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We derive and apply the finite energy sum rules to pion photoproduction. We evaluate the low-energy
part of the sum rules using several state-of-the-art models. We show how the differences in the low-energy
side of the sum rules might originate from different quantum number assignments of baryon resonances.
We interpret the observed features in the low-energy side of the sum rules with the expectation from Regge
theory. Finally, we present a model, in terms of a Regge-pole expansion, that matches the sum rules and the
high-energy observables.
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I. INTRODUCTION

Single pion photoproduction was the first measurement
performed with the GlueX detector [1] at the Jefferson Lab
and will likely be one of the first measurements at CLAS12.
At low photon energies, Eγ ∼Oð1 GeVÞ, it is a rich source
of information on the baryon spectrum [2–12], while at
high energies, Eγ ∼ Oð10 GeVÞ, it reveals the details of
hadron interactions mediated by cross-channel particle
(Reggeon) exchanges [13]. These two energy regimes
are analytically connected, a feature that can be used to
relate the properties of resonances in the direct channel to
the Reggeon exchanges in the crossed channels. In practice,
this can be accomplished through dispersion relations and
finite energy sum rules (FESR) [14,15].
There are several models in the literature focusing

on neutral and charged pion photoproduction in the
high-energy region [16–24]. The differences between the

various models are mainly due to the fact that momentum
transfer dependence of Regge pole residues is largely
unknown. In the past FESR were used to constrain residues
in either neutral [25–27] or charged [28–30] pion photo-
production independently, and the fit to both reactions was
performed by Worden in Ref. [31]. Fixed-t dispersion
relations were also used in the past to determine the baryon
spectrum in Refs. [32–35] but, to the best of our knowl-
edge, FESR in photoproduction have not been imple-
mented in constraining the low-energy models. This is
important because in the past decades high quality data in
the low-energy region have been collected and new partial
wave analyses have been performed. These will be dis-
cussed in more detail later. While the N� and Δ spectra
below 2 GeVare “at least fairly well explored” according to
the PDG [36], the properties of the higher excitations are
poorly known. The 2–3 GeV energy range is the transition
between the baryon resonance region and the Regge
regime. Since the number of relevant partial waves
increases with energy, additional tools are required to
constrain the amplitude construction. As we show in this
paper the analytical constraints from high energy can
indeed be useful to improve the extraction of baryon
resonances. This study complements our analysis of η
photoproduction [37] and pion-nucleon scattering [38].
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The paper is organized as follows. In Sec. II we
decompose the amplitudes into a covariant basis and define
the scalar amplitudes. The singularities of the latter are the
only ones required by unitarity, which makes them suitable
for a dispersive analysis. After reviewing the properties of
the scalar amplitudes, we use dispersion relations and a
standard Regge parametrization to derive the FESR in
Sec. III. In Sec. IV we evaluate the low-energy side of the
sum rules with various available partial wave models. We
also extract the effective Regge residues and show that the
low-energy models provide a good, qualitative prediction
for the observables at high energies. In Sec. V we present a
combined fit of the parameters in the Regge expansion to
both the FESR and the high-energy observables. Our
conclusions are presented in Sec. VI.

II. FORMALISM: SCALAR AMPLITUDES

The photoproduction of a pion off a nucleon (proton or
neutron) target

γðk; λγÞ þ Nðp; λÞ → πðqÞ þ N0ðp0; λ0Þ ð1Þ

depends on three helicities (λγ , λ, and λ0) and the
two Mandelstam variables: the center-of-mass energy
squared s ¼ ðkþ pÞ2 and the momentum transferred
squared t ¼ ðq − kÞ2. The third Mandelstam variable u ¼
ðp0 − kÞ2 is fixed by the relation sþ tþ u ¼ 2m2

N þm2
π ,

where mx denotes the mass of the particle x. The helicities
λγ, λ, and λ0 are defined in the center of mass of the reaction
(1), customarily denoted as the s-channel frame. The
t-channel frame refers to the center-of-mass frame of the
cross-channel reaction γπ → N̄N0.
The photoproduction of a pseudoscalar is fully described

by four scalar amplitudes. The standard Chew-Goldberger-
Low-Nambu (CGLN) decomposition [39] reads

Aλ0;λλγ ðs; tÞ ¼
X4
k¼1

ūλ0 ðp0ÞAkðs; tÞMkuλðpÞ: ð2Þ

The definition of the covariant basis Mk ≡Mkðs; t; λγÞ and
all relevant kinematical quantities can be found in Ref. [24].
In the following we neglect isospin violations. Writing
explicitly the isospin indices (i, j for the target and recoil
nucleon, respectively, and a for the isovector pion), the
t-channel isospin decomposition for each scalar amplitude
Ak (omitting the k index) reads

Aa
ji ¼ Að0Þτaji þ AðþÞδa3δji þ Að−Þ 1

2
½τa; τ3�ji; ð3Þ

with τa the Pauli isospin matrices. In this basis, Að0Þ is the
amplitude involving the isoscalar component of the photon,
while AðþÞ and Að−Þ involve the isovector one with the γπ

system in isospin 0 and 1, respectively. More explicitly, the
t-channel (i.e., exchange) quantum numbers are

IGðAð0ÞÞ ¼ 1þ; IGðAðþÞÞ¼ 0−; IGðAð−ÞÞ ¼ 1−: ð4Þ

One could alternatively decompose into the s-channel
isospin basis:

Aa
ji ¼ Að0Þτaji þ Að1=2Þ 1

3
ðτaτ3Þji

þ Að3=2Þ
�
δa31 −

1

3
τaτ3

�
ji
: ð5Þ

In this basis, Að0Þ is the amplitude involving the isoscalar
component of the photon, while Að1=2Þ and Að3=2Þ involve
the isovector one with the πN system in isospin 1=2 and
3=2, respectively:

AðþÞ ¼ 1

3
ðAð1=2Þ þ 2Að3=2ÞÞ; ð6aÞ

Að−Þ ¼ 1

3
ðAð1=2Þ − Að3=2ÞÞ: ð6bÞ

The isospin relations in Eq. (6) suggest a connection
between the baryon resonances, having definite s-channel
quantum numbers, and the Regge exchanges with definite
t-channel quantum numbers.
The charged and neutral pion photoproduction reactions

are described by an appropriate combination of the isospin
components of the scalar amplitudes. Schematically, the
contributions of isospin amplitudes to the helicity ampli-
tudes are

Aðγp → πþnÞ ¼
ffiffiffi
2

p
ðAð0Þ þ Að−ÞÞ; ð7aÞ

Aðγn → π−pÞ ¼
ffiffiffi
2

p
ðAð0Þ − Að−ÞÞ; ð7bÞ

Aðγp → π0pÞ ¼ AðþÞ þ Að0Þ; ð7cÞ

Aðγn → π0nÞ ¼ AðþÞ − Að0Þ: ð7dÞ

The u channel, γN̄ → πN̄, is obtained from the s channel
by charge conjugation. Symmetry under charge conjuga-
tion implies definite parity for the scalar amplitudes under
the transformation s ↔ u. This can be made explicit by
using the symmetric variable

ν ¼ s − u
4mN

¼ Elab þ
t −m2

π

4mN
; ð8Þ

with Elab the photon energy in the laboratory frame (target
rest frame). The scalar amplitudes can be separated into
crossing-even,
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Að0;þÞ
1;2;4 ð−ν − iϵ; tÞ ¼ þAð0;þÞ

1;2;4 ðνþ iϵ; tÞ;
Að−Þ
3 ð−ν − iϵ; tÞ ¼ þAð−Þ

3 ðνþ iϵ; tÞ; ð9aÞ

and crossing-odd,

Að−Þ
1;2;4ð−ν − iϵ; tÞ ¼ −Að−Þ

1;2;4ðνþ iϵ; tÞ;
Að0;þÞ
3 ð−ν − iϵ; tÞ ¼ −Að0;þÞ

3 ðνþ iϵ; tÞ; ð9bÞ

functions. In Refs. [24,40], it was shown that the scalar
amplitudes A1, A3, and A4 as well as the A1 þ tA2

combination have also definite parity P and naturality
Pð−1ÞJ in the t channel. For convenience, we define

