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Abstract: This study introduces a general methodology to process sparse floating car data, reconstruct the routes followed by
the drivers, and cluster them to achieve suitable choice sets of significantly different routes for calibrating behavioural models.
This methodology is applied to a large set of floating car data collected in Rome in 2010. Results underlined that routes
assigned to different clusters are actually very different to each other. Nevertheless, as expected according to Wardrop's
principle, the clusters belonging to the same origin–destination have rather similar average route travel times, even if there is a
large range between their minimum and maximum values. A focus on drivers’ behaviour highlighted their propensity to follow
the same route to their usual destination, though the 12% of the drivers switched to an alternative route. However, the analysis
conducted over the 1 month of observations did not reveal the existence of any systematic correlation between neither the
change of route nor the change of departure time and the travel time experienced the day before.

1 Introduction
Mobile devices continuously produce a huge amount of data (‘Big
Data’) that can be exploited to improve the knowledge about the
state of the transport system and perform appropriate regulation
and policy actions [1]. The extent of big data applications in
transport is vast and multifaceted. It concerns the vehicle state, the
transport system performances, and the users’ positions and
preferences [2]. With reference to the last issue, floating car data
are a ubiquitous source of information of the speed distribution on
the road network, which can be used for both statistical analyses
and real-time operations [3]. Individual data provide detailed
information on the origins and destinations of the trips as well as
on intermediate stops in trip chains. They also provide
unprecedented observations on the actual route choice mechanisms
of the users, which can be used to calibrate and validate the
numerous behavioural models that were built in the past years.
Specifically, the actual routes followed by the road users were
never directly observed at a large scale on the road network but
were collected only for small fleets of vehicles such as taxis or
small samples of drivers involved in experiments or asked in
specific questionnaire-based surveys. It follows that, for example,
the famous Wardrop's principle is still a theoretical statement, even
if it is soundly based on the rational user theory [4]. Similarly,
route choice models are so far often calibrated on small samples of
data and have been usually validated on aggregated measures such
as link flows instead of on the actual route choice frequencies.
Floating car data can be exploited in the several different phases of
calibration of multilevel path-based random utility models:
identifying suitable path choice sets, specifying a mathematical
structure that captures the correlation among different paths, and
determining the most likely values of the coefficients of the choice
model. When moving from laboratory experiments to real-size
floating car data, a huge number of routes is usually observed,
which often differ for very small path deviations, so that the choice
set may become intractable.

The goal of our research is to provide a general methodology to
deal with floating car big data in mobility and apply it to conduct a
broad travel pattern analysis on a large urban area. To this goal, we
collected since 2010 a set of big data of positions and speeds
monitored for insurance reasons. A huge number of observations
are available to study spontaneous mobility patterns of users and
route choices of about 100,000 drivers. The size of the data set, the

high level of detail used in current road graphs and the sparseness
of point data, collected every 2 km, gave rise to several problems:
the route followed between two consecutive observations has to be
estimated; on a highly detailed graph, two routes may differ by
negligible quantities, so that some simplifying method should be
introduced to get a suitable number of routes that are significantly
different among them for the purpose of mobility analysis and
modelling. To face these problems, a clustering method is
introduced to identify sets of similar routes and select a
representative route for each set. This method is applied to a set of
trips observed during the month of May 2010 in the metropolitan
area of Rome to perform a statistical analysis of travel times on
different routes connecting the same origin–destination (O–D) pair
and investigate the day-to-day variations of route choice and
departure time.

This paper is structured as follows. The next section specifies
the goals of the method proposed and refers it to the related works
in the literature. Section 3 explains the methodology applied for
reconstruction and clustering of the routes followed by the road
users. Related results are illustrated in Section 4. Section 5 reports
the results of the experimental analysis carried out on the
dispersion of route travel times and the day-to-day individuals’
travel behaviour. Then, the conclusions follow in Section 6.

2 Related work
The issues dealt with this paper were widely studied in the
literature. They can be divided into three main topics: methods of
route choice set generation based on route similarity; map-
matching and path reconstruction for even low-frequency vehicle
sampling; and analysis of route choice drivers’ behaviour.

