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Abstract

In this paper we address the implementation of the Generalized Con-
volution Quadrature (gCQ) presented and analyzed by the authors in
a previous paper for solving linear parabolic and hyperbolic convolution
equations. Our main goal is to overcome the current restriction to uniform
time steps of Lubich’s Convolution Quadrature (CQ). A major challenge
for the efficient realization of the new method is the evaluation of high-
order divided differences for the transfer function in a fast and stable way.
Our algorithm is based on contour integral representation of the numerical
solution and quadrature in the complex plane. As the main application we
consider the wave equation in exterior domains, which is formulated as a
retarded boundary integral equation. We provide numerical experiments
to illustrate the theoretical results.
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1 Introduction

In this paper, we will address the efficient algorithmic realization of the Ge-
neralized Convolution Quadrature (gCQ) as presented and analyzed in [14] for
solving linear convolution equations of the form

k ∗ ϕ = g, (1)
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where ∗ denotes convolution with respect to time, g is a given function, and k is
some fixed kernel function/operator, i.e., the left-hand side in (1) is understood
as a mapping of the function ϕ into some function space.

In many applications it is the Laplace transform K of the convolution kernel
k what is known or convenient to evaluate. For these problems the Convolution
Quadrature (CQ) developed originally by Lubich is an excellent method, see
[17, 18, 21, 20] for parabolic problems and [19] for hyperbolic ones. However
both, the derivation of the CQ and its implementation, are strongly restricted
to fixed time step integration. The Generalized Convolution Quadrature (gCQ)
presented in [14] provides a remedy to this limitation when the time discretiza-
tion is based on the implicit Euler method. In the recent work [16] the method
in [14] has been extended to high order Runge–Kutta methods. An alterna-
tive approach which also allows variable time steps for solving retarded potential
integral equations can be found in [26], [28].

In [14], the gCQ has been introduced and formulated via high order divided
differences of the transfer function/operator K, in a way which was appropriate
for the stability and error analysis but less suited for the efficient algorithmic
realization. Here, we will present an efficient algorithmic formulation of the gCQ
which is based on the approximation of the divided differences by quadrature
in the complex plane, following [15]. The algorithm is easy to implement and
allows for a high level of parallelism.

In the present paper we impose weaker assumptions on the transfer oper-
ator K compared to those in [14, Section 2] and, thus, allow for more general
operators K which are analytic in the half plane

Cσ := {z ∈ C | Re z > σ}

for some σ ∈ R ∪ {−∞} and have some algebraic growth behaviour in Cσ.
Our main application is the solution of retarded potential integral equations
(RPIE) which arise if the wave equation in an unbounded exterior domain is
formulated as a space-time integral equation on the boundary of the scatterer.
We generalize here the estimate of the continuity constant for the acoustic single
layer operator to frequencies in the whole complex plane which simplifies the
choice of the contour for the quadrature approximation.

The paper is organized as follows. In Section 2 we will introduce the class
of problems and formulate appropriate assumptions on the growth behavior of
the transfer operator in some complex half plane. Section 3 will be concerned
with the temporal discretization of the convolution equation by means of the
implicit Euler method with variable step size, what we call Generalized Con-
volution Quadrature (gCQ). An algorithm for the practical realization of the
gCQ is presented in Section 4. Our algorithm is based on contour integral rep-
resentation of the numerical solution and quadrature in the complex plane. The
quadrature method is described in Section 5. In Section 6 we analyze the error
introduced by the contour quadrature discretization. The application to the
boundary integral formulation of the wave equation is considered in Section 7,
where new estimates for the acoustic single layer potential operator are derived
for general complex frequencies. Numerical experiments are shown in Section 8.
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2 The class of problems

We will consider the class of convolution operators as described in [19, Sec. 2.1]
and recall its definition. Let B and D denote some normed vector spaces and
let L (B,D) be the space of continuous, linear mappings. As a norm in L (B,D)
we take the usual operator norm

∥F∥ := sup
u∈B\{0}

∥Fu∥D
∥u∥B

.

For given right-hand side g : R≥0 → D, we consider the problem of finding
ϕ : R≥0 → B such that for all t ≥ 0∫ t

0

k (t− τ)ϕ (τ) dτ = g (t) , (2)

considered as an equation in D. The kernel operator k is defined via its in-
verse Laplace transform, the transfer operator K. The class of problems under
consideration is defined as follows.

Assumption 1 Let θ, µ ∈ R, σ+ > 0 and σ− < σ+. The class Aθ,µ
σ−,σ+

(B,D)
of transfer operators consists of operator valued mappings K : Cσ− → L (B,D)
which satisfy:

1. K : Cσ− → L (B,D) is analytic.

2. K satisfies the estimate

∥K (z)∥ ≤ Cop (max{1, |z|})θ , ∀z ∈ Cσ− , (3)

for a fixed constant Cop > 0.

3. The inverse operator K−1 : Cσ+ → L (D,B) exists and hence is analytic.

4. K−1 satisfies the estimate∥∥K−1 (z)∥∥ ≤ Cinv |z|µ , ∀z ∈ Cσ+ , (4)

for fixed Cinv > 0. 1

For ρ ∈ N0 we define
Kρ (z) := z−ρK (z) . (5)

For any ρ > θ + 1, the Laplace inversion formula

kρ (t) :=
1

2π i

∫
γ

eztKρ (z) dz, (6)

1The generic constant C in the following estimates will depend on Cop and Cinv but not
explicitly on σ−, σ+. Hence, if Cop, Cinv are independent of σ−, σ+ so is the constant C.
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for a contour γ = σ+iR, σ ≥ σ+, is well defined and kρ (t) vanishes by Cauchy’s
integral theorem for t < 0. As in [19] we denote the convolution k ∗ ϕ by

(K (∂t)ϕ) (t) :=

(
d

dt

)ρ ∫ t

−∞
kρ (t− τ)ϕ (τ) dτ =

∫ ∞
0

kρ (τ)ϕ
(ρ) (t− τ) dτ (7)

for sufficiently smooth functions ϕ which satisfy ϕ (t) = 0 for t ≤ 0.
By the composition rule for one-sided convolutions (cf. [19, (2.3), (2.22)])

the solution of the convolution equation

K (∂t)ϕ = g, (8)

for g being smooth enough and having sufficiently many vanishing moments at
t = 0 (cf. Theorem 15), is given by

ϕ = K−1 (∂t) g.

Then

ϕ (t) =

∫ t

0

(
1

2π i

∫
γ

ezτ (K−1)ρ(z)dz
)
g(ρ) (t− τ) dτ, (9)

for ρ ∈ N0 with ρ > µ+ 1. In this way, ρ will be chosen as

ρ := min {s ∈ N0 | s > max {µ+ 1, θ + 1}} . (10)

3 Generalized convolution quadrature based on
implicit Euler

In [14], the generalized convolution quadrature has been presented via high order
divided differences which are well suited for the stability and error analysis but
suffer from strong roundoff instabilities for the practical implementation. In
this paper, we will introduce a new (but equivalent) formulation via contour
integrals which will play the key role for its algorithmic realization.

