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Squeezing of X waves with orbital angular momentum
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Multilevel quantum protocols may potentially supersede standard quantum optical polarization-encoded pro-
tocols in terms of amount of information transmission and security. However, for free-space telecommunications,
we do not have tools for limiting loss due to diffraction and perturbations, as, for example, turbulence in air.
Here we study propagation invariant quantum X waves with angular momentum; this representation expresses the
electromagnetic field as a quantum gas of weakly interacting bosons. The resulting spatiotemporal quantized light

pulses are not subject to diffraction and dispersion, and are intrinsically resilient to disturbances in propagation. We
show that spontaneous down-conversion generates squeezed X waves useful for quantum protocols. Surprisingly,
the orbital angular momentum affects the squeezing angle, and we predict the existence of a characteristic axicon
aperture for maximal squeezing. These results may boost the applications in free space of quantum optical

transmission and multilevel quantum protocols, and may also be relevant for novel kinds of interferometers, such

as satellite-based gravitational wave detectors.
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Standard protocols of quantum communication encode
information into the polarization degrees of freedom of
photons [1,2]. As a result, only one bit of information can
be imprinted onto each photon. In recent years, there has been
great interest in the development of a free-space system for
quantum communications based on the use of modes that carry
orbital angular momentum (OAM) [3-9]. When using OAM
there is no limit to the number of bits of information that
can be carried by a single photon, as the OAM states span
an infinite-dimensional space. Correspondingly, the rate of
information increases drastically. In addition, the security of
the considered protocol is increased by a multilevel basis [3]. A
key problem related with multimode quantum communications
is the diffraction and dispersion of the wave packet. Diffraction
and dispersion create an inhomogeneous transmission loss
for different spatial frequencies that results in mixing of
spatial modes [4]. Moreover, it has been shown that OAM
states are strongly affected by perturbations. A great deal
of work has been done in studying the effect of atmo-
spheric turbulence in free-space communication [5,10-13].
A promising solution is the use of nondiffracting or localized
waves such as X waves that are naturally resilient against
perturbation [14].

Localized waves, i.e., linear solutions of Maxwell’s equa-
tions that propagate without diffracting in both space and
time, have been the subject of extensive research in the past
years [14]. In particular, X waves, first introduced in acoustics
in 1992 by Lu and Greenleaf [15], have been studied in
different areas of physics [16,17]. Despite the great amount
of literature concerning X waves, however, the investigations
of their quantum properties are very few and they are limited
to the case of traditional X waves, without OAM [18,19]. Very
recently, X waves carrying OAM have been proposed [20]
and they can constitute a new possible platform for free-space
quantum communication.

In this work, we present a quantum theory of X waves
carrying OAM based on the quantization of the motion of an
optical pulse propagating in a normally dispersive medium.
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Although there is already some literature dealing with the
quantization of waves carrying angular momentum, from both
a quantum field theory [21] and an atomic physics [22]
perspective, our approach is more general, as it also accounts
for dispersion and nonlinearities. Moreover, our formalism is
rather simple and provides a very useful theoretical toolkit for
the study of quantum waves carrying AM in complex nonlinear
media. In addition, the use of X waves carrying OAM as
quantization basis allows one to easily generalize the results
obtained for Bessel beams in the monochromatic [23] as well
as in the polychromatic domain [24-28]. In particular, we study
the case of spontaneous parametric down-conversion (SPDC)
in a quadratic medium, with particular attention to the effect
of the OAM carried by quantum X waves on the squeezing
properties of the down-converted states generated by the
nonlinear process. We find that squeezing is strongly affected
by OAM. Changing the parity of the OAM, in fact, rotates the
squeezing angle. This effect has a direct experimental signature
and may be employed for novel quantum protocols. The results
presented here are limited to the case of a scalar pulse in a
dispersive medium. The full vectorial case will be the subject
of future investigations.

We start our analysis considering an electromagnetic field
propagating in a medium with refractive index n = n(w).
Under the paraxial and slowly varying envelope approx-
imation, the field envelope A(r,t) satisfies the following
equation:
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We use (1) to study the propagation of an electromagnetic
field in a dispersive medium characterized by a refractive
index n, first-order dispersion ' = dw/dk, and second-order
dispersion «” = d*w/dk* [29]. For a field propagating in
vacuum one has o’ = ¢ and ©” = ¢?/w. The general solution
of Eq. (1) can be written as a polychromatic superposition of
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Bessel beams as follows [20]:

A(r,t) = Z d,e™?