As far as the first issue, various indicators have been proposed
to reduce the size of the route choice set that measures the
dissimilarity of route alternatives. A necessarily narrow selection is
presented as follows. Akgün et al. [5] introduced the dissimilarity
in terms of length of shared links between two paths. Dell'Olmo et
al. [6] used the concept of a buffer zone to characterise
heterogeneous paths. Martí et al. [7] proposed an indicator that
overcomes the problems related to the buffer area and takes into
account drivers’ choice behaviour. The problem of route
dissimilarity is closely related to the covariance analysis. Cascetta
et al. [8] were the first to capture the correlation between route
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alternatives explicitly by introducing a commonality factor in the
deterministic part of the logit model formulation, which is
proportional to the overlap of each generic path with the other
paths in the choice set. Further contributions are due, among
others, to Bekhor et al. who adapted a logit kernel model to the
route choice problem [9]; Marzano and Papola [10] who developed
a link-based path-multilevel logit model; Cascetta and Papola [11]
who implemented the strategy of viewing the choice set as a fuzzy
set in an implicit model of availability/perception of choice
alternatives. In this paper, instead of generating a feasible set of
available routes, we follow an experimental approach and we face
the complementary problem of selecting a cluster of representative
routes that represent the alternative actually perceived by the
drivers.

Moreover, the management of large data sets of floating car
data gives rise to some computational problems that require data
pre-processing [12]. Floating car data are, in fact, collected as
successive geographical coordinates and have to be matched on the
road network before being applied in transport modelling [13].
Although many map-matching algorithms have been developed in
the past years for navigation systems, they are not suitable for
modelling analyses. In fact, floating car data are usually collected
with lower frequencies than those applied by on-board navigation
systems. Thus, the second aforementioned problem arises, which
consists of the need to recognise the route followed by the vehicle
between two successive sample points, collected even every 1 or 2 
min. Rahmani and Koutsopoulos [14] developed a two-step method
to individuate a set of candidate links, and therefore find the most
likely path in such candidate graph. Frejinger and Bierlaire [15]
introduced the concept of sub-network, which tries to capture the
most important correlation among similar paths on the network.
They assumed the choice set to be composed by all possible paths
on the network and developed a method for building the sub-
network by applying factor analysis. Bierlaire et al. [16] overcome
the problem by implementing a probabilistic map-matching
algorithm that associates a likelihood value to each of the
potentially generated paths. Chen et al. [17] proposed a floating car
data map-matching algorithm based on a local path searching. The
information of the previous matched global positioning system
(GPS) point is used to reduce the search space significantly by
considering a square confidence area, allowing to determine
vehicle moving trajectory.

Li and Xie [18] introduced a bi-level probability method that
addresses the problem of missing links due to the low sampling
rate of floating cars by building the path between two consecutive
points with the shortest path algorithm. Liu and Liu implemented a
map-matching method for low-frequency trajectories (e.g. one GPS
point for every 1–2 min) [19]. The algorithm takes into account
several factors such as the spatial positioning accuracy of GPS
points with the topological information of the road network, the
consistency of the driving direction of a GPS trajectory etc.

This paper, other than recognising the most likely routes from
sparse floating car data, aims more specifically at identifying a
limited number of significantly different paths that represent
drivers’ route choices with the level of accuracy required by traffic
models. This problem was recently tackled by Kim and
Mahmassani [20] who implemented a trajectory clustering method
for the analysis of travel patterns which is unrestricted from map-
matching procedures and analyses vehicle trajectory data without
using the information of the underlying road network. However,
our method aims at building routes on the road graph in order to
directly use this information for route choice modelling purposes.

Finally, this paper aims at studying the day-to-day variability of
drivers’ behaviour in both route choice and departure time, which
is the third issue mentioned at the beginning of this section.
Regardless the paths reconstruction and clustering, some
information has been gained from the raw data about departure
time day-to-day variability. This is done by verifying if one
individual switches from a cluster to another and check whether
this change corresponds to a significant delay experienced the day
before. This implies to consider the trip choice mechanism as a
dynamic process in which the generic traveller revises his/her
previous choice if he/she expects to obtain a benefit from the

change. The phenomenon of day-to-day variability has already
been addressed by several authors who analysed individuals’
behaviour depending on variances in travel time. However, most of
these studies were based on travel behaviour analysis of a small
sample of drivers [21–24] or laboratory studies based on travel
simulators [25, 26].

