50

Chapter 4]). As a result, significant attitude maneuvers must occur in the

trajectory plane, whereas only minor attitude corrections must be performed

off that plane. The launch vehicle is here modeled as a rigid body. In fact,

for some upper stages the nonlinear effects due to flexibility, liquid sloshing

and engine inertia are not significant. As a matter of fact, flexibility is often55

negligible for upper stages because of their reduced length and because of the

absence of aerodynamic loads. In addition, fuel sloshing effects are negligible

for launch vehicles with baffles inside the tanks or in which the tank is divided

into several smaller ones. Finally, engine inertia effects are not significant when

the mass of the swiveling engine is negligible with respect to the mass of the60
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main body.

The rest of the paper is organized as follows. In section 2 the model of the

launch vehicle is presented. In section 3 a global and robust attitude controller

is designed not considering the dynamics of the actuator. As a result, the latter

design is effective when the actuator is much faster than the designed autopilot.65

In section 4 the design is carried out including a simple dynamic model for

the actuator. Thus, the latter design is important when the actuator is not

substantially faster than the designed controller. Both proposed designs are

validated in a case study presented in section 5.

2. Model of the Launch Vehicle70

Consider an upper stage of a launch vehicle flying in vertical planar trajec-

tory above the atmospheric level. Thrust vector control is used to control the

attitude. The pitch plane dynamics (see Fig. 1) are given by (see Chapter 1 of

Θ

xb

zb

∆

lc

local

vertical

~Tc

Figure 1: Schematic diagram of launch vehicle.
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reference [1])

−mg cos Θ + Tc cos(sat∆(∆)) = m(U̇ +QW ) (1)

−mg sin Θ + Tc sin(sat∆(∆)) = m(Ẇ −QU) (2)

lcTc sin(sat∆(∆)) = IQ̇ (3)

Θ̇ = Q (4)

The meaning of the variables and parameters used in the above equations is

indicated in Appendix E. Symbol sat∆ denotes the following saturation func-

tion that is introduced to take into account of the limit 0 < ∆ < π/2 on the

amplitude of the engine deflection angle

sat∆(∆) ,


−∆ if ∆ < −∆

∆ if −∆ ≤ ∆ ≤ ∆

∆ if ∆ > ∆ .

(5)

In designing the controller, parameters I, lc, m, and Tc are considered constant75

but subject to uncertainty due to both their possible slow variations with time,

and to limited accuracy in determining their values.

The goal is controlling pitch angle Θ acting on engine deflection angle ∆

through a servoactuator. Measures of pitch angle Θ, pitch rate Q, and of the

engine deflection angle ∆ are considered available to the autopilot.80

The electro-hydraulic servoactuator that acts on the engine deflection angle

is here modeled by the following first order system (see [1, Section 3.2.3.1])

∆̇ = − 1

τa
∆ +

1

τa
∆c (6)

In the above equation ∆c is the commanded engine deflection angle which rep-

resents the control input.

3. Autopilot Design not Including the Dynamics of the Actuator

In this section attitude control design is performed without including model

in Eq.(6) for the electro-hydraulic servoactuator. Consequently, the control85
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input is given directly by ∆. Clearly, the latter simplification is acceptable

whenever the actuator is much faster than the resulting autopilot.

Consider only equations (3) and (4) since they are decoupled from equations

(1) and (2). They can be rewritten as follows

Θ̇ = Q

Q̇ = G sin(sat∆(∆))
(7)

in which G = lcTc/I.

Let Θc denote the commanded pitch angle. Since attitude commands, which

are provided by the guidance system, vary slowly with respect to attitude

dynamics, Θc is modeled as constant. Consider the following Proportional-

Derivative (PD) control law

∆ = kp(Θc −Θ)− kdQ (8)

with kp > 0 and kd > 0. Let Θ̃ = Θ−Θc; then, the closed-loop system obtained

combining Eqs. (7) and (8) writes as follows

˙̃
Θ = Q

Q̇ = −G sin(sat∆(kpΘ̃ + kdQ))
(9)

The following result holds true.

Theorem 1. The origin of the closed-loop system in Eq. (9) is globally asymp-90

totically stable.

Proof. Consider the Lyapunov function

V (Θ̃, Q) = kpQ
2 + 2G

∫ −(kpΘ̃+kdQ)

0

sin(sat∆(∆))d∆ (10)

obtained through a simple modification of the Laypunov function considered in

[14]. Note that V (Θ̃, Q) ≥ 0. Moreover V (Θ̃, Q) = 0 implies [Θ̃ Q]T = [0 0]T ;

consequently, V (Θ̃, Q) is positive definite. In addition, it is immediate to verify

that V (Θ̃, Q) is radially unbounded. It is easy to see that the following holds

V̇ (Θ̃, Q) = 2kpQQ̇+ 2G sin(sat∆(kpΘ̃ + kdQ))(kp
˙̃
Θ + kdQ̇)

= −2kdG
2 sin2(sat∆(kpΘ̃ + kdQ)) (11)
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Thus, V̇ (Θ̃, Q) ≤ 0, and V̇ (Θ̃, Q) = 0 implies kpΘ̃+kdQ = 0. Then, by La Salle’s

invariance principle (see corollary 4.2 of [15]), it follows that [Θ̃ Q]T = [0 0]T

is globally asymptotically stable.

The previous theorem shows that [Θ Q]T = [Θc 0]T is a globally asymp-

totically stable equilibrium for system in Eq. (7) controlled by feedback in

Eq. (8). Consequently, Θ converges to Θc starting from any initial condition

[Θ(0) Q(0)]T . To complete the analysis of the proposed attitude control sys-

tem, it is necessary to verify that applying feedback in Eq. (8) to system in Eqs.

(1)-(4), it does not occur that variables U and W diverge to infinity in finite

time. Let [Θ(t) Q(t)]T be the generic solution of Eqs. (7) and (8), and let ∆(t)

be the corresponding time behavior of control input ∆. Because of the previous

theorem, all those functions are defined for all t ≥ 0 and are continuos. Then,

from Eqs. (1) and (2) obtain that [U W ]T is solution to the following linear

time-varying nonhomogeneous system of differential equations

 U̇

Ẇ

 =

 0 −Q(t)

Q(t) 0

 U

W

+

 −g cos(Θ(t)) +
Tc cos(sat∆(∆(t)))

m

−g sin(Θ(t)) +
Tc sin(sat∆(∆(t)))

m


(12)

It is well know that for any initial value [U(0) W (0)]T the solution [U(t) W (t)]T95

of system (12) is continuous and defined for all t ≥ 0 (see [16, Chapter 1]).

The study performed so far leads to the following main proposition.

Proposition 1. Consider the launch vehicle described by Eqs. (1)-(4). Apply

the PD autopilot in Eq. (8). Then, if Θc is constant, for any initial condition

[U(0) W (0) Q(0) Θ(0)]T , it occurs that Θ(t)→ Θc for t→∞.100

Note that the above result holds regardless of the values of constant param-

eters I, lc, m and Tc. Consequently, the PD autopilot is robust with respect to

uncertainties of those parameters. Moreover, it is only required that feedback

gains satisfy kp > 0 and kd > 0. In practice, kp and kd are selected so to

obtain satisfactory transient performance. For that purpose it is important to105

7



know the range of variability of parameter G = lcTc/I. The latter point will be

illustrated in the case study presented in section 5.

Note that a standard design based on linearization of Eq. (7) about [Θ Q]T =

[Θc 0]T and ∆ = 0, leads to the same control law as in Eq. (8) (see [1, Section

5.3.1.1]). Consequently, it was already known that local convergence is achieved110

by using PD control. However, the contribution of this study is showing that PD

control actually achieves global convergence and does it robustly with respect

to uncertainties in the parameters.

4. Autopilot Design Including the Dynamics of the Actuator

In case the actuator is not much faster than the autopilot, it is important to115

take its effects into account in the autopilot design process. In fact, if that is not

the case, the influence of the actuator can lower substantially the performance

of the autopilot. As a result, in this section the autopilot design is carried out

including the servoactuator model in Eq. (6).

Consider only Eqs. (3), (4), and (6) since they are decoupled from equations120

(1) and (2). Then, using again Θ̃ = Θ − Θc with Θc constant, the former

equations can be rewritten as follows

˙̃
Θ = Q (13)

Q̇ = G sin(sat∆(∆)) (14)

∆̇ = − 1

τa
∆ +

1

τa
∆c (15)

The objective is designing a feedback law for ∆c that makes Θ̃ → 0 for any

initial condition [Θ̃(0) Q(0) ∆(0)]T . Measures of Θ̃, Q, and ∆ are considered

available to the autopilot. Moreover, the design must be robust with respect to125

the following parametric uncertainties G ≤ G ≤ G, τa ≤ τa ≤ τa.

