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1

Introduction

Granular and active matter are among the most studied systems in out of equilib-
rium statistical physics.

The study of out of equilibrium systems is still under development and repre-
sents one of the most important progresses of statistical physics in the last century.
At the end of the 19th century, equilibrium statistical physics has developed the
main tools to investigate the physical properties of macroscopic systems as a sta-
tistical consequence of their macroscopic behavior. The development of the kinetic
theory has related the time evolution and the equilibrium values of thermodynamic
observables such as temperature and pressure to the microscopic dynamics of the
enormous number of particles constituting the material of observation. The exis-
tence of conservation laws such as the energy conservation principle is the basis to
define the tendency to equilibrium normally observed in gases and liquids: no mat-
ter the initial configuration of the system, the microscopic dynamics of the system
leads it to a macroscopic equilibrium state with a given probability distribution of
its dynamical coordinates, namely positions and velocities of the particles of a gas,
determined by the Boltzmann formula e−βH for Hamiltonian systems. The exis-
tence of an equilibrium state allows to define the Gibbs ensembles description and
define thermodynamical functions such as the Helmoltz free energy, the entropy
and so on.

However, out of equilibrium systems are ubiquitous. First, every system at
equilibrium can be driven out of it from a perturbation, inducing a heat or mass
current into the system, developing spatial gradients coupled with a temporal evo-
lution of thermodynamical quantities. This is what ceaselessly happens in trans-
port processes, e.g. when a fluid is flowing under a pressure gradient or an electric
current arises because of the application of a voltage. Nonequilibrium phenom-
ena are involved in a large amount of research fields, such as climate dynamics,
chemical reactions, biological physics and applications of physics to economics
and social science. The basis of nonequilibrium statistical physics rely on probabil-
ity and stochastic processes theory: while on one hand the huge number of micro-
scopic components forbid any possibility of analytical computation of their motion
one by one, on the other hand it allows to use limit theorems such as the Law of
Large Numbers or the Central Limit Theorems, getting more precise predictions as
the number of microscopic particles increase. The most ambitious goal of statistical
physics is to derive the probability distribution of the microscopic variables of the
considered system: if this is achieved, the computation of macroscopic observables
is generally almost straightforward.
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Granular and active matter are two kinds of out of equilibrium statistical sys-
tems. Granular matter is everything that is made of grains, like powders, sand,
cereals, pills etc. A grain is a solid particle following the laws of classical mechan-
ics and interacting among each other through dissipative collisions. The last feature
is what actually makes granular matter out of equilibrium, differentiating it from
colloidal particles which follow classical mechanics but undergo elastic collisions.
A system can be at equilibrium if a phase-space trajectory and its time-reversed
one have the same probability to occur a priori. It will be shown that dissipation
makes it impossible for granular materials. Therefore, being out of equilibrium
in granular matter is not the consequence of a perturbation but rather an intrinsic
property of the physical system. This is possible because the granular description
introduces a coarse-graining of the system at a mesoscopic scale, disregarding the
microscopic degrees of freedom involved in collisions and absorbing the dissipated
kinetic energy, restoring the energy conservation principle at a more fundamen-
tal level. Nevertheless, the description introduced has revealed to be of practical
use to describe the main properties of granular materials. Research on granulars
started from the observation of many unknown features in industrial devices: the
observation that pressure and stress propagation followed a rather different be-
havior from elastic materials inaugurated a new research area, with many possible
interactions with engineering problems such as the transport of grains, the mixing
or separation of different kind of powders, the prevention of avalanches and the
diffusion of fluids into a granular material.

Active matter is every system composed by many self-propelled units. The most
natural examples are animals: their biological structure provide them the motil-
ity, i.e. the capability to sustain a state of motion by converting the chemical en-
ergy stored into kinetic energy. As it will be shown, the research has identified
a plethora of active systems, including humans which obviously move across the
space. Active matter exhibits a spectacular behavior when the units coordinate
themselves and give rise to collective motion: this is what we observe when fishes
move together in huge schools, travelling across the sea and defending from preda-
tors, or when birds coordinate their motion forming amazing flocks. Thus, active
matter phenomena are the combination of the individual self-propulsion of the
units with the reciprocal interactions established among them. Living units are
very complex systems, and the derivation of interaction rules from their biological
properties is currently out of reach. Therefore, research on active matter in the last
two decades focused on the proposal of minimal models capable to reproduce the
main features of collective motion observed in experiments.

Granular and active matter share two main properties:

• they are both intrinsically out of equilibrium: indeed, active matter contin-
uously converts internal energy - absorbed somehow from the environment
- in kinetic energy to sustain its state of motion; furthermore, when mov-
ing in a viscous fluid or substrate, kinetic energy is dissipated all along the
motion. This implies the presence of continuous balance of energy injec-
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tion/dissipation during the motion of the particle. The same balance occurs
in a driven granular gas: to avoid the global “cooling” of granular motion
caused by collisions, one can inject energy in a granular media through some
mechanical process, like shearing or shaking the granular. Therefore, granu-
lar and active matter seem to have a specular behavior: while the former loses
kinetic energy in its free motion and needs to absorb it from the environment,
the latter vice versa “creates” kinetic energy from stored internal energy and
dissipates it interacting with the environment.

• grains and active units are generally small systems: even if in some physi-
cal situations they can be made of N ∼ 105 particles, this number is quite
far from Avogadro’s number NA ∼ 1023. Therefore, the validity of limit
theorems is more delicate, fluctuations become relevant and can usually be
compared with the magnitude of macroscopic quantities of the system. A
probabilistic approach must not disregard them but rather include them in a
more accurate description.

The specularity between granular and active particles is not an invention of
this thesis: many studies have connected the two, and several experiments on
shaken nematic or polar rods have shown their “active behavior”. Actually, it is
established that driven asymmetrical granular particles can behave as active units,
because nematic or polar interactions can produce an alignment and increase of
velocity correlations leading to some collective motion. Nevertheless, what has
been observed numerically - and confirmed analytically in this thesis - is that dis-
sipative granular collisions are sufficient to create velocity correlations leading a
granular system to an ordered motion, even for apolar and isotropic particles.

There are several possible descriptions when looking at granular and active
matter: we are interested in their hydrodynamic description. Namely, a granular
material or an active system can be treated as a fluid, where each unit is analo-
gous to a molecule of the fluid and the dynamical observables are the macroscopic
fields of density, velocity and temperature, defined from classical hydrodynamic
description of real fluids. This representation allows to recognize many collective
phenomena of granular and active motion such as vortex formation, clustering,
swarming and so on. Hydrodynamics is deeply related to kinetic theory, provid-
ing a statistical derivation of macroscopic observables without the need of equilib-
rium assumptions. Furthermore, in the last decades the theory of fluctuating hydro-
dynamics has begun to develop, aiming at reintroducing in hydrodynamic theory
all the fluctuations which are typically neglected when considering systems with
a huge number of particles. However, fluctuating hydrodynamics of nonequilib-
rium systems often relies on equilibrium assumptions; otherwise, some successful
attempts of rigorous derivation for nonequilibrium systems have been done, but
represent a very hard technical challenge and therefore are limited to some specific
cases.

The goal of this thesis is to derive a fluctuating hydrodynamic description of
granular and active matter by means of controlled and transparent mathematical
assumptions. The main hypothesis that we want to prove is not only that such a
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description is possible, but that the specularity between granular and active matter
generates a powerful symmetry in their description, and that the theoretical and
phenomenological description of one of them can be used to describe the other.

To achieve this result, we have made use of lattice models. These are a powerful
tool in statistical physics, and since their introduction in the description of equi-
librium phenomena such as phase transition in ferromagnetism (Ising or Heisen-
berg model) or diffusive behavior (Kipnis-Marchioro-Presutti model or exclusion
processes) they lead to a large number of analytical results. While some realism is
necessarily sacrificed when constraining continuous observables such as space and
time on a lattice, one can recover exactly an off-lattice behavior in the continuum
limit of large system size or number of particles. Thus, we look for a lattice model
which is able to reproduce the average hydrodynamical features and at the same
time produce new predictions on fluctuating hydrodynamics.

To do this, this thesis is organized as follows:

• The First Chapter is devoted to introduce granular matter, giving a precise
definition of what is granular and a review of its principal phenomenolog-
ical properties. The formulation of kinetic theory for conservative interac-
tions is given, and later applied to the granular case where it is shown to be
consistent and predictive. Some of the most important granular states will
be introduced, before discussing their hydrodynamic behavior in the third
Chapter.

• The Second Chapter introduces the reader to active matter: again, in the
first section a review of active systems, phenomenology and principal exper-
iments are given. The second section focuses on the modelization of active
matter, introducing the most important models formulated in the last years
to reproduce self-propulsion and active interactions. The last section is ded-
icated to the analysis of some key experiments showing a possible active be-
havior for driven granular systems.

• The Third Chapter is dedicated to hydrodynamics. The classic formulation
of hydrodynamics through the Chapman-Enskog approach is sketched, and
later applied to the granular case and the study of its hydrodynamical insta-
bilities. An overview of hydrodynamics of active matter is given and com-
pared with previous cases. Finally, some of the most important lattice models
are introduced both for conservative and dissipative systems: the latter have
been the main source of inspiration to develop the content of this thesis.

• The Fourth Chapter introduces a granular lattice model to investigate fluc-
tuating hydrodynamics of shear modes: the hydrodynamic equations are de-
rived from microscopic dynamics through a continuum limit. Depending on
boundary conditions, the model is able to reproduce several granular states
such as the Homogeneous Cooling State, the Uniform Shear Flow state and
the Couette Flow state. The former is known to be unstable for high dissipa-
tion or system size: threshold values are found from analytical calculations,
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confirming the correspondence between the lattice model and off lattice be-
havior. Furthermore, we move to fluctuating hydrodynamics description,
and the noise properties of hydrodynamic currents are derived without the
need of equilibrium approximations. The numerical study of these analysis
is presented, observing an excellent agreement between theoretical results
and simulated behavior

• The Fifth Chapter contains the properties of the granular model introduced
when Molecular Chaos assumption is abandoned, i.e. next-neighbor correla-
tions are reintroduced in the dynamics. Interestingly, for the defined model
it is possible to compute the velocity correlations, showing how they affect
temperature evolution in the Homogeneous Cooling State. Indeed, it is pos-
sible to derive a closed set of equations for temperature and velocity which
can be solved in the continuum limit. The analytical results explain some nu-
merical discrepancies observed in the temperature decay. Furthermore, the
total energy fluctuations are computed: with a similar procedure, their di-
vergence from the Local Equilibrium value is explained for a wide range of
dissipation magnitudes.

• The Sixth Chapter introduces a lattice model of active matter. Through the
procedure applied in the two previous chapters, it is possible to define a
lattice model of self-propelling particles and derive its hydrodynamic equa-
tions, showing the presence of experimentally observed collective behavior
such as swarming and clustering depending on microscopic parameters such
as dissipation rate and self-propulsion noise. The model generalizes the pre-
vious model to hopping particles in d > 1. The noise of density, momentum
and energy current can be derived as before. Simulations have confirmed the
linear stability analysis of the disordered state and the transition to ordered
motion, as well as theoretical predictions on fluctuating hydrodynamic cur-
rents

• The Appendices contain the derivation of analytical results for the granular
model presented in Chapter 4 and 5 (Appendix A) and for the active model
of Chapter 6 (Appendix B). The Appendix C contains a list of link to videos,
aimed at a novel reader to illustrate the phenomenology introduced in the
first part.
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Part I

Granular and Active Matter
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Like lesser birds on the four winds
Like silver scrapes in May
Now the sands become a crust
And most of you have gone away

1
Granular Matter

1.1 What is granular matter

Every physical system made by a large amount of macroscopic or mesoscopic par-
ticles, called grains, is a granular material: typical examples are sand, dust, pills,
seeds, as well as iceberg groups and Saturn rings [98, 159]. Granular matter is
ubiquitous in everyday life: when we transport food, build houses, stock prod-
ucts, project industrial processes and so on. Understanding its qualities has a great
importance to predict and reproduce the behavior of such materials.

Granular materials share the following properties:

• grains are macroscopic: they follow the laws of classical mechanics and have
a large number of internal degrees of freedom, which one does not directly
observe during experiments;

• grains are solid: they occupy a volume which is excluded to other grains
during their motion;

• grains interact by means of dissipative interactions: because of the presence
of internal degrees of freedom, after a collision the total energy of two par-
ticles is partially dissipated, mainly because of grains deformation, as heat.
Therefore friction occurs at the first level of description for a granular fluid;

• temperature doesn’t affect granular dynamics, i.e. grains can always be con-
sidered at T = 0. Indeed, since grains are macroscopic their mechanical en-
ergy is typically many order of magnitude larger than their internal energy,
namely mv2 � kBT for a particle moving with velocity v. In kinetic theory a
granular temperature can be introduced from statistical properties of granular
motion, but it has nothing to do with room temperature.
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Figure 1.1. Several examples of granular materials. From top to bottom: sand dunes, color
powders and iceberg group (left column), cereals and legumes, carbon dust, Saturn
rings (right column).

Let us try to explain their physical meaning: since a granular material is made
by many particles, statistical mechanics is the principal theoretic tool to under-
stand its behavior. However, even if all the above-stated properties are quite gen-
eral, one can see that a granular material is intrinsically different from an elastic
fluid or a solid: the classic nature of grains makes the law of quantum mechanics
unnecessary, and therefore the correct statistical representation must consider clas-
sic observables and interactions. Of course, each grain is made by atoms following
the laws of quantum mechanics, but at this stage the grains are the “elementary
particles” of our system.

Another key feature to understand granular dynamics is the role of inelasticity:
it is known that elastic collisions are not an ideal case in physics but they cease-
lessly occurs between atoms and molecules because of energy conservation. Since
grains have many internal degrees of freedom, after a collision they can distort and
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even break into more parts; these processes need energy which comes from the ki-
netic energy of grains, which therefore decreases after a collision. Typically, the
inelasticity is measured by the restitution coefficient α (see Sec. 1.4), which ranges
from 1 in the elastic case to 0 when collisions are totally inelastic.

The dissipative nature of interactions has lots of consequences in granular physics;
one of the most important, which will be persistently remarked all along this thesis,
is that granular matter is intrinsically out of equilibrium: the lack of energy conser-
vation at this level of description imply that phase-space trajectories are not sym-
metric under time reversal. This is evident in the case of granular cooling, when
energy dissipation leads the system to a metastable state where all the grains stop
with zero kinetic energy.

The only way to avoid the inevitable cooling of a freely evolving granular gas
is to drive the system by supplying power from outside: this is done both theoreti-
cally and experimentally by means of some shaking or shearing mechanism. These
provide continuous injection/dissipation of energy in the system leading to a non
equilibrium steady state (NESS).

The reader must then move away from classical concepts elaborated in sta-
tistical mechanics, and forget about temperature as a physical parameter of the
reservoir surrounding the system. From now on, only granular temperature is con-
sidered, which depends on kinetic energy of grains and generally coincides with
the variance of their velocity (if m = kB = 1). Driving devices act as a thermostat,
forcing granular velocity distribution toward a given temperature. Typically, when
considering shaken granular gases subject to the force of gravity, the shaking accel-
eration needs to be larger than the gravity acceleration g, so that a grain colliding
with a wall in the bottom gets the kinetic energy to reach the maximum height
of the physical system. The energies involved in this process are then kinetic en-
ergy and gravitational potential energy. Furthermore, from now on materials with
elastic interactions will be indicated as elastic materials, as distinct from granular
materials which are always inelastic.

All the properties above-stated define a granular material: evidently they are
not independent one from another but deeply related – the dissipation is the con-
sequence of the mesoscopic space scale chosen, which is possible only in classical
mechanics. There is another feature which is not required to be granular but that
occurs in almost all granular systems: the number of particles in a granular ma-
terial is large, typically ranging from 102 to 105 in most experiments and physical
systems studied, therefore statistical mechanics description is adopted because fol-
lowing the individual motion of each particle is impossible at a theoretical level.
However, if compared with molecular materials, containing an Avogadro’s num-
ber of particles NA ∼ 1023, the number of grains is very small. This is a cru-
cial property: indeed statistical mechanics makes plentiful use of thermodynamic
limit, to exploit limit theorems such as Law of large numbers and Central limit the-
orem. This can be done in granular matter as well, but fluctuations become very
relevant when compared with molecular systems. Therefore, their theoretical and
experimental description is a key point to understand granular dynamics: this is
typically carried on by means of mathematical tools such as stochastic equations
and large deviations theory. The goal of this thesis is to formulate a hydrodynamic
description of granular and active matter capable to accounting for large fluctua-
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tions: this kind of theory is called fluctuating hydrodynamics, and will be described
in Sec. 3.2.

1.2 Granular states

Here some particular properties of granular materials at rest are reviewed: the
reader may find a more detailed and complete overview in [59, 98], with a com-
parison between granular phases (solid, liquid, gases). The aim of the present
section is to introduce some characteristic granular properties underlining their
differences with molecular materials and show their connections with equilibrium
statistical physics, when they can be done.

1.2.1 Granular pressure, internal stresses, jamming

When a silo is filled with a granular, the pressure at the bottom grows with the
height of the filling in a rather different form from a classic fluid: indeed, a New-
tonian fluid follows Stevin law [119]

pv(h) = ρgh (1.1)

with pv the vertical pressure, ρ the density of the fluid, g the gravity acceleration
and h the height of the fluid column above the position of measurement. The
pressure in a granular material follows a different law, discovered by H. A. Janssen
in 1895 [100], i.e.

pv(h) = Λρg − (Λρg − pv(0))e−h/Λ (1.2)

where Λ is a characteristic length of the order of the cylinder radius R. Janssen law
accounts for saturation in granular cylinders, which guarantees a constant flow
rate in a hourglass. Janssen himself gave a first derivation, with the following
assumptions:

1. the vertical pressure pv is constant in the horizontal plane;

2. the horizontal pressure ph is proportional to the vertical pressure, i.e. K =
ph/pv constant in space;

3. the wall friction f = µph sustains the vertical load at contact with the wall;

4. the granular material has constant density ρ at all heights.

The mechanical equilibrium of a granular disk of radius R and height dh therefore
reads

πR2dpv
dh

dh+ 2πRµKpvdh = πR2ρgdh (1.3)

leading to
dpv
dh

+ pv
Λ = ρg (1.4)

where Λ = R/(2µK). Janssen law in eq. (1.2) is the corresponding solution with
boundary condition pv(0).
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Figure 1.2. Force chains in a granular material, experimental observations (a,c) and nu-
merical simulations (b,d). Grains are photoelastic birefringent disks subjected to pure
shear (top pair) or isotropic compression (bottom pair) [131].

Previous assumptions are not obvious: the first one is generally false because
the pressure depends also on the radial distance from the cylinder axis, while the
second assumption should be justified from constitutive relations, relying on mi-
croscopical features of the model. Nevertheless, Janssen law is a good first step to
go beyond elastic fluids laws. Vertical and horizontal pressure are connected with
stresses: in an elastic fluid at equilibrium, it is known that stress tensor is uniform,
isotropic and diagonal. This is not what actually happens in granular materials:
every grain discharges its load to underlying grains, creating long force chains and
propagating the stress in random directions depending on the specific configura-
tion at rest. An experimental and numerical observation of force chains is shown
in Fig. 1.2.

Another remarkable phenomenon revealed by experiments on granular statics
are pressure fluctuations: when a container is poured several times with a granular
material, pressure at its bottom can change of more than 20% between two distinct
realizations [36]. Furthermore when considering a single pouring, the distribution
of stresses in the bulk or at the bottom of the silo shows an exponential tail [148].

Internal pressure behavior is directly related with sound propagation in granular
mediums: it has been experimentally shown by Liu and Nagel [126] that when
the bulk is perturbed by a harmonic force (4 Hz) fluctuations can be very large,
with a power-law spectrum f−α where α = 2.2 ± 0.05. Also, the same authors
observed that the sound group velocity can reach 5 times the phase velocity and
that changing the amplitude of vibration gives rise to an hysteretic behavior [127].

As it has been shown, pressure act on granular particles in a quite different
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way from an elastic medium, because of formation of long-ranged threadlike force
chains and presence of strong fluctuations, signature of the strong disorder in the
bulk of the medium. A consequence of these features is the phenomenon of arch
formation: when a granular is flowing through a hopper, the flow can suddenly stop
because of the formation of a stable arch over the opening, able to sustain the entire
load of the grains overhead (see Fig. 1.3). This phenomenon is a very well known
experience in everyday life: many times, when pouring a granular substance from
one container to another, if the outlet is too small the grains spontaneously stop
pouring and one typically needs to shake the medium to start again. Generally
speaking, the transition occurring when vibrated or flowing granular particles get
stuck together in a single compact aggregate is called jamming transition.

Figure 1.3. Arch formation and granular jamming. Left panel shows how a concave arch
supports the whole granular above it. Right panel show arch forces near the outlet.

In 1961, Beverloo et al. experimentally found the existence of a critical open-
ing size below which jamming occurs [22]; more recently [183], experiments have
shown the quantitative behavior of the jamming probability in function of the
opening parameter d = R/D > 1 and the hopper angle ϕ, where R is the diameter
of the outlet and D is the radius of monodisperse spherical grains (see Fig. 1.4a).
This effect has recently been studied in experiments by Tang and Behringer [180,
179]:

Jamming transition is a typical example of a granular phase transition, although
being out of equilibrium this has not the same meaning of equilibrium transitions,
where a free energy can be defined and the transition shifts the system from an
equilibrium state to another. Jamming transition has been investigated theoreti-
cally [39, 125, 173, 110] and experimentally [58, 132], leading to a strong compar-
ison with liquid-glass transition in glassy systems. Specifically, a phase diagram
can be written in terms of granular temperature, packing fraction and external
stress [125]. When considering the behavior of dense packing of granular parti-
cles flowing down a rough, inclined plane, it has been shown that the tilt angle
θ plays the role of control parameter in analogy with the temperature T in glass
transition [173]. Furthermore, experiments in a 2d granular system of photoelastic
bidisperse disks with moving walls have shown a power-law behavior of the mean
contact number Z and the granular pressure P above the critical value of packing
fraction φc = 0.8422, namely Z ∼ P ∼ (φ − φc)β , with 0.5 < β < 0.6 [132]. All the
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(a) (b)

Figure 1.4. Granular jamming probability flowing through a hopper [183], experimental
setup (left) and jamming transition (right). The jamming probability j(d) is plotted
versus the opening parameter d, for three hopper angles ϕ= 34° (circles), 60° (triangles)
and 75° (squares). The solid line is a theoretical prediction provided by the authors,
the dashed line is a guide to the eye for the ϕ=75° case.

cited studies converged in stating that in granular jamming a critical behavior is
actually observed, even though granular materials are far from equilibrium.

1.3 Granular flows

When a granular material is flowing, two kinds of regime can occur: slow or rapid
flow. While in the former grains are always in contact with their neighbors and
interact frictionally for macroscopic times, in the latter they typically move bal-
listically between two inelastic collisions, which are instantaneous events. The
rapid or slow behavior is generally governed by the granular density, its typical
acceleration and boundary conditions. In rapid granular flows the analogy with
kinetic representation describing elastic gases is strong: in the next sections it will
be shown how a kinetic theory can be built from microscopic interactions, leading
to a macroscopic picture of granular flow and to hydrodynamics. In this section
some characteristic features of rapid granular flows are introduced.

1.3.1 Rapid granular flows

Many experiments have been made to investigate the behavior of sheared and shaken
granular fluids [164]. Two kinds of experimental setups can be distinguished:

• Couette rheology, consisting of a granular medium placed between two cylin-
drical walls with the same axis, and rotating one or both of them to induce
shear formation in the granular. Physical parameters are the distance be-
tween the cylinders, rotational speed and packing fraction of the granular.

• Shakers, consisting of a granular medium in a container whose one or more
walls are vibrated. Typical parameters of these systems are vibrations ampli-
tude A and frequency ω, which can be compared with gravity acceleration
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g through the vibration parameter Γ = Aω2/g: when Γ > 1, the vibration
is strong enough to produce many phenomena that will be described below.
The transition from slow to rapid granular flow induced by vibration is often
called vibrofluidization.

In both cases the shear or the shaking can be sufficient to lead the system to a sta-
tionary state, i.e. to avoid the inelastic cooling. However, tuning the above-stated
parameters the granular medium can change qualitatively its features, moving
from a slow granular motion to a fluidized state of rapid flow. Here some char-
acteristic phenomena of granular fluids are reviewed:

• Stress fluctuations: it has already been mentioned that in granular statics
stresses are not homogeneous and exhibit strong fluctuations; when a 2d
bidisperse granular is sheared in a Couette geometry, a strengthening/softening
transition has been observed [93]. Below a threshold value of the packing
fraction φc ' 0.776, stress fluctuations are small, the granular is compress-
ible and stress chains are long and radial; above this value strong fluctua-
tions occurs, compressibility becomes large and the network of stress chains
becomes tangled and dense.

• Slow convection and size segregation: when a granular is shaken or sheared,
convection takes place. If the granular is heterogeneous, size segregation oc-
curs as well. These features are known for a long time and have been recently
investigated in experiments with Couette cylinders [106] and vertically vi-
brated granulars [95]: larger particles use to rise to the top of the granular
medium during its motion, carried by convective cells formation. This effect
is also known as the Brazil-nut effect, because when opening a box of cereals it
is common to find the larger ones (Brazil-nuts) at the top [146]. Further exper-
iments have shown that size segregation depends both on relative diameter,
density and on shaking frequency: indeed, at low frequencies segregation is
governed by inertia and convection, and denser particles rise faster. On the
other hand, at high frequencies the granular is fluidized and there is no con-
vection, so an intruder sinks if it is denser than the surrounding grains, and
buoys up otherwise [95].

• Pattern formation: experiments have shown the formation of surface waves
patterns in vertically vibrated granular layers [144, 145, 107, 3], which ex-
hibit various and fascinating textures (see Fig. 1.5a) depending on the set of
parameters of the granular system: vibration frequency, vibration parameter
Γ, size of the system, size and shape of the grains, and so on. This behavior
has been associated also to the presence of oscillons, namely spatially local-
ized excitations with the propensity to assemble into molecular or crystalline
structures, see Fig. 1.5b [187].

• Clustering: cluster formation in granular fluids has been analyzed numer-
ically and theoretically in granular cooling [83] and later observed experi-
mentally in shaken systems [115, 113, 73, 72]. Clustering is not observed in
elastic fluids, and is carried on by inelastic collisions: actually in a dense re-
gion granular temperature decreases faster than in a dilute one because col-
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(a) Patterns in a vertically vi-
brated granular layer: stripes
(a), hexagons (b,e), flat with
kink (c), competing squares
and stripes (d), and disorder
(f) [145].

(b) An oscillon, a solitary stand-
ing wave on the surface of a vi-
brated granular layer [3].

Figure 1.5. Patterns (left) and oscillons (right).

(a) Snapshot of a clustered granular sys-
tem [83].

(b) Cluster formation in a granular fluid
shaken by the horizontal wall at the
bottom [73].

Figure 1.6. Clustering: numerical simulations (left) and experiments (right)

lisions are dissipative, yielding a decrease of the granular pressure: the pres-
sure gradient created leads then to a migration towards the dense region.
Therefore, once a density fluctuation appears, the dense region will attract
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other particles and grow, unless some hydrodynamic mechanism intervene
to scatter particles faster than the clustering process [83]. A numerical sketch
of a granular cluster is shown in Fig. 1.6a. Clustering appears as a hydro-
dynamic instability of the homogeneous cooling state of a granular medium,
connected as well with shear instability: the study and analysis of instabil-
ities will play a crucial role in Part II of this thesis. Finally, in above-cited
experiments [73, 72] a transition has been observed when the number of par-
ticles is increased, moving from a gas-like behavior to a collective solid-like
behavior: the latter is shown in Fig. 1.6b.

• Non-Gaussian velocities: velocity distributions in granular fluids are often
non-Gaussian: this feature has been observed in numerical simulations and
confirmed by experiments [150, 151, 113], which have proved a strong con-
nection between clustering and velocity distributions [166]. Indeed, when
particles cluster, inelastic collapse can occur [141, 142], namely particles stuck
together because of inelastic collisions and start moving at the same paral-
lel velocity. Clustering and inelastic collapse create regions with high den-
sity and low velocities, resulting in nearly exponential tails in velocity dis-
tribution, see Fig. 1.7. In a different experiment [128], velocity distributions
revealed exponential tails in a cooling state and exp(−v3/2) tails in a driven
state, verifying theoretical predictions in [188]. Nevertheless, non-Gaussianity
can be observed in absence of clustering as well: a successive experiment
measured the horizontal velocity distribution of a vertically vibrated vertical
monolayer, obtaining again a exp(−v3/2) velocity distribution also without
clustering.

• Velocity correlations: strong long-range velocity correlations between gran-
ular particles have been revealed in experiments with dense granular gases [26],
similar to the setup of [113] used to investigate non-Gaussian distributions.
Furthermore, recent experiments studied velocity structure factors in a quasi-
2d vertically vibrated horizontal granular monolayer by means of fluctuating
hydrodynamics (see Sec. 3.2), confirming the validity of the theory [85, 165].
Experiments also displayed a correlation length which increases with the
packing fraction.

• Thermal convection: very recently, an experiment on a vibrofluidized gran-
ular gas has shown the existence of a convection mechanism driven by the
inelastic interactions with the walls of the container where the granular is
shaken [157]. We already discussed the case of slow convection, which is
generally a phenomenon driven by bulk buoyancy for slow flows. Experi-
ments and simulations considered the case of a vibrated granular gas on a 2d
inclined plane: the bottom wall is shaking the gas with accelerations much
greater than the effective gravity. The presence of inelastic vertical walls is
the key point of the establishment of thermal convection: since energy is
dissipated at the boundaries, an horizontal temperature gradient is induced:
thus, in the system described any steady state must have flow and, since the
system is closed in the horizontal, the flow will be convective.
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Figure 1.7. Horizontal velocity distributions in a vertically vibrated granular monolayer,
rescaled by the second moment, for different vibration amplitudes Γ [150].

The granular features above-described have been chosen among the main studied
and will be recalled in the following of this thesis; nevertheless, several outstand-
ing features and applications of granular flows have been investigated in the last
years, such as granular jets [182], stick-slip frictional properties [4, 111], a granular
Leidenfrost effect [71], Kovacs-like memory effects [102, 31, 163] and granular ratch-
ets [50, 53, 70] - see also Sec. 2.3. In Appendix C one can found several links to
videos showing many of these granular effects.

Many of these studies converged in giving an experimental validation of ki-
netic theory [129, 194, 196]: the latter is actually the starting point of the present
theoretical investigation.

1.4 Kinetic Theory of Rapid Granular Flows

A powerful approach to the study of rapid granular flows is given by kinetic theory:
established for the study of elastic gases, its aim is to describe a gas in term of me-
chanical coordinates of all its particles to derive its macroscopic properties such as
pressure, energy and entropy through the statistical properties of the microscopic
variables. This method, which was derived for elastic gases, can apply also for
granular materials.

In the present section classical kinetic theory will be introduced, showing how
one can derive Boltzmann Equation from Liouville equation for elastic smooth hard
spheres, moving later to inelastic hard spheres. Kinetic theory will be used to de-
scribe the simplest granular regime, the homogeneous cooling state, and its instabili-
ties. The last part of this section is an introduction of granular steady states and the
so-called steady state representation. This section is based on the analysis described
in [45, 94] for elastic models, while granular kinetic theory has been deeply studied
in [158, 34]. The following section follows the formulation presented in [164].
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1.4.1 From Liouville to Boltzmann Equation

A system of N classical particles in a container of volume V is fully determined
once the particles’ positions and momenta configuration z(t) at a given time t and
their interaction are known, where

z(t) = {r1(t),v1(t), r2(t),v2(t), . . . , rN (t),vN (t)} ∈ V N × R3N = Γ (1.5)

introducing Γ as the full phase-space of the system. For an Hamiltonian system, the
configuration is given by generalized coordinates and momenta, for which kinetic
theory is usually developed. However this is not our case, because granular matter
is not Hamiltonian. Since it is impossible to follow the equations of motion ofN �
1 particles, kinetic theory looks at the time-dependent probability density function
P(z, t), representing the probability of finding the system in a configuration z at
time t. This implies that the value of a dynamical observable A(z) is equivalent to∫

Γ
dzP(z, 0)A(z(t)) =

∫
Γ

dzP(z, t)A(z), (1.6)

which respectively correspond to the Lagrangian and Eulerian averages. The evo-
lution of A is given by the equations of motions of the configuration z, but can be
resumed into the streaming operator St, defined by A(z(t) ≡ St(z)A(z) [164]. There-
fore, the equivalence in (1.6) means that

P(z, t) = S†tP(z, 0). (1.7)

where Sdaggert is the adjoint operator of St. In a general system where particles are
subjected to conservative and additive interactions and no external field is present,
the streaming operator reads

St(z) = exp[tL(z)] = exp

t
∑

i

L0
i −

∑
i<j

Θij

 , (1.8)

where the Liouville operatorL(z) · ≡ {H(z), ·} is the Poisson bracket with the Hamil-
tonian function, so that

L0
i = vi ·

∂

∂ri
, (1.9a)

Θij = 1
m

∂U(rij)
∂rij

·
(
∂

∂vi
− ∂

∂vj

)
, (1.9b)

represent respectively the free streaming operator L0
i and the interaction term Θij

depending from the form of the binary interaction among the particles, U(rij). St
is a unitary operator, with S†t = S−t and L† = −L. Rewriting Eq. (1.7) in terms of
Eq. (1.8) the Liouville equation is obtained

∂

∂t
P(z, t) =

−∑
i

L0
i +

∑
i<j

Θij

P(z, t) (1.10)
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which expresses the incompressibility of the flow in phase space. Textbooks use to
refer to this equation when introducing Liouville’s Theorem [94], stating that the
distribution function of an Hamiltonian system is constant along any trajectory in
the phase space, namely

d
dtP(z, t) = 0. (1.11)

Let us consider the case of a system made by N identical hard spheres of diameter
σ and mass m: the potential U(r) is defined as

U(r) =


0 r > σ,

+∞ r < σ,

(1.12)

where r is the distance between two particles. U(r) is a discontinuous poten-
tial, which makes collisions instantaneous: indeed, when particles i and j collide,
their precollisional velocities (vi,vj) abruptly change to postcollisional velocities
(v′i,v′j). In elastic collisions, momentum and energy conservation respectively read

mv′i +mv′j = mvi +mvj , (1.13a)
1
2mv

′2
i + 1

2mv
′2
j = 1

2mv
2
i + 1

2mv
2
j . (1.13b)

Those equations can be easily solved moving to the center of mass frame, consider-
ing the total velocity V = 1

2(v1 +v2) and the relative velocity vij = vi−vj ; indeed,
Eqs. (1.13) yield the conservation of the total momentum and of the modulus of
the relative velocity. In the smooth hard spheres case, the velocities are reflected
after a collision with the rule

V′ = V, (1.14a)
v′ij = −vij , (1.14b)

So, in the laboratory frame the postcollisional velocities read

v′i = vi − n̂ [n̂ · (vi − vj)] , (1.15a)
v′j = vj + n̂ [n̂ · (vi − vj)] . (1.15b)

being n̂ = (ri − rj)/|ri − rj | the unit vector connecting the center of the sphere i
with the center of the sphere j, see Fig. 1.8. With the present rule, the collisions can
be reintroduced into the Liouville equation by imposing the boundary condition

P(z′, t) = P(z, t) (1.16)

where z′ is the postcollisional configuration after particles i and j have collided.
An instantaneous collision occurs when particles are in contact and the relative
velocity vij has opposite direction of n̂ij = (ri − rj)/σ: the latter requirement is
known as kinematic constraint, i.e. the particles must move toward each to collide.
The last requirement is fundamental to guarantee that immediately after a collision
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Figure 1.8. Elastic collision of identical hard spheres in the center of mass frame: pre-
and post-collisional velocities have equal modulus and opposite direction. The rela-
tive velocity is parallel to the direction of collision, and is reflected after the collision.
The velocity components perpendicular to the relative velocity are not affected by the
collision.

the particles do not collide any more, since their velocities then point away from
each other. Namely,

rij = σ, (1.17a)
vij · n̂ij < 0. (1.17b)

In this case, the postcollisional phase space configuration reads

z′ = (r1,v1, . . . , r′i,v′i, . . . , r′j ,v′j , . . . , rN ,vN ) (1.18a)

r′i = ri (1.18b)
r′j = rj (1.18c)

and v′i, v′j follow the collisional rule in Eq. (1.15).