A0
2 ≡ A1 þ tA2: ð10Þ

Table I summarizes the t-channel quantum numbers for the
scalar amplitudes. In view of the symmetry relations in
Eq. (9) we note that, with these standard conventions, the
crossing-even (crossing-odd) amplitudes involve negative
(positive) signature τ ¼ ð−1ÞJ exchanges.1 The exchanges
are also divided into two other categories according to
naturality: the natural exchanges [Pð−1ÞJ ¼ þ1] and the
unnatural exchanges [Pð−1ÞJ ¼ −1]. In addition to the
signature and naturality of the exchanges, we added in
Table I the lowest spins and the name of the leading
trajectory.2 We recall that the scalar mesons do not belong
to the leading trajectories. The ϕ trajectory is also sub-
leading as its intercept is smaller. Moreover, the ϕ pole is

expected to couple weakly to the nucleon. A recent
estimation of the ϕ couplings to the nucleon can be found
in Ref. [41].
Since crossed-channel exchanges control the behavior of

the helicity amplitudes at high energy [13,42], the t-channel
quantum numbers of the scalar amplitudes are essential to
determine their relative importance in the high-energy
region. Empirically, Regge trajectories involving natural
exchanges dominate over unnatural trajectories. Hence,
from Table I, the scalar amplitudes A1 and A4 should
contain the main contribution (i.e., ρ, ω, and a2 exchanges)
to the observables at high energies. We can obtain further
indications of the high-energy behavior of the scalar
amplitudes from their relation to the s-channel helicity
amplitudes in the leading s approximation,

ffiffiffiffiffi
−t

p
A4 ¼

1ffiffiffi
2

p
s
ðAþ;þ1 þ A−;−1Þ; ð11aÞ

ffiffiffiffiffi
−t

p
A3 ¼

1ffiffiffi
2

p
s
ðAþ;þ1 − A−;−1Þ; ð11bÞ

A1 ¼
1ffiffiffi
2

p
s
ðAþ;−1 − A−;þ1Þ; ð11cÞ

A0
2 ¼

−1ffiffiffi
2

p
s
ðAþ;−1 þ A−;þ1Þ; ð11dÞ

where � ¼ � 1
2
is used for the nucleon helicities. These

relations show that, at the leading order in the energy, A3

and A4 are helicity nonflip at the nucleon vertex, and A1 and
A0
2 are helicity flip. It is well known that isoscalar

(isovector) exchanges are predominantly helicity nonflip
(helicity flip) at the nucleon vertex [13]. It is also known
that the unnatural exchanges are suppressed at high
energies, because of the smaller intercept. Therefore, we

expect Að0;−Þ
1 and AðþÞ

4 to dominate at high energies.
Finally, the factorization of Regge pole residues yields a

simple form for the kinematical singularities in t at high
energy [43]

Aλ0;λλγðν; tÞ ∝ ð ffiffiffiffiffi
−t

p Þjλγ jþjλ0−λj: ð12Þ

From Eqs. (11) and (12), the Regge pole contributions in A1

and A0
2 vanish in the forward direction, i.e., A1 ∝ t and

A0
2 ∝ t. We now turn our attention to the analytic structure

of the scalar amplitudes, and we derive the FESR in the
next section.

III. FINITE ENERGY SUM RULES

The starting point of the FESR derivation is the analytic
structure of the scalar amplitudes. The analytic structure
and the associated dispersion relation for pion photo-
production are discussed extensively in the literature

TABLE I. Invariant amplitudes Ai with their corresponding t-
channel exchanges. I is isospin, G is G parity, J is total spin, P is
parity, C is charge conjugation, and τ ¼ ð−1ÞJ is the signature.
The name of the lightest meson on the trajectory is indicated in
the last column.

AðσÞ
i

IG Pð−1ÞJ τ JPC Lightest meson

Að0Þ
1;4

1þ þ1 −1 ð1; 3; 5;…Þ−− ρð770Þ
AðþÞ
1;4

0− þ1 −1 ð1; 3; 5;…Þ−− ωð782Þ
Að−Þ
1;4

1− þ1 þ1 ð2; 4; 6;…Þþþ a2ð1320Þ
A0
2
ð0Þ 1þ −1 −1 ð1; 3; 5;…Þþ− b1ð1235Þ

A0
2
ðþÞ 0− −1 −1 ð1; 3; 5;…Þþ− h1ð1170Þ

A0
2
ð−Þ 1− −1 þ1 ð0; 2; 6;…Þ−þ πð140Þ

Að0Þ
3

1þ −1 þ1 ð2; 4; 6;…Þ−− ρ2ð−Þ
AðþÞ
3

0− −1 þ1 ð2; 4; 6;…Þ−− ω2ð−Þ
Að−Þ
3

1− −1 −1 ð1; 2; 5;…Þþþ a1ð1260Þ

1The mismatch is simply coming from the extra ν factor in
the Mk.

2The leading or dominant trajectory is the Regge pole having
the highest trajectory intercept αð0Þ. Its contribution to the
amplitude is thus the more important one; cf. Eq. (19).
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[39,44–46]. The scalar functions have a nucleon pole and
left- and right-hand cuts required by unitarity, which are
represented in the complex ν plane in Fig. 1. The nucleon
pole term is written, in our convention, as

AðσÞ
i jpole ¼ BðσÞ

i ðtÞ
�

1

ν − νNðtÞ
þ τðσÞi

νþ νNðtÞ
�
; ð13Þ

with νNðtÞ ¼ ðt −m2
πÞ=ð4mNÞ the crossing variable at the

nucleon pole. The nucleon pole residues BðσÞ
i are tabulated

in Table II. According to Table I, the crossing-even
(crossing-odd) scalar amplitudes correspond to Reggeons

with negative (positive) signature τðσÞi ¼ −1 (τðσÞi ¼ þ1).
Let us consider the functions νkAiðν; tÞ (we drop the

isospin index) with k being a positive integer. The functions
νkAiðν; tÞ have the same analytic structure as Aiðν; tÞ.
Deriving the sum rules for νkAiðν; tÞ instead of for
Aiðν; tÞ provides us with a set of constraints, or moments
of order k. In Fig. 1, we draw a contour in the complex ν
plane. The contour surrounds the singularities on the real
axis (direct and cross-channel unitarity cuts and poles) and
is closed with a circle of radius Λ. According to the Cauchy

theorem the contour integral in Fig. 1 vanishes since
analyticity requires the absence of singularities outside
the real axis. Equivalently, we can match the discontinuity
on the real axis to the integral along the circle of radius Λ,

Z
Λ

0

½Di;Rðν; tÞ þ ð−1ÞkDi;Lðν; tÞ�νk
dν
2i

¼ −
Z
CΛ

Aiðν; tÞνk
dν
2i

; ð14Þ

where we include the nucleon poles in the discontinuities.
For ν > 0, Di;R and Di;L correspond to the discontinuities
along the s-channel (right) and u-channel (left) unitarity
cuts, respectively,

Di;Rðν; tÞ ¼ lim
ϵ→0

½Aiðþνþ iϵ; tÞ − Aiðþν − iϵ; tÞ�; ð15aÞ

Di;Lðν; tÞ ¼ lim
ϵ→0

½Aið−νþ iϵ; tÞ − Aið−ν − iϵ; tÞ�: ð15bÞ

Due to the crossing properties of the scalar functions, we
can relate the left and right discontinuities Di;Lðν; tÞ ¼
τiDi;Rðν; tÞ. The left-hand side (LHS) of the sum rule in
Eq. (14) becomes

½1þ τið−1Þk�
Z

Λ

0

Di;Rðν; tÞνk
dν
2i

: ð16Þ

We note that the LHS of Eq. (14) is nonzero only for τi ¼
ð−1Þk since k is an integer. In other words, crossing-even
(crossing-odd) amplitudes have odd (even) moments only.
In our convention, the discontinuities include the

nucleon pole at νNðtÞ and the unitarity cuts starting at
νπðtÞ, the πN threshold, given by

νπðtÞ ¼ mπ þ
tþm2

π

4mN
: ð17Þ

If νπðtÞ > 0, the left and right cuts do not overlap, and the
amplitude is real in a part of the real axis. In this case the
discontinuities along the cuts are given by the imaginary
part of the amplitudes. The contribution of the right-hand
discontinuity to the sum rules reads

Z
Λ

0

Di;Rðν; tÞνk
dν
2i

¼ πBiðtÞνkNðtÞ

þ
Z

Λ

νπðtÞ
ImAiðν; tÞνkdν: ð18Þ

If νπðtÞ < 0, the left and right cuts overlap. Nevertheless,
one can still use a contour passing in between the two cuts
and obtain the same dispersion relation as in Eq. (14). The
discontinuity is still given by the imaginary part of the
amplitude along the cut, since the function is analytic in t
and is real for t > 0 along this cut.