Definition 2 (Generalized Convolution Quadrature) For a set of given

time points Θ := (tn)
N
n=0 and corresponding time steps ∆j = tj − tj−1, 1 ≤ j ≤

N , the generalized convolution quadrature approximation based on the implicit
Euler method of

K (∂t)ϕ = g (11)

at time points tn is given by the solution ϕ = (ϕn)
N
n=1 of

K−ρ
(
∂Θt

)
ϕ = g(ρ), (12)

where g(ρ) =
(
g(ρ) (tn)

)N
n=1

and the operator K−ρ
(
∂Θt

)
applied to a vector ϕ is

given by (
K−ρ

(
∂Θt

)
ϕ
)
n
=

1

2π i

∫
C
K−ρ (z)un(z)dz. (13)
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Here un is the approximation of the scalar ODE problem

∂tu(z, t) = z u(z, t) + ϕ(t), u(z, 0) = 0 (14)

at time tn by the implicit Euler method, this is

un(z) =
1

1−∆nz
un−1(z) +

∆n

1−∆nz
ϕn; u0(z) = 0. (15)

C, in (13), is any closed contour lying in Cσ− and enclosing all poles ∆−1n ,
1 ≤ n ≤ N , of the integrand in (13).

Remark 3 The solution of equation (12) can be written in the form2 [4, 14]

ϕn =
(
K−1

)
ρ

(
∂Θt

)
g(ρ) =

n∑
j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

] (
K−1

)
ρ

)
g
(ρ)
j ,

(16)
where

ωn,j(z) =
n∏

ℓ=j+1

(z −∆−1ℓ )

and [y1, . . . , yn] f denotes Newton’s divided difference for a (operator-valued)
function f with respect to the arguments in the brackets, with the standard gen-
eralization for repeated arguments. For some f = (fi)

n
i=1, we will use the no-

tation [y1, . . . , yn] f for the divided difference associated to the pairs (yi, fi)
n
i=1.

Representation (16) was used in [14] for the error analysis.
In general, for any transfer operator V the action of V

(
∂Θt

)
to a vector ϕ =

(ϕn)
N
n=1 is nothing but the application of a block triangular matrix (Vn,j)Nn,j=1

to ϕ by setting

Vn,j :=


∆j

2π i

∫
C

ωn,j (0)

ωn,j (z)
V (z) dz j ≤ n,

0 otherwise.
(17)

4 Algorithm for gCQ

From (15), definition (13) and Cauchy’s formula, equation (12) can be written
in the form

K−ρ
(

1

∆n

)
ϕn = g(ρ)n − 1

2πi

∫
C

K−ρ(z)
1−∆nz

un−1(z) dz, (18)

for un−1 being the approximation at time tn−1 of the scalar ODE (14). In [15] an
efficient quadrature rule for (18) has been proposed, with nodes zℓ and weights

2Note that (K−1)ρ (z) is understood as z−ρK−1 (z) and not as (Kρ (z))
−1.
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wℓ, ℓ = 1, · · · , NQ, given explicitly in (29). The application of this quadrature
to (18) leads to the computation of

K−ρ
(

1

∆n

)
ϕCn = g(ρ)n −

NQ∑
ℓ=1

wℓ
K−ρ(zℓ)
1−∆nzℓ

un−1(zℓ), (19)

where un−1 (zℓ) is the implicit Euler approximation of (14) with z ← zℓ. The
reduction of (1) to the solution of scalar ODEs in the Laplace domain and the
application of quadrature in the complex plane are also key ingredients in the al-
gorithm presented in [13]. However the complexity and storage estimates in [13]
do not apply directly to our setting due to different properties of the integrands
in the Laplace transforms and the different performance of the quadrature for-
mula.

Our method is formulated in an algorithmic way as follows.

Algorithm 4 (gCQ with contour quadrature)

• Initialization. Generate3 K−ρ (zℓ) for all contour quadrature nodes zℓ,
ℓ = 1, 2, . . . , NQ. Compute ϕC1 from

K−ρ
(

1

∆1

)
ϕC1 = g

(ρ)
1 . (20)

• For n = 2, . . . , N

1. Implicit Euler step. Apply an implicit Euler step to (14) and
compute

un−1 (zℓ) =
un−2 (zℓ)

1−∆n−1zℓ
+

∆n−1

1−∆n−1zℓ
ϕCn−1

for all contour quadrature nodes: z = zℓ, ℓ = 1, . . . , NQ.

2. Generate linear system. If ∆n is a new time step, then, gen-

erate K−ρ
(

1
∆n

)
; otherwise this operator was already generated in a

previous step. Update the right-hand side

rn = rn (un−1) := g(ρ)(tn)−
NQ∑
ℓ=1

wℓ
K−ρ(zℓ)
1−∆nzℓ

un−1(zℓ).

3. Linear Solve. Solve the linear system

K−ρ
(

1

∆n

)
ϕCn = rn.

3For the numerical solution of the wave equation by gCQ (cf. Sec. 7), this requires the

discretization of the operator K−ρ

(
1

∆1

)
, e.g., by the Galerkin boundary element method.
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Remark 5 The algorithm above requires the pre-computation of the operators
K−ρ(zℓ), their storage and the solution of the (decoupled) ODEs at the quadra-
ture nodes zℓ. The main part of the computational cost and the memory re-
quirements will be spent in the computation and the storage of the K−ρ(zℓ). We
emphasize that, thanks to the results in the next section, the required number
of quadrature nodes will not be much bigger than the corresponding number of
nodes for the original convolution quadrature with uniform time stepping, which
is O(N) (see [18, 3]). For example, if ∆ ∼ N and ∆min ∼ ∆2, as in Section 8,
the number of required quadrature nodes is O(N log(N)). Furthermore, it is
to be expected that the use of variable steps can significantly reduce N for the
same target accuracy, see Figures 3 and 4, with the corresponding savings in
the number of evaluations and storage of K in comparison with a uniform step
implementation.

Another important advantage of our algorithm is that the time steps do not
need to be known in advance – only an upper bound of their total number as well
as lower and upper bounds of their sizes are required, as we will see in the next
section.

Remark 6 (Complexity for the wave equation) In the case of constant
time stepping for the boundary integral formulation of the wave equation, the
solution of the arising block triangular Toeplitz system can be accelerated by
FFT techniques (cf. [9]). The resulting CPU time is of order O

(
L3 + L2N

)
up

to logarithmic terms, where L is the dimension of the boundary element space
for the spatial discretization. A straightforward implementation of the new gCQ
algorithm requires the generation of O (N) L×L boundary element matrices (up
to logarithmic factors) while the solution of the integro-differential equation re-
quires O

(
L3n# + L2N2

)
arithmetic operations, with n# ≤ N being the number

of different time steps. We emphasize that updates involved in each step of our
algorithm can be performed in parallel and, in addition, that the number of time
steps N for the gCQ can be much smaller than for the CQ method. For certain
applications, these facts may compensate the quadratic scaling with respect to
N for the gCQ. It is a topic of future research to develop a fast version of this
algorithm which scales log-linear with respect to N .