Since hard spheres cannot overlap, the effect of excluded volume changes the
phase space: there is an excluded region consisting of the occupied volume called
Γov so that the actual phase space is Γ = V N × RN − Γov, where

Γov =
{
z ∈ V N × RN | ∃ i, j ∈ {1, 2, . . . , N} : |ri − rj | < σ

}
. (1.19)

With the previous condition, the Liouville equation reads

∂

∂t
P(z, t) =

(
−
∑
i

vi ·
∂

∂ri

)
P(z, t) when z ∈ Γ, (1.20a)

P(z, t) = P(z′, t) when z ∈ ∂Γ, (1.20b)
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where ∂Γ is the boundary of the phase space Γ. The interaction term has been
resumed in the time-discontinuous boundary condition in the second line, while
between two collisions the particles undergo free motion at constant speed vi.

The discontinuity introduced prevents the use of formal perturbation expan-
sion such as the ones usually employed in many-body theory. It can be shown [68]
that an alternative expression for the streaming operator can be written in terms of
binary collision operators: indeed one can write St for two particles labeled 1 and
2 as

St(1, 2) = S0
t (1, 2) +

∫ t

0
dτ S0

τ (1, 2)T+(1, 2)S0
t−τ (1, 2) (1.21)

where S0
t is the free flow operator and T+(1, 2) a collisional operator

T+(1, 2) = σ2
∫

v12·n̂<0

dn̂ |v12 · n̂| δ (r1 − r2 − σn̂) (bc − 1), (1.22)

being v12 = v1−v2 and bc a substitution operator which replaces precollisional ve-
locities with postcollisional ones, (v1,v2) → (v′1,v′2). Eq. (1.21) can be interpreted
as evolution of 2-particles dynamics during time t, consisting in a free flow term
(no collisions) plus a convolution term considering all eventual collisions at time
0 < τ < t. Since two spheres alone cannot collide more than once, one notices that
T+(1, 2)S0

τ (1, 2)T+(1, 2) = 0 and therefore Eq. (1.21) is equivalent to

St(1, 2) = exp {t [L0(1, 2) + T+(1, 2)]} . (1.23)

Generalizing the above equation to the N -particles streaming operator (here in the
case of infinite volume) one has

S±t(z) = exp

±t
L0(z)±

∑
i<j

T±(i, j)

 , (1.24)

where T−(1, 2) represents a backward collisional operator, i.e.

T−(1, 2) = σ2
∫

v12·n̂>0

dn̂ |v12 · n̂| δ (r1 − r2 − σn̂) (bc − 1). (1.25)

S±t(z) is defined as the pseudo-streaming operator. Now, a continuous-time Liouville
equation can be written by means of the adjoint of S±t, considering the adjoint
operators of T±(1, 2) which read

T †±(1, 2) = σ2
∫

v12·n̂≶0

dn̂ |v12 · n̂| [δ (r1 − r2 − σn̂) bc − δ (r1 − r2 + σn̂)] . (1.26)

At last, the pseudo-Liouville equation can be written

∂

∂t
P(z, t) =

−∑
i

L0
i +

∑
i<j

T †−(i, j)

P(z, t). (1.27)
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which represents the analogue of Eq. (1.10) for elastic hard spheres. It replaces
Eqs. (1.20) and will be the starting point to write the granular pseudo-Liouville
equation when considering inelastic collisions.

The first step to derive the Boltzmann equation representing the evolution of
the one-particle distribution P (r,v, t) is to consider the marginalized distribution
Ps defined as

Ps(r1,v1, . . . , rs,vs; t) =
∫

V N−s×R3(N−s)

 N∏
j=s+1

drjdvj

P(r1,v1, . . . , rN ,vN ; t).

(1.28)
Integrating over

(∏N
j=s+1 drjdvj

)
both sides of Eq. (1.20a) and implementing bound-

ary conditions in (1.20b), it can be shown [164] that Ps follows the evolution equa-
tion

∂Ps
∂t

+
s∑
i=1

vi ·
∂Ps
∂ri

= (N − s)σ2
s∑
i=1

∫
R3

∫
S+

(P ′s+1 − Ps+1)|Vi · n̂|dn̂dv∗ (1.29)

where Vi = vi−v∗, S+ is the hemisphere of n̂ having Vi ·n̂ > 0 and P ′s+1 is defined
as

P ′s+1 = P ′s+1(r1,v1, . . . , ri,vi− n̂(n̂ ·Vi), . . . , rs,vs, ri−σn̂,v∗+ n̂(n̂ ·Vi)). (1.30)

The interpretation of Eq. (1.29) is straightforward : its lhs represents the evolution
of Ps under the free s-particles flow, while the rhs represents the gain and loss
terms of the s-particles configuration due to collisions with one of the remaining
N − s particles, which probability is given by the Ps+1 distribution. The system
of Eqs. (1.29) is known as BBGKY hierarchy1: indeed, starting from the one-particle
distribution P1, its evolution equation contains P2, as well as the evolution equa-
tion of P2 contains P3 and so on... Clearly, this set of equations is closed only if
one considers all the marginalized distribution functions up to PN ≡ P(z), but this
means coming back to the original Liouville equation.

This theoretical limit can be overcome in the case of a rarefied gas, which
applies when considering a box of volume 1 cm3 at atmospheric pressure and
room temperature, for which one has N ∼ 1020, σ ∼ 10−18 cm, hence for small s
(N−s)σ2 ∼ Nσ2 ∼ 1m2; furthermore, the difference between ri and ri+σn̂ can be
neglected compared with system size, as well as the occupied volume Nσ3 ∼ 10−4

cm3, so that the collision between two selected particles can be considered a rare
event. These considerations lead to the so-called Boltzmann-Grad limit, which con-
sists in taking N → ∞ and σ → 0 while Nσ2 remains finite. It is remarkable that
the scattering cross section for two hard spheres is πσ2, so that in a system with vol-
ume and typical velocities of order 1 the total cross section multiplied by N reads
Nπσ2: the Boltzmann-Grad limit states that the single particle collision probability
must vanish while the total number of collisions remains of order 1. So, Eq. (1.29)

1from Bogoliubov, Born, Green, Kirkwood and Yvon
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can be modified changing (N − s)σ2 → Nσ2 and putting σ = 0 into (1.30).

The last but crucial assumption to obtain the Boltzmann equation is the Molec-
ular Chaos assumption, namely

P2(r1,v1, r2,v2; t) = P1(r1,v1, t)P1(r2,v2, t) (1.31)

for particles that are about to collide, i.e. when r2 = r1 − σn̂ and v12 · n̂ < 0.
The Molecular Chaos assumption states that the precollisional velocities of the
colliding particles are uncorrelated: it relies on Boltzmann-Grad limit, for which
we already saw that a collision between two selected particles i, j is a rare event,
hence between two collisions of the same particles they will have collided many
times with other particles of the system, “forgetting” the possible correlation in-
duced by the precedent collision. It is important to stress that Molecular Chaos
states that precollisional velocities are uncorrelated, but doesn’t say anything about
postcollisional velocities distribution. This assumption can be clearly justified only
in dilute gases and will be heavily used in Part II of this Thesis.

The Molecular Chaos assumption in (4.14) immediately closes BBGKY hierar-
chy at s = 1: the first equation of the hierarchy then reads (writing P = P1 and
omitting time dependence)

∂P (r,v)
∂t

+v·∂P (r,v)
∂r = Nσ2

∫
R3

∫
S+

[
P (r,v′)P (r,v′∗)− P (r,v)P (r,v∗)

]
|V·n̂|dv∗dn̂

(1.32)
with v′ = v − n̂(V · n̂), v′∗ = v∗ + n̂(V · n̂) and V = v − v∗. Eq. (1.32) is the
Boltzmann equation for hard spheres. Its lhs contains the time evolution given by
the free flow in phase space coordinates and its rhs the instantaneous evolution
given by collisions. It is here evident that the first (positive) term into the inte-
gral is accounting for all the collisions where one particle has the postcollisional
velocity v and therefore comes into phase space region around (r,v), whereas the
second (negative) term is accounting for all the collisions where one of the particles
has the precollisional velocity v, and therefore after a collision it escapes from the
phase space region measured by P (r,v).

Actually, it is not unusual to find the evolution equation for the single-particle
distribution P directly written without considering the full phase space distribu-
tion P but rather computing the gain/loss terms through probabilistic considera-
tions, see for instance [94]. Although this alternative derivation is well-based and
legitimate, the full information about the physical system considered is given by
P(z, t), while P (r,v, t) contains less information and its derivation from Liouville
equation (1.10) has shown the assumptions needed. However, for many practical
purposes, P is the main quantity of interest, as it will be seen in Part II.

1.4.2 Inelastic Collisions and granular Boltzmann Equation

The aim of the present paragraph is to derive a Boltzmann equation for inelastic
smooth hard spheres, which are a fundamental modelization of granular particles.
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Before doing that, the inelastic collisions need to be well-defined: conversely from
elastic collisions, the former conserve momentum but dissipate energy, namely
Eqs. (1.13) become

mv′i +mv′j = mvi +mvj , (1.33a)
1
2mv

′2
i + 1

2mv
′2
j <

1
2mv

2
i + 1

2mv
2
j . (1.33b)

In order to quantify the energy loss during a collision, it is common to introduce
the restitution coefficient 0 ≤ α < 1; after a collision, the relative velocity in the
center of mass frame reads

v′ij = −αvij . (1.34)

The last equation defines α and states that after a collision the relative velocity
along the collision direction is reflected and rescaled by a factor α: when α = 0, the
postcollisional velocity vanishes and the colliding particles get stuck together, as
when a ripe tomato crushes falling on the ground (sticky collision); conversely
when α = 1 the collision is elastic, and the previous paragraph’s theory with
Eqs. (1.13), (1.14) and (1.15) is recovered. Energy dissipation is absent when α = 1
and increases as α decreases towards its minimum α = 0, where energy dissipa-
tion is maximal.
Setting a restitution coefficient equivalent for each particle and collision event is
clearly an idealization, as well as considering all particles as spheres having the
same diameter: indeed, during a collision, kinetic energy of particles is mainly dis-
sipated into work deforming the particles themselves - which cannot be exactly
spherical anymore -, and in real collisions the dissipation ratio ∆E/E depends
on the shape of the particles and the collision point on their surfaces as well as
their relative velocity. Actually, there are granular models considering velocity-
dependent restitution coefficient α(v) [99, 35], but their description is beyond the
aim of this thesis. Furthermore, there are no tangential frictional forces (smooth
grains) which may be taken into account considering also the rotational degree of
freedom of particles: the simplest model satisfying this condition is the rough hard
spheres gas [84]. For our purpose, a constant restitution coefficient is a good ap-
proximation.

The collisional rule for identical inelastic smooth hard spheres now reads

v′i = vi −
1 + α

2 n̂ [n̂ · (vi − vj)] , (1.35a)

v′j = vj + 1 + α

2 n̂ [n̂ · (vi − vj)] . (1.35b)

and the energy dissipation is

∆E = E′ − E = −1− α2

4 |n̂ · (vi − vj)|2 . (1.36)

Some fundamental features of inelastic collisions deserve to be underlined.
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1. Inelastic collisions are not invariant under time-reversal. Eq. (1.27) is invari-
ant under time-reversal: indeed, the elastic collision rule (1.15) states that
(vi,vj) → (v′i,v′j) as well as (−v′i,−v′j) → (−vi,−vj). On the contrary, in
inelastic collisions energy is dissipated, and the reversed collision should in-
crease energy to reach the original precollisional state: indeed, precollisional
velocities can be obtained from postcollisional ones with the rule

vi = vi −
1 + α

2α n̂
[
n̂ ·
(
v′i − v′j

)]
, (1.37a)

vj = vj + 1 + α

2α n̂
[
n̂ ·
(
v′i − v′j

)]
, (1.37b)

which corresponds to the original collisional rule (1.35) when transforming
α → 1/α: the only invariant case is the elastic collision with α = 1. Fig. 1.9
geometrically shows the elastic case versus the inelastic one.

2. Velocities align after a collision. The inelastic collisional rule shrinks the veloc-
ity component parallel to the relative velocity, v‖ = n̂ · v but conserves the
transverse component v⊥ = v − v‖. Therefore, after a collision the trans-
verse component weight is increased with respect to the parallel one: the
relative angle between particles’ velocities reduces and their velocities get
more aligned, see Fig. 1.9 for geometrical visualization. This feature has a
great importance in momentum transfer, because the velocities tend to get
correlated at a microscopic level. In granular flows, velocity alignment cre-

v
1

v
2

v'
1el

v'
1in

θ

v'
2el

v'
2in

θ'
el

θ'
in

Figure 1.9. Elastic vs. inelastic collision: elastic trajectories (continuous lines) are reflected
with a postcollisional angle θ′el = θ equivalent to the precollisional one - time reversal
invariance -, while in the inelastic collision (dashed lines) velocities get more aligned
because θ′in < θ.
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(a) Schematic trajectories showing in-
elastic collapse. (a) Three parti-
cle collapse: without surrounding
walls, collapse occurs when α <
αc = 7 − 4

√
3 ∼ 0.0718. (b)

Two particles collide between them-
selves and a wall, but do not col-
lapse since α > 0.346015. (c) At crit-
ical α = 0.346015, the inner parti-
cle is stationary after two collisions
with the outer one.(d) For α < 3 −
2
√

2 ∼ 0.17157 there is inelastic col-
lapse [141].

(b) A snapshot from a MD simulation
of cooling inelastic hard spheres in a
square box with periodic boundary
conditions, with α = 0.6 and N =
1024 particles. C/N=417.6 is the to-
tal number of collisions per particle
at the time the simulation is stopped.
Black particles are the one involved
in the last two hundred collision: the
linear arrangement characteristic of
inelastic collapse is evident [143]

.

Figure 1.10. Inelastic collapse

ates groups of particles collectively moving with almost the same velocities.

3. Inelastic collapse. In Sec. 1.3.1 it has been already introduced how clustering
is connected with inelastic collapse: the simplest example is the case of three
particles on a line [141], see top left panel of Fig. 1.10a. When outer par-
ticles move monotonically toward each other, the central one bounces with
them from both sides. In the elastic case at least one of the outer particles
would be rejected from the collision and no more collisions occur unless a
wall redirects the particles toward each other. In the inelastic case, if dissi-
pation is strong enough the outer particles don’t change their direction and
they ceaselessly collide with the central one with geometrically smaller space
and time scales at each successive cycle. The critical value of the dissipation
is α < αc = 7 − 4

√
3 ∼ 0.0718 [141]. When α > αc, inelastic collapse can

occur in presence of an inelastic wall, see Fig. 1.10a, if the number of parti-
cles is sufficiently high. In more than 1 dimension, inelastic collapse can be
realized in a large cluster, see Fig. 1.10b. This phenomenon has dramatical
consequences on inelastic hard spheres simulations: indeed, since time and
space scales between two collisions geometrically decrease, the assumption
of binary collisions will fail. Furthermore, the time between two collisions
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will become exponentially small and event-driven simulation time steps will
dramatically slow down, until at a certain time the simulation stops running
as an infinite number of collisions occur in finite time. A snapshot of this sit-
uation in 2d is plotted in Fig. 1.10b, where collapsed particles are highlighted.
To avoid the inelastic collapse, some models consider a velocity-dependent
restitution coefficient, becoming more and more elastic as the relative veloc-
ity tends to zero, in agreement with experimental observations. This descrip-
tion is generally known as viscoelastic model. Simulations of such models have
shown that the inelastic collapse is removed, suggesting that it is an artificial
consequence of fixing a constant restitution coefficient.

Having considered the deep qualitative differences between elastic and in-
elastic collisions, now the Boltzmann equation for granular gases can be derived.
Pseudo-Liouville equation (1.27) holds, provided that the binary collision T †−(1, 2)
is now written in terms of inelastic collision rules, Eqs. (1.35) and (1.37). Since di-
rect and inverse transformation do not coincide anymore as in the α = 1 case, the
operator bc in T− and T †− which exchanges precollisional velocities with postcolli-
sional ones must be exchanged with its inverse b′c. The adjoint of inverse binary
inelastic collision operator therefore reads

T †−(1, 2) = σ2
∫

v12·n̂>0

dn̂ |v12 · n̂|
[ 1
α2 δ (r1 − r2 − σn̂)− δ (r1 − r2 + σn̂)

]
(1.38)

Deriving the BBGKY hierarchy and considering the first equation for one-particle
distribution, the Molecular Chaos assumption gives the Boltzmann equation for
granular gases(

∂

∂t
+ L0

1

)
P (r1,v1, t) = Nσ2Q(P, P ) (1.39a)

Q(P, P ) =
∫

dv2

∫
v12·n̂>0

dn̂ |v12 · n̂|
[ 1
α2P (r1,v∗1, t)P (r1,v∗2, t) (1.39b)

− P (r1,v1, t)P (r1,v2, t)
]

where v1 and v∗2 indicate the precollisional velocities required to have v1 and v2 as
postcollisional ones, see Eq. (1.37).

As a first approach, this equation can be studied in the spatially homogeneous
case (therefore L0

1 = 0), including the Enskog correction Ξ(σ, n), which has been
introduce to account for velocity correlations under some assumptions, and acts
as a multiplicative factor correcting Molecular Chaos approximation [164]. The
homogeneous equation reads

∂

∂t
P (v1, t) = Ξ(σ, n)nσ2Q(P, P ), (1.40)

where n is the average number density; the last equation has been studied by Gold-
shtein and Shapiro [84] and by Ernst and van Noije [188]. This is the first step to
derive dynamical equations of granular quantities, as will be done in the next para-
graph.
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1.4.3 The Homogeneous Cooling State and Haff’s law

From now on only the spatially homogeneous case is considered.
The granular cooling has no stationary state, since the energy keeps dissipating
because of the collisions all along the trajectory. Therefore, it is useful to define the
rescaled velocity distribution f̃ as

NP (v, t) = n

v3
T (t)

f̃(v/vT (t)) (1.41)

where the temperature T (t) = m〈v2〉/3 = mv2
T (t)/2 defines the thermal velocity

vT (t). It can be shown that N2Q→ n2v2
T Q̃, with

Q̃ =
∫

dc2

∫
c12·n̂>0

dn̂ |c12 · n̂|
[ 1
α2 f̃(c∗1, t)f̃(c∗2, t)− f̃(c1, t)f̃(c2, t)

]
, (1.42)

defining a rescaled velocity c = v/vT . The collisions cause the temperature decay:
from Eq. (1.36), one expects that collisions reduce energy by a quantity propor-
tional to kinetic energy itself. The temperature evolution equation reads

d
dt

(3
2nT

)∣∣∣∣
coll

=
∫

dv mv
2

2 σ2N2Q(P, P ) (1.43)

= σ2n2vT
mv2

T

2

∫
dc1c

2
1Q̃ = −σ2n2vTTµ2, (1.44)

being

µp = −
∫

dc1c
p
1Q̃. (1.45)

Therefore
dT
dt

∣∣∣∣
coll

= −ζ(t)T (t). (1.46)

where

ζ(t) = 2
√

2
3 nσ2µ2

√
T (t)
m

(1.47)

Eq. (1.46) rules the Homogeneous Cooling State (HCS). Since the density is con-
stant and any global velocity can be put to 0 by means of a Galilean transformation,
the temperature field is the only hydrodynamic relevant field in the HCS. Because
of these simplifications, the HCS is usually the starting point to study granular
flows and instabilities, see Sec. 3.1.2 and Part II.

Throughout homogeneous cooling all the particles continuously lose energy by
means on inelastic collisions with uniform distribution in space, which makes the
granular temperature homogeneously decreasing after having initialized the sys-
tem with some non-trivial velocity distribution. This is the reason why f̃ has been
introduced: indeed P (v) necessarily tends to a Dirac delta δ(v). The dissipation
coefficient ζ(t) is time-dependent, i.e. ζ(t) ∝

√
T (t): this is the effect of a hard-

core potential, which makes the collision frequency proportional to the thermal
velocity,

ωc ∼ vT ∼
√
T (1.48)
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where ωcdt is the probability that a given particle undergoes a collision between t
and t+ dt.

When computing the rescaled distribution time-derivative, additional contri-
butions appear

∂NP

∂t
= n

v3
T

∂f̃

∂t
+
(
−3n
v4
T

f̃ + n

v3
T

∂f̃

∂c1

∂c1
∂vT

)
dvT
dt , (1.49)

leading to the following evolution equation

1
vT

∂f̃

∂t
− 1
v2
T

∂(c1f̃)
∂c1

dvT
dt = σ2nQ̃. (1.50)

The second term in the lhs can be computed through Eqs. (1.46) and (1.45),

1
v2
T

dvT
dt =

√
m

2T
1

2T
dT
dt = −1

3σ
2nµ2 (1.51)

which prove it to be time-independent.

Assuming the existence of a scaling stationary solution, namely f̃HCS such that
∂f̃HCS/∂t = 0, this must satisfy

µ2
3
∂(c1f̃HCS)

∂c1
= Q̃. (1.52)

The latter equation defines the Homogeneous Cooling State. Finally, in the HCS
the solution of the temperature equation reads

THCS(t) = T (0)(
1 + ζ(0)t

2

)2 , (1.53)

which is known as the Haff’s law [88] and has the remarkable property of being
independent of the initial temperature in the long time limit, namely

T (t) ∼ 4(ζt)−2 (1.54)

with
ζ = ζ(THCS(t))

T
1/2
HCS(t)

= ζ0vT (t)
lT

1/2
HCS(t)

(1.55)

where l ∝ 1/(nσ2) is the mean free path and ζ0 is the dimensionless cooling rate, a
physical parameter of the system.

1.4.4 Steady State Representation

Eq. (1.47) and Haff’s law in (1.54) says that for long times

ωc(t) ∼
2
ζt

⇒ Nc(t) ∼ ln(ζt/2) (1.56)
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where Nc(t) is the number of cumulated collisions after a time t. A new time-scale
can now be introduced

τ(t) = τ0 ln t

t0
, (1.57)

with arbitrary τ0 and t0; Eq. (1.57) gives the trend of the mean intercollisional time
τ at time t. In this new time scale, the number of collisions in a time interval dτ is
constant. This yields

∂

∂t
= τ0

t

∂

∂τ
(1.58)

therefore for long times one has

1
vT (t)

∂

∂t
∼ ζτ0

2
∂

∂τ
(1.59)

Finally, the evolution equation of the one particle distribution in the new time scale
τ reads

∂f̃

∂τ
+ nσ2µ2

3
∂(c1f̃)
∂c1

= σ2nQ̃ (1.60)

which is equivalent to the Boltzmann equation of particles subjected to an external
force

F = nσ2µ2
3 c (1.61)

acting like a positive viscosity. Actually, this equivalence makes sense as long as the
state remains homogeneous; in Sec. 3.1.2 it will be shown how the HCS is unstable
for long wavelengths perturbations [83].

Eq. (1.60) is the Boltzmann equation in the steady state representation [33]: in-
deed, it has been seen how looking at the system in terms of the rescaled velocity
c is equivalent to adding a propulsive continuous force, increasing the energy of
the system. The meaning is evident: velocity rescales and as the new time scale τ
slows down when t increases, the new velocity reads

w(τ) = dx
dτ = dx

dt
dt
dτ = t

τ0
v(t) (1.62)

so the effect of the propelling force is to inject back in the particles the same aver-
age quantity of energy lost by collisions, which follow the same rule (1.35) because
they are instantaneous and not affected by time rescaling.

In this representation, Eq. (1.60) provides a new evolution equation for the
rescaled homogeneous temperature T̃H(τ) = m〈w2〉/3 [33]( d

dτ −
2
τ0

)
T̃H(τ) = −ζT̃ 3/2

H (τ). (1.63)

which solution reads

T̃H(τ) =
( 2
τ0ζ

)2
[
1 +

(
2

τ0ζT̃
1/2
H (0)

−
)
e−τ/τ0

]
. (1.64)
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The rescaled temperature hence tends to a stationary value given by

T̃st =
( 2
τ0ζ

)2
(1.65)

From Eq. (1.55), it can be shown that τ0ṽT,st is independent from τ0 and propor-
tional to the dimensionless cooling rate ζ0, an intrinsic property of the system.
So, when considering rescaled variables, the steady state representation shows
how the HCS forgets of its initial condition after sufficiently long times and tend
to a value determined by the parameters of the system, regardless of the initial ve-
locity distribution. The steady state representation provides a mapping between a
granular cooling, where no stationary state is possible, to a system where energy is
dissipated and injected at the same rate, leading to the stationary values described
above.

1.4.5 Driven Granular Systems

A granular fluid can reach a stationary state when power is supplied in order to
balance the energy lost because of collisions. There are two main theoretical de-
scription of driven granulars:

1. imposing boundary conditions like in a sheared or shaken granular, which
is typically done in hydrodynamic description - see Sec. 3.1.2 - and imple-
mented in numerical simulations - see Sec. 4 ;

2. driving the granular in the bulk, i.e. supplying energy to all the particles in
their microscopic dynamics. This is the case discussed in this section.

I report the randomly driven granular gas model [166, 167], consisting of a gas
made by N identical hard objects of mass m and diameter D moving inside a d-
dimensional box of volume V −Ld, being L the side of the box. The dynamic of the
gas is ruled by the interplay between two physical phenomena: a continuous in-
teraction with the environment (Langevin process) and inelastic collisions among
the grains. The equations of motion read

d
dtxi(t) = vi(t), (1.66a)

m
d
dtvi(t) = −γbvi(t) +

√
2γbTbξi(t) + Fi(t). (1.66b)

So, the grains are coupled with a thermal bath, calling τb = m/γb and Tb respec-
tively the characteristic time and temperature of the bath. The function ξi(t) is a
standard Wiener process, i.e. 〈ξi(t) = 0 and 〈ξαi (t)ξβj (t′)〉 = δ(t − t′)δijδαβ . The
noise coefficient

√
2γbTb satisfies the Einstein fluctuation-dissipation relation. In-

elastic collisions are taken into account by Fi(t): they occur instantaneously with a
mean intercollisional time τc.

Therefore, the parameters defining the dynamics are the restitution coefficient
α and the ratio between the characteristic time scales, ρ = τb/τc. Depending on
these (adimensional) parameters, one can define three limit cases of the dynamics
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• the elastic limit α→ 1− ;

• the collisionless limit ρ→ 0 (τc � τb) ;

• the cooling limit ρ→∞ (τc � τb).

In d > 1, the elastic limit is smooth and one can take α = 1: this is equivalent
to consider an elastic gas, where collisions contribute to the relaxation towards
an homogeneous particle distribution in space and a Maxwellian distribution of
velocities, with temperature Tb. In d = 1 the situation is different because in elastic
collisions particles exchange their velocities exactly, so there is no mixing because
a collision is equivalent to an exchange of labels, namely (vi, vj)→ (vj , vi) and the
initial set of velocities is conserved in time.

In the collisionless limit τc � τb, therefore collisions are very rare and the gas
can be considered as a gas of non-interacting random Brownian walkers, which
sometimes collide between them but then relax toward a Maxwellian distribution
with temperature Tb and homogeneous density.

Finally, in the cooling limit τc � τb and collisions dominate: between two col-
lisions particles move almost ballistically. The bath is heating the granular but this
effect can be seen only for time scales greater than τb: for intermediate observation
times τc � t� τb the gas behaves like a cooling granular gas.

1.4.6 Inelastic Maxwell Molecules

The last part of this chapter is devoted to inelastic Maxwell molecules: this is a
category of particles which collision integral does not depend on the flux term
|v12 · n̂| [67]. Kinetic theory calculations show that this is approximately the case
for particles in d dimensions subject to a power law repulsion interaction potential
U(r) ∼ r−2(d−1) [164]. The Boltzmann equation for Maxwell molecules is greatly
simplified, and in the inelastic 1d case reads

∂

∂τ
P (v, τ) + P (v, τ) = β

∫
duP (u, τ)P (βv + (1− β)u, τ) (1.67)

where β = 2/(1 + α) and τ is the number of collisions per particle. For Maxwell
molecules the collision frequency ωc is constant, i.e. it doesn’t depend from the
thermal velocity as for hard spheres, hence τ is linear with t and they can be used
alternatively. Otherwise, one can take the flux term |v − v′| in 1d hard rods to be
proportional to the thermal velocity,

√
T ; by means of a time reparametrization

τ(t), the latter factor can be eliminated and the Boltzmann equation reduces to
Eq. (1.67). This description is called pseudo-Maxwell model [25].

Eq. (1.67) implies that at each time step an arbitrary couple of particles is se-
lected and their velocities are transformed following the collisional rule (1.35) in
d = 1. This model was applied by in 1999 [13] as a traffic flow model, and fur-
ther analyzed in [14]: essentially, it analyzes the dynamics of Maxwell molecules
in mean field case, i.e. disregarding spatial structure. In the homogeneous case
of zero total momentum (i.e. in the center of mass frame) the authors obtained an
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exponential decay of velocity moments, namely

〈vn〉 ∼ e−anτ , (1.68)

but with decay rates an 6= na2/2, arguing the presence of a multiscaling behav-
ior, namely that higher-order moments cannot be written as function of the sec-
ond moment. The authors in [14] consequently exclude the existence of a rescaled
asymptotic distribution P (v, τ)→ f(v/vT (τ))/vT (τ) in the long time limit. On the
contrary, it has been shown [6] that the rescaled distribution function

f(v/v0(τ)) = 2
π [1 + (v/v0(τ))2]2

(1.69)

is a physical asymptotic solution of Eq. (1.67) when considering inelastic hard rods
on a lattice. Since it has the form of a power law with f(c) ∼ c−4 for high c, mo-
ments 〈vn〉with n ≥ 3 diverge and therefore do not scale with the second moment.
Remarkably, the scaling velocity distribution form in (1.69) does not depend on
the restitution coefficient α: the dynamics is completely contained in the thermal
velocity v0(τ). Furthermore, Eq. (1.68) leads to a new version of Haff’s law (1.53)
for Maxwell molecules, namely

T (t) ∼ e−a2τ (1.70)

so that the temperature exponentially decays in function of the collisional clock τ .
Further studies have shown that the multiscaling behavior yields non-stationary
total energy fluctuations [51]

〈E2(τ)〉 − 〈E(τ)〉2

〈E(τ)〉2 = 1
N

[
A+B exp(2ζ2t)

]
(1.71)

whereE(τ) =
∑N
i=1 v

2
i (τ) is the total energy, 2ζ2 = 2a2−a4 andA andB depend on

the initial velocity distribution. Energy fluctuations vanish in the large-size limit
since they scale as 1/

√
N and so a thermal capacity can always be defined, but it

grows with time. This property will be discussed in Sec. 5.3 for the granular lattice
model introduced in Chapter 4.

A great deal of attention has been focused on Maxwell molecules over the last
years, because the simplification of Maxwell particles allows the derivation of sev-
eral analytical results. Lattice Maxwell models will be described in more detail in
Sec. 3.3.2, and will be one of the subject of this thesis analyzed in Chapter 4.
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Walk on, through the wind
Walk on, through the rain
Though your dreams be tossed and blown
Walk on, walk on
With hope in your heart
And you’ll never walk alone

2
Active Matter

This chapter is an introduction to the physics of active matter. In the first section 2.1
some active matter phenomena and physical systems will be reviewed, mainly dis-
tinguishing between living and non-living active matter. The second section 2.2 is
dedicated to physical models of active matter, introducing their essential ingredi-
ents and reviewing some of the most important and successful models. The last
section 2.3 investigates a possible comparison and symmetry between granular
and active matter, in the light of what has been presented in the first two chapters.

2.1 What is active matter

Many biological living units have the ability to move themselves in a fluid medium,
converting stored energy into kinetic energy by means of some biochemical pro-
cess: this is what we call an active particle. When considering physical systems,
one usually determines the motion of a particle through the resultant of the forces
acting on it, thinking at the particle as a passive unity; on the contrary, active par-
ticles typically generate on their own a force to attain a certain state of motion: this
force is called self-propulsion. Self-propulsion is made possible by the interaction
of the active particle with a substrate or a surrounding fluid: actually, the momen-
tum of an active unit is not conserved during its motion, but it must be so when
considering both the particle and the environment. For instance, human beings
are active particles: we convert our chemical energy stored as ATP into kinetic
energy through our muscular activity, being able to change our velocity intensity
and orientation, but we can do it only in presence of a reacting medium, i.e. when
walking on the ground or when swimming in the water, unless there is some mass
exchange acting like a jet propulsion, which will be disregarded here. This princi-
ple obviously holds for any kind of active particle that we will see below, such as
animals, bacteria, robots and so on.

When many active particles move together in a united system we talk about
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Figure 2.1. Several examples of collective behavior in living systems: (a) locusts, (b) army
ants, (c) golden rays, (d) fishes forming a vortex, (e) starlings flocking, (f) a herd of
zebra, (g) people walking in a street, (h) sheep hanging around [192].

active matter. In this case the particles are not just self-propelling themselves but
also interacting among them. Active matter can be observed in several circum-
stances in everyday life: bird flocks fly together in the sky; fish schools swim al-
most like a single object, defending from predators; sheep herds graze together,
and also human beings use to walk together in more or less crowded environ-
ments, see Fig. 2.1. The interactions between active particles give rise to collective
motion, i.e. individual units coherently move and form outstanding patterns and
shapes: this phenomenon is also known as flocking, a general notion standing for
the formation of order in an active matter system. Biological systems with active
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behavior are ubiquitous, and their complete review is far beyond the aim of this
thesis. Some reviews already exist [168, 135, 192, 12] where a wider and more de-
tailed outlook on active systems, phenomenology and models is given. A list of the
most experimentally studied systems includes macromolecules, bacteria colonies,
amoeba, cells, insects, fishes, birds, mammals and humans [192]. Furthermore, ac-
tive matter can be also composed by non-living units: actually, there exist several
systems [192, 12] where particles absorb energy from a substrate where chemical,
thermal or electrostatic gradients are induced; or where particles are activated by
some external field (typically the electromagnetic field); or where particles contain
stored energy that can be converted in kinetic energy; or finally where the walls of
the substrate are shaken and the asymmetry of the particles’ geometry induces a
self-propulsion mechanism [12]. The main goal of all these setups is to generate a
self-propulsion mechanism mimicking the self-propulsion characteristic of living
systems. In the last subsection 2.1.3 some of these systems are reviewed, like Janus
particles, nano-swimmers, simple robots or vibrated polar granular particles: the
latter represent a bridge between granular and active matter, which will be exam-
ined carefully. In Appendix C a collection of links to videos is reported to show
the experimental behavior of some discussed systems.

2.1.1 Active phenomenology

It is useful to introduce the typical phenomena of collective motion before present-
ing the most studied active systems: indeed, a quantitative characterization of col-
lective behavior is needed to analyze it and compare several phases and systems.
An important feature is the presence of phase transitions, which are expected in
active matter even though the system is out of equilibrium. Phase transitions oc-
cur when a macroscopic quantity named order parameter suddenly changes under
a variation of an external parameter, usually called control parameter. Typical ex-
amples of phase transitions at equilibrium are the condensation of a gas turning
into liquid or the spontaneous magnetization of a ferromagnet, both happening if
the temperature is decreased below a critical value. In these cases, the order param-
eters are respectively the mass density and the magnetization, while the control
parameter is the temperature. Liquid-gas transition is called a first-order transi-
tion, because the order parameter discontinuously changes at the critical point; on
the contrary, spontaneous magnetization is called a second-order transition, because
the order parameter continuously decreases with the temperature. What kind of
phases are observed in active matter, and what are the order parameters involved?

First of all, many active systems show swarming, that is when a macroscopic
fraction of the units move with the same orientation of the velocity. Such a state can
be reached in interacting systems where, after an interaction, the particles tend to
correlate their velocities aligning their orientations. An order parameter indicating
the presence of swarming is given by [192]

r = 1
Nv0

∣∣∣∣∣
N∑
i=1

vi

∣∣∣∣∣ (2.1)

where N is the number of the particles, v0 the average absolute velocity and vi the
velocity of the i-th particle. The swarming parameter r vanishes for disordered
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motion (uniform distribution of velocity orientations, particles go in all directions
as in a molecular gas) while r = 1 for perfect swarming, i.e. active units move
together in the same direction without fluctuations. The particles spontaneously
align their velocities in a given direction, breaking the continuous rotational sym-
metry of the system, similarly to what happens in the Heisenberg model of fer-
romagnetism. Here, the transition from disorder to swarming is governed by the
competition between an aligning mechanism and the noise of the process: while
aligning interactions force the system towards a swarming, ordered state (as fer-
romagnetic interaction in Ising or Heisenberg models), the noise given by self-
propulsion or interactions with the surroundings increases disorder. This compe-
tition will be clarified in Sec. 2.2.