The design can be executed by following a backstepping approach. The

backstepping design is a recursive procedure which allows to solve a stabilization

problem in several steps considering at each step a subsystem of increasing

dimension. Backstepping design for systems subject to parametric uncertainties,130
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known as robust backstepping, is outlined in section 11.1 of [17]. The latter

approach is summarized in a simplified fashion in the forthcoming subsection

4.2. However, first it is helpful to present some results on input-to-state stability

of uncertain nonlinear systems.

4.1. Results on Input-to-state Stability of Uncertain Nonlinear Systems135

For the rest of the paper it is useful to recall that a continuous scalar function

α(r) defined for 0 ≤ r < a, is class K if α(0) = 0 and α(r) is strictly increasing.

If in addition a = ∞ and limr→∞ α(r) = ∞, then α is class K∞. A continuos

scalar function β(r, t) defined for 0 ≤ r < a and t ≥ 0 is class KL, if β(·, t) ∈ K

for all t ≥ 0 and limt→∞ β(r, t) = 0 for all 0 ≤ r < a.140

Consider system

ẋ = f(x, u, µ) (16)

in which x ∈ Rn is the state, u ∈ Rm is the control input, and µ ∈ Rp is a

vector of unknown constant parameters. It is only known that µ ∈ P where

P is a subset of Rp. Assume that f is a locally Lipschitz function such that

f(0, 0, µ) = 0 for all µ ∈ P. Then, when u = 0, x = 0 is an equilibrium for

all possible values of µ. Consider any piecewise continuous input function u(t)

with t ≥ 0 and define ‖u(·)‖ = supt≥0 ‖u(t)‖. System in Eq. (16) is robustly

input-to-state-stable (see [18]) if there exists β ∈ KL and γ ∈ K, such that for

any piecewise continuos input u(t), for any initial state x(0) = x0 ∈ Rn, and for

any value of the unknown parameter µ ∈ P, the corresponding state response

x(t) fulfills the following

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖u(·)‖) ∀t ≥ 0

Function γ is called iss-gain of system in Eq. (16).

A useful sufficient condition for robust input-to-state stability is given by in

the following Lyapunov-type theorem (see proposition 3.3 of [18] and theorem

10.4.1 of [17]).

Theorem 2. Suppose there exists a continuously differentiable scalar function

V (x, µ) with x ∈ Rn and µ ∈ P for which it is possible to find three class K∞
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functions α, α, α and a class K function χ such that the following relations hold

true

α(‖x‖) ≤ V (x, µ) ≤ α(‖x‖) ∀x ∈ Rn ∀µ ∈ P

‖x‖ ≥ χ(‖u‖) ⇒ ∂V

∂x
(x, µ)f(x, u, µ) ≤ −α(‖x‖) ∀µ ∈ P

Then, system in Eq. (16) is robustly input-to-state stable with iss-gain

γ(r) = α−1 ◦ α ◦ χ(r) (17)

4.2. Results on Global Stabilization of Uncertain Nonlinear Systems via Robust145

Backstepping

The focus of the current subsection is presenting the robust backstepping

approach for stabilization of uncertain nonlinear systems of the following type

ż = fz(z,∆, µ) (18)

∆̇ = q(z,∆, µ) + b(z,∆, µ)∆c (19)

In the above equations z ∈ Rn and ∆ ∈ R are state variables, ∆c ∈ R is the

control input, and µ ∈ Rp is a vector of unknown constant parameters. It is150

only known that µ ∈ P where P is a subset of Rp. Assume that fz, q, and b

are locally Lipschitz functions, and that fz(0, 0, µ) = 0 and q(0, 0, µ) = 0 for all

µ ∈ P. Then, when ∆c = 0, [z ∆]T = [0 0]T is an equilibrium for all possible

values of µ. Moreover, assume that for some b0 > 0 it holds that b(z,∆, µ) ≥ b0
for all z ∈ Rn, ∆ ∈ R, µ ∈ P. The objective is designing a feedback that, using155

measures of z and ∆ (state feedback), makes [z ∆]T = [0 0]T become a globally

asymptotically stable equilibrium for all µ ∈ P.

The feedback design is performed in two phases. In the first phase consider

only Eq. (18), and imagine that ∆ is a (virtual) control input. Then, the

goal of the first phase is designing a (virtual) feedback ∆ = v∗(z) + β∗(z)y.

In the previous equation v∗(z) and β∗(z) are scalar continuously differentiable

functions fulfilling 0 < β∗(z) ≤ β∗0 for all z ∈ Rn, and y is a scalar variable. The

feedback must be designed so that the resulting (virtual) closed-loop system

ż = fz(z, v
∗(z) + β∗(z)y, µ) is robustly input-to-state-stable with respect to
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input y, state z, and uncertain parameter µ. It is also required that the iss-

gain γz of the obtained closed-loop system is a continuously differentiable class

K∞ function. Next, it is necessary to determine a continuously differentiable

γz ∈ K∞ such that

γz(r) < γz(r) ∀r > 0 (20)

Once the first phase is completed, in Eqs. (18) and (19) the state variable

∆ is replaced by the new variable y = (β∗(z))−1(∆− v∗(z)) so to obtain

ż = f̃z(z, y, µ) (21)

ẏ = q̃(z, y, µ) + b̃(z, y, µ)∆c (22)

where

f̃z(z, y, µ) = fz(z, v
∗(z) + β∗(z)y, µ)

q̃(z, y, µ) =
1

β∗(z)

(
q(z, v∗(z) + β∗(z)y, µ)− ∂v∗

∂z
(z)f̃z(z, y, µ)

−∂β
∗

∂z
(z)f̃z(z, y, µ)y

)

b̃(z, y, µ) =
1

β∗(z)
b(z, v∗(z) + β∗(z)y, µ) (23)

Next, it is presented how to design a feedback that globally stabilizes system160

in Eqs. (21) and (22) for all µ ∈ P.

Assume that it is possible to find η0 ∈ K and η1 ∈ K, with η0 and η1

continuously differentiable, such that

|q̃(z, y, µ)| ≤ η0(|y|) + η1(‖z‖) ∀z ∈ Rn ∀y ∈ R ∀µ ∈ P (24)

Then, find a continuously differentiable function κ(y) that satisfies the following

three conditions

1. κ(y) restricted to y ≥ 0 is a class K∞ function

2. κ(y) ≥ 2

b̃0
(η0(y) + η1(γz(y))) ∀y ≥ 0 (25)
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3. κ(−y) = −κ(y) ∀y ∈ R (26)

Thus, the following theorem, obtained by adapting lemma 11.4.1 of [17] (see165

also [19]), holds true.

Theorem 3. For system in Eqs. (21) and (22), feedback ∆c = −κ(y) makes

equilibrium [z y]T = [0 0]T globally asymptotically stable for all µ ∈ P.

Then, based on the previous results, it follows that the following memory-less

state feedback

∆c = −κ((β∗(z))−1(∆− v∗(z)))

applied to system in Eqs. (18) and (19), makes its origin a globally asymptoti-

cally stable equilibrium for all µ ∈ P.170

4.3. Autopilot Design

The current subsection presents the design of a feedback that globally asymp-

totically stabilizes the origin of system in Eqs. (13) - (15) subject to the following

parametric uncertainties G ≤ G ≤ G, τa ≤ τa ≤ τa. The design is based on the

robust backstepping method outlined in the previous subsection.175

Let z , [Θ̃ Q]T , and represent Eqs. (13) and (14) in the following concise

form

ż = fz(z,∆, G) (27)

where

fz(z,∆, G) =

 Q

G sin(sat∆(∆))

 (28)

The goal of the first phase is determining a (virtual) feedback ∆ = v∗(z) +

β∗(z)y. In the previous equation v∗(z) and β∗(z) are scalar continuously dif-

ferentiable functions fulfilling 0 < β∗(z) ≤ β∗0 for all z ∈ R2, and y is a scalar

variable. The feedback must be designed so that the resulting (virtual) closed-

loop system

ż = fz(z, v
∗(z) + β∗(z)y,G) (29)
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is robustly input-to-state-stable with input y, state z, and uncertain parameter

G ≤ G ≤ G. By theorem 2, this is achieved if we can find v∗(z), β∗(z), and

Vz(z,G) such that there exist three class K∞ functions αz, αz, αz, and a class

K function χz so that the following equations hold true

αz(‖z‖) ≤ Vz(z,G) ≤ αz(‖z‖) ∀z ∈ R2 ∀G ∈ [G G] (30)

‖z‖ ≥ χz(|y|) ⇒
∂Vz
∂z

(z,G)fz(z, v
∗(z) + β∗(z)y,G) ≤ −αz(‖z‖) ∀G ∈ [G G]

(31)

Setting y = 0 in Eq. (31), obtain

∂Vz
∂z

(z,G)fz(z, v
∗(z), G) ≤ −αz(‖z‖) ∀G ∈ [G G] (32)

Thus, as first step search for v∗(z) and Vz(z,G) such that there exist class K∞
functions αz, αz, α

∗ that fulfill Eq. (30) as well as the following inequality

∂Vz
∂z

(z,G)fz(z, v
∗(z), G) ≤ −α∗(‖z‖) ∀G ∈ [G G] (33)

The function α∗ is introduced at this stage since it will be different from the

function αz that will fulfill Eq. (31).