For a general transfer operator V and quadrature rule with nodes zℓ and
weights wℓ we denote the discretization of the blocks in (17) by

(QC (V))n,j :=


∆j

2π i

NQ∑
ℓ=1

wℓ
ωn,j (0)

ωn,j (zℓ)
V (zℓ) j < n,

V
(

1

∆n

)
j = n,

0 otherwise.

(21)
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5 Contour quadrature

The development of an efficient quadrature rule for the integrals in (12) is a
challenging problem due to the presence of poles ∆−1j ∈ [m,M ] with possibly
M/m≫ 1, [10, 15]. A subtle choice of the contour parametrization is required,
which must be adapted to the class of functions satisfying Assumption 1. For
this class of functions such a quadrature approximation has been developed and
analyzed recently by the authors in [15]. In the following we will develop this
quadrature method for the gCQ.

The case σ− < −1.
We first consider the case σ− < −1 while the modifications for the case

σ− ≥ −1 are explained in Remark 7.
For the sake of simplicity and as explained in Remark 5, we will assume

that the contour in (18) and the quadrature points zℓ are fixed during the time
stepping. The choice of the contour will depend on the maximal and the minimal
time steps, which are denoted by

∆ := max
1≤j≤N

∆j and ∆min := min
1≤j≤N

∆j

and should be chosen in advance. Since the number of quadrature nodes will
depend only very mildly on the ratio ∆

∆min
, the choices ∆min = ∆α for some

1 ≤ α ≤ 2 or even stronger gradings α > 2 will lead to an efficient algorithm.
The contour and the quadrature will depend on4

m = ∆−1, M = max

(
m2,

1

∆min

)
, (22)

and the ratio

q :=
M

m
. (23)

To avoid technicalities we always assume that ∆−1 > 8
3 holds, which guarantees

that a certain neighborhood of the contour which will be relevant for the error
analysis has a proper distance from the interval [m,M ].

For λ ∈ [0, 1], we employ the usual notation sn (η|λ), cn (η|λ), dn (η|λ) for
the Jacobi elliptic functions as defined, e.g., in [1] and denote by

K (λ) :=

∫ 1

0

dx√
(1− x2) (1− λx2)

(see [7, 8.112 (1.) and (2.)] (24)

K ′ (λ) := K (1− λ) (see [7, 8.112 (3.) and 8.111 (2.)]) (25)

the complete elliptic integrals of the first kind.
For q as is (23) we compute

k = k(q) =
q −
√
2q − 1

q +
√
2q − 1

and λ = k2 (26)

4Our numerical experiments show that the choice M := ∆−1
min performs better in practice

while the choice as in (22) allows to employ the error estimates in [15] without modifications.
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and set

P = −K(λ) +
i

2
K ′(λ) and Q = P + 4K(λ). (27)

Our choice for the integration contour C in (18) is then

PQ→ C : η 7→ γM (η) :=
M

q − 1

(√
2q − 1

k−1 + sn (η|λ)
k−1 − sn (η|λ)

− 1

)
(28)

which is nothing but the circle in the complex plane of radius M centered at M
parameterized in a subtle way (cf. [15, Lemma 15]. This parametrization is a
modification of the one in [10], where the computation of matrix functions by
quadrature in the complex plane was considered.

For fixed NQ ≥ 1, the quadrature weights and nodes in (19) are then given
by

zℓ = γM (ηℓ) and wℓ =
4K(λ)

2πi
γ′M (ηℓ), (29)

with

ηℓ = −K(λ) +

(
ℓ− 1

2

)
4K(λ)

NQ
+

i

2
K ′(λ), (30)

for ℓ = 1, . . . , NQ, and

γ′M (η) =
M
√
2q − 1

q − 1

2cn (η|λ)dn (η|λ)
k(k−1 − sn (η|λ))2

. (31)

The choice of nodes in (29) corresponds to the composite mid-point formula.
Notice that this is equivalent to the composite trapezoidal formula for 4K(λ)-

periodic functions with quadrature nodes shifted to the right by 2K(λ)
NQ

.

The evaluation of the Jacobi elliptic functions and the elliptic integrals at
complex arguments can be performed very efficiently in MATLAB by means of
Driscoll’s Schwarz–Christoffel Toolbox [5] which is freely available online. In
particular the functions ellipkkp and ellipjc are needed to compute (29),
cf. [10].

As we have already mentioned in Remark 5, in our main applications the
evaluation of the quadrature rule will be the most expensive part of the pro-
cedure. Thus, it will be important to exploit the symmetry in (29). In this
way, in cases where the transfer operator K(z) is real on the real axis (so that
K(z) = K(z) by the Schwarz reflection principle), we can halve the evaluations
of the operators K(ηℓ) to those ηℓ belonging to PH with

H = P + 2K(λ).

This corresponds to evaluate K only along the upper semicircle centered at M
with radius M .

The case σ− ≥ −1.
If σ− ≥ −1 we can shift the integration contour C to the right as explained

in the following remark.
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Remark 7 For σ− ≥ −1 in Assumption 1, we shift the contour to the right by
choosing γM,µ := µ+ γM as the parametrization, for some µ ≥ 0 whose choice
is explained next, and by imposing the mild condition (33) on the maximal time
step. For κ ≥ 0, we introduce the contour neighborhood

CM,κ :=
{
γM (t+ i v) : t ∈ PQ ∧ −κ ≤ v ≤ κ

}
. (32)

The condition µ > σ−+1 ensures the shifted contour neighborhood µ+CM,κ

is contained in the analyticity region Cσ− for 0 ≤ κ ≤ c1 min
{
M−1/2,m−1

}
and some fixed constant c1 > 0 (see [15, Theorem 8]). To ensure that the
shifted contour µ+CM,κ encircles [m,M ] we assume, as a first condition on the
maximal time step, that µ < m. From [15, Theorem 8], we then conclude that

max {|z| : z ∈ µ+ CM,ρ} ≤ c2M

and also that, for all x ∈ [m,M ], it holds

dist (x, µ+ CM,ρ) ≥
(
1− 2M−1/2 −

(
2

3
+ µ

)
m−1

)
x. (33)

As the final condition on the maximal time step we assume that

∆−1 >
8

3
+ µ (34)

holds which implies that the right-hand side in (32) is positive.

6 Error analysis

In this section we estimate the difference between the solution ϕ of the “exact”
gCQ (12) and the solution ϕC of the contour quadrature based gCQ for the
weights and nodes in (29). Throughout this section we assume that the contour
quadrature is applied as described in Section 5: If σ− < −1, we set µ = 0 while,
for σ− ≥ −1, the shift parameter µ is chosen as explained in Remark 7. The
condition (33) on the maximal time step is always assumed to be satisfied.