The contribution of this paper is to introduce a general method
for processing, analysing, and clustering sparse Big Data in
mobility for studying and modelling route choice drivers’
behaviour. By applying the methodology proposed, we get trip data
on a road graph and we are able to present some experimental
results on route choice behaviour and day-to-day changes of
departure time and route choice.

3 Methodology for route choice set identification
The methodology developed determines significantly different
paths that represent the actual route choice alternatives for drivers
from sparse floating car data. It consists of the following
operations:

• Map-matching algorithm, which assigns single position points to
the arcs of the road network graph they more likely belong to.

• Route reconstruction, which explores a reasonable number of
feasible routes connecting two successive sampled points and
selects the most likely route for each trip in the data set.

• Path selection, which analyses the whole set of the
reconstructed routes, splits it into several clusters and selects the
most representative path for each cluster. Such representative
paths compose the final route choice set of alternatives that can
be used for behavioural models.

The map-matching operation has already been addressed in a
previous work using a semi-probabilistic map-matching algorithm
[27]. The latter two issues are described as follows. The aim is to
obtain a set of feasible paths that are representative of users’
preferences and are significantly different from each other.

3.1 Route reconstruction

Data of vehicle trips are stored in a database. Each trip is described
by a sequence of records that depict the instantaneous states of the
vehicle and the travelled distance from the origin. Each pair of
consecutive records belonging to the same trip forms a segment.
For each segment, the k-shortest paths between the sampled points
are computed by applying a specific algorithm developed by de La
Barra [28]. To select the route that most likely represents the one
actually followed by the vehicle, the path that has the minimum
difference of length with the observed travelled distance has been
chosen within the set of k-shortest paths. For each trip, the whole
route followed by the vehicle from the origin O to the destination
D is reconstructed as the sequence of most likely paths from
consecutive sample points.

It is to note that the processing time is a critical issue in large
databases of floating car data. The time for processing a single trip
varies with the number of links that compose it; that is, with the
length of the trip and the level of detail of the graph. For the k-
shortest paths calculation, the value k = 7 has been chosen after
some experimental results, which showed that larger values of k
increased the processing time considerably. For each k, the route
reconstruction procedure takes about 75–80 s, and thus for an
entire path about 9 min by using an i7-2600K 8-core 3.4 GHz
processor with 16 GB of random access memory. This means that
having for instance 50 trips and increasing the number of k from 7
to 8 the algorithm would take about 60 min more. Since the
increase of k from 7 to 8 did not produce a significant reduction of
the error, the former value has been selected.

3.2 Route selection

The route selection procedure takes the results of the path
reconstruction routine as inputs; they are the set of routes that are
most likely the road users follow in their different trips. Then, the
problem is to select a subset of different routes that can be
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perceived by the users as different alternatives among the whole set
of routes. This problem is solved by a heuristic algorithm that
assigns the routes to different sets and selects the most
representative route in each set. The clustering criterion consists of
maximising the dissimilarity of paths belonging to different sets
and minimising the dissimilarity between paths of the same set.
The following dissimilarity index D i, j  between routes i and j is
introduced:

D i, j = 1 − 1
2

L Pi ∩ Pj
L Pi

+ L Pi ∩ Pj
L Pj

(1)

where L Pi  is the length of path i and L Pi ∩ Pj  is the length of the
overlapping part of paths i and j. Low index values indicate highly
overlapping routes while unit values denote completely distinct
routes. More complex indicators that introduce travel time, number
and category of links can be introduced. However, they require an
extensive knowledge of the traffic speed on all the links of the
network in different hours of the day and to take into account
weekly and seasonal effects, which are very difficult to achieve.
That is the reason why the pure distance-based indicator has been
used.

After the final route choice set has been obtained, a
representative route is chosen for each set. Such a route should
represent drivers’ choices and also the most relevant on the graph
model; then, a simple rule is applied that maximises a weighted
function of users’ frequency of choice with the hierarchy of the
links travelled.

The route selection procedure applies the following steps.
Step 0 (Initialisation): Get the set P = {Pi; i = 1, 2, …, n} of n

reconstructed paths and take it as the initial set of representative
paths: S = P. Initialise the number of path sets m = 1. Let M be the
maximum desired number of path choice sets.

Step 1 (Dissimilarity analysis): For each pair of paths Pi and Pj
of S, identify the road links shared by Pi and Pj, compute their
cumulative length L Pi ∩ Pj , and evaluate the dissimilarity
between Pi and Pj through the dissimilarity index D i, j  of (1).