Clearly Eqs. (30) and (33) imply that equilibrium z = 0 is globally asymp-

totically stable for system ż = fz(z, v
∗(z), G) for all G ≤ G ≤ G. Then, because

of theorem 1 it seems natural picking v∗(z) = −(kpΘ̃ + kdQ) and Vz(z,G) as

in Eq. (10). However, Eq. (11) shows that with the latter choice, the left-hand

side of Eq. (33) is not negative definite with respect to z. Consequently, a

class K∞ function α∗ that makes (33) hold true cannot exist. As a result, the

proposed choice for v∗ and Vz is not valid. Then, inspired by example 3.2 in

[20], set

v∗(z) = − arcsin(σ(kpΘ̃ + kdQ)) (34)

where

σ(r) ,
2 sin ∆

π
arctan

(
π

2 sin ∆
r

)
(35)
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Function σ represents a smooth, strictly increasing modification of the satura-

tion function defined in (5) with saturation limit equal to sin ∆ instead of ∆.

Introduce Φ(r) ,
∫ r

0
σ(s)ds, and define

V ◦(z,G) , G(Φ(kpΘ̃) + Φ(kpΘ̃ + kdQ)) + kpQ
2 (36)

In Appendix A it is shown that

α◦(‖z‖) ≤ V ◦(z,G) ≤ α◦(‖z‖) ∀z ∈ R2 ∀G ∈ [G G] (37)

where α◦ and α◦ are the following class K∞ functions

α◦(r) =
α◦0r

2

1 + α◦1r
α◦(r) = α◦0r

2 (38)

with coefficients α◦0 > 0, α◦1 > 0, and α◦0 > 0 defined in Appendix A.

Next, note that the expression of fz(z, v
∗(z), G) can be simplified as follows

fz(z, v
∗(z), G) =

 Q

−Gσ(kpΘ̃ + kdQ)


and consequently

∂V ◦

∂z
(z,G)fz(z, v

∗(z), G) = −GkpQ(σ(kpΘ̃ + kdQ)− σ(kpΘ̃))

−G2kdσ
2(kpΘ̃ + kdQ) (39)

In Appendix B it is shown that

∂V ◦

∂z
(z,G)fz(z, v

∗(z), G) ≤ −α◦(‖z‖) ∀z ∈ R2 ∀G ∈ [G G] (40)

where

α◦(r) =
α◦0r

2

1 + α◦1r
2

with α◦0 > 0 and α◦1 > 0 defined in Appendix B. Note that function α◦ ∈ K,

and it is not possible to find α◦ ∈ K∞ that makes Eq. (40) fulfilled. In fact, Eq.

(39) shows that the left hand side of Eq. (40) is not radially unbounded with

respect to z. Consequently, setting v∗(z) as in Eq. (34) and Vz(z,G) = V ◦(z,G)

as in Eq. (36) is not a valid choice for fulfilling Eq. (33) since it is required that
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α∗ ∈ K∞. However, based on remark 10.1.4 of [17], keeping v∗(z) as in Eq. (34)

and setting

Vz(z,G) =
1

2
(V ◦(z,G))2 (41)

it is possible to fulfill both Eqs. (30) and (33). In fact, clearly Eq. (30) is

satisfied by picking

αz(r) =
1

2
(α◦(r))2 =

(
αz0r

2

1 + αz1r

)2

αz(r) =
1

2
(α◦(r))2 = αz0r

4

where αz0 = α◦0/
√

2, αz1 = α◦1, and αz0 = (α◦0)2/2. Moreover, the following

holds true

∂Vz
∂z

(z,G)fz(z, v
∗(z), G) = V ◦(z,G)

∂V ◦

∂z
(z,G)fz(z, v

∗(z), G)

≤ −α◦(‖z‖)α◦(‖z‖) ∀z ∈ R2 ∀G ∈ [G G]

As a result, Eq. (33) is satisfied by setting

α∗(r) = α◦(r)α◦(r) =
α∗0r

4

1 + α∗1r + α∗2r
2 + α∗3r

3

with α∗0 = α◦0α
◦
0, α∗1 = α◦1, α∗2 = α◦1, and α∗3 = α◦1α

◦
1. It is important to note

that the above function is class K∞ since α◦ ∈ K∞ and α◦ ∈ K.180

Next objective is finding a continuously differentiable β∗(z) such that 0 <

β∗(z) ≤ β∗0 for all z ∈ R2 and for which it is possible to determine αz ∈ K∞
and χz ∈ K so that Eq. (31) holds.

For that purpose note that

∂Vz
∂z

(z,G)fz(z, v
∗(z) + β∗(z)y,G) =

∂Vz
∂z

(z,G)fz(z, v
∗(z), G)+

∂Vz
∂z

(z,G)(fz(z, v
∗(z) + β∗(z)y,G)− fz(z, v∗(z), G)) ≤

− α∗(‖z‖) +
∂Vz
∂z

(z,G)

 0

Gp(z, β∗(z)y)


where

p(z, y′) = sin(sat∆(v∗(z) + y′))− sin(sat∆(v∗(z)))
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Thus

∂Vz
∂z

(z,G)fz(z, v
∗(z) + β∗(z)y,G) ≤ −α∗(‖z‖) +

∣∣∣∣∂Vz∂Q
(z,G)

∣∣∣∣G|p(z, β∗(z)y)|

It is easy to obtain that |p(z, y′)| ≤ |y′|, and in Appendix C it is shown that∣∣∣∣∂Vz∂Q
(z,G)

∣∣∣∣ ≤ α̂(‖z‖) ∀z ∈ R2 ∀G ∈ [G G] (42)

with α̂(r) = α̂0r
3 where α̂0 > 0 is defined in Appendix C. Consequently

∂Vz
∂z

(z,G)fz(z, v
∗(z) + β∗(z)y,G) ≤ −1

2
α∗(‖z‖)− 1

2
α∗(‖z‖)

+Gα̂(‖z‖)|β∗(z)||y| ∀z ∈ R2 ∀G ∈ [G G]

Thus, clearly Eq. (31) is fulfilled with αz(r) = α∗(r)/2, if we can find χz ∈ K

and a continuously differentiable β∗(z) with 0 < β∗(z) ≤ β∗0 for all z ∈ R2, such

that

‖z‖ ≥ χz(|y|) ⇒ −1

2
α∗(‖z‖) +Gα̂(‖z‖)|β∗(z)||y| ≤ 0

Then, it is convenient to restrict the search to χz ∈ K∞ rather than χz ∈ K. In

fact, in that case the equation above is equivalent to

χ−1
z (‖z‖) ≥ |y| ⇒ 1

2
α∗(‖z‖) ≥ Gα̂(‖z‖)|β∗(z)||y|

Clearly, the above equation holds true if β∗ and χ−1
z ∈ K∞ are selected so that

the following is satisfied

1

2
α∗(‖z‖) ≥ Gα̂(‖z‖)|β∗(z)|χ−1

z (‖z‖) ∀z ∈ R2 (43)

Thus, proceed as follows. Set β∗(z) = 1/(1+‖z‖2)ν where ν is a positive integer

to be determined later. Note that the proposed β∗ is continuously differentiable

and is such that 0 < β∗(z) ≤ β∗0 = 1, as required. For small ‖z‖ Eq. (43) can

be approximated as follows

1

2
α∗0‖z‖4 ≥ Gα̂0‖z‖3χ−1

z (‖z‖)

Clearly, the previous inequality can be satisfied by picking

χ−1
z (r) =

1

χz0
r (44)
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with χz0 > 0 and sufficiently large. Consequently, set χ−1
z as in Eq. (44), and

note that for large ‖z‖, Eq. (43) can be approximated as follows

1

2

α∗0
α∗3
‖z‖ ≥ Gα̂0‖z‖3‖z‖−2ν 1

χz0
‖z‖

Clearly setting ν = 2 makes the above inequality fulfilled for ‖z‖ sufficiently

large. Thus, set β∗(z) = 1/(1 + ‖z‖2)2 and χ−1
z as in Eq. (44), and see if it

possible to find χz0 > 0 so that Eq. (43) holds true. The latter equation is

equivalent to

α∗0r
4

2(1 + α∗1r + α∗2r
2 + α∗3r

3)
≥ Gα̂0r

4

χz0(1 + r2)2
∀r ≥ 0

The previous inequality holds true if and only if q1(r)r2 +q2(r) ≥ 0 for all r ≥ 0

where q1 and q2 are the following quadratic polynomials

q1(r) = α∗0χz0r
2 − 2Gα̂0α

∗
3r + α∗0χz0 −Gα̂0α

∗
2

q2(r) = (α∗0χz0 −Gα̂0α
∗
2)r2 − 2Gα̂0α

∗
1r + α∗0χz0 − 2Gα̂0

It is easy to verify that the following condition

χz0 =
Gα̂0

2α∗0
max

{
α∗2 +

√
(α∗2)2 + 4α∗3 , α

∗
2 + 2 +

√
(α∗2 − 2)2 + 4α∗1

}
guarantees that q1(r) ≥ 0 and q2(r) ≥ 0 for all r. In conclusion, setting β∗(z) =