The gCQ with and without contour quadrature can be written in the form

K−ρ(∂Θt )ϕ = g(ρ) and QC(K−ρ)ϕC = g(ρ),

according to definition (21). It follows that

ϕC =
((

I−K−1ρ (∂Θt )D
)−1)K−1ρ (∂Θt )g(ρ) with D = Kρ(∂

Θ
t )−QC(Kρ) (35)

and
ϕ− ϕC = −K−1ρ (∂Θt )DϕC (36)

Remark 8 The conditions and estimates in Remark 7 allow a straightforward
generalization of the quadrature error analysis in [15] to the case σ− ≥ −1.
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Lemma 9 Let q be defined as in (23), λ and k as in (26). Let N ≥ 1 be the
total number of time steps in (12) and define the quantity

R := N

(
1

M1/2
+

2 + 3µ

6m

)
,

which is related with the mesh grading (cf. (22)), where µ = 0 if σ− ≤ −1
and is otherwise chosen as explained in Remark 7. Assume that m > 8

3 + µ
and let K satisfy (3). Then there exist constants C1, C2 > 0 independent of the
discretization parameters such that∥∥∥Kn,j − (QC(K))n,j

∥∥∥ ≤ εquad := CopC1

(
Mθ+1 log q

) e2R

eNQτ − 1
(37)

with Kn,j as in (17), QC(K))n,j as in (21), Cop as in (3), and

τ := C2

min
{
m−1,M−1/2

}
log q

. (38)

Proof. It follows from [15, Theorem 10] with the choice (22) for m and M and
c0 ← 1/2 therein. Notice that for fixed σ− < −1, every K ∈ Aθ,µ

σ−,σ+
(B,D)

belongs also to the class A(σ−, θ, Cop + 1) defined in [15, Definition 3].
In order to derive consistency, stability, and convergence of the gCQ with

contour quadrature we will introduce some appropriate norms.

Definition 10 Let F and G denote normed vector spaces. For any f = (fn)
N
n=1 ∈

FN we set

∥f∥0,∞,F := max
1≤n≤N

∥fn∥F and ∥f∥0,1,F :=
N∑

n=1

∆n ∥fn∥F .

A norm which is related to the second order divided differences (cf. Remark 3)
is given by5

∥f∥2,1,F :=
N∑

n=1

(∆n +∆n−1) ∥[tn−2, tn−1, tn] f∥F .

For an operator H : FN → GN we denote the operator norm by

∥H∥(i,j,G)←(k,ℓ,F ) := sup
v∈FN\{0}

∥Hv∥i,j,G
∥v∥k,ℓ,F

for any (i, j) , (k, ℓ) ∈ {(0, 1) , (0,∞) , (2, 1)}.

Notice that the first subindex in the norm stands for the order of the divided
differences which are involved in its definition.

5Formally we set t−1 := −t1 and f−1 = f0 := 0.
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Lemma 11 The norms ∥·∥0,∞,F , ∥·∥0,1,F , ∥·∥2,∞,F are equivalent and the con-

stants of equivalence depend on the final time T =
∑N

n=1 ∆n and the minimal
mesh width ∆min:

∆min ∥f∥0,∞,F ≤ ∥f∥0,1,F ≤ T ∥f∥0,∞,F ,

∥f∥2,1,F ≤ 4
N

∆min
∥f∥0,∞,F . (39)

The simple proof is left to the interested reader.

Lemma 12 (Consistency) Let the assumptions of Lemma 9 be valid. Then,
the consistency estimate

∥D∥(0,∞,D)←(0,∞,B) ≤ Nεquad. (40)

holds with εquad as in (36).

Proof. Let ψ = (ψn)
N
n=1 ∈ BN . Then from (36) we conclude that

∥Dj,nψn∥D ≤ εquad ∥ψn∥B

holds so that

∥Dψ∥0,∞,D = max
0≤n≤N

∥∥∥∥∥∥
n−1∑
j=1

Dn,jψj

∥∥∥∥∥∥
D

≤ εquad max
0≤n≤N

n−1∑
j=1

∥ψj∥B ≤ εquadN ∥ψ∥0,∞,B .

The stability of the gCQ as in Definition 2 (without contour quadrature) is
proved in [14, Theorem 6]. Here, we will generalize these results and derive the
stability of the gCQ with contour quadrature.

Lemma 13 (Stability) Let q be defined as in (23), λ and k as in (26). Let
N ≥ 1 be the total number of time steps in (12). Let the maximal mesh width
∆ be sufficiently small such that 1−∆σ+ ≥ α0 for some α0 > 0. Let K and its
inverse satisfy Assumption 1 for some µ and σ+ as in (4) and let ρ be chosen
according to (10). The solution of Algorithm 4 with contour quadrature as in
Section 5 is denoted ϕCn, 1 ≤ n ≤ N . Let the number of quadrature points NQ

be chosen such that

CI
stab e

δ0T
N2

∆min
εquad ≤ 1/8

with εquad = εquad (NQ) as in (36). Then, the following stability estimate holds∥∥∥ϕC∥∥∥
0,∞,B

≤ 2CI
stab e

δ0T
∥∥∥g(ρ)

∥∥∥
2,1,D

(41)

with
δ0 =

σ+
α0
. (42)
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Proof. In [14, Theorem 6] the stability estimate for the gCQ without contour
quadrature is proved which is the first inequality in

∥ϕ∥0,∞,B =
∥∥∥K−1ρ (∂Θt )g(ρ)

∥∥∥
0,∞,B

≤ CI
stab e

δ0T
∥∥∥g(ρ)

∥∥∥
2,1,D

(43)

(38)

≤ 4CI
stab

N

∆min
eδ0T

∥∥∥g(ρ)
∥∥∥
0,∞,D

. (44)

The gCQ with contour quadrature (cf. (19)) has a unique solution since the

operators K−ρ
(

1
∆n

)
are invertible (cf. (4)). Hence,∥∥∥ϕC∥∥∥

0,∞,B

(34), (42)

≤ CI
stab e

δ0T
∥∥∥(I−K−1ρ (∂Θt )D

)−1∥∥∥
0,∞,B←0,∞,B

∥∥∥g(ρ)
∥∥∥
2,1,D

≤ CI
stab e

δ0T

∥∥g(ρ)
∥∥
2,1,D

1−
∥∥K−1ρ (∂Θt )D

∥∥
(0,∞,B)←(0,∞,B)

(43)

≤ CI
stab e

δ0T

∥∥g(ρ)
∥∥
2,1,D

1− 4CI
stab e

δ0T N
∆min

∥D∥(0,∞,D)←(0,∞,B)

.

The combination of the consistency estimate and (40) gives the assertion.
We finally formulate the convergence theorem for the gCQ with contour

quadrature.