Step 2 (First split): Find the most dissimilar pair of paths in the
set S, denoted here as h, h′

h, h′ = arg max
i, j

D i, j i j = 1, 2, …, n (2)

Take each of these two paths as the first item of two new distinct
sets of paths S1 and S2. Update the number of sets m = m + 1.

Step 3 (Path classification): For each of the paths Pi, i = 1, …,
n, find the set Sl ∈ {S1, S2, …, Sm} of minimum dissimilarity with
Pi

li = arg min
jk

D i, jk

i = 1, 2, …, n jk = 1, 2, …, nk k = 1, 2, …, m; k ≠ i
(3)

and put Pi in Sl. If m < M, go to step 4. Otherwise, go to step 5. If Pi
is completely distinct from all the identified sets, it is assigned to a
temporary cluster S0.

Step 4 (New set identification): For each set
Sk ∈ {S1, S2, …, Sm}, compute the dissimilarity index D ik, jk
between each pair of paths within the same set (internal
dissimilarity), find the path Pqk of maximum D within each set k,
and select that with the maximum value among all sets, denoted by
the index p in the equation below: (see (4)) If the dissimilarity
index Dp  is greater than a given threshold η, define a new path set
Sp and put Pp in Sp. Update the number of sets m = m + 1 and go to
step 3. Otherwise, put m = m and the go to step 5.

The threshold value η = 0.5 has been chosen because it is the
median in the definition set of the internal dissimilarity index. If
Dk < 0.5, there is no need for a further split since the paths of the
cluster are classified as similar.

The number of path sets is variable and increases until either a
sufficiently low value of internal dissimilarity is reached for all
clusters (η < 0.5) or the maximum number M is reached.

Step 5 (Selection of representative routes): For each set of paths
Sk ∈ {S1, S2, …, Sm}, find the path Prk that maximises the
following function:

rk = arg max
∑a ∈ Pk wa f ala

∑a ∈ Pk la
k = 1, 2, …, M (5)

where f a and la are the frequency of choice and the length of the
arc a, respectively, and wa is a weight depending on the hierarchy
of the arc a on the network. Select the path as the representative
route of the path set Sk end.

4 Application of the route choice set
identification methodology
The experimental analysis on route choice has been carried out on
a data set of about 100,000 users travelling within the metropolitan
area of Rome composed by about 100 million single positions and
speed points, collected every 2 km. Each record contains the
timestamp, the coordinates of the vehicle, its instantaneous speed,
and its state (switched on, moving, and turned off) together with
the quality of the signal. Since data are collected every 2 km, to get
a sufficient number of position points from the sparse set of data,
an initial process of data skimming was applied to select, from all
the O–D pairs, the trips done during the morning peak period
(7:00–10:00 am), containing at least 30 trips, having a length of at
least 6 km, and a travel time of at least 20 min, as well. In this way,
a suitable sample of about 600 drivers, performing 1450 trips
between 28 O–D zones has been obtained.

The procedures of route reconstruction and route selection have
been applied to each trip between the 28 O–D pairs corresponding
to the selected criteria (Fig. 1) to obtain the travel times and
distances for each route, the cluster it belongs to and the (internal
and external) dissimilarity indices. 

The procedure of route reconstruction retraces the whole route
followed by a vehicle from the origin O to the destination D as the
sequence of most likely links from consecutive observed points.

Dqk = arg max
ik, jk

D ik, jk

ik, jk = 1, 2, …, nk k = 1, 2, …, m; k ≠ i p = arg max
k

{Dqk}
(4)

Fig. 1  Selected O–D pairs for the drivers’ behavioural analysis
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An example of the algorithm result is reported in Fig. 2. The
picture on the top highlights the positions of the sparse floating car
points. 

After the whole set of 1450 routes has been reconstructed, the
clustering algorithm has been applied for each O–D pair to form
the clusters of similar routes and identify the representative route in
each cluster.

For instance, the 131 trips between the O–D zones number 106
and number 136 are grouped into 5 clusters; for each of them, a
representative route is selected, as depicted in Fig. 3. 