1/(1 + ‖z‖2)2, αz(r) = α∗(r)/2, and χz(r) = χz0r with χz0 as in the above

equation, makes Eq. (31) fulfilled. As a result, by Eq. (17) the iss-gain of

system in Eq. (29) is given by

γz(r) = α−1
z ◦αz ◦χz(r) =

χz0r

2αz0

(√
4αz0

√
αz0 + α2

z1αz0χ
2
z0r

2 + αz1
√
αz0χz0r

)
Note that γz is class K∞ and continuously differentiable as required. Next,

determine continuously differentiable γz ∈ K∞ such that

γz(r) < γz(r) ∀r > 0 (45)

For that purpose note that√
4αz0

√
αz0 + α2

z1αz0χ
2
z0r

2 < 2
√
αz0(αz0)1/4 + αz1

√
αz0χz0r ∀r > 0
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Thus, it can be set

γz(r) = γz1r + γz2r
2 (46)

with γz1 = (αz0)1/4χz0/
√
αz0 and γz2 = αz1

√
αz0χ

2
z0/αz0.

Consider now Eqs. (15) and (27) and change variable ∆ into

y = (β∗(z))−1(∆− v∗(z)) (47)

obtaining

ż = f̃z(z, y,G)

ẏ = q̃(z, y,G, τa) + b̃(z, τa)∆c

(48)

where

f̃z(z, y,G) = fz(z, v
∗(z) + β∗(z)y,G)

q̃(z, y,G, τa) = − 1

β∗(z)

(
1

τa
v∗(z) +

∂v∗

∂z
(z)f̃z(z, y,G) +

∂β∗

∂z
(z)f̃z(z, y,G)y

)
− 1

τa
y (49)

b̃(z, τa) =
1

τaβ∗(z)
(50)

Clearly

b̃(z, τa) ≥ b̃0 =
1

τa
∀z ∈ R2 ∀τa ∈ [τa τa] (51)

Moreover, it is shown in Appendix D that

|q̃(z, y,G, τa)| ≤ η0(|y|) + η1(‖z‖)

∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G] ∀τa ∈ [τa τa] (52)

with

η0(r) = η01r+η02r
2 +η04r

4 η1(r) = η11r+η12r
2 +η13r

3 +η14r
4 +η15r

5 (53)

where coefficients η0i > 0 i = 1, 2, 4 and η1i > 0 i = 1, . . . , 5 are defined in185

Appendix D.
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Then, denote the function that appears on the right-hand side of Eq. (25)

as

κ(r) ,
2

b̃0
(η0(r) + η1(γz(r))) r ≥ 0

From Eqs. (46) and (53) it is straightforward to obtain that κ(r) =
∑10
i=1 κir

i

where the expressions of κi > 0 i = 1, . . . , 10 can be easily determined. Then,

a function κ(y) that fulfills all required properties indicated in subsection 4.2 is

given by

κ(y) =

10∑
i=1

κi|y|isgn(y) (54)

Thus, by theorem 3 it follows that for system in Eqs. (13)-(15) feedback

∆c = −κ(y) makes [Θ̃ Q ∆]T = [0 0 0]T a robustly globally asymptotically

stable equilibrium. Moreover, repeating the same argument as in section 3, it is

guaranteed that variables U and W that fulfill Eqs. (1) and (2) do not diverge190

to infinity in finite time. Thus, the following concluding proposition can be

stated.

Proposition 2. Consider the launch vehicle described by Eqs. (1)-(4) and (6).

Apply the nonlinear memory-less state feedback ∆c = −κ(y) in which κ(y) is

given by Eq. (54) and

y = (1 + (Θ−Θc)
2 +Q2)2 (∆ + arcsin(σ(kp(Θ−Θc) + kdQ))) (55)

where σ is defined in Eq. (35). Then, if Θc is constant, for any initial condition

[U(0) W (0) Q(0) Θ(0) ∆(0)]T and for any m > 0, I ≤ I ≤ I, lc ≤ lc ≤ lc,

Tc ≤ Tc ≤ Tc and τa ≤ τa ≤ τa, it occurs that Θ(t)→ Θc for t→∞ .195

Thus, the proposed autopilot guarantees global convergence to the desired

attitude robustly with respect to parametric uncertainties.

5. Case Study

Consider the following data for a launch vehicle flying above atmospheric

level. Distance lc, inertia moment I, and mass m vary with time as follows

lc = lci + l̇ct I = Ii + İt m = mi + ṁt (56)
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where lci = 1 m, l̇c = 8.70 · 10−4 m/s, Ii = 9200 kg m2, İ = −7.83 kg m2/s,

mi = 4700 kg, ṁ = −3.84 kg/s. The flight time is set equal to tf = 575 sec.200

Thus, at final time tf the previous parameters become equal to lcf = 1.5 m,

If = 4700 kg m2, mf = 2492. For autopilot design purposes, parameters lc, I,

and m are considered constant since their speed of variation will be much slower

compared to the speed of convergence that the autopilots will achieve. However,

since they vary with time, their values are uncertain and range on the following205

intervals lci = lc ≤ lc ≤ lc = lcf , If = I ≤ I ≤ I = Ii, mf = m ≤ m ≤ m = mi.

The thrust is constant with nominal value Tc0 = 1.15 · 104 N, and is subject

to 10 % uncertainty. Thus, 1.04 · 104 N = Tc ≤ Tc ≤ Tc = 1.27 · 104 N. The

maximum amplitude of the engine deflection angle is equal to ∆ = 10 deg.

5.1. Autopilot Design not Including the Dynamics of the Actuator.210

Here the servoactuator model is not considered for autopilot design. Conse-

quently, the proposed design is effective if the actuator is much faster than the

resulting attitude controller. In section 3 it has been shown that a global robust

autopilot is given by Eq. (8). In order to determine appropriate values for the

positive gains kp and kd, proceed as follows. Consider the linear approximation

of closed-loop system in Eqs. (7) and (8) about equilibrium [Θ Q]T = [Θc 0]T .

The latter approximation is given by

Θ̇ = Q

Q̇ = G(kp(Θc −Θ)− kdQ)
(57)

Thus, in the Laplace domain

Θ̂(s)

Θ̂c(s)
=

Gkp
s2 +Gkds+Gkp

(58)

Determine kp and kd so that the step response of (58) fulfills the following

specifications: maximum percentage overshoot Mp ≤ 2%, settling time ts ≤ 10

sec, and rise time tr ≤ 5 sec. The specifications must be fulfilled for all values

of parameter G within its variability range G ≤ G ≤ G.

Using standard results (see [21, Chapter 7]), it can be obtained that the

specifications are likely to be satisfied if transfer function (58) possesses poles
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having damping ratio ζ ≥ ζ = 0.8 and natural angular frequency ωn ≥ ωn = 0.7

rad/s for all G ≤ G ≤ G. Since kpG = ω2
n and kdG = 2ζωn, then it is easy to

verify that by setting

kp = ωn
2/G kd = 2ζωn/G (59)

it occurs that ζ ≥ ζ and ωn ≥ ωn for all G ≤ G ≤ G. Since G = lcTc/I then,215

clearly G = lc Tc/I = 1.13 sec−2 and G = lc Tc/I = 4.05 sec−2. As a result, by

Eq. (59) set kp = 0.43 and kd = 0.99.

The designed autopilot is first validated by analyzing the step response of

system in Eq. (58) considering 20 values of G randomly uniformly distribuited

between G = 1.13 sec−2 and G = 4.05 sec−2 (see Fig. 2). It turns out that for
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Figure 2: Step response of system in Eq. (58) for 20 random values of G.

220

all those 20 step responses it occurs that Mp ≤ 0.2%, 5.9 s ≤ ts ≤ 8.1 s, and

3.65 s ≤ tr ≤ 4.46 s. Thus, they all fulfill the specifications.

Moreover, theorem 1 is validated by simulating system in Eq. (9) with initial

21



state [Θ̃(0) Q(0)]T = [Θ̃0 Q0]T and constant parameter G selected as follows.