The swarming state implies a strong correlation between the velocity orienta-
tion of the active units. Furthermore, even without formation of collective motion,
interactions of active units can give rise to a leader-follower behavior, consisting
in an asymmetric relation between units when the motion of unit i (the leader) an-
ticipates the motion of another unit j (the follower). This behavior can be observed
through the directional correlation function

cij(τ) = 〈vi(t) · vj(t+ τ)〉 (2.2)

quantifying the degree of correlation between the velocity of unit i and j after a
time delay τ , where the average 〈· · · 〉 is over the starting time t. The time τ∗ij at
which the directional correlation function shows a maximum is the time delay of
the particle j with respect to the motion of particle i. If τ∗ij > 0 one can identify the
unit i as the leader and j as the follower, and vice versa for τ∗ij < 0, recalling that
cij(τ) = cji(−τ) [192].

Another typical active phase is clustering: as discussed for granular materials,
also active systems can form clusters during their motion. Indeed, even in presence
of purely repulsive interactions, two colliding particles can get blocked by the per-
sistence of their motion. When a third particle collides with them, they grow into
a cluster which is attractive under certain conditions [12]. Particles become very
correlated because of continuous interactions between them. A measure of local
spatial ordering can be given by the radial distribution function g(r)

g(r) = V

4πr2N2

〈∑
i 6=j

δ(r − rij)
〉
, (2.3)

giving the unit density ρ at distance r from a particle placed at the origin, namely
ρ(r) = ng(r), being n the averaged number density n = N/V [192]. When a cluster
grows in a dilute system, the local density sharply increases and deviates from
n. The radial density distribution moves from a single-peaked to a double-peaked
shape, signaling the presence of a dense clustered region and a dilute region, which
is called a phase separation (see below) [77, 169]. An order parameter C can be
defined as

C = 〈Nc〉
N

(2.4)

where Nc is the number of units belonging to the larger cluster, so that C � 1
in absence of clustering and C → 1 when clustering is present [38]. Clustered



2.1 What is active matter 41

Figure 2.2. Clustering of self-propelled Janus rods. Top panel: snapshots of experimental
system where the projected orientations of the caps are resolved (red arrows). Bottom
panel: sketch of the self-trapping mechanism (left). Rotational diffusion is the only
way that particles have to escape from the cluster [38].

units can move together in the same direction, giving rise to a swarming state, or
form a static cluster where they ceaselessly collide and the excluded volume pre-
vent them to escape the cluster. In the latter case, self-clustering can lead also to
self-jamming [12]: particles get stuck together in one or more regions behaving
like a solid: they become able to support a shear, and a probe particle in the ac-
tive medium feels a dramatical increase of viscosity when moving from a dilute
to a jammed zone. The viscosity exhibits strong spatial fluctuations signaling the
presence of jamming.

Phase separation in active matter is the consequence of an intrinsically non-
equilibrium mechanism called motility-induced phase separation (MIPS), which
is absent for Brownian motion of particles at thermal equilibrium or for colloidal
particles without attractive interactions. It has been shown [171] that for some kind
of isotropic active particles one has a stationary one-particle distribution Ps(r,u) ∝
1/v(r), being u the velocity orientation and v(r) the space-dependent average
speed field, which is the effect of self-propulsion. Therefore, the local density ρ(r)
decreases as self-propulsion increases and one can define a constitutive relation
v(ρ). Slower particles tend to accumulate and MIPS arises when the decrease of
the speed with the density is steep enough to make an uniform suspension un-
stable, leading to a coexistence of an active motile gas with a dense liquid of low
motility [41].

Finally, as it has been stated in the Introduction, active systems are far from
thermodynamical limit, and therefore fluctuations play an important role in their
dynamics. A common phenomenon observed are giant number fluctuations (GNF):
for some systems of self-propelled units, the fluctuations of the number of particles
linearly scale with the number of units N of an increasing region, in contrast with
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classic fluctuations in equilibrium systems scaling as
√
N [168].

2.1.2 Living systems

There exist a plethora of active systems studied in the last decades by physicist
and biologists, exhibiting many other features beyond the ones above introduced;
the present section contains an overview of the most studied, specifying how the
phenomena explained above are actually observed in living systems.

• Bacteria: bacterial colonies are one of the simplest systems made of a large
number of interacting organisms and displaying a non-trivial macroscopic
behavior. Escherichia coli is one of the most studied bacteria since the ob-
servation of traveling bands when seeking an optimal environment [105].
Further studies observed the presence of collective motion patterns such as
super-diffusion, rotating and highly-correlated turbulent states.

The motion of E. coli has shown for the first time another important dynam-
ics, which is known as run-and-tumble motion [12]: bacteria follow a ballistic,
constant speed motion (run) until they suddenly change their direction of
motion (tumble), starting with another run in the new direction. This motion
has been studied in several models and will be described in Sec. 2.2.3.

Further experiments on a morphotype of Bacillus subtilis at high concentra-
tion showed the existence of a collective phase called “Zooming BioNemat-
ics” [49], where cells cluster move together in a swarming state at speeds
larger than the average speed of a single bacterium. Giant number fluctu-
ations are present. Some species spread very efficiently in a medium: this
ability has been investigated experimentally [197], and it has been found that
certain bacteria (Myxococcus xanthus) regularly reverse their direction, com-
ing back to the colony and thus walking against a density gradient. This

Figure 2.3. Collective dynamics of swimming B. subtilis cells.[49]
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behavior, a waste of energy and time at first sight, actually contributes to
the alignment of swarming cells, reducing the probability of collisions and
consequently the “active viscosity” of the medium.

• Fishes: fishes are commonly known to form shoals or schools, two different
collective behaviors. The former indicates when fishes aggregate together,
moving without a collective order (no swarming) and many species can be
included. In the latter, fishes coherently move in the same direction (swarm-
ing), and can be then considered a special case of shoal. A shoal can also
suddenly organize into a school and vice versa depending on the momen-
tary activity, such as escaping predators, feeding, resting or traveling [92].

Recording the trajectories of individual fishes in schools, both individual and
collective behavior have been studied. Depending on the density of units,
a transition from disorder to correlated motion has been found [11]. Also,
observations on Notemigonus Crysoleucas trajectories produced data about the
structure of the interactions in schools: the last don’t seem to be governed
by an alignment rule but rather by a speed regulation which is the crucial
ingredient of interactions, while alignment only modulates the strength of
speed regulation. Furthermore, it has been claimed that fish interactions are
not pairwise, but rather multiple-bodies interactions more suitable to explain
the observed dynamics [104].

Fish schools are a system of great interest for decision making processes into col-
lective motion, e.g. trying to understand if there is a leader fish or a kind of
consensus, and how the size of the school influence decision making. Some
experiments have shown the ability of groups of fishes to influence the entire
school, or that individual fish responded when a threshold number of con-
specifics performed a particular behavior (quorum responses). Nevertheless,
decision making and leader-follower behavior is still under debate.

• Bird flocks: birds flying together usually form spectacular flocks exhibit-
ing great order in their collective behavior, giving rise to highly-coordinated
motion patterns. These have been studied for thirty years, but in the last
decade the most important experimental observations have been carried out
on Sturnus vulgaris, European Starlings, observing flocks containing up to 2
600 units: tracking the position and velocity of each bird, it was possible to
reconstruct the dynamics of the network through the spatial distribution of
nearest neighbors of each bird, which is represented in Fig. 2.4b. In the same
experiment [8], it has been observed that birds interact with their 6-7 clos-
est neighbors - “topological interaction” - instead of those within a certain
distance - “metrical interaction”. Different kinds of interaction give rise to
different models, especially concerning the role of density in flocks. On the
contrary, further experiments concerning various species [37] suggested that
the range of interaction did not change with density. Further experiments fo-
cused on velocity correlations unveiled that these follow a power law decay
with a unexpectedly small exponent, meaning that every bird may have an
effective perception range much larger than the distance with its first neigh-
bors [42]. All these points are still under debate and further simulations and
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(a) Bird flocking and the representation of their 3d observed velocities.

(b) Angular distribution of the birds’ nearest neighbors. The distribu-
tion is strongly anisotropic and there is a lack of neighbors in the
direction of motion.

Figure 2.4. Bird flocks

observations are needed.

• Humans can be considered active matter as well. Indeed, when a large num-
ber of people are present, self-organization takes place: for instance in the
growth of settlements, traffic dynamics or pedestrian movement. At the
end of 90s some studies started using collective motion methods to describe
human behavior in these cases. Comparison between models and experi-
ments have been related to motion of human trail systems [91] and escape
panic [90], leading to possible prescriptions on architectural and urban struc-
tures to facilitate human motion and prevent accidents.

Further experiments focused on the role of consensus and leadership in hu-
man crowds, where a randomly chosen person had the goal of guiding the
group towards a random target without explicit communication: providing
none or some information about the presence of a leader, the group always
reached the target but with a less accurate motion when no information about
the leader where given, and with a high accurate motion when the group
knew of its presence (even without knowing its identity) [75].
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2.1.3 Non-living systems

As said before, active systems can be also realized out of biological context. A kind
of particles extensively studied in the field are Janus particles: their name come
from the two-faced roman God Janus, because they consist of particles made by
two or more parts having different chemical or physical properties. Thus, even a
spherical particle can break geometrical rotational invariance and when a particle
is at contact with the environment the different reactions on its surface generate
a net force acting as a self-propulsion [12]. Janus spherical particles can be made
for instance by a hydrophilic hemisphere separated from a hydrophobic one; in
Fig. 2.2 the cluster formation of Janus particles is shown.

Janus particles are a special kind of non-living active particles called artifi-
cial microswimmers, i.e. artificially generated particles exploiting some kind of
symmetry breaking to self-propel themselves. There are two main categories of
propulsion mechanisms: local conversion of energy (such as catalytic processes)
or driving by an external field (e.g. electric, magnetic, acoustic); it is important to
stress that there is a deep difference between particles that are internally driven
active matter and particles brought out of equilibrium by the action of external
fields: though there exist similar effective models describing both categories, they
show quite different microscopic details. An extended catalogue of such particles
has been reviewed in [12]. A category of artificial active systems made of macro-
scopic units are collective robotics, namely groups of robots moving on a plane
(and sometimes in a 3d region), able to sense obstacles, localize themselves with
respect to a static frame and broadcast information with the other units. The very
interesting feature of collective robotics is that interaction rules and individual be-
havior can be externally driven by humans, so they can represent a practical guide
to understand how collective behavior stems from individual propulsion and lo-
cal interactions. Also for collective robotics, several collective motions have been
classified, like marching, oscillations, wandering and swarming [177]. There is a
huge field of possible applications of collective robotics, such as localization of haz-
ardous emission sources, surveillance in hostile or dangerous places, optimization
of telecommunication networks. Last but not least, driven granulars have been
studied in the framework of active particles in the last decade. Actually, a granular
particle moving on a vibrated, rough plate feels the action of a mechanical driving
mechanism able to sustain its state of motion: this feature can be correctly inter-
preted as a self-propulsion mechanism. Experiments on vibrated granular rods

Figure 2.5. Orientational order in apolar granular rods: [149]
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Figure 2.6. Active phases in vertically vibrated granular rods. Left panel, pattern for-
mation: (a) nematiclike state, (b) moving domains of near vertical rods, (c) multiple
vortices and (d) large vortex. See [26] for experimental details. Right panel: phase di-
agram. All the realizations have frequency f = 50 Hz. Vortices appear for sufficiently
high density n and vibration amplitude Γ.

showed the presence of collective motion: when considering apolar, symmetric
rods, nematic order and persisting swirling have been found [149], together with
giant number fluctuations; moreover, varying the shape of granular rods several
patterns of orientational ordering have been found, see Fig. 2.5. Also vortices can
appear, when ordered domains made by nearly vertical granular rods coherently
swirl and grow in time (coarsening), depending on packing fraction and vibra-
tion amplitude [26] (see Fig. 2.6). Conversely, apolar rods (with a head and a tail)
have also been studied, displaying local ordering, aggregating at side walls and
clustering; when the shaking amplitude is increasing, a collective swirling motion
is observed [114]. Collective behavior and pattern formation in granular matter
has been reviewed in [3]. Many of these features suggested a comparison between
driven granular and active matter, at least from a phenomenological point of view
because of pattern formation, clustering, and so on. Experiments mostly concen-
trated on the shape of grains, arguing that an oriented shape (like rods instead of
disks or spheres) was necessary to create anisotropic relations and thus an aligning
mechanism. At the end of this chapter, it will be shown how this is not necessary
and that inelasticity can play a crucial role in collective dynamics.

2.2 Active models

Collective phenomenology introduced in the above section raised a series of ques-
tions about its theoretical description: as we saw, there are many kind of collective
motion exhibited by several living and non-living systems. Hence, a good mod-
elization of active matter is very difficult if one wants to replicate all the observed
features in a single, universal model, and it is rather preferable to seek for essential
ingredients of motion leading to the emergence of collective behavior. Statistical
mechanics is a powerful tool to develop a theoretical representation of active mat-
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ter: many models start from Brownian motion and add some prescriptions about
interactions and self-propulsion. These are the main ingredients of active matter
models and, before introducing the most established, it is useful to give a short
classification of active systems.

Active systems can be dense or dilute: in human made systems density is a
control parameter which can be easily tuned, but biological, self-organized systems
show characteristic densities that change their motion properties. Density affects
interactions and observed phases: indeed at higher densities the effect of excluded
volume gets more important, and self-trapping becomes more probable. Also, in
dense systems particles are more likely to interact continuously between the same
ones, and Molecular Chaos assumption - as stated in Eq. (4.14) - often does not
give a good approximation.

Interactions can also be produced by several different mechanisms, as it has
been described before, and have various physical features. Vicsek and Zafeiris
classified them as [192]

• physical, chemical, visual or medium-mediated

• isotropic or anisotropic, polar or apolar

• metrical or topological

• short or long-range

For instance, driven granulars collide between themselves (physical interac-
tion) while birds in flocks almost never do it, probably interacting through a visual
mechanism. Generally speaking, the shape and symmetries of the units affect the
typology of the interactions: for instance, granular rods are nematic and apolar
particles, while Janus spheres are isotropic and polar. Any combination of these
properties is possible, accounting for several possible interactions. It has been
shown that the notion of distance in collective motion is ambiguous: birds in a
flock seem to interact through a topological rather than metrical distance, as said
in Sec. 2.1.2. The case of medium-mediated or long-range interactions deserves
a specific consideration: until now, self-propulsion mechanism has always been
considered as a momentum and energy injection in a unity able to convert internal
energy into kinetic energy, or to generate a non-trivial motion in presence of exter-
nal fields. However, the role of surrounding medium (excluding external fields)
was generally neglected. Actually, neglecting external forces such as gravity active
particles can change their motion only by interacting with the surrounding fluid:
the total momentum of the fluid and the active unit does not change in the self-
propulsion reaction, because particles moving in some direction push the fluid in
the opposite one, as we do when we swim or we row on a boat. Particles generally
create a force dipole, which can have various shapes depending on self-propulsion
mechanism and propagates across the fluid, see Fig. 2.7, and reaches other units at
long-range distances [10, 135]. These are called hydrodynamic interactions and mo-
tivate two kinds of active models: dry or wet active matter. In the latter, it is not
always necessary to consider the coupled evolution of the swimmers and the sur-
rounding fluid, but one can consider the fluid as a mediator of interactions between
active particles, transmitted for instance by means of hydrodynamic waves. These
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Figure 2.7. Force dipoles in a fluid medium generated by microswimmers, namely called
(a) pushers or (b) pullers, depending on the polarity of their swimming mechanism:
purple arrows display the self-propelling forces [66].

particles are called microswimmers and have been reviewed in [66, 12]. It can be
summarized that in dry models self-propulsion is an individual force, which any
particle feels independently and momentum is not conserved; in the other hand,
in wet models the self-propulsion is always coupled with a momentum transport,
which propagates in the medium and is transmitted to surrounding particles, and
the total momentum is always conserved.

The role of equilibrium in active matter description and models is very im-
portant and currently under debate: it is physically clear that active matter is out
of equilibrium because of continuous energy dissipation and injection occurring in
the single active units, and that non-conservative interactions are acting. How-
ever, many studies on active matter use an equilibrium description, defining an
effective Hamiltonian, temperature and free energy leading to equilibrium phase
transitions [178, 23, 174, 152]. For instance, aligning interactions inspired a mod-
eling of birds flock as ferromagnetic models, inspired from Ising, Heisenberg or
XY models [57, 47, 82, 175, 147]. This approach is clearly motivated by the wide
and self-consistent progresses made by equilibrium statistical physics and critical
phenomena through the last century. However, its application needs some justifi-
cations: these have been studied in the very last years and related to the character-
istic time scales of the system. Indeed, if a scale separation is present between equi-
librium and out-of equilibrium mechanisms, a local equilibrium approximation can
be made to consider the local time behavior of the system as an equilibrium pro-
cess. In 2016, Mora et al. [147] studied the case of bird flocks using a ferromagnetic
model, driven out of equilibrium by network rearrangement, typical of active mat-
ter. The experimental comparison between the alignment relaxation time τr and
network rearrangement time τn showed that τr � τn, therefore interactions oc-
cur at almost fixed network: this result justifies a local equilibrium approximation
for the model purposed. Furthermore, few weeks before Fodor et al. published a
study with the aim of quantifying the non-equilibrium properties of an active mat-
ter model, namely the Active Ornstein-Uhlenbeck Particles model (see Sec. 2.2.4).
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In this model, active particles feel a self-propelling persistent velocity with a cor-
relation time τ : the authors have shown that the entropy production is of order
O(τ2) for small τ , and therefore argued that there exists a regime where direct
and reversed trajectories have the same probabilities, entropy production vanishes
and the system relaxes towards an effective Boltzmann distribution [78]. In both
cases, some specific models have been used to give a quantitative analysis of non-
equilibrium properties and justify the local equilibrium approximations made; a
general response about the limits of equilibrium properties in active matter is still
under investigation [137].

It is now evident that an active model is composed by two ingredients: a self-
propulsion mechanism and an interaction rule. Their qualitative properties, es-
pecially for interactions, have been overviewed in this paragraph; the following
paragraphs are dedicated to successful models that headed the study of active
matter in the last decades. It has to be stressed that self-propulsion and interac-
tions can be considered separately, and that the self-propulsion mechanism of a
model can be combined with the interaction rule of another model. So, two mod-
els of interactions will be introduced: the Kuramoto model and the Vicsek model,
respectively in Sec. 2.2.1 and 2.2.2. In further sections self-propulsion models will
be introduced. Any realistic model of active particles requires an implementation
of both ingredients.

2.2.1 Kuramoto model

Kuramoto model, introduced in 1975 [117, 118], is one of the most successful mod-
els describing collective synchronization of coupled rotators. Its success consisted in
an essential description of transition to order by means of “aligning” interactions,
tuned by the coupling strength as the control parameter of the system. A complete
review of the model can be found in [1]; for the need of this thesis, also the analysis
in [16, 17] is sufficient.

Consider a set of N coupled rotators of phase θj , with quenched random fre-
quencies ωj : the standard Kuramoto model dynamics is given by

θ̇j = ωj + K

N

N∑
k=1

sin(θk − θj). (2.5)

This evolution equation describes a system of overdamped rotators moving at a
fixed and random individual frequency ωj modified by a sort of elastic interaction
among all of them, with fixed intensityK/N : each rotator feels the phase difference
with other rotators as an attractive force to the synchronized state where θk = θj
for all j, k. The transition to synchronization can be analyzed in few steps: first, one
sees that the global motion of phases evolves through the deterministic equation

1
N

N∑
j=1

θ̇j = 1
N

N∑
j=1

ωj = Ω (2.6)

where the last equivalence defines the global frequency Ω: it is convenient to define
a sort of “center of mass” frame, where θ → θ − Ωt and ω → ω − Ω: evolution
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equation (2.5) is invariant under this translation and the new global frequency of
the system vanishes, i.e.

∑
j ωj = 0.

Synchronization can be observed through the complex order parameter

reiψ = 1
N

N∑
j=1

eiθj (2.7)

which is finite in the large size limit, defining the coherence r and the global phase
ψ. Their meaning is evident if one considers the swarming phase described in
Sec. 2.1.1: when r ≈ 0, rotators move with random, disordered phases and no
global order is observed; conversely, when r ≈ 1, rotators are locked to the same
phase oscillating with the same frequency and acting as a unique, giant rotator. By
means of the complex order parameter, evolution equation of the single rotator can
be written as

θ̇j = ωj +Kr sin(ψ − θj) (2.8)

where r and ψ generally depend on time.
In the large size limit, we call g(ω) the density of natural frequencies ωj , normal-

ized to one and assumed even for simplicity and symmetry reasons. The probabil-
ity distribution of the phase θ for an rotator of given frequency ω is called ρ(θ|ω, t),
and evolves according to

∂ρ

∂t
+ ∂

∂θ
[(ω +Kr sin(ψ − θ)) ρ] = 0 (2.9)

which stems from Eq. (2.8) and must be completed by the initial condition ρ(θ|ω, 0).
In the infinite N limit, the complex order parameter can be computed as

reiψ = 〈eiθ〉 =
∫ π

−π
dθ
∫ +∞

−∞
dω eiθρ(θ|ω, t)g(ω). (2.10)

The last equation has a stationary uniform solution ρ(θ|ω) = 1/(2π) for all values
of coupling constant K: the solution yields r = 0 and uniform distribution of
phases, i.e. no synchronization. Synchronized solutions can be found looking at
fixed points of Eq. (2.8): assuming r > 0 and ψ = 0 without loss of generality, if
|ω| < Kr one has a stable fixed point θ0 = sin−1(ω/Kr); otherwise, for |ω| > Kr
there are no fixed points. Therefore a stationary distribution of rotator’s phases
can be piecewise defined as

ρ(θ|ω) =


δ
[
θ − sin−1(ω/Kr)

]
|ω| < Kr

1
2π

√
ω2−(Kr)2

|ω−Kr sin θ| |ω| > Kr

(2.11)

where the second line is given by Eq. (2.9) with ∂t = 0. The coherence r can be
computed through Eq. (2.10), and the only non-vanishing term is the one for |ω| <
Kr [176]. So,

r =
∫ π

−π
dθ
∫ Kr

−Kr
dω eiθδ[θ − sin−1(ω/Kr)]g(ω). (2.12)
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(a) Coherence in function of time for tra-
jectories above and below the critical
coupling Kc.

(b) Steady-state coherence in function of
critical coupling K.

Figure 2.8. Synchronization in Kuramoto model [176]

The latter has a consistent solution only if

K > Kc = 2
πg(0) (2.13)

having assumed that frequency distribution g(ω) has a maximum in 0. Therefore,
Kc is the critical value of the coupling strength above which synchronization oc-
curs, see Fig. 2.8. If g(ω) is regular up to ω2 terms around ω = 0, the coherence
parameter scales as r ∼ (K −Kc)1/2.

Kuramoto model has been studied and generalized accounting for inertia of
rotators, friction force, non-uniform couplings Kkj and noise terms; the latter is
generally introduced adding a Gaussian White Noise (GWN) term ηj(t) to evo-
lution equation (2.5), with 〈ηj(t)〉 = 0 and 〈ηk(t)ηj(t′)〉 = 2Dδkjδ(t − t′). Noise
introduces a second control parameter competing with coupling strength K, be-
cause the former leads the system away from order while the latter is accounting
for synchronization: a more detailed discussion on oscillators phases and their lin-
ear stability can be found in [1].

2.2.2 Vicsek model

The Vicsek model is a milestone in the theoretical description of self-propelled
particles. Introduced in 1995 by Vicsek et al. [191], the model aims at reproducing
the self-ordering of active systems. The original model consists ofN point particles
moving on a periodic square cell of linear size L, with positions xj(t) and velocities
vj(t) of constant modulus v. Velocities are described only by their orientation θj(t)
and equations of motion in discrete time read

xj(t+ ∆t) = xj(t) + vj(t)∆t (2.14a)
θj(t+ ∆t) = 〈θ(t)〉R + ξj(t) (2.14b)

with ∆t = 1, being 〈θ(t)〉R the average direction of particles’ velocities within
a circle of radius R from the focusal particle j, which is included in the average,
namely

〈θ(t)〉R = tan−1
( 〈sin θ(t)〉R
〈cos θ(t)〉R

)
. (2.15)
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The term ξj(t) is a random number drawn with uniform distribution in the in-
terval [−η/2, η/2]. Since particles have no volume, without loss of generality the
interaction radius can be taken R = 1. The free parameters of the system are then
η (noise), ρ = N/L2 (number density) and v (speed, i.e. the distance run by a par-
ticle between two updates); self-propulsion is guaranteed by the constant speed
v. Varying the parameters η and ρ several phases can be observed - see Fig. 2.9.
Especially, at high density and small noise a global ordered swarming state arises.
Fixing the speed at v = 0.03, the authors looked at the swarming order parameter

va = 1
Nv

∣∣∣∣∣∣
N∑
j=1

vj

∣∣∣∣∣∣ (2.16)

and observed a non-equilibrium transition when the noise is reduced below a crit-
ical value ηc(ρ), or alternatively when the density is increased above ρc(η). The
transition is studied for several number of particles and gets sharper for large N ,
see Fig. 2.10. Thus, even in a non-equilibrium system as the one studied a phase
transition occurs which is quite similat to an equilibrium transition. From previous
results the authors argue that in the thermodynamic limit the swarming parameter

Figure 2.9. Snapshots of the Vicsek model with N = 300 particles: velocities are indicated
by a small arrow and trajectories for the last 20 time steps is shown by a short contin-
uous curve. Panels show (a) initial disordered configuration at L = 7 and η = 2.0, (b)
formation of coherent motion groups for small densities and noise, L = 25 and η = 0.1,
(c) randomly moving particles with some correlation for high density and noise, L = 7
and η = 2.0 and (d) collective swarming for high densities and small noise, L = 5 and
η = 0.1 [191].
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Figure 2.10. Swarming parameter va in function of noise η (left) and density ρ (right). In
left panel, density is kept constant and cell size is varied according to legend; in right
panel, noise is constant and cell size is L = 20 [191].

scales as

va ∼ [ηc(ρ)− η]β , va ∼ [ρ− ρc(η)]δ , (2.17)

defining the critical exponents β and δ. Numerical fits give β = 0.45 ± 0.07 and
δ = 0.35 ± 0.06. Combined results are the basis to build a phase diagram in the
plane η − ρ: the critical line has been numerically found as

ηc(ρ) ∼ ρκ (2.18)

with κ = 0.45± 0.05 [56].
A first application of Vicsek model has been the description of hydrodynam-

ics and vortex formation in bacteria colonies for the case of Bacillus subtilis [55].
Further analysis on the Vicsek model showed the presence of moving clusters, a
strong connection with XY model especially at low speed v � 1, and a similar
behavior when considering different shapes of the surface [57]; Vicsek model has
been enhanced and modified considering nematic (apolar) particles, adding cohe-
sion and introducing the role of surrounding fluid [47]. Moreover, a strong connec-
tion between Kuramoto and Vicsek model has been found, because the two models
show a similar bifurcation behavior under variation of control parameters [48]: in-
deed, synchronization in Kuramoto model is the equivalent of swarming in Vicsek
model. The success of Vicsek model is basically resumed in the sentence

We have chosen this realization because of its simplicity, however, there
may be several more interesting alternatives of implementing the main
rules of the model. In particular, the absolute value of the velocities
does not have to be fixed, one can introduce further kind of particle
interactions and or consider lattice alternatives of the model. [191]

Actually, Vicsek model is a very commonly used starting point to observe collec-
tive motion from microscopic behavior of self-propelled interacting particles, and
many subsequent models are variations of this one [192].
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2.2.3 Active Brownian Particles and Run-and-Tumble Dynamics

After having considered Kuramoto and Vicsek model as a starting point to intro-
duce ordering interactions in a system of active particles, the most used models of
self-propelled particles will be introduced. The goal of all the following descrip-
tions is to introduce a self-propulsion mechanism accounting for two properties

• keep the particle in a constant state of motion, avoiding cooling because of
dissipative collisions or interactions with the environment

• describe the changes of direction in particle’s motion.

In this section only dry particles are considered, which means that self-propulsion
does not conserve momentum as it has been discussed above.

Active Brownian particles (ABP) are one of the most general model of active
particles [12]: each unit is a Brownian particle performing active motion, generated
by internal energy storing or nonlinear velocity-dependent friction [170]. ABPs
equations of motion for a particle of unit mass m = 1 generally read

ṙ = v (2.19a)
v̇ = Fd(r,v)−∇U(r) + ξ(t) (2.19b)

where Fd(r,v) is a position and velocity-dependent dissipation force, U(r) an
external potential and ξ(t) a stochastic force acting on the particle. For Fd = −γv
and ξ(t) GWN satisfying the Einstein relation 〈ξα(t)ξβ(t′)〉 = 2γTδαβδ(t − t′), one
recovers the classical Brownian motion at equilibrium. On the contrary, a different
choice of dissipation is sufficient to have a self-propulsion force: a suitable choice
is to define a velocity dependent friction Fd = −γ(v)v, e.g.

γ(v) = −a+ bv2 = a

(
v2

v2
0
− 1

)
(2.20)

leading the particles to the stable fixed point v0 =
√
a/b: nonlinear friction accel-

erates the particle in its direction of motion for v < v0 and slows it down for high
speed v > v0. This velocity-dependent friction is called Rayleigh-Helmoltz friction.
An exact solution of Eq. (2.19b) without noise or external potential is given in Ap-
pendix B.1. Without noise or interactions, no changing of orientation is possible.
When the noise is Gaussian and white with variance 2D, the probability density
P (r,v, t|r0,v0, t0) of this process follows the Kramers’ Equation [80]

∂P

∂t
+ v · ∇P −∇U(r) · ∂P

∂v = ∂

∂v

[
γ(v)vP +D

∂P

∂v

]
(2.21)

which in the homogeneous case∇ = 0 (no spatial gradients) has a stationary solu-
tion

P0(v) = N exp[−Φ(v)/D] (2.22)

where Φ(v) is a velocity-dependent effective potential, namely Φ(v) =
∫ v dv′γ(v′)v′,

holding for a general choice of γ(v); for Rayleigh-Helmoltz viscosity, one has Φ(v) =
−a

2v
2 + b

4v
4. Depending on the sign of a particles motion is passive (a < 0) or active
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Figure 2.11. Stationary velocity distribution P0(v) (2.22) in the Cartesian plane for
Rayleigh-Helmoltz friction. Left panel: passive regime with a = −0.1. Right panel:
active regime with a = 1.0. In both cases b = 1.0 and D = 0.5 [170].

a > 0; active particles potential has the typical mexican hat shape, leading to a
continuous set of minima with speed |v| = v0, see Fig. 2.11; there is spontaneous
symmetry breaking in each trajectory where particles travel along a given direc-
tion, which is what one observes when looking at experiments and simulation on
swarming particles.

The stationary distribution in Eq. (2.22) has a limit value for the high dissipa-
tion regime: if b/D → ∞ while v0 =

√
a/b remains finite, the distribution con-

verges to a delta function
P0(v) = δ(|v| − v0). (2.23)

The latter applies when the relaxation time towards the fixed point v0 is extremely
small compared to the characteristic time of rotational diffusion. Therefore, parti-
cles can be considered at constant speed v = v0 and their motion is described by
the angular orientation θ(t). Two possible dynamics are angular diffusion [17] or
run-and-tumble dynamics [171, 178], frequently used to describe active systems,
especially for crowded environments such as bacteria colonies [12]. In the former,
the orientation evolves gradually, following a Wiener process with diffusion coef-
ficient DR, namely

θ̇ =
√

2DRξ(t) (2.24)

where now ξ(t) is a GWN of unit variance; on the other side, run-and-tumble dy-
namics consists of particles following a ballistic, straight motion and undergoing
instantaneous scattering events θ → θ + η at a rate λ per unit time, where η is a
random angular variable with distribution p(η). Both dynamics can be expressed
by the Fokker-Planck equation

∂P

∂t
+ v0e(θ) · ∇P = I[P ] (2.25)

where e(θ) is the unit vector in the direction θ and the functional I[P ] accounts for
diffusion rule, which for angular diffusion reads

I[P ] = DR
∂2P

∂θ2 (2.26)
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while for run-and-tumble dynamics one has [17]

I[P ] = −λP (r, θ, t) + λ

∫ +∞

−∞
dηp(η)P (r, θ − η, t) (2.27)

Both angular diffusion and run-and-tumble particles reproduce the tendency of
active particles to explore space by changing their orientation, for instance when
seeking nutrients. It is usual to read of active Brownian particles as a synonym of
angular diffusion motion. Angular diffusion is often used to describe the motion
of self-propelling Janus colloids, while run-and-tumble dynamics has been intro-
duced to describe the motion of E. coli bacteria [12]. It has been shown that, despite
the two models follow quite different microscopic dynamics, their diffusion prop-
erties for long times are equivalent [40]; an effective equilibrium regime has been
found and can be applied for both models if angular diffusion and tumbles act on
the same time scale [174].

2.2.4 Active Ornstein-Uhlenbeck Particles

Another interesting modelization of self-propelling particles is the Active Ornstein-
Uhlenbeck Particles model (AOUPs), introduced in the last years [109, 74, 130, 136].
Its simplest version consists of particles following the overdamped motion equa-
tion

ṙ = −µ∇U(r) + v(t) (2.28)

where µ is the mobility, U(r) an external or interaction potential, and v(t) a noise
term which is persistent rather than white in time, namely

〈v(t)〉 = 0, (2.29a)
〈vα(t)vβ(t′)〉 = δαβΓ(t− t′). (2.29b)

The memory term is often taken as Γ(t) = D
τ e
−|t|/τ . In this case, the noise v(t) is an

Ornstein-Uhlenbeck process [80], and the equation of motion (2.28) can be written
as

ṙ(t) = −µ∇U(r) + v(t) (2.30a)

τ v̇(t) = −v(t) +
√

2Dξ(t) (2.30b)

where ξ(t) is GWN of unit variance. AOUPs model is often called Gaussian Colored
Noise model (GCN). Motion persistence produces a self-propulsion mechanism; in
the limit τ → 0, memory effects vanish and Eqs. (2.30) reduce to overdamped
Brownian motion equations. Persistence time τ is driving the system out of equi-
librium, and can be considered as a distance from the latter [78]. An effective equi-
librium description can be developed also for AOUPs [109, 136]. The model has
been used to describe active colloids behavior [109] and motility-induced phase
separation [74]; moreover, it turned to be a useful approach to describe accumula-
tion of active particles around obstacles, i.e. walls, and a good approximation for
the pressure generated by active matter [130].

Looking at Eq. (2.28), it is fundamental to clarify that in this case ṙ 6= v: the
variable v is not the actual velocity of the units, feeling the action of potential U(r)
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Figure 2.12. Sample trajectories illustrating three kinds of active motion of a single parti-
cle: (a) angular diffusion dynamics, (b) run-and-tumble dynamics, (c) active Ornstein-
Uhlenbeck particle. The position of the particle (dots) is sampled every 5 s [12].

because of the overdamping, but rather an active velocity which represents an in-
ternal stochastic mechanism driving the particles to a certain speed and energy.
Actually, the active velocity becomes the physical velocity of the unit when no ex-
ternal potential or interactions are present, i.e. the unit is free to move with velocity
ṙ = v, so one may interpret the velocity v as an “intentional” velocity.

Although the discussed models have been developed to describe systems show-
ing different behaviors at a microscopic scale, it is tempting to find a unified de-
scription of their behavior at a mesoscopic or macroscopic scale; while angular
diffusion and run-and-tumble dynamics have shown an equivalent behavior at a
macroscopic scale, it is still under debate if AOUPs model shares the same macro-
scopic properties. [12].

2.3 Grains and active particles

In Sec. 2.1.3 it has been shown how granular matter has been used to produce sys-
tems of active particles, when energy dissipation is balanced through some driv-
ing mechanism. Some questions arise: can active particles and driven granulars be
considered two manifestations of the same physical phenomena? Is it possible to
build a unified theory describing both of them?