The green and the black routes follow the ring road expressway
for almost half of their length, the red one follows a shorter path
along a different urban road, whereas the blue and the orange
routes follow local roads for about a half of their length. The 50%
of trips are assigned to the cluster with the blue representative, the
42% of trips belong to the cluster with the red representative, the
6% of trips are in the cluster of the orange representative, while the
clusters of the black and green representative paths have been
chosen only once and are composed only by the representatives
themselves.

The values of the dissimilarity indices for the O–D pair taken as
an example highlight the results of the clustering procedure. The
external dissimilarity is the average dissimilarity of the routes of
each subset with respect to the routes of other subsets, while the
internal dissimilarity is the average dissimilarity of the routes of
each subset with respect to the other routes of the same subset. The
values related to the representative paths depicted in Fig. 3 are
reported in Table 1. 

Taking the blue representative route as an example, the average
internal dissimilarity of 0.25 means that its cluster is homogenous
and that this route stands for a large number of similar alternatives.
The average external dissimilarity of 0.90 indicates that the
clustering procedure is actually effective since the clusters are
significantly different from each other.

The same procedure has been applied to all the 28 selected O–D
pairs. The corresponding average results are reported in Table 2. 

In the third column of Table 2, the average dissimilarity
between the generic path and the representative path of its cluster is
reported. A low value means that the representative path of each
cluster is actually suitable to characterise all the others assigned to
it. The last column reports the average dissimilarity between the
cluster representatives. The average value of 0.73 indicates that the
choice of the representative paths is actually effective to cluster the
trips into considerably distinct groups.

5 Experimental analysis of travel behaviour
5.1 Investigation on route travel time variability

In the previous section, a method has been introduced to cluster
routes according to their topology characteristics. However, travel
behaviour is mainly related to travel times. Traffic network itself is
based on the Wardrop's principle that states that ‘under equilibrium
conditions traffic arranges itself in congested networks such that all
used routes between an O–D pair have equal and minimum costs,
while all unused routes have greater or equal costs’. Now, we want
to analyse the statistical distribution of route travel times, their
differences, and the effect produced by clustering the routes on
their statistical distribution.

This analysis is conducted on a subset of data made during the
peak hours (7:00–9:00 am) of working days and repeated at least
once over the 1 month observation interval. By applying the
clustering method, 685 trips have been selected and arranged into
73 clusters.

In the next section, we tackle the following question: ‘Are the
travel times of different used routes almost equal among them?’.

5.1.1 Individual route travel time differences: To test how
different are the travel times of the diverse routes connecting the
same O–D, the relative travel time difference expressed as the
percentage of average travel time on the same O–D is computed for
each couple of individual trips within the same O–D pair. This

leads to obtaining a new set of ∑i = 1
N ni

2
 individual points, where ni

is the number of individual trips within the ith O–D pair and N is
the total number of O–D pairs. The frequency distribution of the
relative difference between route travel times is reported in Fig. 4.
As expected, the distribution assumes a bell-shaped curve with an
average value of −6.8% and standard deviation of 38.6%. The
confidence interval of the average value is [−7, 5%; −6.1%] at a
95% confidence level. It is worth noting that 5% of average travel
time corresponds to 110 s, which can be considered as a hardly
perceptible deviation for trips longer than 6 km, requiring an
average travel time of 34 min. 

The evidence of a small average travel time difference between
the routes chosen by the drivers is in agreement with Wardrop's
first principle. On the other hand, the experimental data highlight
that some drivers choose twice longer routes than the quickest, as it
is expected according to probabilistic behavioural models. Two
questions arise: ‘How frequently are worst routes chosen?’ ‘What
is the approximation introduced by the zonal aggregation that is
usually introduced in transport models?’ ‘Is it comparable with the
day-to-day variability of route travel time?’ These questions are the
objects of the next two sections.

5.1.2 Route choice frequency distribution: To assess how
frequently are worst routes chosen, we assume the average O–D
travel time as a reference; then, we compute the frequency
distribution of the relative difference between the route travel times
and the corresponding quickest O–D value, which is shown in
Fig. 5. The results show that 15% of the routes chosen by the
drivers have travel times that exceed the minimum value by <20%
and that the 50% of the route travel times exceed the minimum by
<50%. 

On the other hand, if we consider the frequency distribution of
the relative difference between the route travel times and the
corresponding average O–D values, we observe that the 60% of the
routes differ from the average by <20% whereas only the 4% differ
from it by more than 50%.

Thus, the variability of route travel times within each O–D and
within each cluster of the O–D is worthy of further investigation.