Consider the following interval of variability

I1 =
{

[Θ̃0 Q0 G]| − 180 deg ≤ Θ̃0 ≤ 180 deg, −0.1 rad/s ≤ Q0 ≤ 0.1 rad/s,

1.13 sec−2 = G ≤ G ≤ G = 4.05 sec−2
}

Then, 20 points randomly uniformly distributed over I1 have been selected. The

corresponding time histories of Θ̃ and of sat∆(∆) are plotted in Fig. 3. They
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Figure 3: Time behaviors for 20 random values of [Θ̃0 Q0 G] (design not including actuator).

confirm that equilibrium [Θ̃ Q]T = [0 0]T is robustly globally asymptotically225

stable. Note that the time behaviors of Θ can be obtained from those of Θ̃

through a simple translation since Θ = Θ̃ + Θc.

The designed autopilot is then tested in the following more realistic scenario.

Eqs. (3) and (4) controlled by PD autopilot in Eq. (8) are simulated considering

the time-varying behaviors for lc and I indicated in Eq.(56). The commanded-

attitude Θc is also time-varying and represents a typical guidance command (see
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Fig. 4). Thrust Tc is constant and uncertain. Consider the following interval of

variability of initial state [Θ(0) Q(0)]T = [Θ0 Q0]T and of constant thrust Tc

I2 = {[Θ0 Q0 Tc]| − 180 deg ≤ Θ0 ≤ 180 deg, −0.1 rad/s ≤ Q0 ≤ 0.1 rad/s,

1.04 · 104 N = Tc ≤ Tc ≤ Tc = 1.27 · 104 N
}

Select 20 points randomly uniformly distributed over I2. The corresponding

time histories of Θ and of sat∆(∆) are plotted in Fig. 4.
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Figure 4: Time behaviors with time-varying Θc (red dashed line), lc and I, and for 20 random

values of [Θ0 Q0 Tc] (design not including actuator).

It is important to highlight that even when lc, I, and Θc are time-varying,230

and consequently Proposition 1 does not apply, convergence of Θ to Θc is still

attained. This occurs because the speeds of variation of lc, I, and Θc are slow

compared to the speed of convergence of Θ to Θc obtained when the latter

are constant. Thus, in the time-varying scenario under consideration, those

magnitudes act as if they were constant for the designed attitude control system.235
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The PD autopilot has been designed not taking into account of possible

effects of the actuator. As a result, when simulations of the autopilot are per-

formed including the model of the actuator in Eq. (6), if τa is much shorter

than the minimum rise time tr ≈ 3 sec, then the time behaviors are close to

the ones just obtained. However, for larger values of τa the performances of the240

PD autopilot deteriorate. For example with τa = 2.5 sec, the time behaviors

reported in Fig. 5 are obtained considering time-varying Θc, lc, I as before, and

setting Θ0 = 0, Q0 = 0, Tc = Tc0 = 1.15 · 104 N. Clearly, instability occurs.

Consequently, in such situations it is important to design an autopilot that takes
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Figure 5: Time behaviors with time-varying Θc (red dashed line), lc, I, and including actuator

in simulation with τa = 2.5 sec.

into account of the effects of the actuator. This is carried out in the following245

subsection
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5.2. Autopilot Design Including the Dynamics of the Actuator.

In the present subsection autopilot design is performed using the same values

and uncertainties for the parameters as in the previous subsection. However,

here the model of the actuator in Eq. (6) is taken into account. It is set250

τa = 2.5 sec as nominal value with a ±10% maximum uncertainty . Thus,

2.25 sec = τa ≤ τa ≤ τa = 2.75 s. In subsection 4.3 it has been shown that a

global robust autopilot is given by ∆c = −κ(y) where κ(y) is given by Eq. (54),

y is given by Eq. (55), and σ is given by Eq. (35). The autopilot parameters

have been determined as follows. The values kp = 0.43 and kd = 0.99 have been255

kept from the previous design. Gains κi i = 1, . . . , 10 have been determined

by using the method described in subsection 4.3 leading to the following values

κ1 = 1.99·1011, κ2 = 1.58·1021, κ3 = 7.23·1030, κ4 = 7.71·1040, κ5 = 5.51·1050,

κ6 = 2.84 · 1060, κ7 = 1.17 · 1070, κ8 = 3.90 · 1079, κ9 = 8.64 · 1088, and

κ10 = 1.08 · 1098 2.260

To verify that the obtained controller stabilizes globally and robustly system

in Eqs. (13)-(15), the corresponding closed-loop system has been simulated with

constant G. The values for initial conditions Θ̃(0) = Θ̃0 and Q(0) = Q0, and

for parameters G and τa have been picked as follows. Consider the following

interval of variability

I3 =
{

[Θ̃0 Q0 G τa]| − 180 deg ≤ Θ̃0 ≤ 180 deg,

−0.1 rad/s ≤ Q0 ≤ 0.1 rad/s, 1.13 sec−2 = G ≤ G ≤ G = 4.05 sec−2,

2.25 sec = τa ≤ τa ≤ τa = 2.75 sec
}

Then, 20 points randomly uniformly distributed over I3 have been selected.

The corresponding time histories of Θ̃ and of sat∆(∆) are plotted in Fig. 6.

Moreover, the global autopilot has been tested in the same time-varying scenario

2Such large gains might lead to numerical instability in the real engineering. However,

since design of stabilizers by robust backstepping tends to be conservative, it is extremely

likely that that much lower gains can be employed in practical applications. Investigating

numerically the latter fact goes beyond the objective of the present work
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Figure 6: Time behaviors for 20 random values of [Θ̃0 Q0 G τa] (design including actuator).

as in subsection 5.1. Consider the following interval of variability of initial state

[Θ(0) Q(0)]T = [Θ0 Q0]T , constant thrust Tc, and time constant τa

I4 = {[Θ0 Q0 Tc τa]| − 180 deg ≤ Θ0 ≤ 180 deg,

−0.1 rad/s ≤ Q0 ≤ 0.1 rad/s, 1.04 · 104 N = Tc ≤ Tc ≤ Tc = 1.27 · 104 N,

2.25 sec = τa ≤ τa ≤ τa = 2.75 sec
}

Then, 20 points randomly uniformly distributed over I4 have been selected. The

corresponding time histories of Θ and of sat∆(∆) are plotted in Fig. 7.

It is interesting to note that in Figs. 6 and 7 variable ∆ never reaches it

saturation limits ±∆ = ±10 deg. The latter fact can be intuitively explained

as follows. In equation (48) feedback ∆c = −κ(y) with κ(y) given by Eq. (54)265

is applied. The huge values of gains κi make variable y go to 0 very rapidly.

Consequently, from Eq. (47) it follows that with the same speed ∆ converges

to v∗(z). The latter fact guarantees that ∆ never reaches saturation levels
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Figure 7: Time behaviors with time-varying Θc (red dashed line), lc, I, and for 20 random

values of [Θ0 Q0 Tc τa] (design including actuator).

±∆ = ±10 deg (see Eqs. (34) and (35)).

5.3. Comparison with Adaptive PD Control270

In this section the performances of the obtained autopilots are compared

with those of an adaptive PD controller presented in [4].

The design of the adaptive PD controller employs the linearization of the

model in Eq. (7) which is given by

ẋp = Apxp +Bb∆ (60)

where

xp =

 Θ

Q

 Ap =

 0 1

0 0

 Bp =

 0

G


in which parameter G = lcTc/I is subject to uncertainty. Next, the following
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reference model is introduced

ẋm = Amxm +BmΘc

where

Am =

 0 1

−ω2
m −2ζm ωm

 Bm =

 0

ω2
m


The adaptive PD control law is given by

∆ = −Ka(t)x+ La(t)Θc (61)

where gains Ka(t) and La(t) are updated through the following equations (which

are obtained from [4] after fixing some typos)

K̇a = eTPBmx
TΓK L̇a = −ΓLΘcB

T
mPe (62)

In the previous equation e = x − xm, and P is the solution to the following

Lyapunov equation

PAm +ATmP = −Q

in which Q is a symmetric positive definite matrix chosen by the designer. In

Eq. (62) ΓK denotes a symmetric positive definite matrix, and ΓL is a positive

scalar. Both ΓK and ΓL are design parameters. Paper [4] shows that the275

considered adaptive PD control guarantees that limt→∞ e(t) = 0.

The comparison between the autopilots obtained in this work and the con-

sidered adaptive PD controller, is carried out for the case study with the time-

varying Θc, I and lc previously introduced. Moreover thrust is set to its nominal

value Tc = Tc0 = 1.15 · 104 N, and the initial conditions are chosen as Θ0 = 0,280

Q0 = 0.