Experiments on polar or anisotropic vibrated granular particles have shown
the collective behavior illustrated in Sec. 2.1.3. To understand how granular colli-
sions can lead to collective motion even for apolar and isotropic particles, we now
consider the model of Grossman, Aranson and Ben Jacob [87]. In 2008, the au-
thors examined a model of self-propelled smooth disks of unit mass moving on
a 2d frictionless surface. Interactions between particles are inelastic and passive:
they actually are a variation of granular collision rule (1.15), allowing overlap be-
tween particles. The degree of inelasticity is measured by a restitution coefficient α,
analogously with granular collisions. At each time step, units also undergo a self-
propulsion force compensating energy lost during collisions; the self-propelling
force is constant in the direction of motion if v < 1, and vanishes for v > 1.

The model has been numerically studied under many conditions, varying the
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number of particles, the number density and the restitution coefficient. Also, both
reflecting and periodic boundary conditions have been implemented, and the model
has been simulated with different confined geometries (circular, squared and ellip-
tic). The main observation is the formation of vortices and collective migration
- swarming - depending on boundary conditions and physical parameters of the
system. In Fig. 2.13 the evolution of the swarming order parameter and snapshots
of the system displaying swarming formation are shown. Furthermore, when a
stochastic angular noise is added into motion equations - analogously to Vicsek
angular noise - the competition between noise and density yields an apparent first-

Figure 2.13. Evolution of Grossman et al. model [87] with periodic boundary conditions,
N = 1600 particles, number density n = 0.6 and restitution coefficient α = 0.93. Top
panel: time evolution of swarming order parameter 〈v〉 = 1

N

∣∣∣∑j vj
∣∣∣. Bottom panel:

snapshots of the system showing swarming formation. The letter of each snapshot
corresponds to the time indicated in top panel.
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order transition from disorder to swarming, as it had been observed by Vicsek et
al. [191].

So, even a system of isotropic and apolar particles without steering or sensing
capabilities has shown the presence of collective, ordered motion. The authors
claim that

[...] the results can be interpreted as if the inelastic interaction cou-
pled with the self-propagation serves the equivalent role of the tradi-
tional velocity alignment force in the biologically inspired agent mod-
els.[...]

The underlying reason why coherent motion is attained in our model
is that simple inelastic collisions between isotropic particles create an
increase in velocity correlation each time two particles collide. [87]

Therefore the inelasticity, increasing correlations between the particles, is playing
the role of an effective aligning force, because after inelastic collisions velocities
tend to increase their alignment (see Fig. 1.9). Active matter studies often dis-
tinguish between interactions with explicit or implicit alignment rule [192], where
repulsion - like in the above-examined model - is considered a non-aligning force.
This is true when considering elastic repulsion, but in the granular case the inelas-
tic collisions have the same effect of aligning interactions: once the self-propelling
force is increased enough to consider the speed v as a constant, the model of Gross-
man et al. is in every aspect a granular version of Vicsek model. In the last years,
experiments on vibrated granular layers confirmed and studied the presence of
collective motion for polar disks [195, 64] and a binary mixture of polar rods and
spherical beads [116].

Granular and active matter have been frequently associated and studied to-
gether. Indeed, the continuous energy injection and dissipation mechanisms un-
derlying their dynamics are quite similar, especially when considering bulk driven
granular matter - see Sec. 1.4.5. Granular and active matter share similar practical
applications, one of the most interesting being Brownian motors or ratchets [164, 12],
namely the possibility of building devices where the random motion of granular
or active particles is converted into directed, drifting motion of a bigger unit called
the motor, thanks to the asymmetry under time reversal characteristic of out of
equilibrium systems. However, while on one hand kinetic theory of granular mat-
ter has been developed in a systematic way in the last decades, on the other hand
a systematic and general kinetic theory of active matter is missing. A framework
where comparisons between granular and active matter can be done is the hydro-
dynamic description, which will be analyzed in the next chapter.
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3
Hydrodynamic description and lattice

models

When a fluid is flowing for instance under the action of gravity or a pressure gra-
dient, its motion can be described introducing the continuous hydrodynamic fields
such as density ρ(x, t), velocity u(x, t) and temperature T (x, t), measuring the local
mechanical and thermodynamical properties of the fluid at the position x and time
t. Hydrodynamic fields generally depend on time and space, and hydrodynamic
equations aim at describing their time evolution, affected by spatial gradients and
external forces.

Kinetic theory is the basis of hydrodynamic description. Although Euler and
Navier-Stokes hydrodynamic equations were derived through continuum mechan-
ics arguments, kinetic theory allows a derivation based on a clear separation of
time and space scales: indeed, hydrodynamics is well-defined if the typical length
of variation of the fields is much bigger than the mean free path of the particles
between two collisions. In this chapter, the classical derivation of elastic hydro-
dynamics will be given in the first section, 3.1.1; then, hydrodynamic descriptions
of granular matter - Sec. 3.1.2 - and active matter - Sec. 3.1.4 - will be overviewed.
Sec. 3.2 will be devoted to fluctuating hydrodynamics, namely a hydrodynamic the-
ory where the role of statistical fluctuations cannot be neglected as in classical hy-
drodynamics.

The second part of this chapter, Sec. 3.3, will be dedicated to the study of lat-
tice models. Actually, the formulation of hydrodynamics presents many technical
difficulties and needs many physical assumptions and approximations to derive a
consistent set of equations. On the contrary, lattice models developed in the last
decades can both describe hydrodynamic behavior and yield exact results also on
fluctuating hydrodynamics. For this reason, they have become a powerful tool in
nonequilibrium statistical mechanics, and have been a guide for the development
of this thesis.
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3.1 Hydrodynamics

3.1.1 Conservative interactions

Our starting point is the Boltzmann Eq. (1.32), which in presence of external forces
F reads

∂f

∂t
+ v · ∂f

∂r + F
m
· ∂f
∂v = Q(f, f) (3.1a)

Q(f, f) = C

∫
R3

∫
S+

(f ′f ′∗ − ff∗) |V · n̂|dv∗dn̂ (3.1b)

where the Enskog correction in (1.40) has been neglected and the probability den-
sity P (r,v, t) has been rescaled to give f(r,v, t) so that

n(r, t) =
∫
R3
f(r,v, t)dv (3.2a)

N =
∫
V

∫
R3
f(r,v, t)drdv (3.2b)

where N is the number of particles in volume V , and n(r, t) = 1
mρ(r, t) is the

number density with particles of massm. The collisional termQ(f, f) is equivalent
to the one introduced in Eq. (1.40), where the C factor includes Nσ2 and other
factors coming from the rescaling from P to f .

When considering a fluid flow on a macroscopic volume, the possibility of a
continuum description relies on the smoothness of the hydrodynamic fields, i.e.
the fields and their gradients must not diverge. This is possible thanks to the fact
that total density, momentum and energy of two particles are conserved during
collisions. Indeed, it can be proven [94] that if a generic observable χ(r,v) satisfies

χ1 + χ2 = χ′1 + χ′2 (3.3)

then the following relation holds∫
R3

dvχ(r,v)Q(f, f) = 0 (3.4)

where the primed variables indicate as usual the postcollisional observable. Thus,
multiplying Eq. (3.1a) by χ(r,v) and integrating by dv one gets∫

R3
dvχ(r,v)

[
∂f

∂t
+ v · ∂f

∂r + F
m
· ∂f
∂v

]
= 0. (3.5)

Integrating by parts and assuming that f(r,v, t) →
v→∞

0 and that external forces do
not depend on velocity, one gets the conservation theorem

∂

∂t
〈nχ〉+ ∂

∂r · 〈nvχ〉 − n
〈

v · ∂χ
∂r

〉
− n

〈
f · ∂χ

∂v

〉
= 0 (3.6)

where the average is performed over the velocities and is local in space and time,
namely 〈A〉 (r, t) =

∫
dvA(r,v)f(r,v, t) and f = F/m is the external force per mass

unit.
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Elastic collisions conserve density, momentum and energy, so one can take re-
spectively χ = m,mv, 1

2mv
2 or, equivalently, a combination of them. Introducing

the average velocity
u(r, t) = 〈v〉 (3.7)

and the temperature as (being always in d = 3)

kBT (r, t) = 1
3m

〈
|v− u|2

〉
(3.8)

the conservation theorem (3.6) leads to

∂ρ

∂t
+∇ · (ρu) = 0 (mass conservation) (3.9a)

ρ

(
∂

∂t
+ u · ∇

)
u = ρf −∇ · P (momentum conservation) (3.9b)

ρ

(
∂

∂t
+ u · ∇

)
T = −2m

3 (∇ · q + P : ∇u) (energy conservation) (3.9c)

where the following quantities have been defined

q(r, t) ≡ 1
2ρ
〈

(v− u) |v− u|2
〉

(heat flux) (3.10)

Pij ≡ ρ 〈(vi − ui)(vj − uj)〉 (pressure tensor) (3.11)

and it has been taken kB = 1. The term ∇u is the velocity gradient tensor of
components ∂ui/∂xj , and the : operator in Eq. (3.9b) is the scalar product between
tensors, namely P : ∇u ≡

∑
i,j Pij∂ui/∂xj .

Hydrodynamic equations (3.9) have only a formal value because heat flux and
pressure tensor are determined by the distribution function f(r,v, t), solution of
the Boltzmann equation. Since f is generally unknown, we need to make some
assumption about its behavior.

As it has been stated above, we expect the hydrodynamic fields to be almost
constant over microscopic length scales, which correspond to the mean free path λ.
Therefore, if L is a characteristic length of the macroscopic system, one expects that
there is a scale separation whether

Kn = λ

L
� 1, (3.12)

having defined the Knudsen number Kn, an adimensional parameter indicating the
validity of a hydrodynamic approach. In this limit, hydrodynamic equations (3.9)
can be closed assuming that heat flux and pressure tensor can be expressed in
terms of the uniform fields and their gradients, so [34]

q = −κ∇T, (3.13a)

Pij = pδij − η
(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij∇ · u
)
. (3.13b)

The last expressions define the hydrostatic pressure p and the transport coefficients
η and κ, respectively the shear viscosity and the thermal conductivity. Their values
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are unknown until we find a way to derive them from the Boltzmann Equation.
The pressure tensor P is the sum of a diagonal, isotropic part pδij and a symmetric
and traceless part, to the first order in the velocity gradients.

The pressure tensor and heat flux obtained can be placed back in Eqs. (3.9);
however, since we are introducing linearized terms with respect to the gradients
into exact equations, the perturbative approach must be carried out carefully. This
is done by the Chapman-Enskog procedure [46, 76]: the space scales separation
when ε � 1 1 physically means that a particle in volume of macroscopic size
∼ L will undergo an enormous number of collisions with other particles on the re-
gion, thermalizing to some local velocity distribution: the fundamental assumption
of Chapman-Enskog procedure is that macroscopic gradients scale with Knudsen
parameter, i.e. ∇ ∼ ε, ∇2 ∼ ε2 . . .. Therefore, the distribution function can be
expanded as

f = f (0) + εf (1) + ε2f (2) + · · · . (3.14)

where f (0) denotes the homogeneous unperturbed solution (no gradients), f (1) the
linear approximation with respect to field gradients, and so on. Obviously, the
zeroth order solution f (0) is the Maxwell-Boltzmann distribution, as will be proved
below.

Furthermore, the collisional invariants introduce a separation of fast variables
from slow variables: while velocities of the particles change abruptly during a col-
lision, conserved variables should change only over long scales of space and time.
Therefore, one assumes that Boltzmann Equation admits a normal solution

f(r,v, t) = f [v|n(r, t),u(r, t), T (r, t))] (3.15)

where the dependence in time and space comes from the hydrodynamic (slow)
fields, and the only fast variable is the velocity v. The normal assumption (3.15)
yields the time derivative

∂f

∂t
= ∂f

∂n

∂n

∂t
+ ∂f

∂u ·
∂u
∂t

+ ∂f

∂T

∂T

∂t
. (3.16)

The last equation can be approached because time derivatives of n = ρ/m,u and
T can be evaluated through Eqs. (3.9). Substituting the expression of pressure and
heat flux from (3.13) and marking the gradients with the corresponding power of
ε, one gets

∂ρ

∂t
= −ε∇ · (ρu) (3.17a)

∂u
∂t

= −ε
(

u · ∇u− f + 1
ρ
∇p
)

+ ε2
η

ρ

(
∇2u + 1

3∇ (∇ · u)
)

(3.17b)

∂T

∂t
= −ε

(
u · ∇T + 2

3np(∇ · u)
)

+ ε2G (3.17c)

where the external force has been assumed to be of first order in ε, consistently
with a conservative force, F = −∇φ. The term G reads

G = 2η
3n

[
∂ui
∂xj

∂uj
∂xi

+ ∂ui
∂xj

∂ui
∂xj
− 2

3 (∇ · u)2
]

+ 2κ
3n∇

2T (3.18)

1from now on we call ε the Knudsen number to be consistent with literature



3.1 Hydrodynamics 65

where the usual sum over repeated indices is implied.
When writing Eqs. (3.17), we retained only the first two orders in ε: this is the

so-called Navier-Stokes order of the hydrodynamic description. Adding ε3 terms,
one gets a next order description named Burnett order. Substituting Eqs. (3.17)
into (3.16), the time derivative of the distribution function is given as a series of
terms at several powers of ε. This behavior suggests the need for a multiple-scale
analysis, a procedure well described in [15]: assuming a scale separation also when
considering characteristic times of the system, the time derivative can be expanded
as

∂

∂t
= ∂(0)

∂t
+ ε

∂(1)

∂t
+ ε2

∂(2)

∂t
+ · · · . (3.19)

A rigorous derivation of the procedure can be found in [76]. The physical mean-
ing of multiple-scale analysis in this context is the requirement that the higher the
order of the space gradient, the slower the time variation it causes [34].

Thus, Boltzmann Eq. (3.1) can be perturbatively solved at each order, writing
a local Boltzmann equation (where the time and space dependence occurs only
through the slow fields, Eq. (3.15)) supplemented by hydrodynamic equations (3.9).
At first order, they read

∂(0)

∂t
f (0) = Q(f (0), f (0)) (3.20a)

∂(0)n

∂t
= 0 (3.20b)

∂(0)u
∂t

= 0 (3.20c)

∂(0)T

∂t
= 0 (3.20d)

Since all the fields are constant at this order, from Eq. (3.16) one has Q(f (0), f (0)) =
0; therefore, the homogeneous solution f (0) is the Maxwell-Boltzmann distribution

f (0) = n(0)[m/(2πmT (0))]3/2 exp
[
− m

2T (0) |v− u(0)|2
]

(3.21)

where n(0), u(0) and T (0) are in principle arbitrary functions of space and time,
satisfying the self-consistency equations

n(0) =
∫

dvf (0), (3.22a)

u(0) =
∫

dvvf (0), (3.22b)

T (0) =
∫

dv1
3 |v− u|2f (0). (3.22c)

which can be taken as the actual local hydrodynamic fields n(r, t), u(r, t) and
T (r, t) [76].
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Going at the next order in the expansion, one finds

∂(0)

∂t
f (1) +

(
∂(1)

∂t
+ u · ∇

)
f (0) = Q(f (0), f (1)) +Q(f (1), f (0)), (3.23a)

∂(1)ρ

∂t
= −∇ · (ρu), (3.23b)(

∂(1)

∂t
+ u · ∇

)
u = f − 1

ρ
∇p, (3.23c)(

∂(1)

∂t
+ u · ∇

)
T = −2

3(∇ · u)T. (3.23d)

The third equation is known as the Euler equation and for this reason this is called
the Euler order of hydrodynamics. Some remarks have to be done: first, Eq. (3.23b)
accounts for mass conservation at the first order. This is called continuity equation,
and it holds at any order. The Euler equation for the velocity is the equation for a
flow induced by external acceleration f and pressure field p in absence of viscosity.
The last can be derived at this order using the Maxwell-Boltzmann distribution,
and for dilute systems reads p = nT [94]. Finally, the fourth equation describes the
evolution of the temperature, and substituting∇ · u from Eq. (3.23b) one gets(

∂(1)

∂t
+ u · ∇

)(
ρT−3/2

)
= 0 (3.24)

which is the equation of state for an adiabatic transformation; indeed, at Euler
order the heat flux vanishes and the local evolution of the fluid is adiabatic. Finally,
when F = −∇φ is a conservative force, Euler equation gives the Bernoulli Equation
which holds for an inviscid flow [94]

∇
(1

2u
2 + 1

ρ
p+ 1

m
φ

)
= 0. (3.25)

The viscosity and heat flux can be recovered in the hydrodynamic equations
moving to the next order of the expansion; the first step is to derive the form of
f (1) from Eq. (3.23a) knowing f (0); the former accounts for spatial gradients and
through a quite long procedure leads to a closed expression of transport coeffi-
cients in terms of hydrodynamic fields [76]. For elastic hard spheres of mass m
and diameter σ, those read [34]

η = 5
16σ2

√
mT

π
, (3.26)

κ = 75
64σ2

√
T

πm
(3.27)

A remarkable result of hydrodynamic derivation of viscosity is that it doesn’t de-
pend on the density of the fluid, contrarily to our physical intuition.

The ε dependence in Eqs. (3.17) can now be reabsorbed into the gradients taking
ε = 1 and recovering the Navier-Stokes order of hydrodynamic equations, which
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finally read(
∂

∂t
+ u · ∇

)
ρ = 0 (3.28a)(

∂

∂t
+ u · ∇

)
u = f − 1

ρ
∇p+ ν

[
∇2u + 1

3∇ (∇ · u)
]

(3.28b)(
∂

∂t
+ u · ∇

)
uT = − 2

3np(∇ · u) + 2κ
3n∇

2T + 4η
3n

[
D : D− 1

3 (∇ · u)2
]

(3.28c)

where D is the symmetrized velocity gradient tensor Dij ≡ (∂xiuj + ∂xjui)/2 and
ν ≡ η/ρ is the kinematic viscosity.

The equations display the fundamental features of hydrodynamic behavior. In
the lhs it always appears the material derivative ∂t + u · ∇, representing the time
variation of hydrodynamic fields in a frame comoving with the local fluid stream
u. Therefore, Eq. (3.28a) implies that density is conserved along the streaming
lines because of incompressibility, ∇ · u = 0. The velocity equation (3.28b) is the
balance equation for velocity, corresponding to Newton’s law F = ma for a volume
element of fluid; the velocity Laplacian on the rhs is given by viscosity and leading
to velocity diffusion. In the temperature evolution equation (3.28c), the first term of
the rhs is responsible for temperature diffusion, and the equation actually gets back
to heat equation when the fluid is at rest, i.e. u = 0. The last term is increasing the
temperature when a shear (namely a velocity gradient) is present in a viscous fluid:
this phenomenon is called viscous heating and it is the consequence of frictional
effects dissipating kinetic energy into heat when the fluid is sheared.

3.1.2 Granular hydrodynamics

The successful results obtained on conservative hydrodynamics inspired the for-
mulation of granular hydrodynamics. Since kinetic theory has been consistently
defined for granular matter, the same approach can be implemented in the case of
inelastic collisions. The main difference consists in energy dissipation: mass and
momentum are still conserved by collisions while energy is not, then the conser-
vation theorem (3.6) cannot be rigorously applied to the latter. However, one can
always derive the continuity equations (3.9) simply by integrating over 1,v, v2;
while the equations for mass density and average velocity do not change, the evo-
lution of temperature now reads [34]

ρ

(
∂

∂t
+ u · ∇

)
T = −ζT − 2m

3 (∇ · q + P : ∇u) . (3.29)

The appearance of the term ζT , known as sink term, is given by the energy dissipa-
tion which is acting at the microscopic level during each collision. The parameter ζ
is the cooling coefficient already encountered in Sec. 1.4.3, which stems from the rhs
of Boltzmann Equation (3.1a) multiplied by mv2/2 and integrated over v, i.e.∫

dvmv
2

2 Q(f, f) ≡ −3
2nTζ (3.30)

yielding [34]

ζ(r, t) = πmσ2

24nT (1− α2)
∫

dvdv∗ V 3f(r,v, t)f(r,v∗, t). (3.31)
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The zeroth order Chapman-Enskog equations now read

∂(0)

∂t
f (0) = Q(f (0), f (0)) (3.32a)

∂(0)n

∂t
= 0 (3.32b)

∂(0)u
∂t

= 0 (3.32c)

∂(0)T

∂t
= −ζ(0)T (3.32d)

where the zeroth order cooling coefficient ζ(0) can be calculated through Eq. (3.31)
with the homogeneous distribution function f (0), which for a constant restitution
coefficient α reads

f (0) = n

v3
T

f̃ (0)
(v− u

vT

)
(3.33)

as in Eq. (1.41), yielding

ζ(0) = 2
√

2
3 nσ2µ2

√
T

m
(3.34)

where µ2 has been defined in Eq. (1.45), and the zeroth order of ζ naturally coin-
cides with the HCS result of Eq. (1.47). The Chapman-Enskog procedure can be
carried on exactly as before: the only difference from the elastic case of Sec. 3.1.1 is
the presence of the sink term and that the heat flux expressed in function of linear
gradients now reads

q = −κ∇T − µ∇n (3.35)

where the coefficient µ relates the heat flux with the density gradient and is non
vanishing only for α < 1, as well as cooling coefficient ζ [29]. All the transport
coefficients can be analogously computed for granular hydrodynamics: their ex-
plicit expressions, which can be found in [34], show that in the elastic limit α → 1
conservative hydrodynamics values are recovered.

This last feature is the qualitative difference between granular and elastic parti-
cles. Actually, energy dissipation occurs from the zeroth order of expansion, there-
fore one cannot assume a local equilibrium behavior of the system as stated above.
However, if the dissipation is small enough so that the cooling coefficient can be
compared with the gradients in Chapman-Enskog procedure, local equilibrium
can be recovered. This is known as the quasielastic limit and will be widely used in
Chapter 4. Finally, we can write the Navier-Stokes hydrodynamic equations sub-
stituting 3.29 and 3.35 in Eqs. (3.17), obtaining for a compressible fluid (∇ · u 6= 0)

(
∂

∂t
+ u · ∇

)
n = −n∇ · u (3.36a)(

∂

∂t
+ u · ∇

)
u = − 1

nm
∇p+ η

nm

(
∇2u + 1

3∇ (∇ · u)
)

(3.36b)(
∂

∂t
+ u · ∇

)
T = −ζT − 2

3np(∇ · u) + 2
3n

[
κ∇2T + µ∇2n+ η

(
2D : D− 2

3 (∇ · u)2
)]

(3.36c)
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3.1.3 Hydrodynamic instabilities and the HCS

As for conservative hydrodynamics, the equations for n, u and T are coupled and
nonlinear, therefore a solution can be found only under suitable conditions. When
a stationary solution is present, one can look at its linear stability. Linear stability
analysis is widely used in dynamical systems [44]: when a dynamical observable
is evolving under the evolution equation x(t) = F (x(t)), the dynamics can be lin-
earized around a fixed point x∗ such that F (x∗) = 0, so a perturbation near x∗

evolves as
d
dtδx(t) = λδx (3.37)

where x(t) = x∗ + δx(t) and λ = dF/dx|x∗ . Thus, the perturbation diverges when
λ > 0 (unstable fixed point) and vice versa vanishes when λ < 0 (stable fixed
point). For d > 1 case, Eq. (3.37) is a vectorial relation

d
dtδxi(t) =

d∑
j=1

Lijδxj(t) (3.38)

so one has to find the eigenvalues of the stability matrix Lij ≡ ∂Fi/∂xj |x∗ . The
fixed point x∗ is now stable if the real part of its eigenvalues is always negative [44].

The same linearization can be carried out for hydrodynamic equations (3.17):
hydrodynamic instabilities are an important research field in fluid dynamics, as
they have been introduced to describe the departure of hydrodynamics from a sta-
tionary state [119, 65]. In Appendix C the reader will find some links to videos de-
scribing the most studied. Looking at the granular case, one starts from Eqs. (3.36).
One of the basic granular states is, again, the HCS, which is known to be unstable
to linear perturbations [83]. Spatially dependent perturbation of the homogeneous
HCS read

n(r, t) = n+ δn(r, t) , u(r, t) = δu(r, t) , T (r, t) = THCS(t) + δT (r, t) (3.39)

where n = N/V is the constant and homogeneous number density, and THCS(t) is
the homogeneous Haff’s law from Eq. (1.53). As discussed in Sec. 1.4.3, the HCS
has no stationary state because of continuous energy dissipation, so one looks at
the rescaled hydrodynamic fields

ñ ≡ δn

n
� 1 ; ũ ≡ δu√

THCS(t)
, |ũ| � 1 ; T̃ ≡ δT

THCS(t) � 1 (3.40)

The mechanism of cluster formation, qualitatively explained in Sec. 1.3.1, is the
cause of homogeneous density instability. Furthermore, inelastic collisions are cor-
relating the particles, reducing the outgoing angle with respect to the incoming
angle of collision and yielding an aligning mechanism - see Sec. 2.3. This mecha-
nism accounts for vortex formation, which will be explained below.

The linear stability of hydrodynamic equations can be better analyzed in Fourier
space, defining the Fourier transform of a generic observable a(r, t) and its inverse
as

ak(t) = 1√
V

∫
dr e−ik·ra(r, t)

a(r, t) = 1√
V

∑
k
eik·rak(t)

(3.41)
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where V = L3 is the volume of the system, and k are the discrete wave vectors
k = 2π

L (nx, ny, nz), with ni ∈ Z. With all these transformations and changing the
time t into the mean collisional time τ(t) defined in (1.57), we get the linearized
equations [34]

∂ñk
∂τ

= −ik · ũk (3.42a)

∂ũk
∂τ

= 1
4ζ
∗ũk −

1
2 ik

(
ñk + T̃k

)
− η∗

[
k2ũk + 1

3k (k · ũk)
]

(3.42b)

∂T̃k
∂τ

= −1
4ζ
∗(T̃k + 2ñk)− 5

2k
2(κ∗T̃k + µ∗ñk)− 2

3 (ik · ũk) (3.42c)

where the coefficients ζ∗, η∗, κ∗ and µ∗ are the transport coefficients computed in
the HCS. Eqs. (3.42) can be written in a compact form as

∂Ψ
∂τ

= LΨ (3.43)

where L is the stability matrix defined in Eq. (3.38) and Ψ = (ñk, ũk, T̃k) is a five-
dimensional vector containing all the hydrodynamic fields. The eigenvectors Ψl

of the stability matrix are called hydrodynamic modes, where l = 1, . . . , 5: if their
corresponding eigenvalues λl(k) satisfy Re [λl(k)] < 0, the hydrodynamic mode is
stable, otherwise it is not. This analysis can be applied to any hydrodynamic state.

Looking at the HCS linearized equations (3.42), it is convenient to separate the
rescaled velocity into a longitudinal component ũ‖k = ũk · k/k and a transverse
component ũ⊥k = ũk − ũ‖k. Since

ik · ũ⊥k = 0 , ik · ũ‖k = ikũ
‖
k (3.44)

Eq. (3.42b) gives a decoupled equation for the transverse component

∂ũ⊥k
∂τ

=
(1

4ζ
∗ − η∗k2

)
ũ⊥k (3.45)

so the transverse velocity is a hydrodynamic mode with the eigenvalue

λ⊥(k) = 1
4ζ
∗ − η∗k2. (3.46)

The last equation gives the shear instability criterion in the HCS, revealing the exis-
tence of a threshold wavelength

k∗⊥(α) = 1
2

√
ζ∗(α)
η∗(α) ∝

√
1− α2. (3.47)

Thus, for short-wave perturbations (large k) shear modes are stable and decay
rapidly, while long-wave modes (low k) grow exponentially. The critical equa-
tion (3.47) leads to a critical value of the size L∗(α): indeed, since k ≥ 2π/L, the
instability arises only when the size of the system exceed a critical value

L∗(α) = 2π
k∗⊥(α) ∝

1√
1− α2

(3.48)
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Figure 3.1. Plot of the real part of the eigenvalues of the hydrodynamic modes in func-
tion of the wave vector k. The marginal values k∗⊥, k∗H and k∗S are shown, indicating
respectively the regions of stability of the shear mode, of the heat mode and of the
propagating sound modes [34].

depending on the restitution coefficient α, responsible for dissipation. Actually,
when the system size increases overL∗(α) unstable modes wavelengths are smaller
than system size and can be amplified by the dynamics of the system. The critical
values of k and L are coupled to α, and as expected the instability is absent for
α = 1; at fixed size of the system, one may recover unstable modes also increasing
the dissipation over a critical value α∗.

Shear instability is responsible for vortex formation: indeed, the shear creates
long-ranged waves of transversally aligned particles. When two shear waves cross
each other, particles on the x direction wave are moving in the y direction, where
they encounter the flux of the perpendicular shear wave and therefore they start
rotating their velocity. A clear representation of the phenomenon is given in [34].
It must be stressed that vortex formation is observed in the rescaled variables, i.e.
vortices are growing when compared with the thermal velocity vT (t), which is
decreasing with Haff’s law; they act on velocity scales rapidly decreasing, while
the total energy is decreasing because of collisions. Finally, the meaning of the
minimal size allowing the formation of structure is controversial and still object of
debate [34].

Cluster formation can be analyzed analogously, underlining that the rescaled
density ñ has a different physical meaning with respect to rescaled velocity and
temperature, because the homogeneous density is not decaying in time. From
the stability analysis of Eqs. (3.42), excluding shear modes which are indepen-
dent from the rest of the system, one finds three eigenstates corresponding to the
heat mode with real eigenvalue λH(k) and two sound modes of complex eigenvalues
λS1/2(k); their behavior is shown in Fig. 3.1. The heat eigenvalue λH changes sign
at k∗H(α), a new critical value below which a combination of density, temperature
and longitudinal velocity grow exponentially; therefore density grows exponen-
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tially and clustering is occurring. The critical value k∗H(α) yields another critical
size of the system. However, one has k∗H(α) < k∗⊥(α), so three scenarios are possi-
ble depending on the size of the system

• L < 2π/k∗⊥(α): no vortex or cluster formation. The HCS is stable

• 2π/k∗⊥(α) < L < 2π/k∗H(α): vortices are present, but no clusters. The shear
mode of maximum wavelength dominates the system. The HCS linearized
equations are no longer valid

• L > 2π/k∗H(α): vortices (sooner) and clusters (later) form. The final state is
strongly inhomogeneous

As it can be seen, the first instability observed when increasing the system size is
the shear instability: this observation will motivate the first model purposed in this
thesis, which will be analysed in Chapter 4.

3.1.4 Active hydrodynamics

Active hydrodynamics has not yet reached the same level of systematic develop-
ment of conservative and granular hydrodynamics. The main reason is that an
active kinetic theory is still under development, because of the relevant differences
between active particles and passive molecules. The interactions between active
particles and fluid can be very complex and strongly dependent on the considered
system [135]. Furthermore, as shown in Sec. 2.2, dry active systems do not conserve
their total momentum, and thus both energy and momentum do not obey the con-
servation law (3.5). In the last years some studies derived a Boltzmann Equation
for particular models of active particles, leading to a hydrodynamic description as
discussed above for the elastic and granular case [18, 19, 153].

The first attempts to derive an active hydrodynamics have been strictly con-
nected with the development of microscopic models such as Vicsek model. A
milestone of active hydrodynamics is the continuum field description of orienta-
tion density in an active fluid, introduced by Toner and Tu in 1995 [184, 185]. The
model is based on the continuum equations

∂ρ

∂t
+∇ · (ρu) = 0 (3.49a)

∂u
∂t

+ λ1(u · ∇)u + λ2(∇ · u)u + λ3∇(|u|2) = (3.49b)

αu− β|u|2u−∇P +DB∇(∇ · u) +DT∇2u +D2(u · ∇)2u + f

P = P (ρ) =
∞∑
n=1

σn(ρ− ρ0)n (3.49c)

where β, DB , DT and D2 are all positive, and f is a GWN force. A transition from
disorder to order is present when α becomes positive: indeed the first two terms
of the rhs are equivalent to the Rayleigh-Helmoltz friction described in Sec. 2.2.3,
and the equations have an homogeneous fixed point at density ρ0 and velocity
u =

√
α/β. The equations are not derived through a coarse-graining procedure

from a Boltzmann Equation as in previous sections, but rather wrote down as the
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most general continuum equations of motion for velocity and density consistent
with the symmetries ad conservation laws of the system, namely rotation invari-
ance and number of particles conservation [192]. On the contrary, Galilean invari-
ance doesn’t hold because of lack of momentum conservation: for these reason, in
principle all the convective coefficients λ in lhs are present, while in the Galilean
case one has λ2 = λ3 = 0 and λ1 = 1. The pressure P is expanded around the
uniform density ρ0, forcing the system to the uniform density case. The symme-
try arguments used to derive Eqs. (3.49) are very powerful; however, within this
approach the transport coefficients cannot be derived from microscopic dynam-
ics as we have seen in previous sections, and one must derive them from other
arguments.

The authors concentrated on the broken symmetry ordered phase with α > 0,
looking at the velocity component perpendicular to the direction of motion u⊥ and
the density fluctuations δρ = ρ − ρ0. By means of renormalization group method
they performed a scaling analysis leading to the scaling exponents of the model.
The analysis of the model is strongly supported by a comparison with ferromag-
netic models, especially XY model, with the big difference that the swarming tran-
sition breaks the rotational continuous symmetry also in 2d, which is forbidden in
short-range equilibrium systems [186].

Recently, a derivation of active hydrodynamics from kinetic theory has been
carried out by Bertin et al. [18, 19]. The authors derived a Boltzmann Equation for
a system of N pointlike particles, combining binary collisions mimicking Vicsek
interactions with run-and-tumble dynamics: when two particles are closer than
a given distance d0, their orientations change as θi → θ′i = θ + ηi, where θ =
Arg[eiθi + eiθj ] is the average orientation of the two particles, and ηi are identically
distributed, independent GWN with distribution p(η) and variance σ2. Boltzmann
Equation for this model reads

∂f

∂t
(r, θ, t) + e(θ) · ∇f(r, θ, t) = Idif [f ] + Icol[f, f ] (3.50)

which is the extension of Eq. (2.25) to the interacting case, where in the rhs the
diffusion functional Idif [f ] and the collision functional Icol[f, f ] account for run-
and-tumble dynamics and interactions, respectively. Following a coarse-graining
and scale separation procedure, the authors find the hydrodynamic equation for
momentum w ≡ ρv

∂w
∂t

+ γ(w · ∇)w = −1
2∇(ρ− κw2) + (µ− ξ)|w|2)w + ν∇2w− κ(∇ ·w)w (3.51)

recovering several features observed in Toner and Tu Eq. (3.49b). The kinetic
model allows the computation of transport coefficients from microscopic parame-
ters. Again, the homogeneous disordered and ordered phase are present, respec-
tively when µ < 0 and µ > 0; the authors recover a noise-dependent threshold
density ρ∗(η) above which the ordered phase becomes stable under homogeneous
perturbations, showing the transition to collective motion. Taking into account
space-dependent perturbations, the homogeneous disordered state is found to be
stable for any ρ < ρ∗. On the other hand, the homogeneous flow state is unsta-
ble for long-wave longitudinal fluctuations near the transition line, while it gets
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stable at high densities ρ � ρ∗: this phenomenon is called restabilization, a deli-
cate result because in this region the system is far from the validity domain of the
hydrodynamic description [19]. The linear stability must be analyzed through the
Boltzmann Equation, which confirms the stability for high densities, an interesting
result because it shows how hydrodynamic equations are predictive beyond their
validity domain. An agreement with numerical simulations of agent-based models
has been found [19]. This model was further analysed and modified in [97], where
multibody interactions have been reintroduced following Vicsek model’s scheme:
this correction allowed to recover the phase diagram of Vicsek et al. in the contin-
uum mode. Finally, these studies proved that Toner and Tu theory is actually the
continuum limit of Vicsek model under a suitable choice of transport coefficients,
confirming the generality claim in the formulation of the model.

In the last years, active hydrodynamics models have been developed also from
overdamped, microscopic Langevin equations leading to Smoluchowski dynam-
ics for the density function and then to hydrodynamic equations in the coarse-
grained case. Studying the density ρ, momentum w and alignment tensor Q =
ûû − 1

d I [135, 9, 174, 89], similar results have been found with respect to above-
mentioned models, typically differing in transport coefficients because of the mi-
croscopic rules defining the model. A rich variety of models is still under develop-
ment and debate; in Chapter 6, it will be shown how an hydrodynamic description
of active matter can be derived from microscopic rules, reproducing on a lattice the
kinetic behavior of active particles in the case of a dilute system with short-range
interactions.