X fde/ dk ki S(k i k) (ki R)e'*#=20
0
2

where Z =z — 't and Q = —w"k?/2+ &'k% /2k. In the
above equation the cylindrical coordinates {R,6,Z} and
{k1,9,k.} have been used. This integral furnishes the field at
instant ¢, given its spectrum S(k, ,k;) at t = 0, with transversal
and longitudinal wave numbers k, and k,, respectively. If we
introduce the change of variables {k, ,k.} — {«,v} such that
ki, = Jo'k/w'aandk, = ¢ — vw”, withv = ¢/ cos ¥, being
v the Bessel cone angle, after some manipulation, Eq. (2) can
be rewritten as a superposition of OAM-carrying X waves as
follows:

A=Y f dv Cp p(v)e™ 120y W (R £) - (3)
m,p

where ¥ (R,Z — vt) is the OAM-carrying X wave of order

p and velocity v [30],

o0 k
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Here, L,(x) are the generalized Laguerre polynomials of
the first kind, { = Z — vt is the comoving reference frame
associated to the X wave [14], and A is a reference length
related to the spatial extension of the beam. Following the
orthogonality relation

(RO (R.O) = 8mibpgdu —v) (5

we find that OAM-carrying X waves have an infinite norm,
like the plane waves typically adopted for field quantization.
To quantize the field given by Eq. (3) we employ the standard
technique of expressing the total energy of the field as a
collection of harmonic oscillators [18,31]. From Eq. (2) we
find for the total energy carried by A(r,?),

£= /d3r|A(r,t)|2 = Z/cwlcm,p(v,t)l2 6)

p.m

with C,, ,(v,1) = Cm,,,(v)e’("vzﬂ“’”)’. As can be seen, the
above equation can be interpreted as a collection of harmonic
oscillators with complex amplitude C,,(v) and frequency
(V) = % Without loss of generality we perform the
quantization of the fundamental X wave (p = 0). The gen-
eralization to p 5 0 is straightforward. We introduce a pair of

real canonical variables Q,,(v,t) and P,,(v,t) defined by
1

Cn(v,t) = \/E

[on (. 1)Qm p(v) +iPu(v,0)],  (7)
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where Q,,(v,t) and P,,(v,t) oscillate sinusoidally in time at a
frequency w,,(v). We then obtain

H— %Z/dv[P,i(v,t) + QW] ®)

m

The total energy of the field can be, therefore, expressed as
an integral sum of harmonic oscillators characterized by the
frequency w,y, ,(v), and Q,, ,(v) and P, ,(v) play the role of
position and momentum of the field, respectively. We promote
these quantities to operators and introduce the creation and
annihilation operators in the usual way as

On(v,t) = [a) (v,0) + an(v,1)], (9a)

h
20m(v)

fon(V) ¢ A

T[am(v,t) — ap(v,1)], (9b)
where a,,(v,t) = /@4, (v) and the standard canonical
bosonic commutation relations are understood [31]. Using the
relations above, and remembering that w,,(v) = v? /20", we
write the Hamilton operator for the field from Eq. (8) in the
following form:

2
A= Z/dv M; I:&,Tn(v)&m(v)—i— ﬂ (10)

where M = h/w"”. Hereafter we drop the zero point energy
as a standard renormalization procedure [32]. This is the first
result of our work. Written in the above form, the dynamics of
(3 4 1)-dimensional quantum X waves in a dispersive media
can be seen as the ones of a one-dimensional quantum gas
of weakly interacting bosons with mass M and velocity v
[33], with the mass essentially accounting for the material
dispersion, and the velocity containing the characteristic
parameter of the X wave, namely, its opening angle. The
formulation given by Eq. (10), moreover, allows one to study
the evolution of nondiffracting waves in a dispersive medium
using the techniques and concepts typical of condensed matter
physics. This is very important, as it opens new possibilities
for the study of spatiotemporal dynamics of single and few
photons in dispersive media and, more in general, in more
complicated structures, such as metamaterials and plasmonic
structures. ‘

We now substitute the expression of C,,(v) in terms of a,, (v)
and d,, (v) into Eq. (3) to obtain the field operator

Ar,t) = Z/du e~ hw, (VY (X,0)anm(v). (1)

The above expression for the field operator can be intuitively
understood as the result of the quantization of the electromag-
netic field in a cavity, where the normal modes of the cavity
are represented by OAM-carrying X waves. We remark that
this quantization approach is rigorous, and similar results can
be obtained by using a standard Lagrangian approach, as we
will report elsewhere.