The design parameters for the adaptive PD control have been selected as

follows. The parameters of the reference model have been set as ζm = 0.8 and

ωm = 0.7 rad/s. In fact, those values guarantee that the reference model fulfills

the previously introduced specifications Mp ≤ 2%, ts ≤ 10 sec, tr ≤ 5 sec (see285

subsection 5.1). Moreover, it has been set Q = I2×2, and proceeding by trial

and error, gains ΓK and ΓL have been selected as ΓK = 10I2×2, ΓL = 10.
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The initial values for the adaptive gains Ka and La have bee chosen as follows.

Consider the value of G at time t = 0 which is given by G0 = lciTc0/Ii. Then

Ka(0) and La(0) have been determined enforcing that the closed-loop system290

in Eqs. (60)-(61) considered at time t = 0, coincides with the reference model.

The resulting values are Ka(0) = [ω2
m/G0 2ζm ωm/G0], La(0) = ω2

m/G0

Several simulations have been executed using different values for the time

constant of the electro-hydraulic servoactuator τa. Note that the design of

the adaptive PD control has been performed not considering the effects of the295

actuator as it was done with the PD control designed in subsection 5.1. Thus,

initially it has been set τa = 0. The resulting time histories of Θ reported in Fig.

8 show that both controllers are able to track Θc. However, a slightly better
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Figure 8: Time behaviors with time-varying Θc (red dashed line), lc, I, using PD control and

adaptive PD control with τa = 0.

response is obtained with PD control since it does not exhibit overshoot.

Next, PD control and adaptive PD control are compared when the vehicle300

29



model includes an actuator having τa = 0.3 sec . The corresponding time

histories of Θ reported in Fig. 9 show that the transient behavior with adaptive

PD is substantially worse than with PD control.
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Figure 9: Time behaviors with time-varying Θc (red dashed line), lc, I, using PD control and

adaptive PD control with τa = 0.3 sec.

Finally, an actuator with τa = 2.5 sec is considered. It has been already

shown that this leads PD control to instability (see Fig. 5). Moreover, Fig. 10305

shows that the same happens with adaptive PD. On the other hand, the same

figure confirms that using the robust backstepping autopilot from subsection

5.2, makes Θ track the guidance command Θc.

In conclusion, the comparison shows that if the actuator is fast with respect

to the attitude control loop, then both PD and adaptive PD are effective. How-310

ever, PD control performs better in terms of quality of the transient response.

For slow actuators both PD and adaptive PD lead to instability, whereas robust

backstepping control achieves good tracking performance.

30



0 100 200 300 400 500 600
-2

-1

0

1

2

3

 a
n
d
 

c
 (

d
e
g
)

10
4

Adaptive PD (
a
=2.5 sec)

0 100 200 300 400 500 600

time (sec)

0

20

40

60

80

100

 a
n
d
 

c
 (

d
e
g
)

Robust backstepping (
a
=2.5 sec)

Figure 10: Time behaviors with time-varying Θc (red dashed line), lc, I, using adaptive PD

and robust backstepping with τa = 2.5 sec.

6. Conclusions

In the present paper two autopilots have been designed based on a nonlinear315

model of a rigid launch vehicle flying a planar trajectory above atmosphere.

Both autopilots possess the interesting feature of guaranteeing global conver-

gence even considering parametric uncertainties. Global convergence is impor-

tant because when large angle maneuvers must be performed, it is simpler to use

a single global controller than several local controllers patched together. The320

effectiveness of the obtained autopilots is shown through a case study.
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Appendix A. Determination of α◦ and α◦
325

The first goal of the present appendix is determining α◦ ∈ K∞ such that

V ◦(z,G) , G(Φ(kpΘ) + Φ(kpΘ + kdQ)) + kpQ
2 ≥ α◦(‖z‖)

∀z ∈ R2 ∀G ∈ [G G] (A.1)

First note that since Φ is a nonnegative and even function, the following holds

V ◦(z,G) ≥ GΦ(kp|Θ|) + kpQ
2 ∀z ∈ R2 ∀G ∈ [G G] (A.2)

The next intermediate objective is finding ε ∈ K∞ that fulfills Φ(r) ≥ ε(r) and

r2 ≥ ε(r) for all r ≥ 0. For that purpose note that

Φ′′(r) = σ′(r) =
1

1 +
(

π
2 sin ∆

r
)2 (A.3)

thus Φ′′(r) is strictly decreasing for r ≥ 0. Moreover, since Φ′′( 2 sin ∆
π ) = 1/2,

then

Φ′′(r) ≥ ε1(r) ∀r ≥ 0 (A.4)

where

ε1(r) ,

 1
2 if 0 ≤ r ≤ 2 sin ∆

π

0 if r > 2 sin ∆
π

Integrating Eq. (A.4) over the interval [0 r] obtain

Φ′(r) ≥ ε2(r) ∀r ≥ 0 (A.5)

where

ε2(r) ,

 1
2r if 0 ≤ r ≤ 2 sin ∆

π

sin ∆
π if r > 2 sin ∆

π

Thus, integration Eq. (A.5) over the interval [0 r] leads to Φ(r) ≥ ε(r) for all

r ≥ 0 where ε is the following class K∞ function

ε(r) ,


1
4r

2 if 0 ≤ r ≤ 2 sin ∆
π

sin2 ∆
π2 + sin ∆

π

(
r − 2 sin ∆

π

)
if r > 2 sin ∆

π
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Clearly r2 ≥ ε(r) for all r ≥ 0. Thus, from Eq. (A.2) obtain

V ◦(z,G) ≥ Gε(kp|Θ|) + kpε(|Q|) ∀z ∈ R2 ∀G ∈ [G G]

Let a , min{G, kp}. By using a property of class K∞ functions reported on p.

188 of [15] obtain

V ◦(z,G) ≥ a(ε(kp|Θ|) + ε(|Q|)) ≥ aε
(

1

2
kp|Θ|+

1

2
|Q|
)
∀z ∈ R2 ∀G ∈ [G G]

Let b , min{1, kp}, then

V ◦(z,G) ≥ aε
(

1

2
b(|Θ|+ |Q|)

)
≥ aε

(
1

2
b‖z‖

)
= α◦(‖z‖)

∀z ∈ R2 ∀G ∈ [G G] (A.6)

where α◦(r) , aε
(

1
2br
)

can be equivalently rewritten as

α◦(r) =

 α◦
0
r2 if 0 ≤ r ≤ r∗

α◦
0
(r∗)2 + α◦

1
(r − r∗) if r > r∗

with α◦
0
, ab2/16, α◦

1
, ab sin ∆/(2π), and r∗ , 4 sin ∆/(πb). Introduce the

following class K∞ function

α◦(r) , α◦0r
2/(1 + α◦1r) (A.7)

where α◦0 , α◦
0
/2 and α◦1 , α◦

0
/α◦

1
. Next, it will be shown that

α◦(r) ≥ α◦(r) ∀r ≥ 0 (A.8)

In fact, for 0 ≤ r ≤ r∗ the following holds α◦(r) ≥ α◦
0
r2/2 = α◦0r

2 ≥ α◦(r).

For showing that α◦(r) ≥ α◦(r) for r > r∗ proceed as follows. First note that

α◦(r∗) > α◦(r∗); in fact

α◦(r∗) = α◦
0
(r∗)2 >

1

2
α◦

0
(r∗)2 >

1
2α
◦
0
(r∗)2

1 +
α◦

0

α◦
1

r∗
= α◦(r∗)

Moreover, through standard computations it can be shown that (α◦)′(r) >

(α◦)′(r) for all r > r∗. Thus, it has been proved that Eq. (A.8) holds. Con-

sequently, by Eq. (A.6) obtain that the class K∞ function α◦ defined in Eq.