FIG. 1. The complex ν plane. The singularities (nucleon pole
and the two cuts starting at the πN threshold) are in red. The
integration contour is divided into two pieces as in Eq. (14), the
contour surrounding the discontinuities and the circle CΛ of
radius Λ.

TABLE II. Residues of the Born term in Eq. (13) entering
the dispersion relation. The pion pole in the residues BðσÞ

2 is
canceled by a kinematic zero at t ¼ m2

π in M2.

(σ) (0) (þ) (−)

BðσÞ
1

− eg
2mN

1
2

− eg
2mN

1
2

− eg
2mN

1
2

e ¼ 0.303

BðσÞ
2

eg
2mN

1
t−m2

π

eg
2mN

1
t−m2

π

eg
2mN

1
t−m2

π
g ¼ 13.54

BðσÞ
3

eg
2mN

κpþκn
4mN

eg
2mN

κp−κn
4mN

eg
2mN

κp−κn
4mN

κp ¼ 1.78

BðσÞ
4

eg
2mN

κpþκn
4mN

eg
2mN

κp−κn
4mN

eg
2mN

κp−κn
4mN

κn ¼ −1.91
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To work out the right-hand side (RHS) of Eq. (14), we
assume that Λ is large enough to approximate the ampli-
tudes by a single Regge pole for each definite isospin scalar
amplitude along the circle

Aiðν; tÞ ¼ −βiðtÞ
τiðriνÞαiðtÞ þ ð−riνÞαiðtÞ

ðriνÞ sin παiðtÞ
; ð19Þ

where τi, as for the LHS of Eq. (14), is the signature of the
exchange. βiðtÞ and αiðtÞ are the residue and the trajectory
of the Regge pole, respectively. The ri > 0 are scale
factors required by dimensional analysis. They are of the
same order of the typical hadronic scale in the process,
O(1 GeV). A change in the scale factor ri amounts simply
to rescaling the residue by an exponential factor. The ν
factor in the denominator is meant to cancel the factor of
1=s in Eq. (11), stemming from the kinematic terms in
Eq. (2), to provide the correct behavior sαiðtÞ of the helicity
amplitudes in the large s limit. On the real axis, Eq. (19)
reduces to the well-known form

Aiðν; tÞ ¼ −βiðtÞ
τi þ e−iπαiðtÞ

sin παiðtÞ
ðriνÞαiðtÞ−1: ð20Þ

Assuming the form in Eq. (19), the integral along the
circle of radius Λ can be calculated analytically. The
integration is performed separately for the two terms in
Eq. (19) as they have different cuts, i.e., a left-hand cut for
the first term and a right-hand cut for the second. The first
term contribution to the contour integral in Eq. (14), with
the change of variable ν ¼ Λeiϕ, is

τiβiðtÞ
ðriΛÞαiðtÞ−1
2i sin παiðtÞ

Λkþ1

Z
π

−π
eiϕðαiðtÞþkÞidϕ

¼ τið−1ÞkβiðtÞ
ðriΛÞαiðtÞ−1
αiðtÞ þ k

Λkþ1: ð21Þ

The second term yields the contribution to the contour
integral

− βiðtÞ
ð−riΛÞαiðtÞ−1
2i sin παiðtÞ

Λkþ1

Z
2π

0

eiϕðαiðtÞþkÞidϕ

¼ βiðtÞ
ðriΛÞαiðtÞ−1
αiðtÞ þ k

Λkþ1: ð22Þ

As expected, the RHS of Eq. (14) also vanishes unless
τi ¼ ð−1Þk. Hence, we can combine Eqs. (18), (21), and
(22) to obtain the FESR

πBiðtÞ
νkNðtÞ
Λkþ1

þ
Z

Λ

νπðtÞ
ImAiðν; tÞ

νkdν
Λkþ1

¼ βiðtÞ
ðriΛÞαiðtÞ−1
αiðtÞ þ k

: ð23Þ

It should be kept in mind that the FESR in Eq. (23) are valid
only for odd (even) values of k for crossing-even (crossing-
odd) amplitudes. It seems at first that the high-energy side
of the FESR has a pole at αðtÞ ¼ 0 for k ¼ 0. This situation
may happen in the physical region for the leading trajec-
tory; cf. (28). In this case, the ghost pole at αðtÞ ¼ 0 in
even-signature amplitudes forces a zero in the residue, i.e.,
βðtÞ ∝ αðtÞ, making the RHS of Eq. (23) finite. We will
check this prediction in Sec. IV where we will evaluate the
LHS of the FESR. In order to explicitly see the zeros in the
residues we will always choose k ≥ 1. In our derivation, we
explicitly assumed a single Regge pole for each definite
isospin scalar amplitude. In general, the RHS of the FESR
involves as many terms as there are Reggeons or Regge cuts
contributing to the amplitude.
The FESR in Eq. (23) was derived using the known

analytic structure of the scalar amplitudes at fixed t ≤ 0.
For large negative values of t, singularities coming from
two fixed poles appear, i.e., box diagrams with internal
pions and nucleons. They manifest as an additional cut
parallel to the unitarity cut. Nevertheless, they are far away
from the forward angle region. The closest singularity of
the double spectral representation is at t ¼ −1.1 GeV2 and
s > ð1.6 GeVÞ2, as shown in Ref. [47]. In this work, we
focus on the forward region −1 ≤ t=GeV2 ≤ 0; hence we
do not need to consider any additional singularity.

IV. THE LOW-ENERGY SIDE OF THE SUMRULES

A. The models

There are several independent analyses of the baryon
spectrum from photoproduction data. In this work, we will
reconstruct the low-energy side of the FESR using the five
main amplitude models, MAID with the MAID2007
version [48], SAID with the CM12 version [49],
Bonn-Gatchina (BnGa) with the BG2016 version [50],
Jülich-Bonn (JüBo) with the JüBo2014 version [11], and
ANL-Osaka (ANL-O) with the ANL-O2016 version
[10,12]. The different models are compared in Ref. [51].
In this section we first review the domain of validity of each
model, and then we evaluate the LHS of the sum rules in
Eq. (23) using the latest partial waves analysis by the
different groups.
The SAID, MAID, and ANL-O groups include pion

photoproduction on both a proton and a neutron target in
their analyses while the latest JüBo and BnGa models are
developed for proton targets only. Consequently SAID,
MAID, and ANL-O scalar amplitudes AðσÞ

i are available for
all isospin configurations, σ ¼ 0;þ;−, while for JüBo and
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BnGa we can analyze γp → π0p only. Indeed the left-hand-
cut discontinuity of γp → πþn is related to the physical
region of the reaction γn → π−p by charge conjugation.
Hence, the analysis of charged pion photoproduction
requires both γn → π−p and γp → πþn in the physical
region.
The energy range of the different models and the number

of multipoles available are (L being the angular momentum
between the pion and the nucleon)

SAID∶
ffiffiffi
s

p
≤ 2.40 GeV and L ≤ 5;

MAID∶
ffiffiffi
s

p
≤ 2.00 GeV and L ≤ 5;

ANL-O∶
ffiffiffi
s

p
≤ 2.10 GeV and L ≤ 5;

JüBo∶
ffiffiffi
s

p
≤ 2.57 GeV and L ≤ 5;

BnGa∶
ffiffiffi
s

p
≤ 2.50 GeV and L ≤ 9:

The formulas to reconstruct the amplitudes from the
multipoles are given in Appendix F in Ref. [37]. We
evaluate the LHS of the sum rule at fixed t defined by

SðσÞi ðt; kÞ≡ πBðσÞ
i

νkN
Λkþ1

þ
Z

Λ

νπðtÞ
ImAðσÞ

i ðν; tÞ ν
kdν

Λkþ1
; ð24Þ

at 11 equally spaced points in the range t ∈ ½−1; 0� GeV2.
In the rest of the paper, we will discuss the sum rules

computed with the amplitude A0ðσÞ
2 ¼ AðσÞ

1 þ tAðσÞ
2 . In order

to simplify the notation, we will denote this quantity by

SðσÞ2 . In Eq. (24), the dependence of the Born term on t is

understood, i.e., BðσÞ
i νkNðtÞ≡ BðσÞ

i ðtÞνkNðtÞ. The integral
cutoff in ν can be made t dependent, by expressing it in
terms of a cutoff in energy smax:

Λ≡ ΛðtÞ ¼ smax −m2
N

2mN
þ t −m2

π

4mN
: ð25Þ

The region of integration is indicated in Fig. 2. In the area
outside the physical region, the amplitudes need to be
extrapolated. In the unphysical region the cosine of the
scattering angle reaches unphysical values cos θ < −1, but
because the low-energy models are reconstructed from
multipoles, the cos θ dependence is polynomial and given
explicitly by Legendre polynomials. For high angular
momenta in the multipole expansion, numerical instabil-
ities could appear as the expansion goes as ðcos θÞLmax .
We have checked that the scalar functions, reconstructed
with the five models, are continuous in the unphysical
region if we use a partial waves expansion truncated up to
Lmax ¼ 5. Only the BnGa model has higher spin multi-
poles. For consistency with all other models, we truncate it
to Lmax ¼ 5 as well.

B. The low-energy side for all isospin components

The quantity in Eq. (24) computed with SAID, MAID,
and ANL-O models is presented in Figs. 3 and 7 for all
isospin components and the first two moments (k ¼ 1, 3 for
the crossing-even amplitudes and k ¼ 2, 4 for the crossing-
odd amplitudes). We choose smax ¼ 4 GeV2, which is the
highest energy all the models can be pushed to.
Since the factor ΛαiðtÞ−1=ðαiðtÞ þ kÞ in Eq. (23) never

vanishes, zeros of SðσÞi ðt; kÞ should indicate the position of
zeros in the (k-independent) residues βiðtÞ. The moment

independence of the zeros in SðσÞi ðt; kÞ is a good confirma-
tion of the single Regge pole approximation. We then study

the SðσÞi ðt; kÞ quantities given by low-energy models, and
we compare them to the expectations from Regge theory.
Since the position of zeros in the residues, and thus in
the low-energy side of the FESR Eq. (24), can be related
to the Regge trajectories, it is useful to have them in mind.
The leading trajectory of each amplitude is fairly well
known [13]:

αðσÞ1;4 ≡ αNðtÞ ¼ 0.9ðt −m2
ρÞ þ 1 for all σ ; ð26aÞ

αðσÞ2;3 ≡ αUðtÞ ¼ 0.7ðt −m2
πÞ þ 0 for all σ: ð26bÞ

These can be compared to meson masses for t > 0 in Fig. 4.
In Fig. 3, we present the low-energy side of the sum rules

for the natural exchanges SðσÞ1;4ðt; kÞ, computed for the
first two moments 1 ≤ k ≤ 4 using the SAID, MAID,
and ANL-O models. We observe the following features:
(1) All three models shown give qualitatively similar

results for all natural exchange SðσÞ1;4’s. The strongest

deviation between the model is observed in Sð−Þ4 . The

imaginary part of the amplitude ν2Að−Þ
4 shown in

Fig. 5 does not vary drastically among the models.
Nevertheless, the cancellation between the Δð1232Þ

z = +1

z = - 1

N N

0.0 0.5 1.0 1.5
1.0

0.8

0.6

0.4

–

–

–

–

–

0.2

0.0

(GeV)

t(
G

eV
2
)

FIG. 2. Low-energy region under investigation in this work in
the ν-t plane. For a fixed value of t, the integration region in ν for
the LHS of the FESR is indicated by the red solid line (the πN
threshold) and the black dashed line (the cutoff Λ). The physical
region of the process γN → πN is indicated by the gray shaded
area, limited by z≡ cos θ ¼ �1.
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and the other resonances results in a small Sð−Þ4 . The
small differences in the structures at

ffiffiffi
s

p ¼ 1.7 GeV
and

ffiffiffi
s

p ¼ 1.9 GeV are therefore magnified by the
FESR. The deviation between the models at

ffiffiffi
s

p ¼
1.7 GeV can be traced back from the different
magnitudes of the Nð1675Þ5=2− and Nð1680Þ5=2þ
resonances.

(2) All the SðσÞi ’s exhibit a zero in the range
t ∈ ½−1; 0� GeV2, with the exception of the lowest

moments Sð0;þÞ
1 ðt; k ¼ 1Þ and Sð−Þ4 ðt; k ¼ 2Þ. We

identify two types of zeros. The ones at t ∼
−0.8 GeV2 in Sð0;þÞ

4 and Sð−Þ1 look independent of
the moment, and they most certainly correspond to
zeros in their corresponding Regge residues. Con-

versely, the ones at t ∼ −0.3 GeV2 in SðþÞ
1 and Sð0;−Þ4

do not appear in the lowest moment. A possible
reason may be the presence of subleading Regge
contributions (daughter trajectories and/or Regge
cuts), whose importance decreases in higher mo-
ments. One can indeed check that the relative
importance of a subleading trajectory α2 compared
to the leading trajectory α1 > α2 is proportional to
ðα1 þ kÞ=ðα2 þ kÞ, which decreases with k.

(3) The natural explanation for the zeros in Sð−Þ4 ðt; kÞ is
the unwanted pole at αðt ∼ −0.5 GeV2Þ ¼ 0. This
pole would appear at a negative mass squared and
must be canceled by a zero in the residue. Such a
zero is called a nonsense wrong signature zero

(NWSZ) [42]. However, the zero in Sð0;−Þ1 ðt; kÞ is
at t ∼ −0.8 GeV2, significantly away from the ex-
pected position. This zero might be shifted by the
addition of another contribution (a daughter trajec-
tory or a Regge cut) in the sum rules. A nonlinear
trajectory with a zero at t ∼ −0.8 GeV2 would also
explain this observation. A NWSZ should also

appear in Sð−Þ1 ðt; kÞ for the same reason. The position
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FIG. 3. First moments of the RHS of the FESR Eq. (24) for Að0;�Þ
1;4 with SAID (red lines), MAID (blue lines), and ANL-O (green lines)

models. The lowest spin particle on the corresponding Regge trajectory is indicated for convenience. The dashed (solid) lines correspond
to the k ¼ 1 or k ¼ 2 (k ¼ 3 or k ¼ 4) moments and the cutoff is smax ¼ 4 GeV2.
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FIG. 4. Chew-Frautschi plot for natural and unnatural parity
mesons. The solid lines indicate the two Regge trajectories αN
and αU in Eq. (28). The meson masses are taken from the Review
of Particle Properties [52] except for the 2−− ρ2 and ω2 mesons
taken from a quark model calculation [53].

STRUCTURE OF PION PHOTOPRODUCTION AMPLITUDES PHYS. REV. D 98, 014041 (2018)

014041-7



of the zeros in Sð−Þ1 ðt; kÞ and Sð−Þ4 ðt; kÞ would be
at the same place with only one Regge pole
contributing to the Að−Þ

1;4 amplitudes. But the zero

in Sð−Þ1 appears at t ∼ −0.3 GeV and another zero
possibly arises at −t > 1 GeV. We thus conclude
that nonleading trajectories are present in the Að−Þ

1;4
amplitudes.

(4) The position of the zeros in Sð0Þ1;4 are very similar to

the ones in Sð−Þ1;4 . Their origin can be explained by
invoking the degeneracy between the ρ and a2
nucleon couplings, which is related to the absence
of exotic resonances in pp scattering [13,54].