As an example of application of the formalism developed
above, we now consider the case of phase-matched, collinear
SPDC. In particular, we assume that a beam of frequency
o impinges upon a dielectric crystal with second-order

B,(v,t) =i
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nonlinearity and we call it a pump beam. As a result of
the nonlinear interaction, a photon from the pump beam
can be annihilated to create two new photons having lower
frequencies w; and w, with @ = w; + w, [31]. Moreover, we
assume that the nondepleted pump approximation holds and
that the pump beam can therefore be represented by a bright
coherent state and treated like a classical beam. This allows us
to consider its action on the Hamiltonian of the system as only
a constant term, which can therefore be incorporated into the
nonlinear coefficient x associated to the process itself. Under
these assumptions, the Hamiltonian describing such a system
is then given by

A=Y / dv hiw, (0)[a] (V)a, (v)

+ b}, (V)b ()] + Hi (1), (12)

where the interaction Hamiltonian FII(t) is obtained by
quantizing its classical counterpart [34]

Er = x (A1]A%) +c.c. 13)

Here, the expression c.c. denotes the complex conjugation,
x is proportional to the second-order nonlinearity x®, and
G, (v) and b, (v) are the annihilation operators related to the
quantized fields A 1(r,t) and Az(r,t), respectively. We assume
that the two X waves travel with the same velocity v, such
that the the two Bessel angles satisfy ¢, = v + 2nm. After
a lengthy but straightforward calculation, we can write the
quantized interaction Hamiltonian as follows:

H=h) f dv Xm QU)o ()al (v.0b!,, (v.1) + Hee.

(14)

In the expression above, H.c. denotes the Hermitian conju-
gate, while y,,(x) is the interaction function, whose explicit
expression reads

Xm(xX) = (=1)"4n? xxe . (15)

Moreover, in Eq. (14) we used 4,,(v,t) = /T g,,(v), with
VP vl = p)(w] — @h)
a)// a)//(l + p)
where p = ,/kla)/l/kga)’z, a)’lyz = da)l,g/dk, and kLQ =
0)1,21/11,2/6‘.

To determine the electromagnetic field after the evolution
driven by the interaction Hamiltonian H;, we employ pertur-

bation theory. Writing the total (time-dependent) Hamiltonian
as

F(v) = , (16)

H(t) = Ho(t) + LH; (1), (17)

then, using the Schwinger-Dyson expansion truncated at the
first order, we get the following result for the state of the
system [32]:

W0 = —1 / dr () [0), (18)
0

where [1/(0)) = |0) has been assumed. If we now introduce
the quantities K (v) = [v(1 — p)(@] — w))]/[20"(1 + p)] and
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G(v,t) = —[2i/F(v)] sin[F(v)t/2], and we define the func-
tion

Gn(v,1) = Vou)o_n@)G@, 0™ x,2v),  (19)

after some algebra the final expression for the state after the
interaction is

ARGEDY / dv G (v,0)lm,v;—m,v),  (20)

m

where |m,v; —m,v) E&m(v)laim(v)m). The state given by
Eq. (20) represents a superposition of two particles, cor-
responding to the two modes w; and w, traveling with
the same velocity v. Notice, moreover, that due to angular
momentum conservation, the photon pairs generated by SPDC
are constrained to possess the same amount of OAM but
with opposite sign. This is possible since we have made no
particular assumption about the OAM content of the pump
beam. In the general case, in fact, the conservation of OAM
implies that my + m; = m,, where the subscripts s, 7, and p
stand for signal, idler, and pump, respectively.

We can now study the squeezing effect in the case of
degenerate down-conversion, corresponding to w; = w; =
/2. The quantized field operator associated to the mode w/2
is then given as follows [35]:

A=Y / dv/ha, Y (R, E)an, p(v,1).  (21)

m,p

In this case the Hamiltonian of the system is the same as the
one presented in Eq. (14) with b,,(v) = a,,(v) and p = 1, since
we are considering the degenerate down-conversion in which
w| = ) and |k;| = |k,|. In the interaction picture we consider
only the time evolution controlled by H; [32]. Thus the two
equations of motion for d,,(v,t) and a_,,(v,t) are then

d ]
;0.0 = 0;(0)x Q) + x- @l 22)

where j € {m, —m}. A general solution of these equa-
tions is [31] a;(v,t) = A;(v,0)a;(v) + Bj(v,t)&;(v), where
je{m,—m}, A,(v.t)=cosh[&,()t], B,(v,t) = @+mm)
sinh[&,,(v)¢] and the squeezing parameter &,,(v) is given, for a
fundamental X wave, as follows:
oy TEE -y T 23