(A.7), fulfills Eq. (A.1).
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The second objective of the present appendix is determining α◦ ∈ K∞ such

that

V ◦(z,G) , G(Φ(kpΘ) + Φ(kpΘ + kdQ)) + kpQ
2 ≤ α◦(‖z‖)

∀z ∈ R2 ∀G ∈ [G G] (A.9)

First note that since Φ(r) is strictly increasing for r ≥ 0 and is an even function,

then the following holds

V ◦(z,G) ≤ G(Φ(kp|Θ|) + Φ(kp|Θ|+ kd|Q|)) + kpQ
2 ∀z ∈ R2 ∀G ∈ [G G]

Next, since σ(r) ≤ r for r ≥ 0, it holds that Φ(r) ≤ r2/2 for r ≥ 0. Thus, by

using the latter property as well as inequality |Θ||Q| ≤ Θ2/2 +Q2/2, it is easy

to obtain that Eq. (A.9) is fulfilled with α◦(r) = α◦0r
2 where

α◦0 = max

{
Gkp

(
kp +

1

2
kd

)
,

1

2
Gkd (kp + kd) + kp

}

Appendix B. Determination of α◦
330

Let

W0(z,G) , −∂V
◦

∂z
(z,G)fz(z, v

∗(z), G) = GkpQ(σ(kpΘ̃ + kdQ)− σ(kpΘ̃))

+G2kdσ
2(kpΘ̃ + kdQ)

The purpose of the current subsection is determining α◦ ∈ K such that

W0(z,G) ≥ α◦(‖z‖) ∀z ∈ R2 ∀G ∈ [G G] (B.1)

Let

W1(z) , GkpQ(σ(kpΘ̃ + kdQ)− σ(kpΘ̃)) +G2kdσ
2(kpΘ̃ + kdQ) (B.2)

Since terms Q(σ(kpΘ̃ + kdQ) − σ(kpΘ̃)) and σ2(kpΘ̃ + kdQ) are nonnegative,

then clearly

W0(z,G) ≥W1(z) ∀z ∈ R2 ∀G ∈ [G G] (B.3)
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Then, in order to find α◦ ∈ K such that W1(z) ≥ α◦(‖z‖) for all z ∈ R2, the

following approach, inspired by remark 10.1.3 of [17], will be followed. Given

c ≥ 0 consider the level set Ωc , {z ∈ R2 : W1(z) ≤ c}. Given an appropriate

c̄ > 0 that will be determined later, find a continuous strictly increasing function

ρ : [0 c̄) → [0 ∞) such that ρ(0) = 0, limr→c̄− ρ(r) = ∞, and such that it

possesses the following property

z ∈ Ωc ⇒ ‖z‖ ≤ ρ(c) (B.4)

The latter property means that for 0 ≤ c < c̄, the disk of radius ρ(c) contains

the level set Ωc. Then, consider the inverse function ρ−1 : [0 ∞) → [0 c̄) and

note that ρ−1 ∈ K. It occurs that

W1(z) ≥ ρ−1(‖z‖) ∀z ∈ R2 (B.5)

In fact, pick a generic z ∈ R2, and let c = W1(z); then, clearly z ∈ Ωc. If

c < c̄, then by Eq. (B.4) obtain that ‖z‖ ≤ ρ(c) = ρ(W1(z)). Consequently

W1(z) ≥ ρ−1(‖z‖). On the other hand, if c ≥ c̄ then W1(z) = c ≥ c̄ > ρ−1(‖z‖).

Consequently, Eq. (B.5) holds true, and by Eq. (B.3), setting

α◦(r) = ρ−1(r) r ≥ 0 (B.6)

it follows that Eq. (B.1) is fulfilled.

Thus, the next step is finding an explicit expression for ρ−1(r). For that

purpose, it is important to determine a function ρ that satisfies the properties

previously indicated and for which it is possible to compute explicitly the inverse

function. Then, starting from Eq. (B.2), note that by the mean value theorem

σ(kpΘ̃ + kdQ)− σ(kpΘ̃) = σ′(ξ)kdQ

min{kpΘ̃ + kdQ, kpΘ̃} < ξ < max{kpΘ̃ + kdQ, kpΘ̃}

Since σ′ is even then

σ(kpΘ̃ + kdQ)− σ(kpΘ̃) = σ′(|ξ|)kdQ |ξ| < kp|Θ̃|+ kd|Q|,
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Moreover, since also σ2 is even, then σ2(kpΘ̃ + kdQ) = σ2(|kpΘ̃ + kdQ|). Thus

W1(z) = Gkpkdσ
′(|ξ|)Q2 +G2kdσ

2(|kpΘ̃ + kdQ|) |ξ| < kp|Θ̃|+ kd|Q| (B.7)

Pick 0 ≤ c < c∗ where c∗ will be determined later. Then, z ∈ Ωc implies

σ2(|kpΘ̃ + kdQ|) ≤
1

G2kd
c (B.8)

Note that the range of σ2 is equal to [0 sin2 ∆). Then, c∗ will be picked such

that

c∗ < G2kd sin2 ∆ (B.9)

so that the right-hand side of Eq. (B.8) is smaller than sin2 ∆. Denote by

τ : [0 sin2 ∆) → [0 ∞) the inverse function of σ2 restricted to the interval

[0 ∞). It easy to show that

τ(r) =
2 sin ∆

π
tan

(
π

2 sin ∆

√
r

)
Consequently Eq. (B.8) implies

|kpΘ̃ + kdQ| ≤ τ
(

1

G2kd
c

)
Since kp|Θ̃| − kd|Q| ≤ |kpΘ̃ + kdQ|, then from the equation above obtain

kp|Θ̃| ≤ kd|Q|+ τ

(
1

G2kd
c

)
(B.10)

Thus, it has been obtained so far that if z ∈ Ωc with 0 ≤ c < c∗, then the

above inequality holds. As a result, for all such z’s Eq. (B.7) can be rewritten

as follows

W1(z) = Gkpkdσ
′(|ξ|)kdQ2+G2kdσ

2(|kpΘ̃+kdQ|) |ξ| < 2kd|Q|+τ
(

1

G2kd
c

)
Then, z ∈ Ωc with 0 ≤ c < c∗ implies

Gkpkdσ
′(|ξ|)Q2 ≤ c with |ξ| < 2kd|Q|+ τ

(
1

G2kd
c

)
Using the expression in Eq. (A.3) for σ′ obtain

GkpkdQ
2 ≤ c

(
1 +

π2

4 sin2 ∆
ξ2

)
with |ξ| < 2kd|Q|+ τ

(
1

G2kd
c

)
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which implies(
Gkpkd − c

π2k2
d

sin2 ∆

)
Q2 − c π

2kd

sin2 ∆
τ

(
1

G2kd
c

)
|Q|

− c

(
1 +

(
π

2 sin ∆
τ

(
1

G2kd
c

))2
)
≤ 0 (B.11)

Then c∗ will be picked such that

c∗ <
Gkp sin2 ∆

π2kd

In fact, since 0 ≤ c < c∗, the latter choice guarantees the positivity of the term

multiplying Q2 in Eq. (B.11). Thus, taking into account also of Eq. (B.9), set

c∗ =
1

2
min

{
G2kd sin2 ∆ ,

Gkp sin2 ∆

π2kd

}
Then, Eq. (B.11) implies that for z ∈ Ωc with 0 ≤ c < c∗ the following holds

|Q| ≤
c π

2kd
sin2 ∆

τ
(

1
G2kd

c
)

2
(
Gkpkd − c

π2k2d
sin2 ∆

)

+

√(
c π

2kd
sin2 ∆

τ
(

1
G2kd

c
))2

+ 4
(
Gkpkd − c

π2k2d
sin2 ∆

)
c

(
1 +

(
π

2 sin ∆
τ
(

1
G2kd

c
))2

)
2
(
Gkpkd − c

π2k2d
sin2 ∆

)

≤
c π

2kd
sin2 ∆

τ
(

1
G2kd

c
)

2Gkpkd

(
1− c π2kd

Gkp sin2 ∆

)

+

√
c2
(
π2kd
sin2 ∆

τ
(

1
G2kd

c
))2

+ 4Gkpkdc

(
1 +

(
π

2 sin ∆
τ
(

1
G2kd

c
))2

)
2Gkpkd

(
1− c π2kd

Gkp sin2 ∆

)

≤

√
c∗ π

2kd
sin2 ∆

τ
(

1
G2kd

c∗
)√

c

2Gkpkd
(
1− c

c∗

)

+

√(
c∗
(
π2kd
sin2 ∆

τ
(

1
G2kd

c∗
))2

+ 4Gkpkd

(
1 +

(
π

2 sin ∆
τ
(

1
G2kd

c∗
))2

))
c

2Gkpkd
(
1− c

c∗

)
(B.12)
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Note that the term τ
(

1
G2kd

c∗
)

is bounded since

τ

(
1

G2kd
c∗
)
≤ τ

(
sin2 ∆

2

)
=

2 sin ∆

π
tan

(
π

2
√

2

)
For 0 ≤ c < c∗ define

ρ1(c) , ρ◦1

√
c

1− c
c∗

with

ρ◦1 ,

√
c∗ π

2kd
sin2 ∆

τ
(

1
G2kd

c∗
)

2Gkpkd

+

√
c∗
(
π2kd
sin2 ∆

τ
(

1
G2kd

c∗
))2

+ 4Gkpkd

(
1 +

(
π

2 sin ∆
τ
(

1
G2kd

c∗
))2

)
2Gkpkd

Then, from Eq. (B.12) obtain that for z ∈ Ωc with 0 ≤ c < c∗ it occurs that

|Q| ≤ ρ1(c). It is easy to verify that

1

1− 1
c∗ c
≤ 1(

1− 2
c∗ c
)1/2 ∀c ∈ [0 c∗/2)

Thus, letting c̄ , c∗/2, obtain that for z ∈ Ωc with 0 ≤ c < c̄, it occurs that

|Q| ≤ ρ2(c) (B.13)

where

ρ2(c) , ρ◦1

(
c

1− c
c̄

)1/2

(B.14)