Theorem 14 (Convergence) Let q be defined as in (23), λ and k as in (26).
Let N ≥ 1 be the total number of time steps in (12). Let the maximal mesh
width ∆ be sufficiently small such that 1 −∆σ+ ≥ α0 for some α0 > 0. Let K
and its inverse satisfy (3) and (4), respectively, for some µ and σ+ as in (4)
and let ρ satisfy (10). The solution of Algorithm 4 with contour quadrature as
in Section 5 is denoted ϕCn, 1 ≤ n ≤ N . Let the number of quadrature points
NQ be chosen such that εquad in (36) satisfies

CI
stab e

δ0T
N2

∆min
εquad ≤ 1/8.

Then, the following error estimate holds∥∥∥ϕ− ϕC∥∥∥
0,∞,B

≤ CII
stab

N2

∆min
εquad

∥∥∥g(ρ)
∥∥∥
2,1,D

(45)

with CII
stab := 2C1

(
2CI

stab e
δ0T

)2
and δ0 as in (41).

Proof. By using the error representation in (35), the result follows from (43),
Lemma 12, and Lemma 13 via∥∥∥ϕ− ϕC∥∥∥

0,∞,B

(42)

≤ 4CI
stab

N

∆min
eδ0T

∥∥∥DϕC∥∥∥
0,∞,D

(Lem.12)

≤ 4CI
stab e

δ0T
N2

∆min
εquad

∥∥∥ϕC∥∥∥
0,∞,B

(Lem. 13)

≤ 2
(
2CI

stab e
δ0T

)2 N2

∆min
εquad

∥∥∥g(ρ)
∥∥∥
2,1,D

.
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The total error in our approximation of (1) is ϕ(tn)−ϕCn. We recall here the
convergence theorem from [14] for the error ϕ (tn)− ϕn. We notice that in [14,
Theorem 4.3] an exponential factor eδ0T is included in the error constant C. In
the statement below we have opted for a sharper version of the estimate with a
j-dependent factor eδ0(tn−tj−1).

Theorem 15 Let (4) be satisfied and let ∆ be sufficiently small such that 1 −
∆σ+ ≥ α0 for some α0 > 0. Let N ≥ 1 be the total number of time steps and
ρ in (12) be chosen such that (10) holds. Let the right-hand side in (11) satisfy
g ∈ Cρ+3 ([0, T ]) and g(ℓ) (0) = 0 for all 0 ≤ ℓ ≤ ρ + 2. We denote by ϕn, for
1 ≤ n ≤ N , the solution of (12). Then, the error estimate holds

∥ϕ (tn)− ϕn∥B ≤ C∆cρ−µ (∆)

 n∑
j=1

∆j +∆j−1

2
eδ0(tn−tj−1) max

τ∈[tj−2,tj ]
ℓ∈{2,3}

∥∥∥g(ρ+ℓ) (τ)
∥∥∥
D


with

cν (∆) :=

{
1 + log 1

∆ , if ν = 1,
1, if ν > 1,

(46)

and δ0 as in (41).

By the triangle inequality, an estimate for the global error ϕ(tn)−ϕCn follows
straightforwardly from Theorems 15 and 14.

Finally, we will formulate a simplified version of Theorem 14 under some
mild assumptions on the step sizes and the mesh grading. Note that ∆ ≥ T

N
always holds. We assume in addition the following two (mild) assumptions on
the mesh grading: There exist Cuni > 0, α ≥ 1, and cgrad > 0 such that

∆ ≤ Cuni
T

N
and ∆min ≥ cgrad∆α. (47)

The subsequent constants depend on the time mesh only via the constants Cuni,
cgrad, and α but not on the size of ∆. Condition (46) implies for the ratio
q =M/m and the quantities R, τ in Lemma 9 the estimates

q ≤ C3

(
N +Nα−1) , R ≤ 4N∆ =: C4,

τ ≥ c5
Nγ logN

with γ := max
{
1, α2

}
,

where the positive constants C3, C4, c5 only depend on T , cgrad, Cuni, and α.

Corollary 16 Let the assumptions of Theorem 14 be valid and let the mesh
satisfy (46). For given ε > 0, let the number of quadrature points for the
approximation of the contour integral satisfy

NQ ≥ C6N
γ logN

(
logN + log

(
1

ε

))
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for some C6 > 0 depending only on T , on the constants in Assumption 1, and
(46). Then, the solution ϕCn, 1 ≤ n ≤ N , of Algorithm 4 with contour quadrature
as in Section 5 is well defined and satisfies the error estimate∥∥∥ϕ− ϕC∥∥∥

0,∞,B
≤ ε

∥∥∥g(ρ)
∥∥∥
2,1,D

.

For ε = Cuni
T
N we obtain: The choice NQ ≥ C̃6N

γ log2N implies the fol-
lowing estimate for the total error at time points tn∥∥ϕ (tn)− ϕCn∥∥B ≤ Cg∆cρ−µ (∆) ∀1 ≤ n ≤ N,

where cν is as in (45).

Remark 17 Our numerical experiments indicate that for a grading exponent
α = 2, the choice

NQ = N logN

already leads to sufficiently small contour quadrature errors. Note that for a
transfer operator which is symmetric with respect to the real axis (as it is the
case in our applications) this implies

NQ =
1

2
N logN.

7 Application to the wave equation

In this section we will show that the boundary integral formulation for the wave
equation can be efficiently solved by the gCQ method. For this, we will prove
that the transfer operator for the retarded potential boundary integral equation
satisfies Assumption 1 with properly chosen constants Cop, Cinv, θ, µ, σ− and
σ+.

Let Ω− ⊂ R3 be a bounded Lipschitz domain with boundary Γ. The
unbounded complement is denoted by Ω+ := R3\Ω−. In the following Ω ∈
{Ω−,Ω+}. Our goal is to numerically solve the homogeneous wave equation

∂2t u = ∆u in Ω× (0, T ) (47a)

with initial conditions

u(·, 0) = ∂tu(·, 0) = 0 in Ω (47b)

and boundary conditions

u = g on Γ× (0, T ) (47c)

on a time interval (0, T ) for some T > 0 and given sufficiently smooth and
compatible boundary data. For its solution, we employ an ansatz as a retarded
single layer potential (cf. [6],[2])

∀t ∈ (0, T ) u(x, t) =

∫ t

0

∫
Γ

δ (t− ∥x− y∥)
4π ∥x− y∥

ϕ (y, τ) dΓy dτ ∀x ∈ Ω (49)
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with the Dirac delta distribution δ(·).
The ansatz (48) satisfies the homogeneous equation (47a) and the initial

conditions (47b). The extension x → Γ is continuous and hence, the unknown
density ϕ in (48) is determined via the boundary conditions (47c), u(x, t) =
g(x, t). This results in the boundary integral equation for ϕ,

∀t ∈ (0, T )

∫ t

0

k(t− τ)ϕ(τ) dτ = g (t) in H1/2 (Γ) , (50)

where k(t) : H−1/2 (Γ) → H1/2 (Γ) is the boundary integral operator for the
single layer potential of the wave equation (47),

k (t)ϕ =

∫
Γ

δ (t− ∥· − y∥)
4π ∥· − y∥

ϕ (y) dΓy.