(5) Inspecting the behavior in the forward direction, we
see differences in the isoscalar SðþÞ

1 ð0; kÞ and the

isovector Sð0;−Þ1 ð0; kÞ. The latter vanishes ∝ t, while
the former is finite. Also, the former is strongly k
dependent. We have already observed such a pattern
in η photoproduction [37]. In pion photoproduction,
this effect is due to the contribution of the Δð1232Þ
resonance to AðþÞ

1 . In Fig. 6 we show ImνAð0;þÞ
1 and

Imν2Að−Þ
1 at t ¼ 0. We observe that both AðþÞ

1 and

Að−Þ
1 have a peak at

ffiffiffi
s

p ¼ 1.2 GeV, due to the
Δð1232Þ. We can indeed check that at the peak

AðþÞ
1 ≈ −2Að−Þ

1 and Að0Þ ≈ 0, in agreement with
Eq. (6), and with the dominance of a I ¼ 3=2
resonance.3 In the isovector exchange amplitudes

Að0Þ
1 and Að−Þ

1 the contributions of baryon resonances

cancel out to yield Sð0;−Þ1 ðt ¼ 0; kÞ ≈ 0. However, in

AðþÞ
1 the contribution of the Δ is not canceled

completely by other resonances and produces a

finite SðþÞ
1 ðt ¼ 0; kÞ. This is in contrast with the

factorization of Regge pole residues.
(6) Among all of the natural exchange amplitudes, SðþÞ

4

is 1 order of magnitude larger than the other ones.
This effect can also be traced back to the fact that the
dominant Δð1232Þ contributes mainly to the iso-
scalar exchange amplitude. This is also consistent
with the well-known dominance of the ω Regge pole
in pion photoproduction. The nonflip nucleon cou-
plings of isoscalar trajectories are larger than the
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FIG. 5. The imaginary part of the SAID (red lines), MAID (blue lines), and ANL-O (green lines) invariant amplitudes ν2Að−Þ
4 at

t0 ¼ 0 GeV2, t1 ¼ −0.3 GeV2, and t2 ¼ −0.6 GeV2. The vertical dashed line displays the beginning of the physical region.
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FIG. 6. The imaginary part of the SAID (red lines), MAID (blue lines), and ANL-O (green lines) invariant amplitudes νAð0;�Þ
1 at t ¼ 0.

The Δð1232Þ resonance is responsible for peaks at 1.2 GeV in Að�Þ
1 and the nonvanishing SðþÞ

1 ðt ¼ 0; kÞ integral. As expected from

isospin symmetry Δ resonances do not contribute to Að0Þ
i .

3At the Δð1232Þ peak in the forward direction, ν ∼ 0.33 GeV.
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ones for isovector exchanges [13]. Moreover, in
photoproduction there is an additional relative factor
of 3 at the photon vertex between isoscalar and
isovector exchanges. All three models, SAID,
MAID, and ANL-O, provide very similar results
for this dominant amplitude.

(7) Interestingly, SðþÞ
4 ðt; kÞ has a zero at large jtj. The

zero is around t ¼ −0.75 GeV2 for the lower mo-
ment, and moves to t ¼ −0.6 GeV2 for k ¼ 3. In
the leading Regge pole approximation, this zeros of
the dominant Regge residue would imply a dip in the
differential cross section at high energy in neutral
pion photoproduction. This dip is indeed present at
high energy, as shown in Fig. 14. It is usually
interpreted as NWSZ, although it is not mandatory
in odd signature Regge poles; i.e., there is no
unphysical pole at α ¼ 0 due to the signature factor.

In Fig. 7, we show the low-energy side of the sum rules,
for the unnatural exchanges, SðσÞ2;3ðt; kÞ. We compute those
for the first two moments k ¼ 2, 4 using the SAID, MAID,
and ANL-O models and observe the following features.
(1) The difference between the three models for unnatu-

ral exchange amplitudes is significantly larger than
for natural exchange amplitudes. This happens
because of the large cancellation among the various
resonant contributions, which makes the SðσÞ2;3 par-
ticularly sensitive to the details of the resonance line
shapes.

(2) For the unnatural exchanges, there is no clear pattern
of the zeros. The only exceptions are SðþÞ

2;3 , which
both show a zero for t ≈ −0.5 GeV2.

(3) The unnatural exchange terms are of the same order
of magnitude as the natural ones, with the exception
of the larger SðþÞ

4 discussed above.
(4) The factorization of Regge residues appears to be

satisfied reasonably in Sð0Þ2 . However, SðþÞ
1 and SðþÞ

2

deviate significantly from the expected ∝ t behavior.
Since A0

2 ¼ A1 þ tA2, the deviation from the factor-
izable behavior in S2 originates from the A1 ampli-

tude. The Δð1232Þ peak in Að0Þ
1 leads then to a finite

SðþÞ
2 at t ¼ 0.

(5) The moment Sð−Þ2 from the MAID models favors a
nonzero value at t ¼ 0. The SAID and ANL-O
models favor vanishing residues in the forward
direction or possibly a zero at jtj < 0.1 GeV2. In
charged pion photoproduction, the forward peak in
the differential cross section requires a finite residue
at t ¼ 0 in the pion exchange amplitude Að−Þ

2 . The
beam asymmetry in charged pion photoproduction
requires a zero at t ∼ 0.03 GeV2 in the same
amplitude. Both requirements are met with the
k ¼ 2 moment with the SAID and ANL-O models.

(6) The exchanges ω2 and ρ2 contributing to the

amplitudes Að0;þÞ
3 are poorly known and generally

assumed to be small. This is consistent with the
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high-energy data, as we will see, that do not favor a
large A3 contribution. This is in contrast with the

sizable Sð0;þÞ
3 . The monotonic growth of SðþÞ

3 can be
deduced from Fig. 8. The Δð1232Þ (JP ¼ 3=2þ), the
Nð1520Þ (3=2−), and the Nð1520Þ (1=2−) have a
mild t dependence, but the higher-spin Nð1680Þ
(5=2þ) contribution grows as jtj increases, yielding a
SðþÞ
3 growing with jtj. Similar conclusions can be

obtained for the Að0Þ
3 amplitude. In order to obtain a

negligible residue for all t in the Að0;þÞ
3 amplitudes,

as the high-energy data suggest, one would need to
change the t dependence. For instance a change in
the spin-parity assignment of the Nð1680Þ, currently
5=2þ, to 3=2þ could result in a small value of Sðþ;0Þ

3 .
From all these observations we conclude that the FESR

amplifies the differences between various models. Due to
the cancellation among resonances, the relative importance
of higher-mass resonances is stronger in the FESR than in
the original amplitudes. Moreover, FESR relate the t
dependence of the Regge residues to the spin of the N�
andΔ resonances. In general we notice that moments k ¼ 2
and k ¼ 3 are in the best agreement with the expectation
from Regge theory and in the following focus on these
moments.
Although we explained that the FESR can point out the

differences between models, by looking only at one side of
the sum rule we cannot claim whether one model is better
or worse than another. Second, we do not have information
concerning the uncertainties associated with these multi-
poles. These uncertainties, propagated through the scalar
amplitudes and then in the FESR, would certainly provide
useful information. At this stage, we cannot conclude if the
observed differences in the sum rules between the various
models are coming from the model dependence, or rather by
the data uncertainties in the low-energy region. The ampli-
tudes of the available models are not fully constrained, since
a complete set of observables is not yet available [55–58].
One can expect that if double polarization measurements

were included the low-energy models could change as
shown e.g., in Ref. [59].