3.2 Fluctuating hydrodynamics

Hydrodynamic theory described in the last section is deterministic: hydrodynamic
fields are averaged quantities and fluctuations are not observable when the num-
ber of particles in a fluid volume element is very large (for instance of the order
of Avogadro’s number). However, we know that granular and active matter are
small systems, and the number of active units or grains generally is in the range
102 ÷ 104. This means that fluctuations become measurable: their description is
the goal of fluctuating hydrodynamics. To do this, one generally can write hydro-
dynamic deterministic equations as in the previous section and add a noise source
directly in the equations.

In general, noise can be thought as the result of a coarse-graining of the system.
For instance, for a conservative system with Hamiltonian H(p,q) one can include
the effect of an external reservoir adding a noise and dissipation term, i.e.

q̇ = ∂H

∂p

ṗ = −∂H
∂q − γp + ξ(t)

(3.52)

where ξ(t) is a GWN satisfying 〈ξα(t)ξβ(t′)〉 = Dδαβδ(t−t′). For a canonical Hamil-
tonianH = p2/2m+V (q), the probability distribution f(q,p; t) follows the Fokker-
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Planck equation

∂f

∂t
= − ∂

∂q ·
( p
m
f

)
+ ∂

∂p · [(∇V (q) + γp) f ] + D

2
∂2f

∂p2 (3.53)

which under a change of variables leads to the Kramers’ Equation [80]. The noise
and friction term generally stem from fast variables with respect to Hamiltonian
coordinates p and q. So, dissipation and noise comes from the same coarse-graining
mechanism, and at equilibrium they are related by Einstein relation, which in this
specific case reads D = 2mγkBT . This crucial relation between diffusivity and
mobility provides that the Boltzmann distribution f(p,q) ∼ exp[−H(p,q)/kBT ]
is a stationary solution of Eq. (3.53). Therefore, if Einstein relation is satisfied fluc-
tuations can be reintroduced into Hamiltonian dynamics leaving the equilibrium
Boltzmann distribution unchanged.

The procedure described above relies on the fluctuation-dissipation relations be-
tween linear response of an observable to a perturbation and its autocorrelation in
time [138]. It must be stressed that the particular relation depends on the coarse-
graining applied: indeed, viscous friction −γp acts instantaneously on the parti-
cle without any memory effect of its trajectory; when memory effects are present,
the noise ξ must be modified as well to recover the equilibrium Boltzmann distri-
bution [112]. The main idea of Landau-Lifschitz fluctuating hydrodynamics is the
following [119]: given the deterministic hydrodynamic equations ∂tΨ = F [Ψ],
being Ψ(x, t) the vectorial density, momentum and temperature field and F the
deterministic average hydrodynamic evolution operator, the fluctuating equations
should be written

∂tΨ(x, t) = F [Ψ(x, t)] + ξ(x, t). (3.54)

where the deterministic hydrodynamic operator F is taking into account only the
average, deterministic terms and all the fluctuations are contained in ξ. Now, F
already defines dissipative terms such as viscosity and heat diffusion: therefore,
in the case of conservative interactions one may directly introduce a Gaussian
noise ξ which correlation properties are determined by equilibrium fluctuation-
dissipation relations, avoiding the ambiguity of the coarse-graining described above.

For out of equilibrium systems, the situation is more complicated because the
distribution function is generally unknown and differs from Boltzmann distribu-
tion. This lack of information removes the constraint on noise definition. Thus,
nonequilibrium methods are necessary to derive the correct fluctuations at a meso-
scopic scale.

In 1969, a seminal paper of Bixon and Zwanzig [24] introduced the Boltzmann-
Langevin Equation: the one-particle distribution function is written as

f(x,v; t) =
N∑
j=1

δ(xj(t)− x)δ(vj(t)− v) (3.55)

where xj(t) and vj(t) are the position and velocity of the j-th particle in the system,
with j = 1, . . . , N . The field f is a dynamical, fluctuating observable, which aver-
aged over initial conditions give the one-particle marginalized distribution defined
in Eq. (1.28), which we here call f . Thus, the distribution deviation φ = (f − f)/f
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in linear approximation evolves through a Boltzmann-Langevin Equation, namely
a Boltzmann Equation modified by some noise term

∂φ

∂t
+ v · ∇φ− Jφ = F (r,v, t) (3.56)

where J is the linearized collision operator and F a random noise term, whose av-
erage over initial conditions must vanish. The noise term is an effective term coming
from the contribution of 2-particles distribution F2(x1,v1,x2,v2; t): its contribu-
tion is an effect of the second equation of Boltzmann hierarchy. Velocity moments
of Eq. (3.56) lead to hydrodynamic equations through the usual Chapman-Enskog
procedure, but the pressure tensor and heat flux are now written as a sum of a
deterministic and a fluctuating component. At equilibrium, the averaged distribu-
tion is the Maxwell-Boltzmann distribution f = fMB and the Einstein relations are
recovered, validating Landau-Lifschitz theory.

The work of Bixon and Zwanzig inspired the study of fluctuating hydrody-
namics in inelastic materials. Indeed, when equilibrium doesn’t hold, kinetic the-
ory is the starting point to obtain macroscopic predictions from microscopic fea-
tures. Fluctuating hydrodynamics has been applied to the case of granular ma-
terials [30, 164]. Generally speaking, the deviation of microscopic density leads
to deviation in any general hydrodynamic field ψ(x, t), which can be written as
ψav(x, t) + δψ(x, t), separating the average term ψav(x, t) from the zero-average
fluctuations δψ(x, t). The latter follow a generalized Langevin equation: its so-
lution leads to the correlation properties of hydrodynamic fluctuations, namely
〈δψ(x, t)δψ(x′, t′)〉.

To see a real example, let’s focus on the shear mode, a particular hydrodynamic
mode [164]. The fluctuating transverse velocity field in Fourier space is defined as

u⊥(k, t) ≡
N∑
j=1

vy,j(t)e−ikxj(t) (3.57)

where k is the wave number of the mode, xj(t) is the x-coordinate and vy,j(t) is the
y-velocity of particle j at time t. The shear mode is the analytically simplest mode,
as it has been shown to decouple from other modes in linearized hydrodynamics.
We aim at describing the rescaled autocorrelation function

C⊥(k, t) ≡ 〈u⊥(k, 0)u∗⊥(k, t)〉
2T (3.58)

where u∗⊥ is the complex conjugate of u⊥ and T is the (isotropic) temperature of
the system, corresponding to room temperature for elastic fluids or granular tem-
perature for granular materials. Both equilibrium case and HCS can be studied. In
the former, the Landau-Lifschitz fluctuating hydrodynamics predicts the stochastic
equation

∂

∂t
u⊥(k, t) = −νk2u⊥(k, t) + ξ(k, t) (3.59)

where ν is the kinematic viscosity. Einstein relation corresponds to〈
ξ(k, t)ξ(k′, t′)

〉
= δk,−k′δ(t− t′)2TNνk2 (3.60)
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which are of orderN because u⊥ is an extensive field, so the noise associated to the
intensive field u⊥/N is scaling as 1/N . Eq. (3.59) leads to

C⊥(k, t) = N

2 e
−νk2t (3.61)

In the inelastic case, the evolution equation for transverse velocity can be writ-
ten as

∂

∂t
u⊥(k, t) = −ν(T (t))u⊥(k, t) + ξ(k, t) (3.62)

Here, the temperature is decaying following Haff’s law, so noise correlations must
be time-dependent. as well. A first approximation can be derived using the granu-
lar temperature instead of the room temperature, and writing an Einstein relation
in the granular case [189]. The evolution equation for rescaled fields, Eq. (3.45), can
be written as

∂

∂τ
ũ⊥(k, τ) = −z(k)ũ⊥(k, τ) + ξ̃(k, τ) (3.63)

with z(k) = qk2 − ζ/2, where q = ν(T (t))/ωc(T (t)) is the time-independent ra-
tio between kinematic viscosity and collision rate, and ζ is the cooling coefficient,
from T (τ) ∼ exp(−ζτ). The coefficient z(k) is now constant and so are noise corre-
lations. Analogously with the equilibrium case, one can now write〈

ξ(k, t)ξ(k′, t′)
〉

= δk,−k′δ(t− t′)2TNqk2 (3.64)

where T is now the granular temperature The HCS is stable for z(k) > 0: for stable
modes, with this choice of the stationary autocorrelation reads

C⊥(k, τ) = N

2
qk2

z(k)e
−z(k)τ (3.65)

which in the elastic case ζ = 0 is equivalent to the equilibrium correlation in (3.61).
This result has been obtained following the physical intuitive analogy between

granular temperature in granular fluids and physical temperature in molecular
fluids, and assuming the validity of a local Einstein relation. However, a rigorous
derivation of noise correlations must follow the Boltzmann-Langevin derivation
described above. In this case, noise correlations can be computed and give [30]〈

ξ̃(k, τ)ξ̃(k′, τ ′)
〉

= δk,−k′2Nk2G(|τ − τ ′|) (3.66)

where G(s) 6= δ(s). So, memory terms are present and confirmed by numerical
simulations. The stationary autocorrelation is no longer a simple exponential, but
it has an exponential tail for long times: Eq. (3.63) with the above prescription leads
to

C⊥(k, 0) = N

2
q1k

2

z(k)

C⊥(k, τ) = N

2
(q1 + q2)k2

z(k) e−z(k)τ τ � 1
(3.67)
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where q1 and q2 have been computed in [30]. The time-dependent expression is
valid after a transient, indeed the value at τ = 0 is not the limit of the time-
dependent expression. In the elastic limit ζ → 0, q1 → q and q2 → 0, so the equi-
librium result of Eq. (3.61) is recovered. While the initial value and transient are
different, for long times the correlations derived from kinetic theory get the same
temperature decay of correlations derived with the Einstein-Landau prescription
in Eq. (3.64). This result confirms that the latter is a good approximation for long
times correlations, while memory terms observables for short times can be ob-
tained through kinetic theory. Einstein-Landau prescription is predictive also in
the case of driven granular gases, both for bulk [190] or boundary driving [52].
Numerical results are in fair agreement with the theory, and again the Einstein-
Landau approach has been recovered as a limit of kinetic derivation. The case
of a bulk driven granular medium including external viscosity has been analyzed
theoretically [166, 85] and experimentally: it has been shown that this is a good
description of a quasi-2d vibrated granular on a horizontal plate [86].

The shear mode is one of the simplest cases of fluctuating hydrodynamics, be-
cause it is decoupled from the others and then can be treated individually; nev-
ertheless, this “simplicity” leads to complicated analytical calculations. Heat and
sound modes are coupled and the derivation of fluctuating hydrodynamics from
kinetic theory is a very hard challenge. For this reasons, further methods to de-
scribe fluctuating hydrodynamics are an important goal in current research.

Hydrodynamic fluctuations have been studied in the last years also in the
framework of Macroscopic Fluctuation Theory (MFT), which has been derived to
describe macroscopic fluctuations of hydrodynamic quantities in non-equilibrium
steady states (NESS) [20, 21]. The general procedure considers a hydrodynamic
density field ρ(x, t) and its associated current j(x, t), satisfying

∂tρ+∇ · j = 0 (3.68a)
j(x, t) = J([ρ]; x, t) (3.68b)

respectively the continuity equation and the constitutive relation for the current j
depending on the field ρ and eventually on time and space through the functional
J. For driven diffusive systems, the latter generally reads

J([ρ]; x, t) = −D(ρ)∇ρ+ χ(ρ)E(x, t) (3.69)

defining the diffusivity D(ρ) and the mobility χ(ρ) under the action of an exter-
nal field E(x, t). Under these assumptions, one can compute the probability of a
trajectory (ρ, j) between time t0 and t1 as

Pρ0 ≈ exp[−ε−dI[t0,t1](ρ, j)]

I[t0,t1](ρ, j) = 1
4

∫ t1

t0
dt
∫

dx [j− J([ρ]; x, t)] · χ−1(ρ) · [j− J([ρ]; x, t)]
(3.70)

where ε� 1 is an adimensional parameter such that ε→ 0 whenN →∞, whereN
is the number of particles of the system, and trajectories are constrained to satisfy
continuity equation (3.68a) and initial condition ρ(t0) = ρ0. The rate functional
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I[t0,t1](ρ, j) acts as a large deviation functional [193], and the average hydrodynamic
field and current correspond to the optimal path ρav(x, t), jav(x, t) defined by

min
(ρ,j)
I[t0,t1](ρ, j) = I[t0,t1](ρav, jav). (3.71)

The theory derives back the deterministic hydrodynamic equations and obtains
the hydrodynamic fluctuations beyond the linear approximation which has been
used in the previous part of the section, necessarily leading to Gaussian fluctu-
ations. The theory represents also a bridge between nonequilibrium fluctuation
relations [79, 101, 123, 138], stochastic thermodynamics [172] and hydrodynamic
theory.

MFT ha been recently applied to study fluctuating hydrodynamics of active
systems, when comparing ABP and Run-and-Tumble dynamics [174] or investi-
gating lattice models of interacting bacteria [181]. MFT found a successful field
of application in lattice models, where a derivation of macroscopic hydrodynamic
equations (3.68) from microscopic dynamics can be done in a transparent and rig-
orous way [62]. Lattice models have actually developed in the last 40 years as
a tool to investigate several out-of-equilibrium processes, deriving their essential
macroscopic features from minimal microscopic dynamics. The most important
lattice models will be reviewed in the following of this chapter, as they have been
a guide to introduce the granular and active lattice models in Part II which are the
fundamental result of this thesis.

3.3 Lattice Models

Lattice models have been widely used in statistical physics in the last century be-
cause of the great simplifications that they introduce and consequently the possi-
bility of many analytical calculations. The most famous lattice models have been
developed for equilibrium systems, especially describing ferromagnetic behavior
as in Ising, Heisenberg or XY model. Nevertheless, these models introduce an uni-
versal behavior and they can be adopted to describe several physical systems, such
as lattice gases and binary alloys [94]. The reason of their success is the capability
to reproduce complex physical behavior such as phase transitions by means of few
essential, microscopic rules and yielding new theoretical predictions; furthermore,
the investigation on lattice models usually doesn’t need equilibrium assumption
but rather relies on microscopic dynamics of the system. Therefore, the analysis
is generally developed out of equilibrium, recovering the equilibrium case by a
suitable choice of boundary conditions [140].

A plethora of lattice models have been developed in the last years, and a sin-
gle model can lead to many others simply through a slight variation of its rules.
Here a selection of the most significant models is presented, starting in Sec. 3.3.1
from the Kipnis-Marchioro-Presutti (KMP) model describing heat conduction in a
chain of harmonic oscillators, and the simple exclusion processes (SEP) describing
the diffusion of hopping particles on a linear chain. Both these models have con-
servative interactions and can be either in or out of equilibrium, depending on the
boundary conditions. Subsequently, in Sec. 3.3.2 the case of dissipative models will
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be introduced, for which inelastic interactions necessarily drive the system out of
equilibrium.

3.3.1 Conservative models

In 1982, Kipnis, Marchioro and Presutti introduced a lattice model to describe the
time evolution and heat flux of a linear chain of L mechanically uncoupled oscilla-
tors coupled with two thermal reservoir at both extremities [108]. A configuration
of the system is given by {qi, pi}, i.e. the set of coordinates and momenta of all the
sites, with i = −L, . . . , L. The energy at each site reads εi = q2

i + p2
i . The system

undergoes a stochastic evolution: at each discrete time step, two nearest-neighbors
sites are chosen and exchange their energy redistributing it randomly, namely

ε′i = p(ε′i − ε′i+1) , ε′i+1 = (1− p)(ε′i − ε′i+1) (3.72)

so that the microscopic evolution conserves the total energy. At sites i = ±L the
oscillators thermalize with the reservoirs at temperatures T+ (+L) and T− (−L), i.e.
they exchange energy with oscillators having a random energy with corresponding
Boltzmann distribution.

The authors derive a mathematically rigorous expression for the evolution equa-
tion of the energy distribution P ({ε}, t), and prove that in the stationary limit it
converges to the local equilibrium distribution

f(ε;x, t) = 1
kBT (x)e

−ε/kBT (x), (3.73)

where f is the one-site distribution and P ({ε}, t) =
∏
x f(ε;x, t), x is the site index

x = i/L ∈ [−1, 1] which is continuous in the hydrodynamic limit L→∞, and T (x)
the temperature profile

T (x) = T−
1− x

2 + T+
1 + x

2 . (3.74)

So, after a transient time the oscillators have thermalized and developed a tem-
perature profile depending on bath temperatures. Although the system is out of
equilibrium for T+ 6= T−, the local equilibrium holds exactly for the system.

The heat flux q can be defined as the energy transferred from oscillator i to i+1,
and therefore it is a stochastic quantity. Its average behavior can be written as

qi(t) =
∫ ∞

0
dLεP ({ε}, t)

∫ 1

0
dp [εi(t)− p(εi(t) + εi+1)] , (3.75)

therefore, in the steady state local equilibrium holds and one has

q(x) = −kB2
dT
dx (3.76)

which is the Fourier’s law with diffusion coefficient D = kB/2. The stochastic en-
ergy current can be generally defined as J(x, t) = q(x, t)+ξ(x, t), and the evolution
equation of the local energies can be written as

∂tε = −∂xJ(x) = −∂x(−kB2 ∂xε+ ξ) (3.77)
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Figure 3.2. A sketch of the SSEP model [62]

which is the fluctuating hydrodynamics equation for the energy field ε(x, t), namely
a stochastic diffusion equation. Now, the noise amplitude and correlations can be
computed directly through the local equilibrium distribution in (3.73); moreover,
noise appears in the current in Eq. (3.77), which is a continuity equation also at a
stochastic level, because energy conservation exactly holds in microscopic interac-
tions, and mesoscopic equation (3.77) must respect it.

The model has been a milestone for lattice models of nonequilibrium statisti-
cal physics, since it shows how fundamental features such as heat diffusion can
be rigorously recovered from lattice models, and the nonequilibrium probability
distribution can be derived through the dynamics of the system. There is no need
to define an effective Hamiltonian, or an equilibrium distribution, or to assume an
Einstein relation: the local equilibrium approximation is the asymptotic limit of a
nonequilibrium process. The local equilibrium found allows to derive the current
fluctuations without the need to guess them from equilibrium dynamics.

The KMP model can be interpreted as well as the diffusion of particles on a
chain, or diffusion of excitations on a linear system. Lattice models have indeed
been applied from the beginning to describe density diffusion, magnetic models,
fermionic systems, vibrations on a harmonic chain or electrical lines [2]. Among
them, we will concentrate on models of hopping particles on a lattice. Random
walk on a lattice is very well known, leading to the diffusion equation for the
average density ∂tρ = D∂2

xρ and the diffusive relation x2(t) ∼ t. It has been shown
that, when a particle jumps on heterogeneous medium (where the hopping rates
depend on the position and they can be asymmetric), several regimes of motion
arise depending on the statistical properties of the hopping rates [63, 61]. The
simple exclusion processes (SEP) aims at describing the motion of particles moving on
a linear chain with excluded volume interactions. The system is made by a random
number of particles placed on L sites: each site i = 1, . . . , L is occupied or not
depending on the occupation number ni = 1, 0. The hops are a Poissonian process:
at each continuous time interval of length dτ , a particle on i can jump either to site
i − 1 or i + 1 only if the site is empty and with probability dτ for both directions
(symmetric process, SSEP). The chain is coupled with two reservoirs of particles at
the extremities, analogous to the thermal baths of KMP model: if the site i = 0
(L) is empty, a particle can enter the system with probability αdτ (δdτ ); otherwise,
if the site i (L) is occupied, the particle can leave the chain with probability γdτ
(βdτ ); the full dynamics of the SSEP is represented in Fig. 3.2. Thus, the system
is Markovian and it is possible to write the evolution equations for the average
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density 〈ni(t)〉 in the limit dτ → 0, which read [62]

d〈n1〉
dτ = −〈n1 [γ + (1− n2)]〉+ 〈(1− n1)(α+ n2)〉 (3.78a)

= α− (α+ γ + 1)〈n1〉+ 〈n2〉
d〈ni〉

dτ = −〈n1 [(1− ni−1) + (1− ni+1)]〉+ 〈(1− n1)(ni−1 + ni+1)〉 (3.78b)

= 〈ni−1〉 − 2〈ni〉+ 〈ni+1〉 for i = 2, . . . , L
d〈nL〉

dτ = −〈nL [β + (1− nL−1)]〉+ 〈(1− nL)(δ + nL−1)〉 (3.78c)

= 〈nL−1〉 − (β + δ + 1)〈nL〉+ δ

Eqs. (3.78a),(3.78c) are the boundary conditions of the system, while the bulk evo-
lution is given by Eq. (3.78b). The derivation of a closed set of equations for the
density has been made possible by the exact cancellation of two-point correlations
〈nini+1〉, which vanish in Eqs. (3.78) regardless of their value. The stationary solu-
tion can be found imposing d〈ni〉/dτ = 0, yielding

〈ni〉 = ρa(L+ 1/(β + δ)− i) + ρb(i− 1 + 1/(α+ γ))
L+ 1/(α+ γ) + 1/(β + δ)− 1 (3.79)

with ρa = α/(α + γ) and ρb = δ/(β + δ). In the hydrodynamic limit L → ∞, it
is natural to introduce once again the continuum position x = i/L, for which the
stationary density reads

〈ni〉 ≡ ρs(x) = ρa(1− x) + ρbx (3.80)

which has the same form of KMP equation for temperature profile, except that here
x ∈ [0, 1] whereas for KMP x ∈ [−1, 1] (I kept the original choice of the authors).
So, ρa and ρb are the densities of the reservoirs, and if particles carry an energy ε
the reservoirs become heat baths with temperatures Ta and Tb, satisfying

exp
[

ε

kBTa

]
= α

γ
, exp

[
ε

kBTb

]
= δ

β
(3.81)

As for Eq. (3.78), the evolution equation of the average current and two-points
correlations can be computed; their steady state reads

〈J〉 ≡ 〈ni(1− ni+1)− ni+1(1− ni)〉 '
ρa − ρb
L

(3.82)

〈ninj〉c ≡ 〈ninj〉 − 〈ni〉〈nj〉 = −x(1− y)
L

(ρa − ρb)2 (3.83)

where x = i/L and y = j/L. Eq. (3.82) gives the Fick’s law for the SSEP model.
These results show that currents and correlations are nonvanishing only when a
density gradient ρa 6= ρb is applied, and they are both finite-size effects ∼ 1/L.
One may say that these can therefore be easily neglected when L → ∞, however
this can be done only in first approximation as it will be shown in Chapter 4. More-
over, when considering macroscopic quantities such as the fluctuations of the total
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number of particles N in the system, one sees that

〈N2〉 − 〈N〉2 =
∑
i

[
〈ni〉 − 〈ni〉2

]
+ 2

∑
i<j

〈ninj〉c

' L
[∫ 1

0
dxρs(x)(1− ρs(x))− 2(ρa − ρb)2

∫ 1

0
dx
∫ 1

0
dyx(1− y)

]
(3.84)

so the correlations contribute at the leading order to the macroscopic fluctuations
of the system.

The above results have been derived for the discrete set of microscopic con-
figurations {ni}; however, from Eqs. (3.78) it is tempting to move to a continuum
description in the hydrodynamic limit L → ∞. This is possible when assuming
that averaged fields slowly vary with position, i.e. making the smoothness ansatz

〈ni±1〉 ≡ ρ(x±∆x, τ) = ρ(x, τ)±∆x ∂ρ

∂x

∣∣∣∣
x,t

+ 1
2(∆x)2 ∂

2ρ

∂x2

∣∣∣∣∣
x,τ

+O((∆x)3) (3.85)

so the 〈ni±1〉 terms in Eqs. (3.78) can be expanded and one has

∂τρ(x = 0, t) = α− (α+ γ)ρ(0, t) + ∆x ∂xρ(x = 0)
∂τρ(x, t) = (∆x)2∂2

xρ(x, t)
∂τρ(x = 1, t) = β − (β + δ)ρ(0, t) + ∆x ∂xρ(x = 1)

(3.86)

Now, the lattice spacing ∆x = 1/L enters explicitly in the equations in the con-
tinuum limit L → ∞: this implies that a macroscopic, hydrodynamic time must be
defined as

t = (∆x)2τ (3.87)

for this model, yielding ∂τ = (∆x)2∂t and canceling the explicit ∆x dependence.
By matching the equations at the leading orders in ∆x, one has the evolution equa-
tion

∂tρ(x, t) = ∂2
xρ(x, t)

ρ(0) = ρa , ρ(1) = ρb
(3.88)

which has the stationary solution of Eq. (3.80). The time rescaling defined in
Eq. (3.87) is called hydrodynamic scaling, and will be widely used in Part II: its phys-
ical meaning is that hydrodynamic phenomena are evolving with characteristic
times L2 times bigger than the characteristic time of microscopic evolution, say
the mean time between two hops. This is related with the scale separation intro-
duced in the Chapman-Enskog procedure, and the ratio between microscopic and
hydrodynamic times is equivalent to the Knudsen number for this model. The
scaling t = (∆x)2τ is called a diffusive scaling: indeed, in this case a diffusive
behavior has been derived, see Eqs. (3.88). On the contrary, when t = ∆x τ the
scaling is said to be ballistic, because a tracer in the system follows a ballistic mo-
tion x2(t) ∼ t2. A fluctuating hydrodynamic description of the model has been
made possible, mainly applying the Macroscopic Fluctuation Theory described in
Sec. 3.2 [62].
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The SSEP model can be modified by changing one of the hopping rates in the
bulk from 1 to q: this case is known as the asymmetric simple exclusion process
(ASEP). This asymmetry typically represents the effect of a driving force applied
to the system, which can be gravity acceleration, electrical field, and so on. The
ASEP model reproduces the essential features of driven diffusive models, and has
been used as a model of traffic, growth and polymer dynamics [62]. Equations
for the mean density eolution can be derived as in (3.78), but now the correlation
terms do not vanish and must be treated carefully. The large scale ASEP behavior
presents shock waves whereas the SSEP is purely diffusive.

Those two models have been both investigated in the framework of MFT to
derive fluctuating hydrodynamics predictions. Their great utility is the possibility
to derive several theoretical results far from equilibrium, and coming back to the
equilibrium case when no gradient is applied at the boundaries. Their generaliza-
tion to arbitrary dimensions is straightforward [62].

3.3.2 Dissipative models

The last models have been a useful guide to study fluctuating hydrodynamics of
driven and diffusive conservative systems. However, this is not the case of gran-
ular or active matter systems, where dissipation is present in the bulk dynamics
because of inelastic collisions and or self-propulsion. Granular models have been
often developed on a lattice; especially, granular models in one dimension have
been used to develop a rigorous hydrodynamic description [5, 7]. A granular lat-
tice model can be introduced as a linear chain of L grains with velocities vi, with
i = 1, . . . , L; at each discrete time step p ∈ N, a pair i, i + 1 of nearest-neighbors is
drawn and collide according to the inelastic collision rule in Eq. (1.35), which in 1d
reads

v′i = vi −
1 + α

2 (vi − vi+1)

v′i+1 = vi+1 + 1 + α

2 (vi − vi+1)
(3.89)

Similar models have been studied to find the asymptotic scaling distribution in the
HCS or investigate the multiscaling properties described in Sec 1.4.6. The collision
probability Pi of the pair i, i + 1 plays a crucial role: indeed this can be chosen
uniformly, Pi = 1/L, corresponding to Maxwell molecules dynamics; or it can
contain a kinematic constraint Pi ∝ Θ(vi − vi + 1), which implies that particles
collide only when their velocities point towards each other; or there can be a flux
term Pi ∝ |vi − vi+1|, analogous with flux term in collisional operator of Boltz-
mann Equation for hard spheres (1.39b), increasing the collision probability with
the magnitude of the relative velocity. When the last two terms are taken together,
the system behaves as a 1d channel of inelastic hard rods, exchanging their veloci-
ties by means of collisions, with a perfect exchange when α = 1 (elastic case) and
slight reduction of speeds for α < 1. It is worth stressing that in the elastic case
α = 1 the system is not really evolving in time: once given the set of initial ve-
locities {v}t=0, collisions only exchange labels, say v′i = vi+1 and v′i+1 = vi, so the
empirical velocity distribution is invariant in time. The model leads to a hydrody-
namic description and several regimes of temperature decay are found, especially
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in the case of high dissipation α ≈ 0: indeed, when α = 0, after a collision two
particles move with the same velocities and don’t collide any more until a third
particle change their velocity once again. Shock waves have been observed when
the kinematic constraint is included, both in molecular dynamics (MD) of inelastic
hard rods and in simulations of the lattice model; similarly, a 2d model has shown
the presence of vortices spontaneously arising in the dynamics of the system [7].
It must be underlined that in this model the particles are not moving: indeed, all
the sites are occupied, there are no hops and their velocities do not represent their
motion but rather the dynamical observable involved in collisions, more or less
like in the KMP model where we disregarded the physical meaning of position qi
and momentum pi to concentrate only on the energy εi, which could be taken as
the energy level of the site.

The first attempt to make a fluctuating hydrodynamics from dissipative lattice
models has been done in 2011 by Prados, Lasanta and Hurtado [161, 162]: inspired
from KMP model, they introduced a model of driven dissipative media, made by
a chain on L particles each carrying an energy ρi, and coupled with two heat baths
at the boundaries. The dynamics is equivalent to KMP model, but with a slightly
modified interaction rule

ρ′i = zpα(ρi + ρi+1) , ρ′i+1 = (1− zp)α(ρi + ρi+1) (3.90)

where zp is a random uniform number drawn at ecach time step between 0 and 1,
and α ∈ [0, 1) is the inelasticity coefficient analogous to the restitution coefficient
in granular collisions; the particles can be extracted uniformly or according to a
distribution which typically depends from the total energy of the pair, i.e.

Pi({ρ}) = f(Σi)
LΩ(L) , Ω(L) =

L∑
i=1

f(Σi) (3.91)

being {ρ} the configuration of the system, Σi ≡ ρi + ρi+1 the total energy of the
colliding particles and f(Σ) a projection function which, together with collisional
rule (3.90), determines the dynamics of the system. The time dependence of vari-
ables ρi has been omitted for simplicity. Without the need of specifying the col-
lisional probability f(Σ), the authors derived the hydrodynamic equations in the
large-size limit

∂tρav(x, t) = −∂xJav(x, t) + dav(x, t) (3.92)

where the “av” fields are averaged fields such 〈ρ〉 = ρav. The energy current J
and dissipation rate d can be computed through the local equilibrium approxima-
tion, i.e. taking a Gaussian the energy distribution on a site i and assuming that
F2(ρi, ρi+1; t) ≈ F1(ρi, t)F1(ρi+1, t). So, one can write

Jav(x, t) = −D(ρav)∂xρav (3.93)
dav(x, t) = νR(ρav) (3.94)

defining a diffusion coefficient D(ρ), a transport coefficient R(ρ) related to dissi-
pation and a mesoscopic dissipation coefficient ν = (1 − α2)/2L2. The latter is
non-vanishing in the large size limit only if α = 1 − O(L−2) for large L: this is
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called quasielastic limit and will be assumed as well in Chapter 4, being strictly con-
nected with local equilibrium assumption. While the scaling of 1− α is needed to
match the current and dissipation terms in Eq. (3.92), we have already seen that for
the KMP model (α = 1) the asymptotic distribution was the Boltzmann distribu-
tion, so we expect that the asymptotic distribution in the quasielastic limit may be
a perturbation of the equilibrium one.

The transport coefficients can be computed for a general f and read

D(ρ) = 1
6

∫ +∞

0
dr r7 f(ρr2)e−r2

(3.95a)

R(ρ) = ρ

∫ +∞

0
dr r5 f(ρr2)e−r2

(3.95b)

under the local equilibrium assumption. Hydrodynamic equation (3.92) can be
written in the fluctuating form

∂tρ(x, t) = −∂xJ(x, t) + d(x, t) (3.96)

with J(x, t) = J̃(x, t) + ξ(x, t) and d(x, t) = d̃(x, t) + η(x, t). The idea is to split
the fluctuating current and dissipation in two contributions: one from the average
terms 〈J̃〉 = Jav, 〈d̃〉 = dav, and the other from the noise as a zero-average fluctu-
ations, ξ and η. Microscopic dynamics allows to compute the noise correlations,
yielding at the leading order in 1/L

〈
ξ(x, t)ξ(x′, t′)

〉
∼ 1
L
σ(ρav)δ(x− x′)δ(t− t′) (3.97a)〈

η(x, t)η(x′, t′)
〉
∼ 1
L3 ν

2κ(ρ)δ(x− x′)δ(t− t′) (3.97b)

so, the dissipation fluctuations are much smaller than the current fluctuations and
therefore are neglected in the following. The noises are proven to be Gaussian.
Current noise amplitude is given by

σ(ρ) = 2ρ2D(ρ) (3.98)

relating the mobility σ(ρ) to the diffusivity D(ρ). This is a kind of fluctuation-
dissipation relation, which is connected with the quasielastic limit introduced above.
Again, this relation has not been assumed from some equilibrium relation, but de-
rived from the microscopic dynamics. Finally, for a specific choice of f(Σ), the
time evolution of energy in the HCS can be found, recovering Haff’s law in the
hard spheres case, f(Σ) ∝

√
Σ; in the heated case, the stationary profiles of energy,

current and dissipation can be derived as well. The model has been analyzed in
the framework of MFT, confirming previous results and leading to new theoretical
prediction on his fluctuating hydrodynamics.

The model of Prados, Lasanta and Hurtado introduced above has been a key
guide to develop this thesis. I did not report the technical calculations, because
many of them will be explained for the granular sheared model of Chapter 4; a
rigorous derivation can be found in [120]. Finally, lattice models have been devel-
oped also to describe active matter: in 1995, Csahók and Vicsek developed a lattice
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model of active particles, interlacing the Vicsek model of collective motion with
lattice gas methods [54]. More recently, in 2011 Thompson et al. introduced a 1d
model of run-and-tumble bacteria, hopping on a lattice without excluded volume,
aiming at reproducing the observed features in off lattice run-and-tumble dynam-
ics and deriving the fluctuating hydrodynamics of the system [181]. As it has been
shown, lattice models leads to a huge number of theoretical predictions, especially
on fluctuating quantities. The analytical power together with the phenomenologi-
cal realism inspired us to derive the models in Part II.
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Fluctuating Hydrodynamics of
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Lattice Models
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Jusqu’ici tout va bien

4
Granular lattice: fluctuating

hydrodynamics

Inspired from the works of Baldassarri et al. [6] and Prados et al. [161], we formu-
lated a granular lattice model to derive fluctuating hydrodynamics from micro-
scopic ingredients under controlled assumptions, considering only shear modes
on a granular linear chain [122]. The evolution of the system conserves momentum
and dissipates energy, as in granular collisions. The new model is different from
the previous proposals in a few crucial aspects. In [6], the velocity field evolved
under the enforcement of the so-called kinematic constraint, which is disregarded
here. In [161], only the energy field was considered, therefore momentum conser-
vation was absent. The results I present especially focus on the hydrodynamic be-
havior of the model; the analysis of velocity distribution evolution and a detailed
approach to a mesoscopic fluctuation theory of our model can be found respec-
tively in [133, 155, 154].

The aim of the model is reproducing the shear hydrodynamics of a granular
system and deriving its fluctuating behavior starting from microscopic rules. As
it has been shown in Sec. 3.1.2, there is a range of sizes of granular systems such
as the only linearly unstable mode in the HCS is the shear mode: this implies that
the velocity field is incompressible and density does not evolve from its initial
uniform configuration. Such a regime may be observed for a certain amount of
time (longer and longer as the elastic limit is approached). In two dimensions,
granular hydrodynamic equations (3.36) are obeyed with constant density and, for
instance, ux = 0 whereas the hydrodynamic fields uy and T only depend on x,
leading to

∂tuy(x, t) = (nm)−1∂x[η∂xuy(x, t)], (4.1a)

∂tT (x, t) = 1
n
η[∂xuy(x, t)]2 + 1

n
∂x[κ∂xT (x, t)]− ζT. (4.1b)

In section 4.2 we will see that our lattice model is well described, in the continuum
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limit, by the same equations.
It is interesting to put in evidence that (4.1) sustains also particular stationary

solutions. Seeking time-independent solutions thereof, one finds

∂x[η∂xu(s)
y (x)] = 0, η[∂xu(s)

y (x)]2 = −∂x[κ∂xT (s)(x)] + nζT (s)(x). (4.2)

The general situation is that both the average velocity and temperature profiles
are inhomogeneous: this is the so-called Couette flow state, which also exists in
molecular fluids. Yet, in granular fluids, there appears a new steady state in which
the temperature is homogeneous throughout the system, T (s)(x) = T , and the
average velocity has a constant gradient, ∂xuy = a: this is the Uniform Shear Flow
(USF) state, characterized by the equations

∂2
xu

(s)
y (x) = 0, η[∂xu(s)

y (x)]2 = nkBζT
(s). (4.3)

Such a steady state is peculiar of granular gases where the viscous heating term is
locally compensated by the energy sink term. In a molecular fluid, this compen-
sation is lacking and viscous heating must be balanced by a continuous heat flow
toward the boundaries, which entails a gradient in the temperature field, typical
of the Couette flow.