Using Eqs. (B.10) and (B.13) obtain that z ∈ Ωc with 0 ≤ c < c̄ implies

|Θ̃| ≤ kd
kp
ρ2(c) +

1

kp
τ

(
1

G2kd
c

)
Then, combining Eq. (B.13) and the equation above, it follows that z ∈ Ωc with

0 ≤ c < c̄ implies

‖z‖ ≤ |Θ̃|+ |Q| ≤
(
kd
kp

+ 1

)
ρ2(c) +

1

kp
τ

(
1

G2kd
c

)
(B.15)

In order to obtain an upper bound for ‖z‖ as function of c for which it is possible

to compute analytically the inverse function, proceed as follows. By using the

following inequality

tan(x) ≤ 1

cos2(x̄)
x 0 ≤ x < x̄ <

π

2
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obtain

τ

(
1

G2kd
c

)
=

2 sin ∆

π
tan

(
π

2G
√
kd sin ∆

√
c

)
≤ 1

G
√
kd cos2

(
π

2G
√
kd sin ∆

√
c̄
)√c ∀c ∈ [0 c̄) (B.16)

Moreover, clearly the following holds

√
c ≤

(
c

1− c
c̄

)1/2

∀c ∈ [0 c̄) (B.17)

Thus, from Eqs. (B.14) - (B.17) obtain that if z ∈ Ωc with 0 ≤ c < c̄, then

‖z‖ ≤ ρ(c) where

ρ(c) , ρ◦
(

c

1− c
c̄

)1/2

and

ρ◦ =

(
kd
kp

+ 1

)
ρ◦1 +

1

G
√
k3
d cos2

(
π

2G
√
kd sin ∆

√
c̄
)

The inverse function of ρ can be computed analytically. Thus, from Eq. (B.6)

the following holds

α◦(r) = ρ−1(r) =
α◦0r

2

1 + α◦1r
2

with α◦0 = 1/(ρ◦)2 and α◦1 = 1/((ρ◦)2c̄).

Appendix C. Determination of α̂.

The purpose of the current appendix is determining α̂ such that Eq. (42)

holds. From Eqs. (37) and (41) obtain∣∣∣∣∂Vz∂Q
(z,G)

∣∣∣∣ ≤ V ◦(z,G)

∣∣∣∣∂V ◦∂Q
(z,G)

∣∣∣∣ ≤ α◦(‖z‖) ∣∣∣∣∂V ◦∂Q
(z,G)

∣∣∣∣
∀z ∈ R2 ∀G ∈ [G G] (C.1)

Eq. (36) leads to∣∣∣∣∂V ◦∂Q
(z,G)

∣∣∣∣ ≤ Gkdσ(kp|Θ̃|+ kd|Q|) + 2kp|Q| ≤
√

2d‖z‖

∀z ∈ R2 ∀G ∈ [G G] (C.2)

with d , max{Gkpkd, Gk2
d + 2kp}. Thus, using Eqs. (38) and (C.1), obtain Eq.

(42) with α̂(r) = α̂0r
3 where α̂0 =

√
2dα◦0.335
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Appendix D. Determination of η0 and η1.

The objective of the present appendix is determining continuously differen-

tiable functions η0 ∈ K and η1 ∈ K such that Eq. (52) holds.

From Eq. (49) obtain

|q̃(z, y,G, τa)| ≤ 1

β∗(z)

(
1

τa
|v∗(z)|+

∣∣∣∣∂v∗∂z (z)f̃z(z, y,G)

∣∣∣∣
+

∣∣∣∣∂β∗∂z (z)f̃z(z, y,G)y

∣∣∣∣)+
1

τa
|y| (D.1)

From Eq. (34) obtain |v∗(z)| = arcsin(|σ(kpΘ̃ + kdQ)|) ≤ arcsin(σ(kp|Θ̃| +

kd|Q|)). Since arcsin(x) ≤ 2x for all 0 ≤ x ≤ 1 and σ(x) ≤ x for all x ≥ 0 then

|v∗(z)| ≤ 2(kp|Θ̃|+ kd|Q|) ≤ 2
√

2 k‖z‖ (D.2)

where k = max{kp, kd}. Moreover, the following holds

∣∣∣∣∂v∗∂z (z)f̃z(z, y,G)

∣∣∣∣ =

∣∣∣∣∣∣ 1√
1− σ2(kpΘ̃ + kdQ)

σ′(kpΘ̃ + kdQ)

(kpQ+ kdG sin (sat∆(v∗(z) + β∗(z)y))|

Since σ′(r) ≤ 1 for all r and sin(sat∆(x)) ≤ x for all x ≥ 0, it is easy to obtain

the following∣∣∣∣∂v∗∂z (z)f̃z(z, y,G)

∣∣∣∣ ≤ 1√
1− sin2 ∆

(kp|Q|+ kdG(|v∗(z)|+ β∗(z)|y|)

Thus, by using (D.2) obtain∣∣∣∣∂v∗∂z (z)f̃z(z, y,G)

∣∣∣∣ ≤ kp + 2
√

2kdG k√
1− sin2 ∆

‖z‖+
kdG√

1− sin2 ∆
β∗(z)|y|

∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G]

In addition∣∣∣∣∂β∗∂z (z)f̃z(z, y,G)

∣∣∣∣ =

∣∣∣∣∣ 4

(1 + Θ̃2 +Q2)3
(ΘQ+GQ sin (sat∆(v∗(z) + β∗(z)y))) y

∣∣∣∣∣
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By using again the inequality sin(sat∆(x)) ≤ x for all x ≥ 0, it is easy to obtain

the following∣∣∣∣∂β∗∂z (z)f̃z(z, y,G)

∣∣∣∣ ≤ 4

(1 + ‖z‖2)3

(
1

2
‖z‖2 +G‖z‖(|v∗(z)|+ β∗(z)|y|)

)
|y|

∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G]

Then, by using Eq. (D.2) obtain∣∣∣∣∂β∗∂z (z)f̃z(z, y,G)

∣∣∣∣ ≤ 4

(1 + ‖z‖2)3

(
1

2
+ 2
√

2Gk

)
‖z‖2|y|

+
4G

(1 + ‖z‖2)3
‖z‖β∗(z)|y| ∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G]

Thus, by using the previous results, Eq. (D.1) leads to

|q̃(z, y,G, τa)| ≤

(
2
√

2 k

τa
+
kp + 2

√
2kdGk√

1− sin2 ∆

)
1

β∗(z)
‖z‖+

(
kdG√

1− sin2 ∆
+

1

τa

)
|y|+

4

(1 + ‖z‖2)3β∗(z)

(
1

2
+ 2
√

2Gk

)
‖z‖2|y|+ 4G

(1 + ‖z‖2)3
‖z‖|y|2

∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G] ∀τa ∈ [τa τa]

Then

|q̃(z, y,G, τa)| ≤

(
2
√

2 k

τa
+
kp + 2

√
2kdGk√

1− sin2 ∆

)
(‖z‖+ 2‖z‖3 + ‖z‖5)

+

(
kdG√

1− sin2 ∆
+

1

τa

)
|y|+4

(
1

2
+ 2
√

2Gk

)(
1

2
‖z‖4 +

1

2
|y|2
)

+4G

(
1

2
‖z‖2 +

1

2
|y|4
)

∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G] ∀τa ∈ [τa τa]

In conclusion, it easy to show that

|q̃(z, y,G, τa)| ≤ η0(|y|)+η1(‖z‖) ∀z ∈ R2 ∀y ∈ R ∀G ∈ [G G] ∀τa ∈ [τa τa]

with

η0(r) = η01r + η02r
2 + η04r

4 η1(r) = η11r + η12r
2 + η13r

3 + η14r
4 + η15r

5

where

η01 =
kdG√

1− sin2 ∆
+

1

τa
η02 = 1 + 4

√
2 G k η04 = 2G
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η11 =
2
√

2 k

τa
+
kp + 2

√
2kdGk√

1− sin2 ∆
η12 = η04 η13 = 2η11 η14 = η02 η15 = η11

Appendix E. Nomenclature

g = gravitational acceleration, m/s2

I = moment of inertia of launch vehicle about y body axis, kg m2

lc = distance from the center of mass to engine swivel point, m

m = mass of launch vehicle, kg

Q = pitch rate, rad/s

Tc = control (gimbaled) thrust, N

U = component of velocity of center of mass along the x body axis, m/s

W = component of velocity of center of mass along the z body axis, m/s

∆ = engine deflection angle, rad

∆ = maximum amplitude of engine deflection angle, rad

∆c = commanded engine deflection angle, rad

τa = time constant of electro-hydraulic servoactuator, sec

Θ = pitch angle, rad

Θc = commanded pitch angle, rad
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