The Sobolev space Hs(Γ), s ∈ [−1, 1], is defined in the usual way (see, e.g.,
[8] or [22]) and the corresponding norm is denoted by ∥·∥Hs(Γ). Existence and

uniqueness results for the solution of the continuous problem (49) are proven in
[2].

The Laplace transformed integral operator, i.e., the transfer operator for
k (t), is given by

K (z)ϕ :=

∫
Γ

e−z∥·−y∥

4π ∥· − y∥
ϕ (y) dΓy. (51)

It is well known (see [2, Prop. 3]) that K (z) : H−1/2 (Γ) → H1/2 (Γ) is an
isomorphism for all z with Re z > 0 and also for z = 0. More precisely, the
following continuity estimates hold [2].

Proposition 18 Let σ > 0. For all z ∈ Cσ it holds

∥K (z)∥H1/2(Γ)←H−1/2(Γ) ≤ C
1 + σ2

σ3
|z|

and ∥∥K−1 (z)∥∥
H−1/2(Γ)←H+1/2(Γ)

≤ C 1 + σ

σ
|z|2 .

In the following section, we will generalize the existing estimates (Proposition
18) of the continuity constant of K(z) for Re z > σ− > 0 to the whole complex
plane. The proof uses similar arguments as in [23, Lemma 3.5 and 3.7]. This
allows to avoid the shift of the integration contour since we will prove σ− = −∞.

7.1 The continuity constant of the acoustic single layer
operator

For z ∈ C, the acoustic single layer boundary integral operator with complex
frequency z ∈ C is defined (cf. (50)) by

(K(z)ϕ) (x) :=
∫
Γ

Gz (x− y)ϕ (y) dΓy,
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where Gz : R3\ {0} → C denotes the fundamental solution for the operator

Lz := −∆ + z2, i.e., Gz (x) = gz (∥x∥) with gz (r) = e−zr

4πr . Our goal is to
estimate the continuity constant Cc (z) of the operator K (z), i.e.,

Cc (z) := ∥K(z)∥H1/2(Γ)←H−1/2(Γ)

in terms of z. For the estimate of K(z) we will employ the Newton potential
N (z) : H−1comp

(
R3

)
→ H1

loc

(
R3

)
which is defined by

(N (z)f) (x) :=

∫
R3

e−z∥x−y∥

4π ∥x− y∥
f (y) dy ∀f ∈ H−1comp

(
R3

)
.

Let γ0 : H1
loc

(
R3

)
→ H1/2 (Γ) denote the standard trace operator and γ′0 :

H−1/2 (Γ)→ H−1comp

(
R3

)
its dual, i.e.,

⟨γ′0 (φ) , v⟩H−1
comp(R3)×H1

loc(R3) = ⟨φ, γ0 (v)⟩H−1/2(Γ)×H1/2(Γ) ∀v ∈ H1
loc

(
R3

)
.

Then, we have K(z) := γ0N(z)γ′0 (cf. [25, Def. 3.15 and (3.1.6); see also: p.146,
l 5]).

Note that for φ ∈ H−1/2 (Γ), the functional γ′0 (φ) is a distribution in
H−1comp

(
R3

)
with supp γ′0 (φ) ⊂ Γ. Hence, we may choose an open ball BΓ

with radius d = O (diamΓ) such that supp γ′0 (φ) ⊂ Γ ⊂ BΓ. The combination
of Lemma 20 below with standard mapping properties of the trace operator and
its dual leads to

∥K (z)φ∥H1/2(Γ) = ∥γ0N (z)γ′0 (φ)∥H1/2(Γ) ≤ CΓ ∥N (z)γ′0 (φ)∥H1(BΓ)

(Lem. 20)

≤ CΓCd max {1, |z|}
(
1 + e−4dRe(z)

)
∥γ′0 (φ)∥H−1(R3)

≤ C ′ΓCΓCd max {1, |z|}
(
1 + e−4dRe(z)

)
∥φ∥H−1/2(Γ) .

This is summarized as the following theorem.

Theorem 19 Let Ω ⊂ R3 be a bounded domain with diameter d. It holds

∥K(z)∥H1/2(Γ)←H−1/2(Γ) ≤ CΓ,d max {1, |z|}
(
1 + e−4dRe(z)

)
∀z ∈ C.

Thus, the transfer function K (z) for the retarded potential of the wave equation
satisfies Assumption 1 with Cop = CΓ,d(1 + e−4dσ−), θ = 1 and any σ− ∈ R.

The proof of Theorem 19 follows from the next lemma, which provides ex-
plicit bounds for the solution operator N (z).

Lemma 20 For any d > 0, there exists a constant6 Cd > 0 such that for any
f ∈ H−1comp

(
R3

)
with support contained in a ball Bd with some diameter d it

holds

∥∇N (z) f∥L2(Bd)
+∥N (z) f∥L2(Bd) ≤ Cd max {1, |z|}

(
1 + e−4dRe(z)

)
∥f∥H−1(R3)

for all z ∈ C.
6In the following, the constant Cd may change in every occurance – however it will always

be positive and depend only on d > 0.
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Proof. We start by recalling the definition of the Fourier transform for functions
with compact support

û (ξ) = (2π)
−3/2

∫
R3

e− i⟨ξ,x⟩ u (x) dx ∀ξ ∈ R3

and the inversion formula

u (x) = (2π)
−3/2

∫
R3

ei⟨x,ξ⟩ û (ξ) dξ ∀x ∈ R3.

Let f ∈ H−1comp

(
R3

)
be given and let Bd ⊂ R3 be an open ball of radius d

containing supp f . Let ν ∈ C∞ (R≥0) be a cutoff function such that

supp ν ⊂ [0, 4d] , ν|[0,2d] = 1, |ν|W 1,∞(R≥0) ≤
C

d
,

∀x ∈ R≥0 : 0 ≤ ν (x) ≤ 1, |ν|W 2,∞(R≥0) ≤
C

d2
.

(52)

Let v (x) := ν (∥x∥) and

wν (x) :=

∫
Bd

Gz (x− y) v (x− y) f (y) dy ∀x ∈ R3.

Since supp f ⊂ Bd we may define

w := Gz ⋆ f and write wν = (Gzv) ⋆ f. (53)

The properties of ν guarantee wν |Bd
= w|Bd

so that we may restrict our atten-
tion to the function wν . We compute the Fourier transform of Gzv:

(̂Gzv) (ξ) = (2π)
−3/2

∫
R3

e− i⟨ξ,x⟩Gz (x) v (x) dx

= (2π)
−3/2

∫ ∞
0

gz (r) ν (r) r
2

(∫
S2
e− i r⟨ξ,ζ⟩ dSζ

)
dr

= (2π)
−3/2

I (z, ξ) .