The formal definition of the model is given in Sec. 4.1. In Sec. 4.2 the hydrody-
namic equations are derived as the continuum limit of microscopic balance equa-
tions. Sec. 4.3 is devoted to the analysis of some relevant physical states such as the
Homogeneous Cooling State (HCS), the Uniform Shear Flow (USF) and the Cou-
ette flow. In Sec. 4.4 the fluctuating currents are defined and their correlations are
derived. Sec. 4.5 contains numerical analysis of hydrodynamic states and fluctuat-
ing currents discussed in previous sections.

4.1 Definition of the model

In this section, the granular model is introduced by means of a Markovian pro-
cess, defining an evolution equation of the phase-space probability distribution
PN and later deriving the evolution equation of the single particle distribution P1.
In the rest of the chapter, these quantities will not be part of the analysis, as we will
focus on hydrodynamic fields. Nevertheless, the present section shows that a “ki-
netic” derivation of hydrodynamic equation is possible, following the approach of
Sec. 1.4. Furthermore, the Markovian description is transparent and without ambi-
guities, illustrating also the residence-time algorithm which will actually be used
in simulations. In our work, the derivation of hydrodynamics from microscopic
balance equations preceded in time the Markovian description; since the two pro-
cedures have shown to be equivalent, I present the microscopic balance equations
in Appendix A.1 for the sake of completeness.

4.1.1 Master Equation for the lattice model

The model is defined on a 1d lattice withN sites, but it can be generalized to higher
dimensions. In each site there is a scalar velocity vi, so that a state of the system
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is the vector v ∈ RN . The evolution is a Markov jump process which - in general
- takes place in continuous time τ , each jump representing a collision. Jumps (col-
lisions) are counted by the integer p ∈ {0, 1, 2...}. The random time increment δτp
between two collisions p→ p+ 1 is given by

δτp = Ωp(L)−1| lnχ|, Ωp(L) = ω
L∑
l=1
|vl,p − vl+1,p|β, (4.4)

in which χ is a stochastic variable homogeneously distributed in the interval (0, 1),
ω is a constant frequency that determines the time scale, and L is the number of
pairs that can collide (i.e. L = N when periodic boundary conditions are consid-
ered, or L = N + 1 when thermostatted boundaries are taken into account). The
physical meaning of Eq. (4.4) is clear: Ωp(L) is the total exit rate from the state of
the system, as given by its velocity configuration v, at time p, and the time incre-
ment δτ follows the distribution P (δτ) = Ωp(L) exp[−Ωp(L)δτ ] as in a Poissonian
process. We have introduced the parameter β ≥ 0 that affects the collision rate.
For β = 0, the collision rate is independent of the relative velocity, similarly to the
case of pseudo-Maxwell molecules [6]. For this reason, we refer to β = 0 as the
MM case, while β = 1 and β = 2 are analogous to the hard spheres (HS) [32] and
“very hard-core” [67, 69] collisions, respectively.

It is convenient to define ∆l = vl−vl+1, and to introduce the operator b̂l, which
evolves the vector v by colliding the pair (l, l + 1) according to granular collision
rule (1.35), i.e.

b̂l(v1, ..., vl, vl+1, ..., vN ) =
(
v1, ..., vl −

1 + α

2 ∆l, vl+1 + 1 + α

2 ∆l, ..., vN

)
, (4.5)

where α ∈ [0, 1] is the restitution coefficient. After the p-th collision, momentum is
conserved, vl,p + vl+1,p = vl,p+1 + vl+1,p+1,, while energy, if α 6= 1, is not:

v2
l,p+1 + v2

l+1,p+1 − v2
l,p − v2

l+1,p = (α2 − 1)∆2
l,p/2 < 0. (4.6)

Also, note that for a generic function of the velocities f(v) one has∫
dv′|v′l − v′l+1|βδ(v− b̂lv′)f(v′) = |∆l|β

αβ+1 f(b̂−1
l v). (4.7)

The operator b̂−1
l is the inverse of b̂l, that is, it changes the post-collisional velocities

into the pre-collisional ones when the colliding pair is (l, l + 1).
The continuous time Markov process is fully described by the two-time con-

ditional probability PN (v, τ |v0, τ0) with τ ≥ τ0, which evolves according to the
following forward Master Equation,

∂τPN (v, τ |v0, τ0) =
∫
dv′W (v|v′)PN (v′, τ |v0, τ0)− Ω(v)PN (v, τ |v0, τ0), (4.8)

in which

W (v′|v) = ω
N∑
l=1
|∆l|βδ(v′ − b̂lv), Ω(v) =

∫
dv′W (v′|v) = ω

N∑
l=1
|∆l|β. (4.9)
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The Master Equation can be simplified by making use of (4.7), with the final result

∂τPN (v, τ |v0, τ0) = ω
L∑
l=1
|∆l|β

[
PN (b̂−1

l v, τ |v0, τ0)
αβ+1 − PN (v, τ |v0, τ0)

]
. (4.10)

The conditional probability distribution PN (v, τ |v0, τ0) is the solution of the above
equation with the initial condition PN (v, τ0|v0, τ0) = δ(v−v0). On the other hand,
the one-time probability distribution PN (v, τ) verifies the same equation but with
an arbitrary (normalized) initial condition PN (v, 0).

Residence time algorithms that give a numerical integration of the master equa-
tion in the limit of infinite trajectories [27, 160] show that either (4.8) or (4.10) is the
Master equation for a continuous time jump Markov process consisting in the fol-
lowing chain of events:

1. at time τ , a random “free time” τf ≥ 0 is extracted with a probability density
Ω(v)exp[−Ω(v)τf ] which depends upon the state of the system v;

2. time is advanced by such a free time τ → τ + τf ;

3. the pair (l, l + 1) is chosen to collide with probability ω|∆l|β/Ω(v);

4. the process is repeated from step 1.

The Master equation derived above can be considered our “Liouville equa-
tion”, that is, it evolves the probability in full phase-space. It is tempting, from
such equation, to derive a Lyapunov (or “H”) functional which is minimized by
the dynamics, as it is customary for Markov processes [103]. However, in the gen-
eral case our system does not admit an asymptotic steady state, apart from the
trivial zero, and therefore the usual H function (which relies upon the existence of
the steady state) cannot be built. However, this programme can be carried on in
the presence of appropriate boundary conditions, e.g. thermostats, which allow
the system to reach a steady state [139, 60]. Very recently, an H-theorem for the
driven system has been formulated and proven to hold under certain mathemati-
cal assumptions on the initial distribution. [156].

4.1.2 Physical interpretation

The model, if taken literally, implies that there is no mass transport, particles are
at fixed positions and they only exchange momentum and kinetic energy. As dis-
cussed above, this can be a valid assumption in an incompressible regime which is
expected when the velocity field is divergence free, for instance during the first
stage of the development of the shear instability, or in the so-called Uniform Shear
Flow. We are also disregarding the so-called kinematic constraint, which is fully
considered in [6]: indeed a colliding pair is chosen independently of the sign of
its relative velocity, while in a real collision only approaching particles can collide.
Even without the kinematic constraint, our model has a straightforward physical
interpretation: the dynamics occurs inside an elongated 2d or 3d channel, the lattice
sites represent positions on the long axis, while the transverse (shorter) directions
are ignored; the velocity of the particles do not represent their motion along the
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Figure 4.1. A sketch of the granular lattice model with periodic boundaries. The velocities
are represented by red arrows.

lattice axis but rather along a perpendicular one. One may easily imagine that the
(hidden) component along the lattice axis is of the order of the perpendicular com-
ponent, but in random direction. On the one hand, this justifies the choice of dis-
regarding the kinematic constraint, while on the other, the collision rate may still
be considered proportional to some power β of the velocity difference (in absolute
value). A fair confirmation of this interpretation comes from the average hydrody-
namics equations derived in section 4.2, which, as anticipated in the introduction,
replicate the transport equations (4.1) for granular gases in d > 1 restricted to the
shear (transverse) velocity field.

4.1.3 Evolution equation for the one-particle distribution

Here, we apply the usual procedure of kinetic theory and map the Master equation
into a BBGKY hierarchy. In particular, we focus on the evolution equation for
the one-particle distribution function at site l and at time τ , which we denote by
P1(v; l, τ). The behavior of the one-particle distribution P1 in our model will be
deeply analyzed in [154]. By definition,

P1(v; l, τ) =
∫

dvPN (v, τ)δ(vl − v). (4.11)

It is easy to show that none of the terms in the sum (4.10) contribute to the time
evolution of P1 except those corresponding to l − 1 and l, because the collisions
involving the pairs (l−1, l) and (l, l+1) are the only ones which change the velocity
at site l. Therefore,

∂τP1(v; l, τ) = ω ×{∫ +∞

−∞
dvl−1|∆l−1|β

[
P2(b̂−1

l−1{vl−1, v}; l − 1, l, τ)
αβ+1 − P2(vl−1, v; l − 1, l, τ)

]

+
∫ +∞

−∞
dvl+1|∆l|β

[
P2(b̂−1

l {v, vl+1}; l, l + 1, τ)
αβ+1 − P2(v, vl+1; l, l + 1, τ)

]}
,

(4.12)

where, for the sake of simplicity, we also denote by b̂−1
l the backward collisional

operator which acts on only the velocities of the colliding particles. In the equa-
tion above, we have the two-particle probability distribution P2(v, v′; l, l + 1, τ) for
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finding the particles at the l-th and (l + 1)-th sites with velocities v and v′, respec-
tively. For the special case β = 0, the evolution equation for P1 can be further
simplified, because the terms on the rhs of (4.12) coming from the loss (negative)
terms of the master equation can be integrated. We get

∂τP1(v; l, τ) = ω

[
−2P1(v; l, τ) + 1

α

∫ +∞

−∞
dvl−1P2(b̂−1

l−1{vl−1, v}; l − 1, l, τ)

+ 1
α

∫ +∞

−∞
dvl+1P2(b̂−1

l {v, vl+1}; l, l + 1, τ)
]
. (4.13)

The equation for P1, either (4.12) for a generic β or (4.13) for β = 0, could be
converted to a closed equation for P1 by introducing the Molecular Chaos assump-
tion, which in our present context means that

P2(v, v′; l, l + 1, τ) = P1(v; l, τ)P1(v′; l + 1, τ) +O(L−1). (4.14)

By neglecting the O(L−1) terms in (4.14), we obtain a pseudo-Boltzmann or kinetic
equation for P1, which determines the evolution of the one-time and one-particle
averages under the assumption of O(L−1) correlations. Note that since L/N → 1
for a large system, independently of the boundary conditions, orders of inverse
powers of N and L are utterly equivalent. It is important to stress that the range of
validity of assumption (4.14) is assessed in numerical simulations, see section 4.5.
In Chapter 5 the conjecture that two-particle correlations scale with L−1 will be
proven analytically. Note that this “smallness” of two-particle correlations do not
prevent them from being long-ranged.

The structure of the kinetic equation for P1 is thus much simpler for the MM
case. In particular, we see along the next sections that the evolution equations
for the moments are closed under the molecular chaos assumption, without fur-
ther knowledge of the probability distribution P1. This is the reason why, in the
remainder of the paper, we restrict ourselves to the MM case β = 0, since the math-
ematical treatment needed for the β 6= 0 case is much more complicated and then
is deferred to further studies.

4.2 Hydrodynamics

In the following section, we derive the hydrodynamic behavior for β = 0, in which
the evolution equations for the averages are closed. Moreover, the MM case makes
it possible to grasp the essential points.

4.2.1 Microscopic balance equations

From Eq. (4.8) it is straightforward to get the evolution rule for vl,p (for any site l)
at collision index p:

vl,p+1 − vl,p = −jl,p + jl−1,p, (4.15)

where the momentum current, that is, the flux of momentum from site l to site l+1
at the p-th collision reads

jl,p = 1 + α

2 ∆l,pδyp,l, (4.16)
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Here δyp,l is Kronecker’s δ and yp ∈ [1, L] is a random integer which selects the
colliding pair.

The corresponding equation for the energy, obtained by squaring (4.15), reads

v2
l,p+1 − v2

l,p = −Jl,p + Jl−1,p + dl,p. (4.17)

Again, we have defined an energy current from site l to site l + 1 as

Jl,p = (vl,p + vl+1,p)jl,p. (4.18)

In addition, the energy dissipation at site l is

dl,p = (α2 − 1)[δyp,l∆2
l,p + δyp,l−1∆2

l−1,p]/4 < 0. (4.19)

The total energy of the system at the p-th collision is Ep =
∑N
l=1 v

2
l,p.

It is customary to define, as relevant fields for hydrodynamics, the following
local averages, at a given collision number p, over initial conditions and noise re-
alizations:

ul,p = 〈vl,p〉, El,p = 〈v2
l,p〉, Tl,p = El,p − u2

l,p. (4.20)

A few words should be spent for commenting the choice of the relevant fields: in
the usual conservative kinetic theory, the velocity and energy fields are naturally
“slow” because of their global conservation (recall that there is no density transport
in our model, as discussed before in section 4.1.2). For a granular gas, energy is
not necessarily slow: however, when α approaches 1, as it is in many physical
situations, the total energy evolves quite slowly and can be thought of as a quasi-
slow variable. In the following, we show that the continuum limit necessary to get
a hydrodynamic description requires α → 1 if dissipation of energy and diffusion
take place over the same time scale. It is important to realize, however, that such
an elastic limit is singular here: in 1d, when α = 1 the dynamics corresponds to a
pure relabelling without mixing or ergodicity.

The microscopic equations for the evolution of averages at time (counted by
collisions) p at site l are obtained by averaging equations (4.15) and (4.17):

ul,p+1 − ul,p = −〈jl,p〉+ 〈jl−1,p〉, (4.21)
El,p+1 − El,p = −〈Jl,p〉+ 〈Jl−1,p〉+ 〈dl,p〉. (4.22)

For the case of MM (β = 0, i.e. all sites collide with the same probability) we have
that 〈δyp,lf(vp)〉 = L−1〈f(vp)〉 and therefore we can write the averages as

〈jl,p〉 = 1 + α

2L 〈∆l,p〉, (4.23a)

〈Jl,p〉 = 1 + α

2L 〈∆l,p(vl,p + vl+1,p)〉, (4.23b)

〈dl,p〉 = α2 − 1
4L 〈∆2

l,p + ∆2
l−1,p〉. (4.23c)
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From these equations, it is readily obtained that

〈jl,p〉 = 1 + α

2L (ul,p − ul+1,p) (4.24a)

〈Jl,p〉 = 1 + α

2L
(
Tl,p − Tl+1,p + u2

l,p − u2
l+1,p

)
(4.24b)

〈dl,p〉 = α2 − 1
4L

[
2Tl,p + Tl+1,p + Tl−1,p

+2
(
ul,p −

ul+1,p + ul−1,p
2

)2
+ 1

2(ul+1,p − ul−1,p)2
]
. (4.24c)

In order to write the average dissipation, we have neglected O(L−1) terms, since
we have made use of the molecular chaos approximation, more specifically of the
equality 〈vl,pvl±1,p〉 = ul,pul±1,p +O(L−1).

Had we considered β 6= 0, we would have had an extra factor |∆l,p|β in the
averages on the rhs of (4.23). This extra factor would have made it necessary, apart
from the “molecular chaos” hypothesis, to use further assumptions about the one-
particle distribution function. More specifically, we would have needed to know
its shape, at least in some approximation scheme, to calculate the moments in the
average currents and dissipation in terms of the hydrodynamic fields u and T , that
is, the so-called constitutive relations.

4.2.2 Balance equations in the continuum limit

Now we assume that ul,p andEl,p are smooth functions of space and time and intro-
duce a continuum, “hydrodynamic”, limit (CL). First, the macroscopic space-time
scales (x, t) are defined which are related to the microscopic ones (l, p) through
size-dependent factors:

x = l/L, t = p/L3. (4.25)

Note that both x and t are dimensionless variables. The choice of the above scal-
ings is dictated by the aim of: (i) working with a “reduced” unit size to prevent L
factors enter into the solutions through the boundary conditions, and (ii) matching
the dominant L dependence on the right hand side and left hand side of the bal-
ance equations. With the identification fl,p = f(l/L, p/L3), we say that f(x, t) is a
“smooth” function f(x, t) if

fl±1,p − fl,p = ±L−1∂xf(x, t) +O
(
L−2) , (4.26)

fl,p±1 − fl,p = ±L−3∂tf(x, t) +O
(
L−6) . (4.27)

It is natural, on the scales defined by the CL, to define the mesoscopic fields u(x, t),
E(x, t) and T (x, t) such that

ul,p = u(l/L, p/L3), El,p = E(l/L, p/L3), Tl,p = T (l/L, p/L3). (4.28)

and assume them to be smooth.
Using these definitions and the smoothness assumption, one finds that each

discrete spatial derivative in (4.21) and (4.22) introduces aL−1 leading factor. Then,
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the difference between the current terms in the balance equations is of the order of
L−3, because the average currents 〈jl,p〉 and 〈Jl,p〉 are of the order of L−2, as we
have discrete derivatives of the currents therein. Those terms, therefore, perfectly
balance the 1/L3 dominant scaling on the left-hand side, i.e. the time-derivative.
Since 〈dl,p〉 is of the order of (1 − α2)/L, to match the scaling 1/L3 of the other
terms, we define the macroscopic inelasticity

ν = (1− α2)L2, (4.29)

and assume it to be order 1 when the limit is taken. This choice implies that when
L→∞ one has α→ 1, that is, microscopic collisions are quasi-elastic.

From a mathematical point of view, the following results for the average hy-
drodynamic behavior become exact in the double limit α → 1, L → ∞ but finite
ν = (1 − α2)L2, provided that the initial conditions are smooth in the sense given
by (4.26). Nonetheless, for a large-size system, the following results will hold over
a certain time window, which is expected to increase as its size L increases. An
analysis of the limits of validity of our hydrodynamic equations is carried out in
section 4.3.4.

By defining the average mesoscopic currents

jav(x, t) = lim
L→∞

L2〈jl,p〉, Jav(x, t) = lim
L→∞

L2〈Jl,p〉 (4.30)

and the average mesoscopic dissipation of energy

dav(x, t) = lim
L→∞

L3〈dl,p〉, (4.31)

one gets the CL of (4.21) and (4.22), which are

∂tu(x, t) = −∂xjav(x, t), (4.32a)
∂tE(x, t) = −∂xJav(x, t) + dav(x, t). (4.32b)

Therein, the average currents and dissipation follow from (4.30), (4.31) and (4.24),
with the result

jav(x, t) = −∂xu(x, t), (4.33a)

Jav(x, t) = −∂x
[
u2(x, t) + T (x, t)

]
, (4.33b)

dav(x, t) = −νT. (4.33c)

Note that (i) we have replaced 1 + α by 2, because α2 = 1− νL−2, and we have al-
ready neglected L−1 terms and (ii) Jav(x, t) = −∂xE(x, t), with E(x, t) = u2(x, t) +
T (x, t), consistently with (4.20).

Taking into account the above expressions, the following average hydrody-
namic equations are obtained,

∂tu(x, t) = ∂xxu(x, t), (4.34a)

∂tT (x, t) = −νT (x, t) + ∂xxT (x, t) + 2 [∂xu(x, t)]2 . (4.34b)

These equations must be supplemented with boundary conditions for the situa-
tion of interest. The identification with the granular Navier-Stokes hydrodynamic
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equations (4.1) in the shear mode regime is immediate, particularized for the case
of constant (time and space-independent) κ and η.

Additionally, the time evolution of higher central moments of the one-particle
distribution function, such as

µ3 = 〈(v − u)3〉, µ4 = 〈(v − u)4〉, (4.35)

can be derived. These moments are particularly relevant to check deviations from
the Gaussian behavior, since for a Gaussian distribution with variance T one has
that µ3 = 0 and µ4 = 3T 2. Their evolution equations are

∂tµ3 = −3
2νµ3 + ∂xxµ3 + 6 (∂xu) (∂xT ), (4.36a)

∂tµ4 = −2 νµ4 + ∂xxµ4 + 8 (∂xµ3) (∂xu) + 12T (∂xu)2. (4.36b)

Again, these evolution equations must be supplemented with appropriate bound-
ary conditions, which depend on the physical situation of interest. It is important
to stress that µ3 and µ4 are not hydrodynamic fields because (v − u)n with n ≥ 3 is
not conserved during collisions, not even in the quasielastic limit as considered in
Sec. 4.2.1. The derivation of Eqs. (4.36b) is given in Appendix A.2.

4.3 Physically relevant states

In this section, always under the assumption β = 0, we analyze some physi-
cally relevant states that are typical of dissipative systems such as granular fluids.
Specifically, we investigate the Homogeneous Cooling State (HCS), the Uniform
Shear Flow (USF) state and the Couette Flow state. The theoretical results obtained
throughout are compared to numerical results in section 4.5.

4.3.1 The Homogeneous Cooling State

We now focus our attention on the case of spatial periodic boundary conditions,
with an initial “thermal condition”: vl,0 is a random Gaussian variable with zero
average and unit variance, that is, Tl,0 ≡ T (x, 0) = 1. Starting from this condition,
the system typically falls into the so-called Homogeneous Cooling State (HCS),
where the total energy decays in time and the velocity and temperature fields re-
main spatially uniform. In this case, the solution of the average hydrodynamic
equations (4.34) reads

u(x, t) = 0, THCS(x, t) = T (t = 0)e−νt. (4.37)

The exponential decrease of the granular temperature is typical of MM, where
the collision frequency is velocity-independent. It replaces the so-called Haff’s
law which was originally derived in the HS case, where THCS ∼ t−2 because Ṫ ∝
−T 3/2 [88].

The HCS is known to be unstable: as discussed in Sec. 3.1.2, it breaks down in
too large or too inelastic systems. In our model and in the hydrodynamic limit,
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this condition is expected to be replaced by a condition of large ν. The stabil-
ity is studied by introducing rescaled fields ũ(x, t) = u(x, t)/

√
THCS(t) and T̃ =

T (x, t)/THCS(t) and by linearizing the hydrodynamic equations near the HCS, i.e.
T (x, t) = THCS(t) + δT (x, t) and ũ(x, t) = δũ(x, t). The analysis of linear equations
becomes straightforward by space-Fourier-transforming, which gives

∂tδũ(k, t) = ν − 2k2

2 δũ(k, t), ∂tδT̃ (k, t) = −k2δT̃ (k, t). (4.38)

Therefore, δũ is unstable for wave numbers that verify ν − 2k2 > 0. In the contin-
uous variables we are using, the system size is 1, so that the minimum available
wavenumber is kmin = 2π. Thus, there is no unstable mode for ν (lengths) below
a certain threshold νc (Lc), with

νc = 8π2, Lc = 2π
√

2
(
1− α2

)−1/2
. (4.39)

On the contrary, for ν > νc (L > Lc), the HCS is unstable and the rescaled modes
with wave numbers verifying k <

√
ν/2 amplify with time. This instability mecha-

nism is identical to the one found in granular gases for shear modes and described
in Sec. 3.1.2. Theoretical predictions and simulations results perfectly agree, as
plotted in Fig. 4.2. It is important to stress that the amplification appears in the
rescaled velocity ũ(x, t) and not in the velocity u(x, t). The same result is found
and compares well with simulations in the HS case. Numerical analysis of the
HCS instability and the existence of a critical dissipation (length) νc (Lc) will be
carried out in Sec. 4.5.

The one-particle velocity distribution has been derived; although of course
p(v) → δ(v) because of the cooling, when looking at rescaled variables it has been
found that the shape of the initial distribution is not altered in the HCS: it only
“shrinks” with the thermal velocity [133].

Perturbation of the HCS: Non-homogeneous cooling

The average hydrodynamic equations (4.34) are non-linear, but for the MM case
we are considering they can be solved for general periodic initial conditions u(x, 0)
and T (x, 0): the evolution of the velocity profile u(x, t) is decoupled from the evo-
lution of the temperature profile T (x, t) and then u(x, t) can be readily obtained.
Afterwards, the evolution equation for T (x, t) can be integrated, with the non-
linear viscous heating term (∂xu)2 playing the role of a inhomogeneity. Going to
Fourier space, it is easily shown that

u(x, t) =
+∞∑

n=−∞
e−n

2νct/2eiknxû(kn, 0), (4.40)

being û(k, 0) the Fourier-transform of the velocity at the initial time, and kn = 2πn.
This general results shows that the damping coefficient of the n-th shear mode is
νcn

2/2; therefore, the slowest decaying mode is the first mode n = 1, which yields
the instability of the HCS for ν > νc. Note that û(k0, 0) = 0, since in the center-of-
mass frame we have that

∫ 1
0 dxu(x, 0) = 0 and total momentum is conserved for

periodic boundary conditions.
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To be concrete, now we consider an initial perturbation that only excites one
Fourier mode in the velocity field, whereas the temperature remains homoge-
neous. We derive the general solution for an arbitrary initial perturbation later
in section 4.3.2. Thus,

u(x, 0) = u0 sin(2πmx), T (x, 0) = T0. (4.41)

being m an integer number. Then, on the one hand the velocity profile can be
immediately written by making use of (4.40) and, on the other, the viscous heating
term (∂xu)2 gives rise to two Fourier modes in the evolution of the temperature,
corresponding to n = 2m and n = 0. Namely, we have

u(x, t) = e−m
2νct/2u0 sin(2πmx), (4.42a)

T (x, t) = T0e
−νt + e−m

2νctu
2
0

2 m
2νc×[

1− e−(ν−m2νc)t

ν −m2νc
+ cos(4πmx)1− e−(ν+m2νc)t

ν +m2νc

]
.

(4.42b)

The presence of a velocity gradient induces the development of a non-homogeneous
temperature profile, through the local mechanism of viscous heating.

4.3.2 The Uniform Shear Flow steady state

Here we consider that our system is sheared at the boundaries: we impose a veloc-
ity difference a (shear rate) between the velocities at the left and right ends of the
system. This is done by considering the Lees-Edwards boundary conditions [124]

u(1, t)− u(0, t) = a, u′(1, t) = u′(0, t), T (0, t) = T (1, t), T ′(0, t) = T ′(1, t), (4.43)

in which the prime stands for the spatial derivative ∂x.
With the above conditions, there is a steady solution of the hydrodynamic equa-

tions (4.34) characterized by a linear velocity profile and a homogeneous tempera-
ture:

us(x) = a(x− 1/2), Ts = 2a2/ν. (4.44)

This steady state is called Uniform Shear Flow and it is peculiar of dissipative
systems, in which the continuous energy loss in collisions may compensate the
viscous heating.

The USF state is expected to be globally stable, in the sense that the system
tends to it from any initial condition compatible with the Lees-Edwards bound-
ary conditions. This stems from the energy injection allowing the system to fully
explore its phase space, which entails that the H-theorem for the master equation
holds [103, 139, 60]. Therefore, the N-particle distribution PN (v;x, t) approaches
the steady solution of the master equation P

(s)
N (v;x) corresponding to the USF

monotonically as time increases.
Contrarily from the HCS, where the initial shape of the rescaled velocity dis-

tribution was conserved in time, the velocity distribution of the USF tends to a
Gaussian stationary distribution with average local velocity us(x) and homoge-
neous temperature Ts [133]. In a recent paper, Plata and Prados showed that in the
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USF the one-particle velocity distribution follows anH-theorem under some math-
ematical assumptions, which can be generalized to the bulk driven case [156].

Transient evolution towards the USF

In this section, we consider the hydrodynamic equations (4.34) with the Lees-
Edwards boundary conditions (4.43), and look for the general time-dependent so-
lution thereof.

To start with, we consider the deviations of the average velocity and tempera-
ture with respect to their USF values, by introducing

δu(x, t) = u(x, t)− us(x), δT (x, t) = T (x, t)− Ts. (4.45)

The Lees-Edwards boundary conditions for (u, T ) are changed into periodic bound-
ary conditions for (δu, δT ). The latter satisfy the equations

∂tδu = ∂xxδu, ∂tδT = −νδT + ∂xxδT + 4a∂xδu+ 2(∂xδu)2. (4.46)

Since no linearization has been done when deriving the above equations from
(4.34), they exactly describe the approach of the system to the USF state. Note
that if we set a = 0 in (4.46), we reobtain the exact evolution equations for the de-
viations from the HCS. Therefore, the general solution for the hydrodynamic fields
in the HCS correspond to putting a = 0 in the expressions derived below. Now,
we go to Fourier space by defining

δu(x, t) =
+∞∑

n=−∞
û(kn, t)eiknx, δT (x, t) =

+∞∑
n=−∞

T̂ (kn, t)eiknx. (4.47)

The initial values for the Fourier components (û, T̂ ) are given by

û(kn, 0) =
∫ 1

0
dx δu(x, 0)e−iknx, T̂ (kn, 0) =

∫ 1

0
dx δT (x, 0)e−iknx. (4.48)

Recall that (i) kn = 2nπ and (ii) û(k0, t) = 0 in the centre of mass frame.
The quadratic term in (4.46) that stems from viscous heating couples different

Fourier modes. More specifically, the evolution equations in Fourier space read

∂tû(kn, t) = −k2
nû(kn, t), (4.49a)

∂tT̂ (kn, t) = −(ν + k2
n)T̂ (kn, t) + 4iaknû(kn, t)

+
+∞∑

m=−∞
km(km − kn)û(km, t)û∗(km − kn, t). (4.49b)

The solution of the equation for û(kn, t) can be written straight away; afterwards,
this solution is inserted into the equation for T̂ (kn, t) that is thus transformed into
a closed non-homogeneous linear equation. Hence, we get

û(kn, t) = û(kn, 0)e−k2
nt, (4.50a)

T̂ (kn, t) = T̂ (kn, 0)e−(ν+k2
n)t + 4iaknû(kn, 0)e−k2

nt
1− e−νt

ν

+2e−k2
nt

+∞∑
m=−∞

km(km − kn)û(km, 0)û∗(km − kn, 0)e
−νt − e−2km(km−kn)t

2km(km − kn)− ν .

(4.50b)
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Note that there are no unstable modes in the USF of our model: when the denom-
inators in (4.50) are zero, the numerators also vanish and the corresponding frac-
tions remain finite. This is consistent with the (linear) stability of the USF state of a
dilute granular gas of hard spheres described by the Boltzmann equation with re-
spect to perturbations in the velocity gradient (the only possible ones in our model)
[81]. Nevertheless, here the analysis is not restricted to small perturbations, at the
level of the hydrodynamic equations the USF is globally stable.

4.3.3 The Couette Flow steady state

As introduced in Sec. 4.2.2, equation (4.34) yields a steady state solution when the
system is coupled to reservoirs at its boundaries, e.g. when at sites 0 (L) and N + 1
(R) we have two particles with independent normal velocity distributions, with
average uL/R and variance TL/R. Thus the system is no longer periodic, there are
L = N + 1 colliding pairs and the boundary conditions for the mesoscopic fields
read u(0) = uL, u(1) = uR, T (0) = TL and T (1) = TR. It must be stressed that
momentum is no longer conserved for this choice of boundary conditions, since in
general u′(1, t) 6= u′(0, t).

The stationary solution for hydrodynamic equations (4.34), setting symmetric
conditions

TR = TL = TB, uR = −uL = a/2, (4.51)

is

u(x) = a

(
x− 1

2

)
, T (x) = 2a2

ν
+
(
TB −

2a2

ν

)
cosh [

√
ν (x− 1/2)]

cosh (
√
ν/2) . (4.52)

Here, we have put ourselves in the centre of mass frame by considering that uR =
−uL, and we see that when TB = 2a2/ν the USF state described in section 4.3.2
is recovered. On the other hand, when TB 6= 2a2/ν, the average velocity profile
remains linear but the temperature develops a gradient, because the viscous heat-
ing that stems from the velocity gradient is not locally compensated by the energy
sink, which is proportional to the temperature. In other words, when TB = 2a2/ν,
the velocity gradient a is exactly the one needed to satisfy (4.34) with an homoge-
neous temperature throughout the system. Otherwise, if the velocity gradient is
smaller, the bulk temperature will be lower than that at the boundaries, and vice
versa when the velocity gradient is steeper.

These results satisfy the energy balance (4.32b) required to have a stationary
state, namely

Jav(x = 0)− Jav(x = 1) = ν

∫ 1

0
dxT (x) (4.53)

where the lhs is the energy flow entering the system at the boundaries and the rhs
is the energy loss in collisions.

The one-particle distribution function is not Gaussian in this steady state, ex-
cept in the case TB = 2a2/ν for which we recover the USF. This can be readily
seen by taking into account the time evolution of higher-order-than-two central
moments of the velocity, the evolution of which is governed by (4.36). In the Cou-
ette case, we have Gaussian distributions at the boundaries and the appropriate
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boundary conditions are µ3(0, t) = µ3(1, t) = 0, µ4(0, t) = µ4(1, t) = 3T 2
B . Equation

(4.36a) shows clearly the point: if the term ∂xu ∂xT 6= 0, the third central moment
µ3 cannot be identically zero in the steady state and the one-particle distribution is
non-Gaussian.

Therefore, the only steady state with a Gaussian probability distribution in the
present model is the USF. We recall that the HCS is not a steady state, although the
probability distribution for the rescaled velocity is a time-independent Gaussian if
it starts from a Gaussian shape. We do not write down the theoretical expressions
for µ3 and µ4 in Couette’s steady state because they are not particularly illuminat-
ing.

4.3.4 Validity of the hydrodynamic description

There are some analogies between our expansion in terms ofL−1 and the Chapman-
Enskog expansion of the Boltzmann equation. In both cases, terms up to the sec-
ond order in the gradients (of the order of k2, being k the wave vector, in Fourier
space) are kept. On the one hand, and from a purely mathematical point of view,
in our model (4.34) becomes exact in the limit L → ∞, but ν = (1 − α2)L2 of the
order of unity, as previously stated. On the other hand, on a physical basis, the hy-
drodynamic equations are approximately valid whenever the terms omitted upon
writing them are negligible against the ones we have kept.

Following the discussion in the preceding paragraph, we must impose that
L � 1. Moreover, we have also to impose that t � L in order to have an approxi-
mate hydrodynamic description, which stems from the correlations 〈vivi±1〉 being
of the order of L−1 as compared to the granular temperature, see Sec. 5.1. For ex-
ample, in the elastic case at equilibrium, the correlations 〈vivi+k〉 do not depend on
the distance k, and therefore 〈vivi+k〉 = −T (L − 1)−1, ∀k 6= 0. More specifically,
the term proportional to the correlations in the evolution equation for the granu-
lar temperature over the microscopic time scale τ is of the order of (1 − α2)L−1,
which must also be negligible against the second spatial derivative terms, of the
order of L−2. Then, (1 − α2)L � 1 must be further imposed when the correla-
tions are neglected in Equations (4.34). This condition, although less restrictive
that 1 − α2 = O(L−2), also implies that the microscopic dynamics is quasi-elastic.
In Chapter 5 we discuss how to relax these conditions and take into account spatial
correlations in the system.

4.4 Fluctuating hydrodynamics

4.4.1 Definition of fluctuating currents

The size of granular systems is limited both in real experiments and in numeri-
cal or theoretical studies, as discussed before, particularly when the instability of
the HCS was analysed in section 4.3.1. Therefore, it is important to investigate fi-
nite size effects and the first way to take into account such effects is to develop a
fluctuating hydrodynamic description, as introduced in Sec. 3.2: the microscopic
currents are split in two terms, their “main” contribution that depends only on the
hydrodynamic variables, and their corresponding “noises”, with zero average.
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The main physical idea under the fluctuating hydrodynamics approach is to
calculate the averages that lead from the microscopic dynamics to the hydrody-
namic equations in two steps. First, the average over the “fast” variables (namely
yp) is taken, conditioned to given values of the hydrodynamic fields. This de-
fines the “main” contribution to the current, which is still a function of the “slow”
hydrodynamic variables. The difference between the microscopic current and its
main contribution is the noise of the current, which by definition has zero aver-
age: it is clear that the average value of the microscopic current (both over the
“fast” and “slow” variables) coincides with the average of the main contribution
(only over the “slow” variables). Specifically, each physical magnitude is written
as x = x+ ξ(x), where x is its main contribution and ξ(x) is its noise.