En(0) = (1" ST o (23)
being U = vA. Therefore, the state after the SPDC is a
squeezed state with a squeezing parameter &,,(v) depending on
both velocity and OAM (see Fig. 1 below). To further elaborate
on that, we can introduce the quadrature operators: X j(v,t) =
a;(w.n)+al.n) and ¥;(v,1) = ilal(v.1) — a;(v.1)], where
j = {—m,m}.For¢ = Owehave X ;(v,1) = €5/ X ;(v,0) and
?j(v,t) = ¢ &0 l?j(v,O), and the variance of such quadrature
operators is then given by AX;(v,r) =" AX;(v,0)
and AY;(v,t) = e @' AY;(v,0). This shows that the
down-conversion interaction Hamiltonian for OAM-carrying
X waves acts like a two mode squeezing operator. Remarkably,
we find that OAM changes the sign of the squeezing parameter
&, (v), i.e., the squeezed quadrature changes depending on the
parity of the angular momentum number m. In particular, if
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FIG. 1. (a) Plot of the normalized squeezing parameter modulus
|EM] = Al&,|/( xc) in function of the normalized velocity §/w”.
(b),(c) Quadrature space representation of the squeezed down-
converted state in the case of odd [panel (b)] and even [panel (c)]
values of the OAM parameter m with a normalized velocity ¥/w” = 3
and fixing the time ¢ so that w xct /A = 1.

m is an even number, £,(v) > 0 and the squeezing occurs in
the Y quadrature. On the other hand, if m is an odd number,
&,(v) < 0 and the X quadrature will result squeezed as we
can observe in Figs. 1(b) and 1(c). This is our second result.

In addition, Eq. (23) reveals a dependence of the squeezing
parameter from the X wave velocity. Therefore, there exists
an optimal value of the velocity voy = 3w/A that maximizes
the amount of squeezing produced by the nonlinear process
[Fig. 1(a)]. This corresponds to the optimal axion angle
cos 9™ = A /3. If we, for example, assume a nondiffracting
pulse with a duration of At = 8 fs and a carrier wavelength of
A = 850 nm, the optimal axicon angle that maximizes the
squeezing is given by 08pt ~ 20°. Using these values and
assuming for the second-order nonlinearity x® = 10~'2%
[34], we can evaluate the maximal squeezing parameter to
be &, ~ 100 s~

We remark that the experimental generation of the proposed
quantum states of light may be implemented by using a spiral
phase plate and a system of cylindrical lenses to control the
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OAM carried by the pump beam [36,37]. The spiral phase
plate transforms a TEMgy mode in a spiral mode with fixed
OAM [36]. The cylindrical lenses transform an input mode
with a fixed OAM number m (e.g., a Laguerre-Gauss mode)
into one with number —m [37]. In this way we can generate
two input beams, one with OAM per photon Am and one
with OAM —hm per photon, that are sent to the nonlinear
crystal for SPDC. Another way to realize X waves carrying
OAM is the use of metasurfaces to convert the spin angular
momentum (SAM) in OAM [38,39]. Suppose we have an input
X wave with m = 0 and uniform circular polarization; after
the interaction with the metasurface the output beam switches
handedness with a SAM variation £2% per photon. Since the
total angular momentum must be conserved an OAM m =
427 per photon is generated. The result for the field amplitude
is an X wave carrying OAM. Alternatively, the same result can
be achieved by using total internal reflection in an isotropic
medium [40].

In conclusion, we have presented a quantized theory of
optical pulses propagating in a normally dispersive medium
as a collection of harmonic oscillators associated to traveling
modes represented by X waves carrying OAM. This allows
us to describe the dynamics of the quantized field as those of
a one-dimensional quantum gas of weakly interacting bosons
with velocity v = ¢/ cos ¥ and mass M = h/w". Moreover,
we have shown that it is possible to select the quadrature
squeezed state generated by SPDC [Figs. 1(b) and 1(c)] and
that there exists an optimal velocity (i.e., axicon angle) that
maximizes the amount of squeezing generated. Moreover, in
comparison with already existing results concerning paramet-
ric down-conversion of Bessel beams [41], the result of our
theory, although limited to the scalar case, provides a way
to find the optimum Bessel cone angle, thus maximizing the
squeezing effect.

We believe that these results are helpful for future mul-
tilevel, free-space quantum communication protocols that
are potentially free of diffraction and dispersion and not
affected from external perturbations, in particular from at-
mospheric turbulence. Further applications include the use
of the proposed diffraction-free OAM states in free-space
interferometric setups for high-sensitivity interferometers for
gravitational wave detection.
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