5.1.3 Travel time variability within O–D pairs: To derive
statistics about the overall travel time variability within each O–D
pair, the average relative standard deviation (that is, the average
coefficient of variation) is introduced as the ratio between the
travel time standard deviation of all O–D trips and the average O–
D travel time. An average value of 23% on all O–D pairs was
obtained with a confidence interval of ±12% at a 90% confidence
level.

It is worth mentioning that these values include different
starting and ending points within the same zone and the variability
within different working days. To assess the contribution of the
day-to-day variability, we consider the average coefficient of
variation of all trips repeated by the same drivers on the same
routes. Since it resulted in 20% and the overall variability was
23%, we can deduce that the contribution of the day-to-day
variability is prevalent on the space approximation.

5.1.4 Travel time variability for clusters of routes: It is of
interest now to evaluate the approximation introduced into the
statistical representation of route travel times when introducing
clusters of routes. To this goal, we computed the internal variability
within clusters, defined as the average coefficient of variation of
the travel time over all the routes within each cluster. The average
internal variability for all clusters is 15%. Then, we computed the
external variability between clusters, defined as the coefficient of
variation of the average travel time of each cluster with respect to
the average O–D travel time. The value obtained is 17%. These
values can be compared with the corresponding value of 23%
computed by considering the variability of all trips without
clustering.

Thus, the introduction of clusters of routes reduces the travel
time dispersion, as expected. Nevertheless, this is not an obvious
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result, because clusters do not aggregate routes according to their
travel times but according to their topological characteristics.
Hence, introducing clusters simplifies the representation of the
observed trip patterns but implies losing a part of their variability,
which in our case is around 6%.

A clear picture of the approximation introduced by clustering
routes is provided by Fig. 6, which depicts, for each cluster, the
maximum, the minimum, and the average value of the route travel

times as well as their standard deviation. Some clusters, containing
only one route, have been deleted in order to reduce the clutter.
Few O–D pairs contain only one cluster of routes. This figure
highlights that their standard deviation is rather limited even if the
range between their minimum and maximum values is large. The
other O–D pairs contain several clusters of routes. As expected
according to Wardrop's principle, they have rather similar average
travel times: the absolute difference between the average travel

Fig. 2  Example of route reconstruction
 

Fig. 3  Representative paths between O–D zones 106 and 136
 

Table 1 Representative routes and dissimilarity Indices of the O–D pair in Fig. 3
Representative ID Number of choices Length, km Average internal dissimilarity Average external dissimilarity
1 (blue) 65 9.8 0.25 0.90
16 (black) 1 22.9 0 0.93
41 (green) 1 15 0 0.87
69 (red) 56 7.2 0.24 0.91
71 (orange) 8 8.8 0.24 0.7

 

Table 2 Average values for the Dissimilarity Indices obtained for the 28 O–D pairs
Average internal
dissimilarity

Average external
dissimilarity

Dissimilarity between generic and
representative paths

Dissimilarity among
representative paths

0.33 0.80 0.28 0.73
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times of the clusters belonging to the same O–D is on average 6%.
However, the standard deviations are even different, because of the
different number of observed trips for each route belonging to each
cluster, is the average coefficient of variation 17%. 

5.1.5 Statistical significance of cluster travel times: Clustering
operations reduce travel time dispersion and introduce
representative routes instead of many slightly different alternatives.
However, because of the time–space dimension of the mobility,
from an even large set of trips, some clusters may include few or
very few routes. Thus, a question arises about the statistical
significance of the results of travel time analysis.

Table 3 reports the results of the statistical analysis conducted
on all the available O–D groups. Although the drivers’ route
choices are distributed on many routes and very few observations
can be collected on the least used routes, a statistical significance
of the results for 80% confidence level is achieved on 27 out of 53
available O–D cluster groups. 

The average route travel time for each cluster is estimated
within a confidence interval as 12% at a confidence level of 90%.
The absolute travel time difference between the average cluster
travel time and the O–D travel time is 11.3%, corresponding to
245 s and 10.6%, corresponding to 174 s, when limiting to
statistically significant data. The largest relative travel time
difference, which is 46%, has been observed on a cluster consisting
of longer routes following the ring road expressway of Rome,
while the other three clusters connecting the same O–D pair are
passing through the city centre.