Following the above discussion we start by splitting the microscopic currents
in their main parts and their noises, namely

jl,p = jl,p + ξ
(j)
l,p , Jl,p = J l,p + ξ

(J)
l,p , dl,p = dl,p + ξ

(d)
l,p . (4.54)

As stated above, overlined variables correspond to partial averages over the fast
variables yl,p conditioned to given values of the slow ones vl,p. We are considering
the particular case of MM, that is, β = 0. Consequently,

jl,p = 1 + α

2L ∆l,p, (4.55a)

J l,p = 1 + α

2L ∆l,p(vl,p + vl+1,p) (4.55b)

dl,p = α2 − 1
4L (∆2

l,p + ∆2
l−1,p). (4.55c)

It is clear that such choices guarantee that all noises ξ(j), ξ(J) and ξ(d) have zero
average.

4.4.2 Noise correlations

Noise correlations: momentum current

We start by studying the properties of the current noise correlation function ξ(j)
l,p =

jl,p − jl,p, namely the moment 〈ξ(j)
l,p ξ

(j)
l′,p′〉, which reads

〈ξ(j)
l,p ξ

(j)
l′,p′〉 = 〈jl,pjl′,p′〉 − 〈jl,pjl′,p′〉. (4.56)

In order to obtain the noise correlations, we exploit a series of conditions. First, it
is straightforward that 〈ξ(j)

l,p ξ
(j)
l′,p′〉 = 0 for p 6= p′, because yp and yp′ are independent

random numbers. For equal times, p = p′, the second term on the right hand of
(4.56) is negligible because it isO(L−2), while the leading behavior of the first term
will be shown to be O(L−1). Using now the definition (4.16) of the microscopic
momentum current, we get

jl,pjl′,p′ = (1 + α)2

4 ∆l,pδyp,l∆l′,p′δy′p,l′ . (4.57)
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Second, we take into account, setting again β = 0, that 〈δyp,lδyp,l′〉 = δl,l′〈δyp,l〉 =
L−1δl,l′ . Thus, for p = p′, we have

〈ξ(j)
l,p ξ

(j)
l′,p〉 = (1 + α)2

4L
〈

∆2
l,p

〉
δl,l′ +O(L−2). (4.58)

At this point, we can make use of (i) the quasi-elasticity of the microscopic dynam-
ics to substitute (1+α)/2 by 1 (neglecting terms of orderL−2) and (ii) the molecular
chaos assumption to obtain 〈∆2

l,p〉, with the result

〈∆2
l,p〉 = Tl,p + Tl+1,p + (ul,p − ul+1,p)2 +O(L−1) ∼ 2Tl,p, (4.59)

because both ul+1,p − ul,p and Tl+1,p − Tl,p are of the order of L−1. Therefore,

〈ξ(j)
l,p ξ

(j)
l′,p′〉 ∼ 2L−1Tl,p δl,l′ δp,p′ . (4.60)

In the large size system, jl,p scales as L−2, as given by (4.30) (an analogous scal-
ing has been found in other simple dissipative models, see [162]). Therefore, the
mesoscopic noise of the momentum current is defined as

ξ(j)(x, t) = lim
L→∞

L2ξl,p, j(x, t) = j(x, t) + ξ(j)(x, t) (4.61)

in which, again, j(x, t) = limL→∞ L
2jl,p. Going to the continuous limit and re-

membering (4.25), which implies that δl,l′/∆x ∼ δ(x− x′) and δp,p′/∆t ∼ δ(t− t′),
we derive the noise amplitude of the momentum current as

〈ξ(j)(x, t)ξ(j)(x′, t′)〉 ∼ 2L−1 T (x, t) δ(x− x′)δ(t− t′). (4.62)

Noise correlations: energy current

As in the previous subsection, we start with (4.54). Again in this case we are inter-
ested in the correlation properties of the noise ξ(J)

l,p = Jl,p − J l,p

〈ξ(J)
l,p ξ

(J)
l′,p′〉 = 〈Jl,pJl′,p′〉 − 〈J l,pJ l′,p′〉. (4.63)

Similarly to the case of the current noise, we have that (i) 〈ξ(J)
l,p ξ

(J)
l′,p′〉 = 0 for p 6= p′,

(ii) the second term on the right-hand side is O(L−2) and thus subdominant in the
limit L → ∞ and (iii) the noise correlation is dominated by the contribution that
stems from the first term on the rhs. Therefore, making use of (4.18), and again of
the relation (for β = 0) 〈δyp,lδyp,l′〉 = δl,l′〈δyp,l〉 = δl,l′

L , we obtain

〈ξ(J)
l,p ξ

(J)
l′,p′〉 ∼ L

−1
〈(
v2
l,p − v2

l+1,p

)2
〉
δl,l′δp,p′ . (4.64)

In general, the moment
〈(
v2
l,p − v2

l+1,p

)2
〉

is not a function of the hydrodynamic

variables u and T , unless the one-particle distribution is Gaussian.
In order to obtain a closed fluctuating hydrodynamic description, we need to

write 〈(v2
l,p − v2

l+1,p)2〉 in terms of the hydrodynamic variables. Then, on top of the
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molecular chaos assumption (factorization of the moments involving several sites),
we introduce the so-called local equilibrium approximation (LEA): the one-particle
distribution function P1 is assumed to be the equilibrium distribution correspond-
ing to the local values of the hydrodynamic variables, which in our case corre-
sponds to a Gaussian distribution of the velocities. There is strong numerical evi-
dence that the LEA gives a good quantitative description of the noise amplitudes
in some dissipative models without momentum conservation [161, 162, 96, 121],
as a consequence of the quasi-elasticity of the underlying microscopic dynamics.
In our model, we know that the LEA is not an approximation but an exact result
for some physical states, such as the HCS 1 or the USF. For other states like the
Couette flow, it still remains an approximation, whose range of validity is a priori
not known.

In the large system size limit, Jl,p scales as L−2 and it is expected that the noise
does too. Along the same lines as in the preceding section, after using the LEA and
neglecting terms of the order of L−2, we obtain the autocorrelation of the energy
current noise,

〈ξ(J)(x, t)ξ(J)(x′, t′)〉 ∼ 4L−1T (x, t)[T (x, t) + 2u2(x, t)]δ(x− x′)δ(t− t′). (4.65)

Thus, the energy current noise is also white and its amplitude scales as L−1 with
the system size L, accordingly with the physical intuition.

Noise correlations: dissipation field

Now we deal with the third “current” in the system, the dissipation field dl,p by
repeating the same procedure as before. We are interested in the correlation prop-
erties of the noise ξ(d)

l,p = dl,p − dl,p.
Once more, 〈ξ(d)

l,p ξ
(d)
l′,p′〉 = 0 for p 6= p′ and the dominant contribution for p = p′

comes from the dissipation correlation 〈dl,pdl′,p〉. Making use of the definition of
(4.19),

〈dl,pdl′,p〉 = (α2 − 1)2

16L
[
δl,l′〈(vl,p − vl+1,p)4 + (vl−1,p − vl,p)4〉+

δl,l′−1〈(vl,p − vl+1,p)4〉+ δl,l′+1〈(vl−1,p − vl,p)4〉
]
. (4.66)

Therefore, by taking into account the LEA and neglecting O(L−2) terms,

〈ξ(d)
l,p ξ

(d)
l′,p′〉 ∼

3(α2 − 1)2

4L T 2
l,p[2δl,l′ + δl,l′−1 + δl,l′+1]δp,p′ . (4.67)

In the large size system dl,p scales as L−3 and we expect the same scaling for the
noise. Going to the continuous limit, we get

〈ξ(d)(x, t)ξ(d)(x′, t′)〉 ∼ L−3 3ν2T (x, t)2δ(x− x′)δ(t− t′). (4.68)

In summary, the noise of the dissipation is subdominant with respect to the mo-
ment and energy currents, its amplitude being proportional to L−3, and therefore
it is usually negligible.

1For the usual choice of an initial Gaussian distribution, see Sec. 4.3.1
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4.4.3 Cross-correlations of the noises and Gaussianity

Interestingly, being in the presence of two fluctuating fields, correlations between
different noises appear. The cross correlations between different noises are straight-
forwardly obtained, along similar lines:

〈ξ(j)(x, t)ξ(J)(x′, t′)〉 = 4L−1T (x, t)u(x, t)δ(x− x′)δ(t− t′), (4.69)
〈ξ(j)(x, t)ξ(d)(x′, t′)〉 = 0, 〈ξ(J)(x, t)ξ(d)(x′, t′)〉 = 0,

up to and including O(L−1). Theoretical predictions for noise correlations, ampli-
tudes and Gaussianity have been successfully tested in simulations, see section 4.5.

In the large system size limit L� 1, the current noise introduced in the subsec-
tion (4.4.1) is white. We can introduce a new noise field ξ̃(x, t) by

ξ(j)(x, t) = L−1/2ξ̃(x, t) (4.70)

and ξ̃(x, t) remains finite in the large system size limit L→∞,

〈ξ̃(x, t)〉 = 0, 〈ξ̃(x, t)ξ̃(x′, t′)〉 ∼ 2T (x, t)δ(x− x′)δ(t− t′). (4.71)

Here we show that all the higher-order cumulants of ξ̃(x, t) vanish in the thermo-
dynamic limit as L→∞. Let us consider a cumulant of order n of the microscopic
noise ξl,p that is equal to the n-th order moment of the ξ plus a sum of nonlinear
products of lower moments of ξ. A calculation analogous to the one carried out
for the correlation 〈ξ(j)

l,p ξ
(j)
l′,p′〉 shows that the leading behavior of any moment is of

the order of L−1, which is obtained when all the times are the same. Therefore, the
moment 〈jl,pjl′,p′ ...jl(n),p(n)〉 gives the leading behavior of the considered cumulant,
which is thus of the order of L−1 for p = p′ = ... = p(n); any other contribution to
the cumulant is at least of the order of L−2. We have that

〈jl,pjl′,p′ · · · jl(n),p(n)〉 ∼ L−1〈Cl,p〉δl,l′δl′,l′′δl(n−1),l(n) · · · δp,p′δp′,p′′δp(n−1),p(n) , (4.72)

where 〈Cl,p〉 is certain average that remains finite in the large system size limit as
L → ∞. In the continuous limit, each current introduces a factor L2 due to the
scaling introduced in section 4.4. Moreover, we take into account the relationship
between Kronecker and Dirac δ’s in the continuum limit to write the cumulants
〈〈· · · 〉〉 of the rescaled noise introduced in (4.70) as

〈〈ξ̃(x, t)ξ̃(x′, t′) · · · ξ̃(x(n), t(n))〉〉 ∼ L3(1−n
2 )〈C(x, t)〉 ×

δ(x− x′)δ(x′ − x′′)δ(x(n−1) − x(n)) · · · δ(t− t′)δ(t′ − t′′)δ(t(n−1) − t(n)).
(4.73)

Thus, in the limit as L→∞,

〈ξ̃(x, t)ξ̃(x′, t′) · · · ξ̃(x(n), t(n))〉 = 0, for all n > 2, (4.74)

and the vanishing of all the cumulants for n > 2 means that the momentum current
noise is Gaussian in the infinite size limit.
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The same procedure can be repeated for the energy current noise, by defining
ξ(J)(x, t) = L−1/2η̃(x, t)), with the result

〈〈η̃(x, t)η̃(x′, t′) · · · η̃(x(n), t(n))〉〉 ∼ L3(1−n
2 )〈D(x, t)〉 ×

δ(x− x′)δ(x′ − x′′)δ(x(n−1) − x(n)) · · · δ(t− t′)δ(t′ − t′′)δ(t(n−1) − t(n)).
(4.75)

In the equation above, 〈D(x, t)〉 is a certain average, different from 〈C(x, t)〉, but
also finite in the large system size limit. Thus, we have that

〈η̃(x, t)η̃(x′, t′) · · · η̃(xn, tn)〉 = 0, for all n > 2, (4.76)

and the energy current noise also becomes Gaussian in the continuum limit.
Note that the Gaussianity of the noises is independent of the validity of the local

equilibrium approximation, which is only needed to write 〈C(x, t)〉 and 〈D(x, t)〉 in
terms of the hydrodynamic fields u(x, t) and T (x, t). Besides, a similar procedure
for the dissipation noise gives that the corresponding scaled noise vanishes in the
continuum limit, since the power of L in the dominant contribution to the n-th
order cumulant is 3 − 5n/2 instead of 3 − 3n/2. This means that the dissipation
noise is subdominant as compared to the currents noises in the continuum limit,
and can be neglected.

We conclude this section mentioning that, in general, our noise amplitudes do
not seem to satisfy any “equilibrium-like” Fluctuation-Dissipation relation of the
2nd kind (see for instance [112]). This is however not surprising, considered that it
is a non-conservative model.

4.5 Numerical results

4.5.1 General simulation strategy

Simulations have been made reproducing M times the phase-space trajectory of
a system of N particles, each one carrying a velocity vl and being at a definite
position l = 1, . . . , L, with L = N for periodic or Lees-Edwards boundaries and
L = N + 1 for a thermostatted system. For each trajectory, the system starts with
a random extraction of velocities vl normally distributed with 〈vl〉 = 0 and

〈
v2
l

〉
=

T0, unless otherwise specified. Afterwards, we move to the centre of mass frame
making the transformation vl ⇒ v′l = vl − 1

L

∑L
l=1 vl, so that the total momentum

of the system is zero.
We carry out Monte Carlo simulation of the system time-evolution through the

residence time algorithm described in section 4.1.1 [27, 160]. This procedure allows
us to compute the time-evolution of our model for every collision rate β, although
we focus here only on the case β = 0 (MM).

4.5.2 Homogeneous and non-homogeneous cooling

Following the above-mentioned procedure, we have simulated the homogeneous
cooling state described in section 4.3.1 a system made of 103 particles, with periodic
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Figure 4.2. Top: Numerical results (circles) and theoretical predictions (lines) for HCS av-
erage temperature, T (t) =

∫
dxT (x, t), with ν = 10, 20, 30, 40. and N = 1000. Bottom:

Rescaled velocity profile maximum Umax = ũ(xM , t) as a function of time, where xM =
1/4. Trajectories start from a sinusoidal average velocity profile u(x, 0) = u0 sin(2πx)
(here u0 = 0.1), which gives hydrodynamic predictions ũ(x, t) = u0 sin(2πx)e(ν−νc)t/2

(drawn as solid lines). The averages have been taken over M = 105 trajectories.

boundaries and starting from a flat velocity profile u(x, 0) ≡ 0 with unit variance
T (x, 0) ≡ T0 = 1. Theoretical predictions for average velocity and temperature de-
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cay in (4.37) perfectly agree with simulations. The instability of the HCS has been
investigated through the rescaled field of velocity for a perturbed initial condition

u(x, 0) = A sin(2πx) (4.77)

introducing a small sinusoidal perturbation and measuring the time evolution
of its rescaled amplitude ũ. Theory and simulations are compared in Fig. 4.2,
where the existence of a threshold value of the dissipation around νc = 8π2 is
evident. Also, we have performed simulations of non-homogeneous cooling, start-
ing as in section 4.3.1 from a sinusoidal periodic average velocity profile u(x, 0) =
u0 sin(2πmx), with m integer, and a homogeneous temperature T (x, 0) = T0 = 1
as before. The simulations show the cooling of the system, as expected from (4.42),
with the development of a temperature profile given by viscous heating. Compar-
isons between numerical results and theoretical predictions for the non-homogeneous
case are displayed in figure 4.3.

4.5.3 Uniform Shear Flow state

The Uniform Shear Flow described in section 4.3.2 can be simulated by introducing
appropriate boundary conditions in the simulations. When the pair (1, N) is cho-
sen to collide at time p, there are two separate collisions: particle 1 (N ) undergoes
a collision with a particle with velocity vN,p−a (v1,p+a). These boundary collision
rules introduce a shear rate a between the left and right ends of the system, and
at the hydrodynamic level are represented by the Lees-Edwards conditions (4.43).
This can be readily shown by considering the special evolution equations for v1,p
and vN,p with the above boundary collision rules in the continuum limit.

We have tested our theoretical predictions in the USF state, given by (4.44), for
the steady (i) profile of the average velocity and (ii) value of the temperature. We
have done so in a system with N = 500 and three different values of ν, namely
ν = 10, 20 and 40. As seen in figure 4.4, the agreement is excellent in all cases.

Furthermore, in Figs. 4.5 and 4.6, we check the tendency of the hydrodynamic
variables u and T towards their USF values, whose theory was developed in sec-
tion 4.3.2. In both figures, we present the evolution of the velocity and temperature
profiles towards its steady value from an initial state such that (i) T (x, t = 0) =
T0 = 1 and (ii)

u(x, t = 0) = us(x) +A sin(2πx), A = 1, (4.78)
u(x, t = 0) = us(x) +A sin(2πx) +B cos(2πx), A = B = 1, (4.79)

respectively. In both cases, there is only one Fourier mode: that corresponding to
n = 1. However, an important physical difference should be stressed: the temper-
ature profile is always horizontal at the boundaries in the left panel, but it is not
in the right one. Therefore, there is heat flux at the system boundaries in the latter
case but not in the former. Anyhow, the agreement between simulation and theory
is excellent in both situations.
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Figure 4.3. Top: Numerical results (points) and theoretical values (solid lines) for the av-
erage sinusoidal velocity profile u(x, t), with u0 = 1, ν = 40, N = 500, T0 = 1 and
m = 1 for νt = 0, 1, 2, 5, 20. Bottom: Same plot for the temperature profile T (x, t) of
the system. Here, the averages have been taken over M = 105 trajectories.

4.5.4 The Couette flow state

Now we consider a system coupled to two reservoirs at both ends, as described in
section 4.3.3. In the simulations, two “extra” sites 0 and N + 1 are introduced, so
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Figure 4.4. Steady temperature in the USF state as a function of the shear rate a. We
consider three different values of ν in a system of size N = 500, with averages over
M = 105 realizations. Specifically, we plot νTs, the theoretical value of which is 2a2,
as given by (4.44). In the inset, we show the numerical value of the velocity gradient
∂xus(x) as a function of the shear rate. Note the logarithmic scale in both axes.

that the number of colliding pairs is L = N + 1. When the pair to collide involves
one boundary particle (that is, pairs (0, 1) or (N,N + 1)), the same collision rule
for the bulk pairs (1, 2), . . . , (N − 1, N) is applied but the velocity of the “wall”
particles is drawn from a Gaussian distribution with fixed average velocities uL/R
and temperatures TL/R. This is the only change in the simulations, which no longer
correspond to periodic boundary conditions either in u or T . In particular, the non-
periodicity of u′ implies that momentum is not conserved in the time evolution of
the system, conversely to the case of the HCS and USF states.

In figure 4.7, we report the comparison between simulations and theoretical
predictions from (4.52), for different values of the parameter g = 2a2/(νTB). The
boundary conditions are chosen as TL/R = TB = 1, uR = −uL = a/2. It should
be recalled that g = 1 corresponds to the case in which the Couette steady state
coincides with the USF state and there is no heat current in the system. For g > 1
(g < 1), viscous heating is stronger (weaker) than that of the USF, and the steady
temperature profile is concave (convex), that is, T ′′ < 0 (T ′′ > 0) and displays
a maximum (minimum) at the centre of the system x = 1/2. Simulations start
from a non-stationary profile, initial particle velocities are drawn from a Gaussian
distribution with local average velocity u(x, 0) = 0 and temperature T (x, 0) = 1.
An excellent agreement is found in all the cases.

Figure 4.8 depicts the third and fourth central moments of the one-particle ve-
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Figure 4.5. (Colour online) Transient evolution of the velocity (top) and the temperature
(bottom) to their steady profiles in the USF state, for a = 10. The numerical curves are
plotted with points, whereas the solid lines correspond to the theoretical expression
(4.50). The agreement between simulation and theory is excellent in both cases. The
system size is N = 500, the dissipation coefficient is ν = 20, and the number of trajec-
tories is M = 105. In this case, initial conditions correspond to 4.78, namely A = 1 and
B = 0.

locity distribution, scaled with their corresponding powers of the temperature,



116 4. Granular lattice: fluctuating hydrodynamics

-6

-4

-2

 0

 2

 4

 6

 0  0.2  0.4  0.6  0.8  1

u
(x

,t
)

x

νt=0
νt=1
νt=2
νt=5

νt=20

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

T
(x

,t
)

x

νt=0
νt=1
νt=2
νt=5

νt=20

Figure 4.6. Same as in figure 4.5, but for initial conditions defined in (4.79), namely A =
B = 1.

namely µ3/T
3/2 and µ4/T

2. Both moments display a non-trivial structure. In par-
ticular, the non-vanishing third moment clearly shows that the one-particle distri-
bution is not symmetric with respect to the average velocity u. It is evident that the
distribution is non-Gaussian, except for the case TB = 2a2/ν, which corresponds
to the USF state.
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Figure 4.7. Numerical results (symbols) and theoretical values (solid lines) for the station-
ary velocity profile u(x) (top) and the stationary temperature profile T (x) (bottom) in
the Couette state. The parameter values are ν = 20, N = 500, M = 105, and we have
considered several values of g. The profiles have been plotted at the final time νt = 20.

4.5.5 Fluctuating currents

A comparison for the amplitudes of noise for the velocity and energy currents is
shown in Fig. 4.9. We carry it out in the USF state, in which the steady distribution



118 4. Granular lattice: fluctuating hydrodynamics

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

µ
3
 (

x
,t

) 
/ 

T
3

/2
 (

x
,t

)

x

g=0.25
g=1.00
g=4.00

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.2  0.4  0.6  0.8  1

µ
4
 (

x
,t

) 
/ 

T
2
 (

x
,t

)

x

g=0.25
g=1.00
g=4.00

Figure 4.8. Third and fourth central moments µ3 (top) and µ4 (bottom) in the Couette
steady state for the same simulation as in Fig. 4.7. Numerical results are shown with
symbols whereas the lines stand for the theoretical prediction, i.e. the solutions of
(4.36). We can see that, excluding the case g = 1, the one particle distribution is far
from Gaussian in most of the spatial domain.

is Gaussian but the average velocity is not homogeneous. This allows us to make a
more exigent test of the theoretical result for the amplitude of the energy current,
as given by (4.65), which contains a term proportional to u2. The agreement is
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and the theoretical value 2 (black line). Bottom: Amplitude of the energy current as a
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simulations have been done in a system with N = 500, ν = 20, a = 5, and M = 105.

excellent for the amplitudes of both noises.
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I’m looking for a complication
Looking cause I’m tired of trying
Make my way back home when I learn to fly high

5
Granular lattice: beyond Molecular

Chaos

The hydrodynamic behavior derived in Chapter 4 and numerically analyzed in
Sec. 4.5 has been obtained through the Molecular Chaos ansatz stated in (4.14),
mathematically equivalent to the factorization of velocity correlations

〈vl,pvl′,p〉 = 〈vl,p〉〈vl′,p〉 (5.1)

This approximation has been found acceptable when comparing the numerical
data with the theoretical results. However, when looking at the time behavior
of the rescaled temperature T̃ (t) = T (t)/THCS(t), this is found to diverge from the
stationary solution T̃ = 1 which is expected in the region of stability of the HCS,
so Haff’s law is violated as can be seen in Fig. 5.1. The main reason of this viola-
tion is the presence of velocity correlations between next-neighbor particles: in this
section, we analyze the effect on the free cooling of the system introduced by the
velocity correlations. Interestingly, for the case of Maxwell molecules we are con-
sidering in the paper, we can account for the effect of the correlations in the cooling
of the system in quite a detailed way. It will be shown that long-range correlations
arise in the system tending to a stationary value. A multiple scales analysis of
temperature decay yields a “renormalized” mesoscopic dissipation coefficient νr,
equivalent to ν in the limit L → ∞. Finally, total energy rescaled fluctuations (ex-
pected to be stationary in the HCS) also have a divergent behavior in time: their
time evolution is again derived from microscopic balance equations, showing the
fact that two-particles energy correlations are not scaling with the square of the
temperature and producing an increase of energy fluctuations with time. Numeri-
cal observations are shown together with analytical results.
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5.1 Perturbative Solution for Temperature and Correlations

We assume that the system is in a spatial-translation-invariant state, such as the
HCS. We define the set of spatial correlations of the velocity at time τ as

Ck(τ) = 〈vj(τ)vj+k(τ)〉. (5.2)

Here, k represents the distance between the involved sites in the correlation. Through-
out this section, the microscopic continuous time τ will be used, being equivalent
to the collisional discrete time p with 〈δτp〉 = (ωΩp(L))−1, see Sec. 4.1.1. Note that
the average temperature at any site j is given by C0,

T (τ) ≡ C0(τ) = 〈v2
j (τ)〉. (5.3)

The evolution equations of these correlations are readily obtained from the Master
Equation 4.10, namely

ω−1∂τC0 = (α2 − 1)(C0 − C1), (5.4a)

ω−1∂τC1 = 1− α2

2 (C0 − C1) + (1 + α)(C2 − C1), (5.4b)

ω−1∂τCk = (1 + α)(Ck+1 + Ck−1 − 2Ck), 2 ≤ k ≤ (L− 1)/2, (5.4c)
CL+1

2
= CL−1

2
, ∀τ. (5.4d)

In the above equations, we have omitted the τ -dependence of the correlations to
keep our notation simple. We have written them for odd L, because the “upper”
boundary condition (for the maximum value of k) is simpler to write. Of course,
this choice is irrelevant in the large system size limit. The same equations can be
derived in discrete time p by averaging Eq. (4.17).

As a consequence of momentum conservation, in the center of mass frame we
have the “sum rule”

C0(τ) + 2
L−1

2∑
k=1

Ck(τ) = 0, ∀τ. (5.5)

For a conservative (α = 1) system at equilibrium, the correlations Ck do not de-
pend on the distance between sites k and they are of the order O(L−1): Ceq

k =
−T (L− 1)−1, ∀k > 0. In a non-equilibrium state, we may have a non-trivial space
structure in the correlations, but we still assume them to be of the order of L−1.
Then, we define the rescaled correlations Dk(τ) as

Dk(τ) = LCk(τ), (5.6)

which we assume to be of the order of unity in the infinite size limit as L→∞.
Let us write (5.4) in the large system size limit, in which we expect Dk(τ) to be

a smooth function of space, in the sense that Dk+1(τ)−Dk(τ) = O(L−1). Then, the
typical hydrodynamic length and time scales are introduced as in (4.25), with

x = k − 1
L

, t = ωτ

L2 = p

L3 (5.7)
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Keeping solely terms up to O(L−1), we arrive at

dT (t)
dt

= −ν
[
T (t)− L−1ψ(t)

]
, (5.8a)

νT (t) + 4∂xD(x, t)|x=0 = L−1
(
dψ(t)
dt

+ νψ(t)
)
, (5.8b)

∂tD(x, t) = 2 ∂xxD(x, t), (5.8c)

∂xD(x, t)|x=1/2 = 1
2L
−1dχ(t)

dt
(5.8d)

in which we have introduced the notations

ψ(t) = lim
x→0

D(x, t), χ(t) = lim
x→ 1

2

D(x, t). (5.9)

These equations are exact up to times such that t� L2, since the lowest order terms
that have been neglected are of the order of L−2, for instance the fourth-spatial-
derivative term in the diffusion equation (5.8b) for the correlations. In (5.8a), we
have a L−1 correction to the cooling rate, brought about by the nearest-neighbor
velocity correlation.

Of course, these equations are compatible with the sum rule (5.5). When we
retain only terms up to and including O(L−1), we have

T (t) + 2
∫ 1

0
dxD(x, t) + L−1 [ψ(t)− 2χ(t)] = O(L−2), (5.10)

as shown in Appendix A.3. The lhs of (5.10) is a constant of motion, as can be
readily shown by using the evolution equations (5.8).

In order to solve the above system, it is useful to define the scaled (tilde) fields
with their corresponding power of THCS(t). Namely, we define

T̃ (t) = T (t)
THCS(t)

, D̃(x, t) = D(x, t)
THCS(t)

. (5.11)

These rescaled fields obey the equations

dT̃ (t)
dt

= νL−1ψ̃(t), (5.12a)

νT̃ (t) + 4∂xD̃(x, t)|x=0 = L−1dψ̃(t)
dt

, (5.12b)

∂tD̃(x, t) = νD̃(x, t) + 2 ∂xxD̃(x, t), (5.12c)

∂xD̃(x, t)|x=1/2 = 1
2L
−1
(
dχ̃(t)
dt
− νχ̃(t)

)
. (5.12d)

The system above is linear in (T̃ , D̃), so it is possible to seek the exact solution
thereof: this has been done in [155, 154]. Here, we are interested in finding the
corrections to the cooling rate introduced by the velocity correlations, so we look
for a solution of (5.12) by means of a perturbative approach. This can be performed
by expanding all functions of time in powers of L−1,

T̃ (t) = T̃0(t) + L−1T̃1(t) +O(L−2), (5.13a)
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D̃(x, t) = D̃0(x, t) + L−1D̃1(x, t) +O(L−2), (5.13b)

with analogous expansions for ψ̃(t) and χ̃(t).
To the lowest order, we have

d
dt T̃0 = 0, (5.14a)

νT̃0 + 4∂xD̃0|x=0 = 0, (5.14b)
∂tD̃0 = νD̃0 + 2 ∂xxD̃0, (5.14c)
∂xD̃0|x=1/2 = 0. (5.14d)

From (5.14a), we have that T̃0 = 1 is a constant. Moreover, in the limit t�1, the
scaled correlations tend to a stationary value, which is given by

D̃0(x) = −A cos
[
π

√
ν

νc
(1− 2x)

]
, A = π

√
ν

νc
csc

(
π

√
ν

νc

)
. (5.15)

Looking for the first order corrections, for our purposes we only need to write the
evolution equation for T̃1(t),

d
dt T̃1(t) = νψ̃0(t) (5.16)

hence when the correlations reached the stationary profile (5.15) we have that

d
dt T̃1(t) = νψHCS (5.17)

defining ψHCS as

ψHCS ≡ −π
√
ν

νc
cot

(
π

√
ν

νc

)
. (5.18)

Therefore, for t�1 the rescaled temperature is linearly diverging as

T̃ (t) ∼ 1 + νψHCS

L
t+O(L−2) (5.19)

neglecting the transient terms for T̃1. This result explains the divergence of rescaled
temperature from HCS value T̃ = 1 and has been compared with simulations in
figure 5.1. It is worth underlining the presence of a transition at ν = νψ = 2π2, for
which ψHCS = 0 and first-order corrections to Haff’s law vanish.

We have also checked the theoretical prediction (5.15) for the velocity correla-
tions in the HCS in figure 5.2. Thus, we plot the simulation value of the nearest-
neighbors rescaled correlation ψ̃(t) as a function on time, approaching the sta-
tionary value ψHCS, and the amplitude A as a function of ν, and compare them
with (5.15). Trajectories start from a homogeneous mesoscopic velocity profile with
zero average, u(x, 0) ≡ 0. Once more, a very good agreement is found.

We already commented that the result in (5.19) is valid only for ψHCSνt/L � 1,
while in this section we used the stationary value of the correlations supposing
t� 1. Depending on the value of ν and L, these conditions on time may be either
consistent or inconsistent. In fact, numeric data in figure 5.2 show an excellent
agreement with the theoretical prediction in (5.19) for ν < 60, while for higher
dissipation the nearest-neighbor correlations do not seem to have reached their
stationary value. Therefore, longer trajectories should be observed and this leads
to the divergence of the first order perturbation O(t/L).
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Figure 5.1. Top panel: rescaled temperature T̃ as a function of time. We compare the nu-
merical values of T̃ (circles) and the linear fits (lines) in the second part of the trajectory,
for several values of ν (see legend). Bottom panel: Plot of the slope m = LdT̃/d(νt)
as a function of ν. We compare the fitted slopes in the top panel (circles) and their
theoretical values, as given by ψHCS in (5.16) (blue line). The transition at νψ = 2π2 is
marked by the horizontal dashed line. We have used a system of size L = 1000.
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5.2 Temperature and Correlations Evolution: Multiple-Scale
Analysis

In order to build up a theory which give a consistent picture for long times, we in-
troduce a multiple-scale perturbative solution of (5.12). Equation (5.12a) suggests
the introduction of two distinct time scales: apart from t, we define a slow time
scale σ,

s = t, σ = L−1t, ∂t=∂s + L−1∂σ. (5.20)

Our notation makes it possible to distinguish between ∂t (with constant x) and ∂s
(with constant x and σ). All functions of time are expanded in powers of L−1 as
before and considered to depend on both time scales (s, σ). So, to the lowest order
we have

∂sT̃0(s, σ) = 0, (5.21a)
νT̃0 + 4∂xD̃0|x=0 = 0, (5.21b)
∂sD̃0 = νD̃0 + 2 ∂xxD̃0, (5.21c)
∂xD̃0|x=1/2 = 0. (5.21d)

which has the same form of (5.14) but now T̃0 depends also on the slow time scale
σ; more precisely, from (5.21a) we have that it depends only on σ, T̃0(�s, σ) = T̃0(σ).
Note that T̃0(σ) remains undetermined at the lowest order. Also, (5.21) leads now
to a pseudo-stationary solution for D̃0(x, �s, σ) for long time scales s � 1 but finite
σ, namely

D̃0(x, σ) = −T̃0(σ)A cos
[
π

√
ν

νc
(1− 2x)

]
, (5.22)

which differs from (5.15) because of the σ dependence of T̃0(σ). As is usual in
multiple-scale analysis, the latter can be obtained by writing down the equations
for the first order corrections. In fact, for the purposes of the present paper, it
suffices to write the evolution equation for T1(s, σ),

∂sT̃1 + d

dσ
T̃0 = νψ̃0, ψ̃0 = T̃0ψHCS. (5.23)

Since the rescaled energy should not contain linear terms in time (see [155, 154] for
a rigorous proof), the first lhs term of (5.23) must vanish, and

νψHCST̃0(σ)− d
dσ T̃0 = 0 ⇒ T̃0(σ) = eνψHCSσ, (5.24)

where we have taken into account that T̃0(t = 0) = 1. Going back to the unscaled
variables, what we have shown is that

T (t) = T (0) exp [−νrHCSt] +O(L−1), νrHCS = ν
(
1− L−1ψHCS

)
. (5.25)

Equation (5.25) tells us that the cooling rate in Haff’s law has a finite size correction.
Of course, if we consider that σ = t/L� 1 and retain only the linear terms in L−1,
we reobtain the results in (5.19).
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We check the renormalization of Haff’s law predicted by (5.25) in figure 5.3:
simulations made over long times νtψHCS ∼ L show that the rescaled temperature
has an exponential behavior, as predicted from the multiple-scale analysis. The
exponential slope has been fitted and numerical results are in good agreement with
the theoretical prediction (5.24). Nearest-neighbor correlations have been studied
as before: figure 5.3 shows that for ν = 50, 60 they converge to their expected
value after a very short transient, whereas for ν = 70 they also converge but to a
stationary value smaller than the expected one. This effect is probably given by
next order corrections which are becoming relevant when approaching the critical
dissipation νc, where we know that ψHCS is divergent.

5.3 Total energy fluctuations and multiscaling

A typical question in granular systems concerns the distribution of the extensive
energy E(τ) =

∑
l v

2
l (τ): usually, granular models present non-Gaussian distribu-

tions that can be mostly characterized by the study of its fluctuations [28]. Within
the same spirit of section 5.1, we now aim to derive the total energy rescaled fluc-
tuations Σ(τ) defined as

Σ2(τ) =
〈
E2(τ)

〉
− 〈E(τ)〉2

〈E(τ)〉2
. (5.26)

The Local Equilibrium Approximation (LEA) gives the straightforward result Σ2(τ) =
2/L. However, numerical results in figure 5.4 show a time-dependent behavior of
Σ2(τ) which clearly diverges from the LEA prediction.

Such anomalous behavior is generally considered an evidence of multiscaling
in the moments [14], i.e. the moments are not scaling proportionally to the gran-
ular temperature T (τ) =

〈
v2(τ)

〉
. Notwithstanding, this phenomenon can also be

explained by a well-defined scaled distribution function with some divergent mo-
ments [6, 51]. Following the same approach of section 5.1, we look for a direct
calculation of the energy fluctuations by means of the evolution equations for the
4-th order moments and correlations.