The inner integral in I (z, ξ) can be evaluated analytically (cf. [23, p. 1882])
and gives I (z, ξ) = ι (z, ∥ξ∥) with

ι (z, s) = 4π

∫ ∞
0

gz (r) ν (r) r
2 sin (rs)

(rs)
dr. (54)

Applying the Fourier transform to the convolution (52) leads to

ŵν = (2π)
3/2

(̂Gzv)f̂ .
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It is well known that Sobolev norms in the full space can be expressed as
weighted L2-norms in the Fourier domain so that we obtain

∥w∥H1(Bd)
≤ ∥wν∥H1(R3) = (2π)

3/2

∥∥∥∥√1 + ∥ξ∥2(̂Gzv)f̂

∥∥∥∥
L2(R3)

(55)

≤
(
max
ξ∈R3

∣∣∣(1 + ∥ξ∥2) I (z, ξ)∣∣∣)
∥∥∥∥∥∥ 1√

1 + |ξ|2
f̂

∥∥∥∥∥∥
L2(R3)

≤
(
max
s≥0

∣∣(1 + s2
)
ι (z, s)

∣∣) ∥f∥H−1(R3) .

Hence, Lemma 21 below implies

∥w∥H1(Bd)
≤ Cd max {1, |z|}

(
1 + e−4dRe(z)

)
∥f∥H−1(R3) .

Lemma 21 The function ι (z, ·) defined in (53) can be estimated by

max
s≥0

∣∣(1 + s2
)
ι (z, s)

∣∣ ≤ Cd max {1, |z|}
(
1 + e−4dRe(z)

)
∀z ∈ C.

Proof. Applying integration by parts we obtain

|ι (z, s)| = C

|z|

∣∣∣∣∫ ∞
0

e−zr
(
ν′ (r)

sin (rs)

s
+ ν (r) cos (rs)

)
dr

∣∣∣∣
≤ C 1 + e−4dRe(z)

|z|

∫ 4d

0

(
C

d
r + 1

)
dr = Cd

1 + e−4dRe(z)

|z|
.

On the other hand for |z| ≤ 1

|ι (z, s)| =
∣∣∣∣∫ ∞

0

e−zr ν (r)
sin (rs)

s
dr

∣∣∣∣ ≤ (
1 + e−4dRe(z)

)∫ 4d

0

∣∣∣∣ sin rss
∣∣∣∣ dr

≤
(
1 + e−4dRe(z)

)∫ 4d

0

rdr = 8d2
(
1 + e−4dRe(z)

)
so that

|ι (z, s)| ≤ Cd
1 + e−4dRe(z)

1 + |z|
.

For the product s2ιk (s), we get∣∣s2ι (z, s)∣∣ = C

∣∣∣∣∫ ∞
0

e−zr ν (r) s sin (rs) dr

∣∣∣∣ = C

∣∣∣∣∫ ∞
0

e−zr ν (r) ∂r cos (rs) dr

∣∣∣∣
≤ C

(∣∣∣∣∫ ∞
0

cos (rs) ∂r
(
e−zr ν (r)

)
dr

∣∣∣∣+ 1

)
≤ C |z|

∣∣∣∣∫ ∞
0

cos (rs) e−zr ν (r) dr

∣∣∣∣+ C

(∣∣∣∣∫ ∞
0

cos (rs) e−zr ν′ (r) dr

∣∣∣∣+ 1

)
≤ C (1 + d |z|)

(
1 + e−4dRe(z)

)
.
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8 Numerical experiments

The wave-equation is particularly important to model electric or acoustic sys-
tems shortly after they are “switched on”, i.e., before the system has reached
a time-harmonic steady state which then can be modeled in the frequency do-
main by a Helmholtz-type equation. The problem becomes very challenging if
the right-hand side g is not very smooth at t = 0, i.e., has only, say, one or
two vanishing derivatives at t = 0. For these types of applications, gCQ has its
strengths and can become advantageous to CQ (convolution quadrature with
constant time stepping).

To test the performance of the gCQ for such kinds of applications we have
chosen the following data for our numerical examples

g(t) = t3/2e−t, K(z) = 1− e−2z

2z
, K−1(z) = 2z

1− e−2z
, (56)

where g and g′ vanish at the origin but g′′ already has a singularity for t = 0.

Remark 22 (Choice of Regularization Parameter) In our numerical ex-
periments it turns out that the simplest choice ρ = 0 of the regularization pa-
rameter in (19) performs very well and indicate that the theoretical condition
ρ ≥ 3 in [14] might be too strong. It is an open problem whether there exist
examples where ρ > 0 is necessary or whether this condition is an artifact of the
theory.

8.1 Decoupled, purely time-depending example

In [26], analytical solutions for the acoustic potential in (49) have been computed
for the case ∂Ω = S2, assuming that g(x, t) = g(t)Y m

n , for Y m
n the spherical

harmonic of degree n and order m. It is well known (cf. [12], [24]) that

K(z)Y m
n = λn(z)Y

m
n ,

where λn(z) can be expressed in terms of modified Bessel functions Iκ and Kκ

(see [1]) by
λn(z) = In+ 1

2
(z)Kn+ 1

2
(z).

The ansatz
ϕ(x, t) = ϕ(t)Y m

n

leads to the one-dimensional problem: Find ϕ(t) such that∫ t

0

L−1[λn](t− τ)ϕ(τ) dτ = g(t).

For n = 0, the first spherical harmonic Y 0
0 is constant so that g(x, t) = g(t)

and K(z) := λ0(z) is like in (55). As proved in [27], the exact solution in this
case is given by

ϕ(t) = 2

⌊t/2⌋∑
k=0

g′(t− 2k). (57)
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We have approximated ϕ for t ∈ [0, 1] by applying (12) with ρ = 0. Note
that the non-smoothness of g at t = 0 is inherited to an irregularity of the
solution ϕ of strength O

(
t1/2

)
due to (56). This justifies to use a time mesh

which is algebraically graded towards t = 0. As a grading exponent we have
chosen (heuristically) a quadratic grading, i.e., α = 2 in

tj =

(
j

N

)α

, j = 1, . . . , N (58)

and compared this in our numerical experiment to constant time stepping, i.e.,
α = 1 in (57). As expected we observe numerically (cf. Figure 3) an order
reduction from 1 to 1/2 for the error associated to the implicit Euler method with
constant time steps while the optimal (linear) convergence order is preserved
by using the graded mesh.

In order to compute the approximation with α = 1 we employed the CQ
algorithm as presented in [18]. For the approximation with α = 2 we applied
the algorithm described in Section 3 with the quadrature formula (29). In this
case, the choice of parameters for the quadrature is given by

∆ = N−1, ∆min = N−2, q = N, θ = −1.