C. Cutoff dependence

With the multipoles provided by the SAID group, we can
investigate the dependence of the cutoff smax in the sum
rules. In Figs. 9 and 10, we plot the low-energy side of the

FESR SðσÞi ðt; kÞ for smax ¼ ð1.8 GeVÞ2, ð2.0 GeVÞ2, and
ð2.2 GeVÞ2. We observe that the positions of the zeros in

the natural exchange amplitudes, SðσÞ1;4, are relatively stable

when the cutoff is varied. The notable exceptions are SðþÞ
1

and Sð−Þ4 , when evaluated at smax ¼ ð1.8 GeVÞ2. The

amplitudes AðþÞ
1 and Að−Þ

4 indeed receive a significant
contribution from the Δð1930Þ resonance as can be seen

in Figs. 5 and 6. Some moments, e.g., the Sð0Þ3 , have
significant smax dependence. A possible explanation is that
the underlying amplitudes are less constrained, or that they
are more sensitive to higher mass resonances. In other
words, the uncertainties associated with some of the curves
in Figs. 9 and 10 could be significant.
In the following we choose an “optimal” cutoff. As we

saw, smax ¼ ð1.8 GeVÞ2 is too low. Since we do not
observe a drastic change between smax ¼ ð2.0 GeVÞ2 and
smax ¼ ð2.2 GeVÞ2, we will choose smax ¼ ð2.0 GeVÞ2.
With all models being valid at least up to that energy, we
will be able to compare their moments.

D. The low-energy side for γp → π0p

For completeness, we compare the FESR obtained with
the JüBo and BnGa models with the SAID, MAID, and
ANL-O models. The JüBo and BnGa models are only
available for reactions on a proton target. As stated, we can
only present the results for the process γp → π0p, because
for γp → πþn the FESR require the knowledge of γn →
π−p to evaluate the left-hand cut.
The comparison among JüBo, BnGa, SAID, MAID,

and ANL-O models is shown in Fig. 11. The cutoff
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smax ¼ ð2.0 GeVÞ2 is used in the FESR and only the
moment k ¼ 2 or k ¼ 3 is plotted. The JüBo and BnGa
models compare very well with the SAID, MAID, and

ANL-O models except for Sðπ
0Þ

1 ¼ Sð0Þ1 þ SðþÞ
1 . We can

identify the cause of this difference by looking at the
invariant amplitudes at fixed t. We compare in Fig. 12 the
four scalar functions for the neutral pion photoproduction
reconstructed from the SAID, MAID, ANL-O, BnGa, and
JüBo multipoles, as a function of the energy at t0 ¼ 0 and
t1 ¼ −0.8 GeV2. We note that all models yield similar
scalar amplitudes up to

ffiffiffi
s

p
∼ 1.6 GeV, but the relative

strengths and t dependence of the resonances beyond this
region differ. The higher moments give stronger weight to
the heavier resonances, and thus amplify the differences
between the various models. Imposing the FESR con-
straints in the partial wave amplitude (PWA) analyses will
certainly reduce the variation between them and yield more
accurate N� and Δ spectra.

E. t-channel amplitudes

In the previous section, we exploited the relations
between the scalar functions Ai and the s-channel helicity

amplitudes at leading s; cf. Eq. (11). For instance, the t
factor expected in the Regge residues from the factorization
properties of Regge poles was readily checked using
Eq. (12). However, the properties of Reggeons are best
described in their rest frame, the t-channel center-of-mass
frame. For natural exchanges the relevant combinations are
the t-channel natural-parity amplitudes [24]:

F1 ¼ −A1 þ 2mNA4; ð27aÞ

F3 ¼ 2mNA1 − tA4: ð27bÞ

F1 (F3) is the nucleon helicity nonflip (flip) amplitude in
the t channel [24]. We now wish to compare the features of
the ρ and ω Regge poles obtained by FESR with other
reactions sharing the same nucleon vertex. For this purpose

we perform the appropriate combination of SðσÞi , from
Eq. (28), and compare to the same quantities in
γp → ηp, Fig. 8 of Ref. [37], and πp → πp, Fig. 2 of
Ref. [38]. Our results are presented in Fig. 13. We note a
striking similarity between π0 and η meson photoproduc-
tion for the ω exchange. The moments combination for the
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(t-channel) nucleon nonflip F1 displays in both cases a zero
for t ∼ −0.6 GeV2. The moments combination for the
(t-channel) nucleon flip F3 displays in both cases a
violation of factorization at t ¼ 0 and a zero for
t ∼ −0.5 GeV2. The factorization of the ρ pole residues
at t ¼ 0 is observed in both π and η photoproduction for
the nucleon flip combination, but a zero appears for the
k ¼ 3 moment only in π0 photoproduction. This zero at
t ∼ −0.8 GeV2 is shifted compared to the nucleon flip
amplitudes for πN scattering, which is at t ∼ −0.5 GeV2.
In the ρ nucleon nonflip combination, the zero appears at
t ∼ −0.15 GeV2 in both π0 photoproduction and πN
scattering. This zero was responsible for the crossover
between π−p and πþp elastic scatterings [38]. These
similarities in the position of the zeros suggest that the
zeros in the Regge residues would come from the nucleon
vertex, as it is the common vertex in all these reactions.

V. COMBINED FIT OF THE FESR
AND OBSERVABLES

In the previous sections we observed the position of
zeros in the moments SðσÞi ðt; kÞ. The agreement with the
expectations from Regge theory suggested the dominance
of a leading Regge pole in the 12 isospin scalar amplitudes,
with the possibility of subleading contributions slightly
shifting the zeros. In this section we continue our analysis

by performing a combined fit of the moments SðσÞi ðt; kÞ and
of the high-energy observables, using a Regge pole para-
metrization for the high-energy amplitudes. We restrict the
high-energy observables to the kinematical region Elab ≥
3 GeV and −t ≤ 1 GeV2. In this region we have the
following data sets available:
(i) Differential cross section for γp → π0p from

Refs. [60–63].
(ii) Ratio of differential cross section γn → π0n over

proton target from Refs. [64,65].
(iii) γp → π0p beam [1,66], target [67], and recoil [68]

asymmetries.
(iv) Differential cross section for γp → πþn from

Refs. [69–72].
(v) Ratio of differential cross sections γn → π−p over

γp → πþn from Ref. [73].

(vi) γp → πþp beam asymmetry from Ref. [74].
The observables are displayed in Fig. 14. In order to
better appreciate the small t region, where the pion
exchange dominates, the γp → πþn observables are plotted
against

ffiffiffiffiffi
−t

p
.

We used the SðσÞi ðt; kÞ derived from the SAID model with
the cutoff smax ¼ ð2.0 GeVÞ2, computed with k ¼ 2 for
crossing odd amplitudes or k ¼ 3 for crossing even
amplitudes. We chose the moments k ¼ 3 as the moments
k ¼ 1 did not always present the zero pattern expected from
Regge theory. The LHS of the sum rules is evaluated at 11
points equally spaced in the range t ∈ ½−1; 0� GeV2. Since
we do not have any information about the uncertainties of
the PWAmodels, and therefore of the LHS of the sum rules,

we assumed an artificial constant error on each SðσÞi ðt; kÞ,
taken as 20% of the maximum value of each scalar
amplitude.

A. High-energy model

In order to properly describe the observables and the
RHS of the sum rules, our model for the imaginary part of
the scalar amplitudes involves a summation of Regge
polelike terms:

ImAðσÞ
i ðν; tÞ ¼

X
j

βðσÞij ðtÞναjðtÞ−1: ð28Þ

Equating the left- and right-hand sides of the sum rules, this
form yields

SðσÞi ðt; kÞ ¼
X
j

βðσÞij ðtÞ ΛαjðtÞ−1

αjðtÞ þ k
; ð29Þ

with the cutoff given by Eq. (25). We remind the reader that

SðσÞ2 stands for the sum rule evaluated with the amplitudes
A0
2 ¼ A1 þ tA2. In Eq. (28) the index i ¼ 2 stands for the

amplitudes A0ðσÞ
2 . In each amplitude, the summation

involves one single term representing the leading Regge

pole contribution. In the natural exchange amplitudes AðσÞ
1

and AðσÞ
4 , we added a second Regge contribution, to have
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more flexibility, based on our observations from the LHS of
the sum rules. The poles are the same for the same isospin

components in AðσÞ
1 and AðσÞ

4 , since they have the same

quantum numbers. AðσÞ
1 and AðσÞ

4 are the s-channel nucleon
helicity flip and nonflip amplitudes, respectively. There are
thus six natural Regge trajectories: the ρ, ω, and a2, and the
ρ, ω, and a2 subleading poles, or “daughters.” We include

only one Regge pole in the natural amplitudes A0ðσÞ
2 and

AðσÞ
3 , since the leading unnatural poles are expected to be

smaller, at the same order of magnitude as a subleading
natural pole. We keep the π, b, h, and a1 trajectories

degenerate and consider a ρ2=ω2 Regge pole in the Að0;þÞ
3

amplitudes. With these two unnatural poles, we have in
total eight trajectories, all of them linear:

αjðtÞ ¼ α0j þ α1j t: ð30Þ

The parameters of three natural (ρ, ω, and a2) leading
trajectories and the π=b=h=a1 trajectory are constrained
around the standard values; cf. Eq. (28). The intercepts
and slopes are constrained in the range [0.3, 0.7] and
½0.7; 1.1� GeV−2, respectively.
Since all SðσÞi ðt; kÞ have only one extremum in the region

of interest, we parametrize the residues with a second order
polynomial times an exponential falloff,

βðtÞ ¼ ακðtÞtδ × β0ebtð1 − γ1tÞð1 − γ2tÞ; ð31Þ

where we omitted the indices (σ) and ij. A factor αðtÞ is
needed in the Að−Þ

1;4 and Að0;þÞ
3 amplitudes, which involve the

even signature trajectories a2, ρ2, and ω2. This factor
cancels the unwanted ghost pole at αðtÞ ¼ 0 that might
appear in the physical region. Indeed the even signature

amplitudes Að−Þ
1;2;4 and Að0;þÞ

3 have the form
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AðσÞ
i ðν; tÞ ¼ −

X
j

βðσÞij ðtÞναjðtÞ−1 1þ e−iπαjðtÞ

sin παjðtÞ
ð32Þ

and have a pole at αjðtÞ ¼ 0. Note that we did not need this

factor in the π exchange amplitudes Að−Þ
2 since we expect

the point απðt ¼ m2
πÞ ¼ 0 to lie outside the fitting region.

Our fit (cf. Table III) led indeed to απ ≡ α6ðtÞ ¼ 0 at
ffiffi
t

p ¼
0.107 GeV close to the pion mass (and outside the fitting

region). We thus set κ ¼ 1 for the residues of Að−Þ
1;4 and

Að0;þÞ
3 , and κ ¼ 0 for the others.
For completeness we quote the expression for the odd

signature amplitudes, Að0;þÞ
1;2;4 and Að−Þ

3 ,

AðσÞ
i ðν; tÞ ¼ −

X
j

βðσÞij ðtÞναjðtÞ−1 −1þ e−iπαjðtÞ

sin παjðtÞ
: ð33Þ

The negative sign in Eqs. (32) and (33) is conventional. It
ensures that the imaginary part of the amplitude has the
same sign as the residues.
The second factor tδ in Eq. (31) imposes factorization in

the A1 and A0
2 amplitudes. The poles in these amplitudes are

forced to have a factorizable form with δ ¼ 1, except for the
pion pole. The latter needs to have a nonzero residue at
t ¼ 0, in order to describe the forward peak in the differ-
ential cross section and the rapid variation of the beam
asymmetry in the πþ photoproduction. Similarly, we do not

include the factor of t in the h pole in A0ðþÞ
2 , or in the ω

leading and subleading poles in the amplitude AðþÞ
1 , as SðþÞ

2

and SðþÞ
1 display a significant deviation from factorization.

In the amplitude Að0;−Þ
1 , the residues for both Regge

contributions (the pole and the subleading pole) have the

factor δ ¼ 1 as Sð0;−Þ1 satisfy factorization at t ¼ 0 in good
approximation.
Using the model for the residues described above, we

now fit both the FESR and the observables. The observ-
ables are, in the high-energy limit,

dσ
dt

¼ 1

32π
ðjA1j2 − tjA4j2 þ jA0

2j2 − tjA3j2Þ; ð34aÞ

Σ
dσ
dt

¼ 1

32π
ðjA1j2 − tjA4j2 − jA0

2j2 þ tjA3j2Þ; ð34bÞ

T
dσ
dt

¼
ffiffiffiffiffi
−t

p
16π

ImðA1A�
4 − A0

2A3Þ; ð34cÞ

R
dσ
dt

¼
ffiffiffiffiffi
−t

p
16π

ImðA1A�
4 þ A0

2A
�
3Þ: ð34dÞ

The model involves 18 × 4 ¼ 72 parameters for the resi-
dues and 8 × 2 ¼ 16 parameters for the trajectories. As
explained in the next subsection, we choose to suppress the

amplitude Að0Þ
3 . It reduces the total number of parameters to

84. The 12 SðσÞi ðt; kÞ’s provide independent and linear
constraints on the imaginary part of the scalar amplitudes.
They are computed at 11 equally spaced t in the region
t ∈ ½−1; 0� GeV2. The observables are quadratic combina-
tions of the scalar amplitudes, which yield several local
minima in the parameter space. We wish thus to isolate
subsets of observables sensitive only to subsets of
exchanges. The fit is therefore performed step by step.

B. Neutral pion production

We start by fitting the differential cross sections (on
proton target and the ratio neutron over proton target), and
the target and recoil asymmetries for π0 photoproduction

with only Að0;þÞ
1;4 , which are sensitive to the ω and ρ

exchanges. The trajectories of the leading ρ and ω poles

in Að0;þÞ
1;4 are constrained around αNðtÞ ¼ 0.9ðt −m2

ρÞ þ 1

as specified before. An unconstrained subleading pole is
added in all these amplitudes. To limit the number of
parameters, we tried to use degenerate subleading trajec-

tories in all four amplitudes Að0;þÞ
1;4 . However, such a

parametrization does not result in a good description
of the data. We obtain a better fit introducing a different

trajectory for the subleading ω pole in the amplitude Að0Þ
1 .

This is necessary to describe the target and recoil asym-
metries (which would vanish with the leading ρ and ω poles
only), as well as to reproduce the FESR.
We then add the unnatural exchange amplitudes Að0;þÞ

2;3 ,

keeping Að0;þÞ
1;4 fixed. We fit the π0 beam asymmetry

together with Sð0;þÞ
2;3 . The A0ð0;þÞ

2 contains only the b and
h poles. We impose their trajectories to be degenerate and
constrained around αUðtÞ ¼ 0.7ðt −m2

πÞ. More precisely,
the intercept and slope are restricted in the intervals
½−0.2; 0� and ½0.5; 0.9� GeV−2, respectively.
According to the SLAC measurement [66], the

beam asymmetry Σðπ0pÞ ≠ 1. However, the new GlueX
measurement [1] is compatible with Σðπ0pÞ ¼ 1, or

TABLE III. Solution of the fit for the trajectories.

j α0j α1j (GeV−2) Role

1 0.541 0.711 ρ pole
2 0.316 0.897 ω pole
3 0.699 1.100 a2 pole
4 0.401 0.661 ρ=ω daughter
5 −0.010 1.00 a2 daughter
6 −0.007 0.615 π; b; h; a1 pole
7 1.031 1.770 ρ2, ω2 pole
8 0.197 0.330 ω daughter
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A0ðπ0Þ
2 ¼ Aðπ0Þ

3 ¼ 0. The target (T) and recoil (R) asymmetry
in π0 photoproduction are very similar. The high-energy
expression for these observables in Eq. (35) suggests that

Aðπ0pÞ
3 ∼ 0. This is in contradiction with the large Sð0;þÞ

3

obtained from the FESR.
The fit can describe simultaneously the asymmetries, the

cross sections, and the moments Sð0;þÞ
2 and SðþÞ

3 . However,

Sð0Þ3 turns out to be strongly suppressed, with a large
exponential suppression parameter b in the residues,

despite the nonzero Sð0Þ3 . We thus choose not to include

any pole in the amplitude Að0Þ
3 , yielding Sð0Þ3 to be identical

to zero. At this stage, we do not have a resolution of this

conflict between the significant moment Sð0Þ3 from the low-

energy models and the negligible residues βð0Þ3 from the
high-energy observables.