5.2 Day-to-day route choice variability

In addition to the statistical analysis of the observed travel times of
different routes, we are interested in studying the day-to-day route
choice process and in investigating the conditions that produce
possible significant changes in route choice: that is, changes
between routes belonging to different clusters. The results (Fig. 7)

show that the 88% of road users confirm their usual choice and
always use a route of the same cluster, whereas the 12% of drivers
test other paths during the 1 month observation period. The 10% of
the users always choose the same alternative path with respect to
the usual one, whereas the 2% choose more than one alternative
route. Among them, the 7% of the users make a route change just
once; the 3% choose more than several different routes with respect
to the usual one. 

After the identification of the route choice variability, we want
to verify if a correlation exists between the route switching
behaviour and possible delays experienced by the drivers the day
before the switch while travelling along the usual path.

From the floating car data available, the difference between the
average usual path travel time and its value collected the day
before the route switch is computed

tx − 1 −
∑i = 1

x − 2 ti
N = Δt (6)

The chart in Fig. 7 sorts the cases in which the path has been
changed depending on the individual delay (positive values) or the
earlier arrival (negative values) experienced the day before
compared with the average travel time.

Some individuals switch route after having experienced a delay,
as expected; some others, however, change even after an
anticipated arrival the day before. Road users are equally
distributed in these two categories. Results refer to only a small
sample of route switches (130 cases) that have been observed
among repeated trips. However, they do not confirm the
expectation that drivers mainly change their previous route if they
have experienced a significant delay before. Instead, they highlight
the dominance of a very high random component in day-to-day
route changing behaviour.

A wider analysis is ongoing to extend the observation period
with the aim of identifying meaningful patterns if any, which have
not been noted clearly in the cases objects of the present analysis.
Indeed, it is likely that some route changes were due to personal
reasons, while it is reasonable that drivers change their usual
commuting routes after some relevant event or after having
experienced systematic delays on their usual routes.

Fig. 4  Observed frequency of travel time percentage difference computed
for pairs of individual trips for all O–D couples

 

Fig. 5  Observed frequency distribution of the relative differences between
route travel times and the corresponding O–D average travel time

 

Fig. 6  Results of maximum, minimum, and average travel time
computations for each representative route of all the O–D pairs. The first
number denotes the O–D pair and the second number identifies the cluster
of routes
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Table 3 Comparison of cluster travel times with average O–D travel times and corresponding statistical tests of 10% accuracy
with 80% confidence level, after 1-route clusters have been removed
O–D pair Cluster Number of

trips
Average

cluster travel
time, s

Route travel
time standard
deviation, s

10% Accuracy
with 80%

confidence level

Average O–D
travel time, s

Average route
travel time

difference, s

Relative route
travel time

difference, %
1 2 40 1844 284 yes 1844 0 0
2 4 10 1308 152 yes 1308 0 0
3 2 27 1511 256 yes 1453 59 4

4 16 1354 210 yes 1453 −99 7
4 1 16 2006 357 yes 1870 137 7

3 17 1655 428 yes 1870 −214 11
4 4 2235 351 no 1870 365 20

5 3 5 3648 368 yes 3698 −50 1
4 2 3720 509 no 3698 23 1

6 4 4 3585 198 yes 3585 0 0
7 2 19 1528 488 yes 1528 0 0
9 2 21 2106 566 yes 2349 −244 10

3 7 2246 270 yes 2349 −104 4
10 1 14 1890 497 yes 3000 0 0
11 1 2 2010 127 yes 2060 −50 2

2 3 1680 416 no 2060 −380 18
12 1 3 1680 360 no 1742 −62 4

2 11 1691 474 no 1742 −51 3
3 2 2550 1230 no 1742 808 46
4 8 1478 345 no 1742 −265 15

13 2 8 3180 324 yes 2626 554 21
3 7 2169 682 no 2626 −457 17
4 2 2010 212 no 2626 −616 23

14 3 12 1930 585 no 1930 0 0
15 1 33 2536 368 yes 2536 0 0
16 1 9 1493 364 no 2120 −627 30

3 7 1903 494 no 2120 −217 10
4 4 2835 158 yes 2120 715 34

17 1 3 2600 1126 no 2028 572 28
2 10 1878 532 no 2028 −150 7
4 9 1793 257 yes 2028 −235 12