From Corollary 16 we deduce that, by choosing the number of contour quadra-
ture points according to NQ = O

(
N log2N

)
, the gCQ with contour quadrature

converges at the same rate as the unperturbed gCQ method. In practice a bet-
ter behavior is observed and the results displayed in Figure 3 are computed with
NQ = N logN .

Figure 1 shows the numerical and the exact solution for N = 20 time steps
and the two values of the grading power α = 1, 2. The corresponding evolution
of the absolute error is shown in Figure 2. The maximal error appears at the
first time steps due to the lack of regularity at the origin and is much smaller
for the graded mesh than for constant time stepping. More precisely, Figure 3
shows that the convergence is optimal (linear) for the graded mesh while the
convergence speed is reduced to O

(
∆1/2

)
for constant time steps.

8.2 The three-dimensional wave equation

Let again ∂Ω be the unit sphere. We solve numerically the full wave equation
(47) with right-hand side

g(x, t) = g(t)Y 1
1 (x), (59)

for the same time-dependent part g (t) as in (55). Y 1
1 denotes the spherical

harmonic of degree 1 and order 1. In spherical coordinates, Y 1
1 is given by

Y 1
1 (θ, φ) = −

√
3

8π
sin(θ)eiφ.

For t ∈ [0, 2] the analytical solution for the potential is

ϕ(x, t) =

(
2g′(t) + 2

∫ t

0

sinh(τ)g′(t− τ) dτ
)
· Y 1

1 (x).
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Figure 1: Exact and approximation of the potential for the data in (55) with 20
steps. Left: With uniform time steps (α = 1 in (57)). Right: With quadratically
graded time steps (α = 2 in (57))
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Figure 2: Pointwise error in the approximation of the potential for the data in
(55) with 20 steps. Left: With uniform time steps (α = 1 in (57)). Right: With
quadratically graded time steps (α = 2 in (57))
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Figure 3: Error with respect to the number of steps for g in (55). The straight
lines indicate slopes 1/2 and 1, respectively.

For the spatial discretization we use Martin Huber’s BEM implementation in
MATLAB (cf. [11]) of the Galerkin boundary element method with continuous,
piecewise linear boundary elements on surface triangulations – for details of
the boundary element method we refer, e.g., to [25]. At every spatial node,
the behavior of the solution in time is the same as in the scalar example in
Section 8.1. Thus, we choose again the time steps as in (57) and compare the
performance for α = 1.01 (almost uniform time stepping) and α = 2.

Once the problem is discretized in space, we integrate in time the semidis-
crete problem by applying the algorithm in Section 3 for both values of α. Note
that every summand in (19) involves a boundary element matrix. If the spatial
boundary element mesh is unchanged during the time stepping, these matrices
can be pre-computed in parallel.

In Figure 4, the maxima max1≤n≤N
∥∥ϕ (tn)− ϕCn∥∥L2(Γ)

of the spatial L2-

errors for the two considered grading exponents, α = 1.01 and α = 2, are
depicted. For the Galerkin boundary element discretization with continuous,
piecewise linear shape functions we employed a boundary element mesh on the
sphere consisting of 616 (NS = 310), 1192 (NS = 598) and 2568 (NS =
1286) triangles, where NS denote the dimension of the corresponding boundary
element space. As in the purely time-dependent problem of the previous section
we observe an improvement of the order of convergence with respect to the
number of time steps from 1/2 to 1. In this plot we can also observe that the
accuracy which is required for the quadrature approximation being involved
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Figure 4: Error with respect to the number of time steps for g as in (58). NS
is the number of degrees of freedom in the spatial discretization. The abbre-
viation “OQ” stands for “original quadrature” for approximating the entries
of the boundary element matrices (cf. [25]), where the order is chosen as in
the case of constant time stepping. “IQ” stands for “improved quadrature”
where the quadrature order in the assembly of the boundary element matrices
is significantly increased. The straight dashed lines depict the slopes 1/2 and 1,
respectively.

for the generation of the boundary element matrices has to take into account
the size (smallness) of the time steps: We can eliminate this pollution effect
by either refining in space (crosses) or by increasing the number of quadrature
nodes in the matrix assembly process (diamonds) or, of course, by doing both
(circles and grey dots). A careful analysis in order to optimize the quadrature in
space with respect to the time steps and the spatial discretization is the subject
of future research.
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le Calcul par Potientiel Retardé de la Diffraction d’une Onde Acoustique,
Math. Meth. in the Appl. Sci. 8 (1986) 405–435.

[3] L. Banjai, Multistep and multistage convolution quadrature for the wave
equation: algorithms and experiments, SIAM Journal on Numerical Anal-
ysis 47 (2008) 227–249.

[4] C. de Boor, Divided differences, Surv. Approx. Theory 1 (2005) 46–69.

[5] T. A. Driscoll, The Schwarz–Christoffel toolbox, available online at
http://www.math. udel.edu/˜driscoll/software/SC/.

[6] M. Friedman, R. Shaw, Diffraction of pulses by cylindrical obstacles of
arbitrary cross section, J. Appl. Mech 29 (1962) 40–46.

[7] I. S. Gradshteyn, I. Ryzhik, Table of Integrals, Series, and Products, Aca-
demic Press, New York, London, 1965.

[8] W. Hackbusch, Elliptic Differential Equations, Springer Verlag, Berlin,
1992.

[9] E. Hairer, C. Lubich, M. Schlichte, Fast numerical solution of nonlinear
Volterra convolution equations, SIAM J. Sci. Statist. Comput. 6 (3) (1985)
532–541.

[10] N. Hale, N. J. Higham, L. N. Trefethen, Computing Aα, log(A), and re-
lated matrix functions by contour integrals, SIAM J. Numer. Anal. 46 (5)
(2008) 2505–2523.

[11] M. Huber, Numerical Solution of the Wave Equation in Unbounded Do-
mains, Master Thesis, University of Zurich, 2011.

[12] R. Kress, Minimizing the Condition Number of Boundary Integral Opera-
tors in Acoustics and Electromagnetic Scattering, Q. Jl. Mech. appl. Math.
38 (1985) 323–341.

[13] M. Lopez-Fernandez, C. Lubich, A. Schädle, Adaptive, fast, and oblivious
convolution in evolution equations with memory, SIAM J. Sci. Comput.
30 (2) (2008) 1015–1037.

[14] M. Lopez-Fernandez, S. Sauter, Generalized convolution quadrature with
variable time stepping, IMA J. Numer. Anal. 33 (4) (2013) 1156–1175.

[15] M. Lopez-Fernandez, S. A. Sauter, Fast and stable contour integration for
high order divided differences via elliptic functions, Math. Comput.Article
in press.

[16] M. Lopez-Fernandez, S. A. Sauter, Generalized Convolution Quadrature
based on Runge–Kutta methods, Tech. Rep. 06-2014, Institut für Mathe-
matik, Univ. Zürich (2014).
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