C. Charged pion production

For the charged pion observables, we fit simultaneously
the differential cross sections (on proton target and the ratio
neutron over proton target), the beam asymmetry, and the

Sð0;−Þ1���4 moments. Since the pion is responsible for the
forward peak in the differential cross section, we cannot
separate unnatural and natural exchanges easily as we did

for the neutral pion fit. We use as initial values for all the

parameters related to the ρ amplitudes Að−Þ
1;4 the results

obtained for the neutral pion fit. We also impose the initial

condition γ1 ¼ −30 in the π exchange amplitude A0ð−Þ
2 .

Indeed the dominance of the pion exchange in the forward
direction and the charged pion beam asymmetry Σð ffiffiffiffiffi

−t
p

∼
0.1–0.2Þ ¼ 1 suggest a zero in the pion amplitude around
−t ∼ 0.01–0.04 ¼ −1=γ1. We have used degenerate trajec-
tories for the π, a1, b, and h poles, according to the
expected degeneracy in Fig. 4. We have tried to impose the

degeneracy of the ρ2 pole in Að0Þ
3 as well, but we obtain a

better fit with a different ρ2 trajectory.
The subleading a2 pole in the Að−Þ

1;4 amplitudes is
necessary to reproduce the shape of the LHS of the
FESR. Indeed the residue vanishes at the zero of the a2
trajectory to remove the ghost pole. With only one common

pole, Sð−Þ1 and Sð−Þ4 would have a zero at the same place and
around t ¼ −0.63 GeV2, the zero of the α3ðtÞ trajectory.
With a subleading pole, we obtain a good description of

Sð−Þ1 . The linear shape of Sð−Þ4 is clearly more difficult to
reproduce since the leading and subleading a2 vanish at

their respective zero of their trajectory. The Sð−Þ4 obtained
from the fitting procedure is thus the result of the poly-
nomial dependence of the residue, trying to compensate for
the NWSZ’s built in the residue to give a growing moment.
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FIG. 15. Comparison between the high-energy side of the FESR (in red) computed with the parametrization of the amplitudes given by
Eq. (28), Tables III and IV, and the low-energy side of the FESR (in blue) using the SAID model. The cutoff is smax ¼ ð2 GeVÞ2.
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D. Global fit

Finally we performed a global fit of all neutral and
charged π observables and the FESR, keeping the param-
eters of the isoscalar (ω, ω2, and h) and isovector negative
G-parity (a2, a1, and π) parameters fixed, but fitting the
parameters of the isovector positive G-parity (ρ, ρ2, and b)
that are common to both neutral and charged π observables.
The final model compares very well to the high-energy
observables, as can be seen in Fig. 14. The comparison
between the low- and high-energy sides of the sum rules is
presented in Fig. 15. We note that almost all moments are
very well described by our final solution. The notable

exceptions are SðþÞ
1 , Sð0Þ3 , and Sð−Þ4 . We indeed found that it

was difficult to reproduce the zero around t ∼ −0.3 GeV2

in Sþ1 and the extremum at the same position in Sð0Þ1 . The

growing behavior of Sð0Þ3 and Sð−Þ4 is difficult to accom-
modate with a single Regge pole interpretation. We already
commented on the incompatibility of a large A3 component
and the high-energy observables to support our approxi-
mation A3 ¼ 0 in the high-energy model. Finally the
unintuitive behavior of our solution for the moment

Sð−Þ4 is the combination of two opposite tendencies: the

low-energy moment increasing with jtj and the charged
pion differential cross section decreasing with t. The final
parameters are listed in Table III (trajectories) and Table IV
(residues). The results of our model are compared to the
high-energy data in Fig. 14, and both sides of the sum rules
are displayed in Fig. 15.
As expected, the ω pole trajectory α2ðtÞ ¼ 0.316þ

0.897t is close to the standard result. The two trajectories
in the ρ amplitudes have similar intercepts. The “sublead-
ing” one is thus difficult to interpret as being a daughter or a
cut. The origin of the second trajectory in the ρ amplitudes
is to provide enough freedom in the t dependence to
describe the FESR and the recoil and target asymmetry in
π0 photoproduction. Although a single ρ pole would have
been preferable, that was not enough to obtain a good fit.
The subleading a2 and ω poles have an intercept of the

order of the intercept of the unnatural poles. The natural
and unnatural amplitudes are then expanded to the same
lowest order in the energy Oðs0Þ.

VI. CONCLUSIONS

In this paper we analyzed the structure of π photo-
production amplitudes using the FESR. We compared the
LHS of the FESR, as a function of the Mandelstam t,
obtained from various models used in baryon spectroscopy
analyses. We observed variations among the various
models that could originate from different spin assignments
to resonances. A different dependence on the cosine of the
scattering angle in an amplitude results in a different t
dependence on the LHS of the FESR. Although some
differences exist between the different models, we also
found interesting common features. The LHS of the FESR
for all 12 isospin amplitudes present at most one extremum
and at most one zero for jtj < 1 GeV2. We discussed the
possible interpretation of these zeros in Regge theory. We
also found that in all models, isoscalar amplitudes appear to
violate factorization of Regge poles residues.
In Sec. V we built a flexible model allowing us to fit the

FESR and the high-energy observables. Our solution
involves the minimum Regge content in each amplitude:
a leading Regge pole, whose trajectory is constrained
around the expected values, and a second additional cut/
daughterlike term in the natural exchange amplitudes. The
latter allowed us to match the zero pattern in the LHS of the
FESR and to describe the high-energy observables.
The solutions summarized in Tables III and IV can serve

as a good starting point for a global fit of the experimental
data in the whole energy range (from the resonances to the
Regge region), together with the analyticity constraints.
Once a cutoff smax, moments k, and t values have been
chosen, it is straightforward to penalize the difference
between the two sides of the sum rules in the fit. Other
possibilities are to parametrize only the imaginary part of
the amplitudes and to reconstruct the real part from the

TABLE IV. Results of the fit for the residues Eq. (31). The
factors β0 are dimensionless. The parameters b, γ1, and γ2 are in
GeV−2.

κ δ β0 b γ1 γ2

ρ βð0Þ11
0 1 0.793 1.806 0.413 13.08

βð0Þ14
0 1 −4.824 0.075 −0.597 0.374

ω βðþÞ
12

0 0 0.744 3.131 −4.042 6.876

βðþÞ
18

0 0 −0.058 3.928 −5.514 132.2

a2 βð−Þ13
1 1 −0.099 3.624 −0.028 240.2

βð−Þ15
1 1 51.91 6.024 −0.014 −0.007

b βð0Þ26
0 1 0.040 0.491 −0.870 20.85

h βðþÞ
26

0 0 0.881 0.378 −2.291 −1.068

π βð−Þ26
0 0 0.049 4.557 5.886 −25.58

ρ2 βð0Þ37
1 0 0 0 0 0

ω2 βðþÞ
37

1 0 −0.359 0.035 0.411 0.385

a1 βð−Þ36
0 0 −0.841 1.342 −0.999 5.245

ρ βð0Þ41
0 0 −0.037 0.465 51.644 2.111

βð0Þ44
0 0 0.350 0.000 2.670 1.909

ω βðþÞ
42

0 0 6.896 3.698 −1.583 3.623

βðþÞ
44

0 0 −0.001 0.002 −31.57 −37.13

a2 βð−Þ43
1 0 −0.352 6.776 22.402 −4.470

βð−Þ45
1 0 −32.552 7.948 −2.936 −5.534
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dispersion relation. However, this procedure is more
involved as it requires one to reconstruct the real part
before building the observables. Hence, one must evaluate
the integral for the t value of each data point. The first
method requires one to perform the integral only at
predefined t values and is therefore more suitable for fits
to large data sets.
When extracting the properties of baryon resonances in

the 2–3 GeV region, the number of relevant partial waves
grows and, with them, the number of parameters in the
model. The technique we developed in this paper will
certainly help to constrain this growing number of param-
eters. The solution we presented would be a good starting
point to perform a joint fit of the low- and high-energy data
via the FESR, and eventually lead to a better understanding
of the excited baryon spectrum. To this purpose, we made
our solution available online on the JPAC website [75,76].
The user also has the possibility to vary the cutoff in the

sum rules as well as the parameters of the high-energy
model, and display the resulting FESR and observables.
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