19 1 5 2688 608 no 2436 252 10
2 2 2160 170 no 2436 −276 11
3 7 2323 309 yes 2436 −113 5

20 1 3 2720 481 no 3210 −490 15
2 2 3390 127 yes 3210 180 6
3 2 3220 1248 no 3210 10 0

21 3 4 1935 671 no 1935 0 0
22 1 6 1580 581 no 1459 121 8

2 19 1386 395 yes 1459 −73 5
3 4 1545 270 no 1459 86 6
4 3 1360 271 no 1459 −99 7

23 2 4 2760 770 no 2894 −134 5
3 11 2869 533 yes 2894 −25 1
4 2 3300 424 no 2894 406 14

24 2 3 1680 275 no 1789 0 0
25 4 46 1924 269 yes 1924 0 0
26 1 19 1993 243 yes 2355 0 0
27 4 2 1590 127 no 1560 0 0
28 1 4 2325 216 yes 1811 515 28

2 9 1987 292 yes 1811 176 10
3 6 2070 308 yes 1811 260 14
4 21 1563 248 yes 1811 −248 14

sum 519 114,420 21,824 27 116,014 −40 —
average 8.58 2178.17 444.08 — 2174.36 16.08 11.3

average values
significant >80%

5.50 893.72 112.42 — 856.44 47.39 10.6
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5.3 Day-to-day departure time variability

A similar analysis is conducted to investigate if the choice of
departure time can be affected by small variations in travel time
experienced the day before.

This analysis requires identifying the most travelled path which
has been classified as the ‘usual path’ for the individual and
comparing its travel time with the alternative paths that were
chosen by the driver. In Fig. 8, the results are reported. 

There are many users who, as expected, anticipate their
departure time if they have experienced a significant delay the day
before and some who delay it if they arrived too early. There is
nevertheless the evidence of many other users who have a
counterintuitive behaviour and delay their departure time in
correspondence to a delayed arrival the day before or anticipate
their departure time if they arrived earlier the day before.

Thus, no evidence confirms the expected behaviour. Data seem
to be dominated by the random component that encompasses any

other specific reason that leads the users changing their route. Of
course, more observations have to be analysed before reaching any
conclusion. However, the analysis highlights the evidence of a very
large random component that hides the theoretical expectations
only based on a strictly rational behaviour (Fig. 9). 

6 Conclusions
This paper presented a methodology for route identification from
sparse floating car data and apply to analyse the drivers’ behaviour
in route choice and departure time. Results of a travel pattern
analysis of Big Data on urban mobility collected in Rome have
been reported.

The routes followed by road users have been reconstructed from
a series of sparse positions. Once the routes have been
reconstructed, they have been clustered through the path selection
algorithm in a limited number of clusters which represent
dissimilar alternatives for the individuals. The results of the
experimental application have highlighted the effectiveness of the
clustering procedure in discriminating significantly different routes
and aggregating the similar ones.

The relatively small standard deviation (23%) of the travel
times between the same O–D pair and the smaller difference
between the average values of the travel times of paths belonging
to the different clusters of the same O–D pair (17%) indicate that
the clustering procedure simplified the problem modelling and
reduces its variability by only 6%.

The travel time distribution of different routes has shown that
the 50% exceed the minimum by <50%. However, the 60% of the
routes differ from the average by <20% while only the 4% differ
from it by more than 50%.

The results of the day-to-day variability confirm the propensity
of users to follow their ‘usual route’ to get to their destination,
though the 12% of the users switched from it to an alternative
route. However, observations did not reveal the existence of any
systematic correlation between neither the change of route nor the
change of departure time and the travel time experienced the day
before. In fact, the analysis of departure time and route choice
behaviour highlighted the predominance of a random component
that hides any expected correlation between the choice changes and
the travel times experienced the day before. This is probably due to
the need of a very long period of analysis that allows observing a
sufficient number of users’ decision changes, which are expected to
be very rare and related to the occurrence of exceptional events. To
this goal, further analyses are ongoing on a larger data set of O–D
pairs to investigate possible correlation that can be observed over a
longer observation period, provided that route changes are unusual
events for commuters.

The methodology proposed in this paper is general and can be
applied to process floating car data and derive feasible sets of
representative routes of the actual drivers’ choices. Experimental
results of drivers’ behaviour are limited to the specific case under
study, though the conditions observed are typical of many large
European towns.
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