In the homogeneous case, we can write

〈
E2(τ)

〉
=

L∑
l=1

〈
v4
l (τ)

〉
+

L∑
l=1

L−1∑
k=1

〈
v2
l (τ) v2

l+k(τ)
〉

= L
〈
v4(τ)

〉
+ L

(L− 1)T 2(τ) + 2
(L−1)/2∑
k=1

C2,2
k (τ)

 , (5.27a)

〈E(τ)〉 = LT (τ), (5.27b)

where we have defined the two-particle squared velocity correlation function

C2,2
k (τ) =

〈
v2
l (τ)v2

l+k(τ)
〉
− T 2(τ), k 6= 0. (5.28)

Therefore, the energy fluctuations dynamics is given by the dynamics of T (τ),
q(τ) =

〈
v4(τ)

〉
and C2,2

k (τ) altogether.
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Rescaled energy fluctuations hence read

LΣ2(t) = 2 + a2(t) + 2
T 2(t)

∫ 1
2−

3
2L

0
D2,2(x, t)dx, (5.29)

using the hydrodynamic scaling defined in (5.7) and introducing the excess kurto-
sis field a2(t) = q(t)/T 2(t) − 3. Analogously with the scaling used in section 5.1,
we defineD2,2 = LC2,2, where the evolution equations for these fields can be com-
puted from the microscopic dynamics (4.15). By means of a perturbative approach,
a set of equations is derived, similar to (5.14), coupling all the one-particle and two-
particle fourth-degree fields, namely q(t), D2,2(x, t) and D3,1(x, t). The latter is the
large-size limit of D3,1

k (τ) = L
〈
v3
l (τ) vl+k(τ)

〉
. Also, the three-particle correlation

C1,2,1
i,j (τ) =

〈
vl−i(τ) v2

l (τ) vl+j(τ)
〉

appears in these equations: to get a closed set,
we make use of the clustering ansatz, that is, we perform a cluster expansion of the
latter and neglect purely correlated terms, specifically

C1,2,1
i,j (τ) =

〈
v2
l (τ)

〉
〈vl−i(τ) vl+j(τ)〉+ 2 〈vl(τ) vl−i(τ)〉 〈vl(τ) vl+j(τ)〉

+O(L−3) = 1
L
T (τ)D|i+j|(τ) + 2

L2Di(τ)Dj(τ) +O(L−3).

(5.30)

The derivation from microscopic dynamics is lengthy and painful but concep-
tually easy to understand: it relies on the expansion of correlation fields and mo-
ments, analogous to the one defined in Eqs. (5.13). here we present a concise ver-
sion going directly to the final results; in Appendix A.4 the reader will find the
detailed calculations to obtain the results presented in the section.
Starting from the microscopic dynamics defined in (4.15) and moving to the con-
tinuum limit, with the clustering ansatz one gets to the lowest order

d

dt
q̃0(t) = 0, (5.31a)

ν
[
q̃0(t) + 3T̃ 2

0

]
+ 8∂xD̃3,1

0 |x=0 = 0, (5.31b)

∂tD̃
3,1
0 = ν

2
(
D̃3,1

0 + T̃0D̃0
)

+ 2 ∂xxD̃3,1
0 , (5.31c)

∂xD̃
3,1
0 |x=1/2 = 0, (5.31d)

∂xD̃
2,2
0 |x=0 = 0, (5.31e)

∂tD̃
2,2
0 = 2 ∂xxD̃2,2

0 , (5.31f)
∂xD̃

2,2
0 |x=1/2 = 0. (5.31g)

These equations can be readily solved. Assuming for instance the initial distribu-
tion to be Gaussian, we have at any time q̃0 = 3 T̃ 2

0 . Moreover, in the long time
limit t� 1, we obtain the stationary fields

D̃3,1
0 (x) = 3 D̃0(x), D̃2,2

0 (x) = 0, (5.32)

recalling that T̃0 = 1. However, these results do not give rise to any multiscaling
effect such as the one observed into the simulations.
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In light of the above, we move on to compute the next perturbative order. The
equations needed from the definition (5.29) are those for q̃1 and D̃2,2

1 , i.e.

d
dt q̃1(t) = 2νψ̃3,1

0 (t), (5.33a)

νT̃0ψ̃0 + ∂xD̃
2,2
1 |x=0 = 0, (5.33b)

∂tD̃
2,2
1 = 2 ∂xxD̃2,2

1 + 4 νD̃2
0, (5.33c)

∂xD̃
2,2
1 |x=1/2 = 0. (5.33d)

where ψ̃3,1(t) = limx→0 D̃
3,1(x, t). Equation (5.33a) is immediately solvable for

long times since D̃3,1
0 (x, t) is known from (5.32), yielding

q̃1(t) = 2νψ3,1
0 = 6νψHCS. (5.34)

Looking at the D̃2,2
1 field from (5.29), all we need is to compute the integral ∆1(t) =∫ 1

0 dx D̃
2,2
1 (x, t). Taking into account (5.33), we have that

d

dt
∆1(t) = 4ν

[
ψ0(t) +

∫ 1

0
dx D̃2

0(x, t)
]
, (5.35)

where we have used the boundary condition ∂xD̃
2,2
1 |x=1− = −∂xD̃2,2

1 |x=0+ . There-
fore, in the long time limit we use the stationary correlation profile D̃(x) from (5.15)
to get the stationary growth

d

dt
∆1(t) = 2ν

 π
√
ν/νc

sin
(
π
√
ν/νc

)
2 1−

sin
(
2π
√
ν/νc

)
2π
√
ν/νc

 . (5.36)

Now, we have all the ingredients to compute the energy fluctuations in (5.29). To
the first order, (5.34) and (5.16) yield that the excess kurtosis a2(t) vanishes for all
times if it did initially, a2(t) = O(L−2). This implies that the steady-state linear
divergence of the energy fluctuations (to the first order) is given by the D2,2 corre-
lations term in (5.36). Specifically, for t� 1, we have

d

dt
Σ2(t) = 1

L

d

dt
∆1(t) = ν

L
mΣ(ν). (5.37)

We have introduced mΣ(ν) = d∆1/d(νt), which is the slope of the energy fluctua-
tions as a function of the dimensionless time νt.

In conclusion, the observed energy multiscaling seems to stem from the mul-
tiscaling of two-particles and three-particles correlation fields, while the single-
particle fourth moment still scales with the granular temperature squared. We
have compared this theoretical result with simulations in figure 5.5. Although
some discrepancies are apparent, especially for high ν, we see that they both ex-
hibit a similar trend over three decades ofmΣ values. Keeping the clustering ansatz
in (5.30), a multiple scale analysis has also been performed, analogous to that in
section 5.2. Nevertheless, it does not improve the agreement with the numerics.
Therefore, it seems that the most probable source for this discrepancy is the clus-
tering ansatz that is used in both cases.
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Figure 5.2. Top panel: Time evolution of nearest-neighbor rescaled correlations ψ̃(t). We
plot their numerical values (circles) for several ν (see legend) and L = 1000 particles as
a function of the dimensionless time νt, and their theoretical stationary values, given
by (5.18). In the plotted time window, the correlations reach their stationary value for
all ν ≤ 60, while they do not for ν = 70. This discrepancy will be analyzed in figure 5.3.
Bottom panel: Correlation amplitude A, defined in (5.15), as a function of ν. We plot
both its numerical value, computed in simulations for L = 250, 500, 1000 (symbols),
and its theoretical expectation (black line). A very good agreement is found for all
ν < 70.
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Figure 5.3. Top panel: Log-linear plot of the rescaled temperature. The simulation val-
ues are plotted for ν = 50, 60, 70 (circles), and also the fits made upon the second part
of the long trajectories (lines). The time evolution is clearly exponential as predicted
from (5.24). Inset: Time evolution of the nearest-neighbor rescaled correlations ψ̃(t)
for long trajectories. We have plotted the simulation curves (circles) and their cor-
responding theoretical stationary values (lines). Bottom panel: Slope ml of the time
evolution of ln T̃ . The fitting values from the top panel (squares) are plotted together
with the theoretical prediction (5.24) (black line). All the trajectories have been done
with L = 1000 particles up to a maximum time νt = 200.



132 5. Granular lattice: beyond Molecular Chaos

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2  4  6  8  10

L
 Σ

2

ν t

ν=10

ν=20

ν=30

ν=40

ν=50

ν=60

ν=70

Figure 5.4. Total energy rescaled fluctuations as a function of dimensionless time νt. We
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Figure 5.5. Slope of the energy fluctuations vs. time curves. We compare the fitted values
(symbols) in the second part (long time) of the trajectories for L = 250, 500, 1000 with
the theoretical prediction mΣ(ν) in (5.37) (black line). Simulations are carried out as in
figure 5.4.
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It don’t mean a thing
if it ain’t got that swing

6
Active lattice fluctuating hydrodynamics

The granular lattice model analyzed in the last chapters has shown to reproduce re-
alistic physical phenomena and to lead towards new analytical results on nonequi-
librium fluctuating hydrodynamics. The generality of the method brought us to
the formulation of a lattice model of active matter, which will be developed along
the same lines [134].

Here we introduce a model of granular active particles (GAP) on the lattice
where pairwise interactions combine excluded volume and dissipative alignment,
quite similarly to the off-lattice model in [87] described in Sec. 2.3. Our main result
is a set of hydrodynamic equations for the density, momentum and energy fields
with fluctuating currents and source terms, in analogy with granular lattice results
in Chapter 4. An application of these general equations is given in the dilute limit,
assuming local equilibrium [147], where they describe a gas-swarming phase tran-
sition through the linear instability of the homogeneous disordered state. The ho-
mogeneous swarming state arises when either the noise amplitude is small enough
or the aligning force is strong enough. Numerical simulations agree well with the
theory - including predictions of the macroscopic noise amplitudes - for packing
fraction smaller than 10%: they also suggest that the instability is discontinuous in
the large volume limit. Simulations also display the emergence of clustering and
phase separation at higher packing fraction, where our assumptions fail.

6.1 Definition of the model

6.1.1 Microscopic ingredients

We consider a square lattice in d dimensions of volume V = Ld, with 1 � N ≤ V
self-propelled particles moving on it. A lattice site i = (i1, i2, . . . , id) ∈ {1, L}d = Λ
can be occupied at most by one particle (excluded volume) and is described by its
occupation number ni ∈ {0, 1} and its “active velocity” vi ∈ Rd (the meaning of
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this variable is discussed later). The elementary moves that constitute the micro-
scopic evolution of each particle, see Fig. 6.1, amount to

• hopping

• nearest-neighbors interactions

• self-propulsion

• noise

Hopping means that a particle at site i can move to an adjacent site i + σel,
being el the unit vector in the l-th direction and σ = ±1 the orientation of the hop,
with l = 1, . . . , d. The probability of hopping per unit of time can generally be
velocity-dependent.

Pairwise interactions are represented by a contact force: when two particles
with active velocities v and v′ are nearest-neighbors, they act on each other with a
force

f (2)(v,v′) = −f (2)(v′,v) (6.1)

where f (2)(v,v′) represents the force transmitted from particle with velocity v to
particle with velocity v′. The above relation implies the conservation of total mo-
mentum during interactions. The force can be dissipative or conservative; from
Sec. 6.2 on we will focus on the dissipative case, in analogy with granular colli-
sions.

Self-propulsion consists in a velocity-dependent force f (1)(v): indeed, the speed
of active particles v = |v| is not fixed and the self-propulsion acts to maintain the
state of motion of the particles, typically pushing them towards a fixed point of
speed vs. Self-propulsion is combined with a vectorial Wiener process ∆Wi(t) in-
dependently acting upon each component of the velocity of each particle, with a
velocity-diffusion tensor B(v).

The state of the system is completely identified by its microscopic configuration
{ni,vi}. The system evolves with a discretized time. The index p ∈ N denotes the
number of performed time steps. Physical time reads t = p∆t ∈ R, where ∆t
will go to zero when taking the continuum limit, as well as the physical distance
between two lattice sites ∆x.

6.1.2 Physical interpretation

The model possesses the main features of active matter models described in Sec. 2.2.
The interplay between an interaction rule and a self-propulsion is present, com-
bined with a noise term which can be interpreted as the effect of hidden degrees
of freedom like the action of surrounding fluid or the random exploration of space
performed by active units. Conversely from the granular case, now particles do
move on the lattice when hopping, similarly with exclusion processes described
in Sec. 3.3.1. Additionally, particles hop from one site to another depending on
the active velocity degree of freedom directly entering in the hopping probabili-
ties: indeed, with the “natural active velocity” hopping probability defined in the
next subsection, a probe particle on an empty lattice follows a ballistic motion with
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Figure 6.1. Sketch of active particles in a 2d lattice. Particles A-D show hopping (black ar-
rows) to neighbor sites according to the directions of their active velocity (blue arrows),
including periodic conditions (A) and excluded volume (C,D). Next-neighbors inter-
act (E,F), with a force which aligns velocities (from blue to red arrows). Self-propulsion
acts in the direction of the velocity and brings the speed toward a fixed value (G, from
blue to green arrow). The velocity of a particle can be modified also by external noise
(H, from blue to green).

〈x(t)− x(0)〉 = v t, where v is constant in absence of self-propulsion, noise and in-
teractions. However, this is not the case in a crowded environment: when all the
adjacent sites are occupied, a particle with a non-vanishing active velocity does not
move at all because of excluded volume. This is why we call vi the active velocity
of a particle in the site i: it represents the tendency of active particles to move with
a given direction and speed provided that the direction of motion is not occupied by
other particles. This behavior may reproduce the clustering behavior of bacteria or
Janus particles, when they all point towards the same direction and therefore self-
clustering arises. So, in our model it is generally wrong to say that ẋ = v, as in the
case of Active Ornstein-Uhlenbeck particles introduced in Sec. 2.2.4. However, in
the latter model this was the consequence of an overdamping of the motion equa-
tions; here, it directly stems from the presence of excluded volume: the equations
for our model are not overdamped in any considered case.

intensively

6.1.3 Microscopic balance equations

We now write the microscopic evolution equations for occupation ni, momentum
nivi and energy ei ≡ 1

2ni
∑
k v

2
i,k. From now on, the index l is associated to the

direction of hopping while the index k indicates a general component of vectorial
quantities.

At each infinitesimal time step p two random vectors are extracted: the random
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site ξp ∈ Λ, determining the hopping particle, and the random direction ζp = ±el
determining the direction and orientation of the hop. The probability of extraction
satisfies

δξp,iδζp,σel
= ni,p(1− ni+σel,p)g(σvl,p)

∆t
∆x, (6.2)

where σ = ±1 and · · · represents the average over the fast variables ξp, ζp condi-
tioned by the actual microscopic configuration {ni,p,vi,p} at time p. The first two
factors in the rhs guarantee that hopping can only occur from an occupied to an
empty site, as for SEP models. The projection function relates the active velocity
component lwith the hopping probability in the l-th direction: since g(σvl,p)∆t/∆x
must be dimensionless, g must have the dimension of a velocity. In our model, we
will choose it as proportional to the projection of vi along the direction l, namely

g(σvl) = Θ(σvl)|σvl| (6.3)

where Θ(x) is the Heaviside step function. We call this rule the “natural active
velocity” prescription. Eqs. (6.2) and (6.3) provides that a free particle follows an
average ballistic motion with 〈ẋ〉 = v if all the forces are absent. The hopping
probability (6.2) also includes a constraint ∆t � ∆x which will be analyzed later.
The total hopping probability is generally under-normalized, i.e. there can be no
hops during a time step.

The evolution of microscopic variables is given by balance equations: for each of
the quantities above defined, we can compute the gain and loss terms at each time
step. For instance, the occupation number ni increases by 1 if a particle from an
adjacent side hops into it, and vice versa if the occupying particle hops away from
it. So,

ni,p+1 = ni,p +
d∑
l=1

∑
σ=±1

(
δξp,i−σel

δζp,σel
− δξp,iδζp,σel

)
. (6.4)

The discrete continuity equation for occupation number reads

∆ni = −
d∑
l=1

(ji − ji−el
)l (6.5)

where ∆ni ≡ ni,p+1−ni,p and the time dependence from now on is omitted because
every variable in the rhs is evaluated at time p. Eq. (6.5) defines the density current
vector as

ji,l ≡ δξp,iδζp,el
− δξp,i+el

δζp,−el
(6.6)

which is either 1 if the particle is leaving the site i in the “positive” direction (right,
top...) or -1 if a particle is incoming from the same direction. The particles can
not be created or destroyed, so the occupation number obey an exact continuity
equation.

Analogously, the evolution of active velocity can be obtained through active
momentum balance, i.e.

∆(nivi) =
d∑
l=1

∑
σ=±1

[
δξp,i−σel

δζp,σel
vi−σel

− δξp,iδζp,σel
vi+

+ nini−σel
f (2) (vi−σel

,vi) ∆t
]

+ ni
[
f (1)(vi)∆t+ B(vi) ·∆Wi(t)

] (6.7)
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or, writing explicitly the components,

∆(nivi,k) =−
d∑
l=1

(Ji − Ji−el
)kl + ni

[
f

(1)
k (vi)∆t+

d∑
l=1

Bkl(vi)∆Wi,l(t)
]

(6.8)

accounting for momentum transport through hopping and pairwise interactions
and momentum injection by means of self-propulsion f (1) and random force B(vi)·
∆Wi acting on the unit. The transported momentum defines the momentum current
tensor J, namely

Ji,kl ≡ δξp,iδζp,el
vi,k − δξp,i+el

δζp,−el
vi+el,k + nini+el

f
(2)
k (vi,vi+el

)∆t (6.9)

representing the momentum in direction k transported in direction l.
The evolution of microscopic kinetic energy reads

∆ei =(nivi) ·∆(nivi) + 1
2

∑
l,σ

(
δξp,i−σel

δζp,σel
vi−σel

− δξp,iδζp,σel
vi
)2

+ 1
2

[
ni

d∑
l=1

Bkl(vi)∆Wi,l(t)
]2

=−
∑
k,l

(nivi,k) (Ji − Ji−el
)kl +

d∑
k=1

[
(nivi,k)

(
f

(1)
k (vi)∆t+

d∑
l=1

Bkl(vi)dWi,l(t)
)

+1
2
∑
l,σ

(
δξp,i−σel

δζp,σel
v2

i−σel,k
+ δξp,iδζp,σel

v2
i,k

)
+ 1

2ni

d∑
l=1

[Bkl(vi)]2∆t


=−

d∑
l=1

(Ji − Ji−el
)l + nivi · B(vi) ·∆Wi(t) +Di ∆t

(6.10)

defining the energy current Ji as

Ji = J(hops)
i + J(int)

i

J
(hops)
i,l = δξp,iδζp,el

ei − δξp,i+el
δζp,−el

ei+el

J
(int)
i,l = 1

2nini+el
(vi + vi+el

) · f (2)(vi,vi+el
) ∆t

(6.11)

and the energy injection/dissipation terms

Di = D
(int)
i +D

(self)
i +D

(noise)
i

D
(int)
i = −1

2
∑
l,σ

nini+σel
(vi − vi+el

) · f (2)(vi,vi+el
)

D
(self)
i = nivi · f (1)(vi)

D
(noise)
i = 1

2ni

1,d∑
k,l

[Bkl(vi)]2 ≡
1
2niB(vi)

(6.12)
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where the contributions from hopping, interactions, self-propulsion and noise have
been written separately.

Eqs. (6.5), (6.8) and (6.10) are the microscopic balance equations of the system.
Their validity is not restricted to any equilibrium approximation or hypothesis
on the configuration distribution function. At this stage, they are equivalent to
Eqs. (4.15) and (4.17) of the granular model.

6.2 Hydrodynamic limit

The derivation of the hydrodynamic equations for the model can be done through
a continuum limit of microscopic balance equations derived in the previous sec-
tion. The hydrodynamic fields considered are density, momentum and tempera-
ture. The probability of a configuration {ni,vi} at time t is defined as P({ni,vi}; t).
The 2-sites (i, j) and 1-site (i) marginalized distributions are respectively given by
P

(2)
i,j (ni, nj,vi,vj; t) and P (1)

i (ni,vi; t). Locally averaged fields are defined as

ρi(t) = 〈ni〉 (6.13a)
ρi(t)ui,k(t) = 〈nivi,k〉 (6.13b)

ρi(t)Ti(t) = 1
d
〈ni|vi − ui|2〉, (6.13c)

where

〈f(ni,vi)〉 =
∏
i∈Λ

 ∑
ni=0,1

∫
R
dvi

P({ni,vi}; t)f(ni,vi) (6.14)

and in Eq. (6.13c) we assumed isotropy of local temperature. From now on we
make only use of continuous time t = p∆t. Temperature is related to energy
through the relation

Ti(t) ≡
1
d

〈
|v− u|2

〉
i

= 1
d

( 2
ρi(t)

〈ei(t)〉 − u2
i (t)

)
. (6.15)

We move to a large volume limit L → ∞, N → ∞ at constant number density
φ = N/V . In this limit the physical spacing between two adjacent lattice sites is
sent to 0 as ∆x = 1/L, such that a spatial position in the system is denoted by a
continuous x ∈ [0, 1]d.

To get a closed set of equations, we make use of two assumptions

1. Molecular Chaos (expected to be valid in the dilute limit φ→ 0) with isotropic
velocity factorization:

P
(2)
i,j (ni, nj,vi,vj; t) = P

(1)
i (ni,vi; t)P

(1)
j (nj,vj; t), (6.16)

P
(1)
i (ni,vi; t) = pi(ni; t)

d∏
k=1

Pi,k(vi,k; t); (6.17)
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2. smoothness in space of averages of generic observables F (n, v):

〈F 〉i±el,t = 〈F 〉(x, t)± 1
L

∂

∂xl
〈F 〉|(x,t) +O(1/L2), (6.18)

being l a Cartesian direction l ∈ {1, d}.

With the hypothesis just stated, it is straightforward to perform averages and
limits of the currents. At the first order, these read〈

ji,p
〉
→ ∆t

∆x jav(x, t) (6.19a)

jav(x, t) = ρ(x, t) [1− ρ(x, t)] G(0)(x, t), (6.19b)

〈
Ji,p
〉
→ ∆t

∆xJav(x, t) (6.20a)

Jav(x, t) = ρ(x, t) [1− ρ(x, t)] G(1)(x, t), (6.20b)

〈
Ji,p

〉
→ ∆t

∆xJav(x, t) (6.21a)

Jav(x, t) = ρ(x, t) [1− ρ(x, t)] G(2)(x, t), (6.21b)

where G(0), G(1) and G(2) are defined as the hop vectors and tensor, respectively
accounting for transport of particles, momentum and energy. They read

G
(0)
l (x, t) ≡

∫
dvP (v; x, t)h(vl), (6.22a)

G
(1)
kl (x, t) ≡

∫
dvP (v; x, t)h(vl)vk, (6.22b)

G
(2)
l (x, t) ≡

∫
dvP (v; x, t)h(vl)

1
2v

2. (6.22c)

with h(vl) ≡ g(vl)− g(−vl).
We also take the averages of the gain/loss terms, which read〈

nf (1)(v)(x, t)
〉

= ρ(x, t)
∫

dvP (v; x, t)f (1)(v) ≡ ρ(x, t)f s(x, t) (6.23)

〈
D(int)(x, t)

〉
= −dρ2(x, t)

∫
dvdv′P (v; x, t)P (v′; x, t)(v− v′) · f (2)(v,v′)

≡ −dρ2(x, t)∆d(x, t)
(6.24)

〈
D(self)(x, t)

〉
= ρ(x, t)

∫
dvP (v; x, t)v · f (1)(v) ≡ dρ(x, t)∆s

0(x, t) (6.25)〈
D(noise)(x, t)

〉
= ρ(x, t)

∫
dvP (v; x, t)B(v) ≡ dρ(x, t)∆n(x, t) (6.26)

and - for the following - it is also useful to define

∆s(x, t) ≡
∫

dvP (v; x, t) [v− u(x, t)] · f (1)(v)/d. (6.27)
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With the above assumptions and definitions, through a direct local averaging
of Eqs. (6.5), (6.8) and (6.10) and in the large volume limit one gets the following
hydrodynamic equations:

∂tρ =−∇ · j, (6.28a)
ρ∂tu =−∇ · J + u(∇ · j) + ρf s, (6.28b)

ρ∂tT =
(
T − u2

d

)
∇ · j + 2

d
u∇ : J− 2

d
∇ · J (6.28c)

− 2ρ2∆d + 2ρ(∆s + ∆n).

Eqs. (6.28) are the most general hydrodynamic equations which can be derived
for our system. Since we retained only the first order gradients from analytical
expansion of averaged fields in (6.18), Eqs. (6.28) are equivalent to the “Euler” hy-
drodynamic equations (3.32). At this stage, their meaning is formal: we do not
know the actual expressions of currents and source terms. These can be com-
puted only once the specific forms of projection function g(σvl), interaction f (2),
self-propulsion f (1) and diffusion tensor B are given. Furthermore, we will see that
the one-particle distribution must be specified to close the hydrodynamic equa-
tions at this order.

It is remarkable that, without any assumption on velocity distribution, the mo-
mentum current associated with interactions vanishes in Eq. (6.22b) at the lead-
ing order because of the interplay between Molecular Chaos ansatz and momen-
tum conservation in continuum limit: indeed, if correlations are neglected, the
exchange of momentum is symmetrical between two particle with the same one-
particle distribution function at the leading order because of the smoothness ansatz (6.18).
Thus, its expression is of the first order in spatial gradients and therefore sublead-
ing with respect to hopping terms. A clear derivation of this fact is given in Ap-
pendix B.2. The physical consequence of this result is the absence of viscosity in
hydrodynamic equations at the leading order.

We now derive hydrodynamic equations for some specific microscopic rules.
For the “natural active velocity” prescription, we have

G
(0)
l (x, t) =

∫
dvP (v; x, t)vl = ul,

G
(1)
kl (x, t) =

∫
dvP (v; x, t)vlvk = 〈vlvk〉,

G
(2)
l (x, t) =

∫
dvP (v; x, t)vl

1
2v

2 = 1
2

d∑
k=1

〈
vlv

2
k

〉
.

(6.29)

The above quantities can be further simplified by defining a “stress” tensor

Qkl(x, t) ≡ G
(1)
kl (x, t)− uk(x, t)G

(0)
l (x, t) =

∫
dvP (v; x, t)h(vl) [vk − uk(x, t)]

(6.30)
and a “heat” vector

Rl(x, t) ≡
∫

dvP (v; x, t)h(vl)
[1
d
|v− u(x, t)|2 − T (x, t)

]
. (6.31)
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Within the “natural active velocity” prescription, we have

G
(1)
kl (x, t) = T (x, t)δkl + uk(x, t)ul(x, t),

G
(2)
l (x, t) = 〈v3

l 〉(x, t) + (d− 1)ul(x, t)T (x, t) + ul(x, t)u2(x, t)− u3
l (x, t),

Qkl(x, t) = T (x, t)δkl,

Rl(x, t) = 1
d

[
〈v3
l 〉(x, t)− 3ul(x, t)T (x, t)− u3

l (x, t)
]
,

(6.32)

provided that the Cartesian components of the active velocity are statistically in-
dependent and that temperature is isotropic, i.e.

P (v; x, t) =
d∏

k=1
Pk(vk; x, t) , 〈(vk − uk)2〉 = T ∀k. (6.33)

With the additional assumption that central odd velocity moments are zero, we get

〈(vl − ul)3〉 = 0 ⇒ 〈v3〉 = 3Tul + u3
l (6.34)

and, as a consequence, G(2)
l and Rl are simplified into

G
(2)
l (x, t) = 1

2ul(x, t)
[
(d+ 2)T (x, t) + u2(x, t)

]
, Rl(x, t) = 0. (6.35)

In conclusion, in the continuous limit, the balance Eqs. (6.5), (6.7) and (6.10)
with the average currents and noise terms for the case of “natural active velocity”
read

∂tρ = −∇ · [ρ (1− ρ) u] , (6.36a)
ρ∂tu = −{∇ [ρ (1− ρ)T ] + ρ (1− ρ) (u · ∇) u}+ ρf s, (6.36b)

ρ∂tT = −ρ (1− ρ)
[2
d
T ∇ · u + (u · ∇)T

]
− 2ρ2∆d + 2ρ (∆s + ∆n) . (6.36c)

These equations are completely analogous to Euler equations (3.32), except for the
terms ρ(1 − ρ) appearing in the currents: their presence clarify the meaning of
our “active velocity” vi, which as explained above is not equivalent to the actual
infinitesimal displacement of the particle. The excluded volume can be seen as a
modification of particle mobility, which is vanishing in the dense case ρ → 1. On
the contrary, in the dilute limit ρ→ 0 this is not a relevant difference, but it can be
appreciated at relatively moderate densities.

We now specify the interaction, self-propulsion and noise terms: the former is
taken as

f (2)(v,v′) = ωd(v− v′). (6.37)

This choice deserves some justification: indeed, it shows a sort of “elastic” behavior
between velocities of nearest-neighbor particles. Actually, this choice of interaction
yield two main properties

1. it mimics the behavior of Kuramoto and Vicsek aligning interactions, with a
stable fixed point for v = v′ ;
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2. it is a source of dissipation because, as we will see, it yields ∆d > 0.

The interaction in (6.37) is a deterministic force and the result of a compromise
between Vicsek model and granular collisions. It must be stressed that the in-
teractions are acting continuously instead than being instantaneous as for granular
hard spheres: this is an important difference with respect to our previous granular
model. Also, the characteristic frequency ωd cannot be directly associated to the
restitution coefficient α, and there is no elastic limit for this kind of interaction.
However, the comparison between granular and active hydrodynamic equations
allows a mapping of inelastic collisions into Vicsek-like force (6.37). Moreover, a
further version of the active model may easily include granular collisions as an
instantaneous process, with the same procedure described in Sec. 4.2.1 and 6.1.3.

Self-propulsion is taken as

f (1)(v) = ωsv
(

1− v2

v2
s

)
(6.38)

which has the same form of Rayleigh-Helmoltz viscosity introduced in Sec. 2.2.3.
The effect of self-propulsion is to push the particles towards the stable fixed point
v = vs; on the contrary, the fixed point v = 0 is unstable. The self-propulsion
doesn’t change the direction or orientation of the velocity, but rather acts only on
its magnitude. The analytical solution of motion equation v̇ = f (1)(v) is given in
Appendix B.1.

Finally, we choose an isotropic and constant diffusion tensor B(v), namely

Bkl(v) =
√

2Dδkl (6.39)

defining the diffusivity D. For all these choice of microscopic features, the average
source terms read

f sk(x, t) = ωsuk(x, t)
[
1− 1

v2
s

(
(d+ 2)T (x, t) + u2(x, t)

)]
, (6.40a)

∆d(x, t) = 2dωdT (x, t), (6.40b)

∆s(x, t) = ωsT (x, t)
[
1− d+ 2

v2
s

(
T (x, t) + 1

d
u2(x, t)

)]
, (6.40c)

∆n(x, t) = D, (6.40d)

where the first and third equations, stemming from self-propulsion force in (6.38),
have been derived under the Local Equilibrium assumption, namely

P (v; x, t) = [2πT (x, t)]−d/2 exp
[
−|v− u(x, t)|2/2T (x, t)

]
(6.41)

because of the presence of 〈v4〉 terms in the averages.
Substituting the above expressions into Eqs. (6.36) we get the average hydrody-

namic equations with the above specified prescriptions and the Local Equilibrium
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assumption, which read

∂tρ =−∇ · [ρ (1− ρ) u] , (6.42a)
ρ∂tu =− {∇ [ρ (1− ρ)T ] + ρ (1− ρ) (u · ∇) u} (6.42b)

+ ρωsu
[
1− 1

v2
s

(
(d+ 2)T + u2

)]
,

ρ∂tT =− ρ (1− ρ)
[2
d
T ∇ · u + (u · ∇)T

]
(6.42c)

− 4dωdρ2T + 2ρωsT
[
1− d+ 2

v2
s

(
T + 1

d
u2
)]

+ 2ρD.

6.2.1 Homogeneous fixed points

We look at the fixed points of hydrodynamic equations (6.36). Our case of study is
the homogeneous case, in analogy with the HCS described in the granular model.
Homogeneity greatly simplify hydrodynamic equations, which now read

ρ̇ = 0

u̇ = f s

Ṫ = −2ρ∆d + 2 (∆s + ∆n)

(6.43)

Thus, the homogeneous density is constant and equivalent to the packing fraction
ρ ≡ φ. The stationary velocity and temperature must satisfy the condition of van-
ishing self-propulsion and balancing energy source terms. For the specific choice
of Eqs. (6.40), one has

u̇ = ωsu
{

1− 1
v2

s

[
(d+ 2)T + u2]}

Ṫ = −4dφωdT + 2ωsT
[
1− d+2

v2
s

(
T + 1

du
2
)]

+ 2D
, (6.44)

where u = |u| is the speed field. Now, we move to adimensional variables, defining

t̃ = ωst

x̃ = (ωs/vs)x
ũ = u/vs
T̃ = t/v2

s

γ = ωd/ωs

Γ = D/(ωsv2
s)

(6.45)

which will be used in the rest of the chapter, and the tilde will be omitted for the
sake of simplicity. The physical parameters of our system can now be defined:

1. the packing fraction or density φ
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2. the relative dissipation γ, i.e. the ratio of dissipation and self-propulsion
characteristic frequencies

3. the relative noise Γ, measuring the amplitude of noise with respect to self-
propulsion strength

Under the assumptions stated until now, the behavior of the system is completely
determined by these parameters together with the boundary conditions (which we
always take as periodic).

Homogeneous dimensionless equations have the same form of Eqs. (6.44), be-
cause only constant coefficients have been redefined. We observe that there are
three possible fixed points

1. A disordered fixed point (u0, T0), where particles are moving with zero mean
velocity but positive temperature, so cooling is avoided. This is similar to
a gas of granular particles in presence of a bulk driving, without collective
motion. The fixed points read

u = 0 , T = T0 = 1− 2dφγ +
√

(1− 2dφγ)2 + 4(d+ 2)Γ
2(d+ 2) (6.46)

The presence of noise is determinant: indeed, for Γ = 0, the temperature is
positive only until γ < 1/(2dφ). For higher values of dissipation, the station-
ary solution reads T = 0 and self-propulsion cannot prevent the system from
cooling. On the contrary, when Γ > 0 the disordered fixed point is always
present.

2. Two ordered fixed points (u±, T±), with u± > 0. They exist if

Γ <
(1 + 2d2φγ)2

2d(d+ 2) . (6.47)

and are given by

u2
± = 1

2

(
1− 2d2φγ ∓

√
(1 + 2d2φγ)2 − 2d(d+ 2)Γ

)
T± = 1 + 2d2φγ ±

√
(1 + 2d2φγ)2 − 2d(d+ 2)Γ

2(d+ 2)

(6.48)

The first point (u−, T−) exists only if γ < 1/(2d2φ) ∨ Γ < 4d/(d+ 2)φγ. The
second point (u+, T+) exists only if γ < 1/(2d2φ) ∧ Γ > 4d/(d+ 2)φγ.

The existence of fixed points with u > 0 suggests the presence of a stationary
swarming state, where a macroscopic collective motion arises spontaneously break-
ing the rotational symmetry because in every trajectory the units move together in
a random direction. This is actually observed in simulations. However, it must be
underlined that homogeneous equations (6.44) have been derived under the Local
Equilibrium assumption with a Gaussian distribution, which may have nothing to
do with the distribution of the swarming state. On the other hand, the Local Equi-
librium assumption is expected to be physically consistent in the disordered state,
so we focus on its stability.
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6.2.2 Stability analysis of the disordered state

We introduce small, spatially dependent fluctuations around the fully disordered
fixed point as

δρ = ρ(x, t)− φ
δu = u(x, t)
δT = T (x, t)− T0

(6.49)

Linearized hydrodynamic equations now read

∂tδρ = −φ (1− φ)∇ · δu (6.50a)

∂tδu = −1− 2φ
φ

T0∇δρ+ C(γ,Γ)δu− (1− φ)∇δT (6.50b)

∂tδT = −4dγT0δρ−
2
d

(1− φ)T0∇ · δu− 2r(γ,Γ)δT (6.50c)

with

r(γ,Γ) =
√

(1− 2dφγ)2 + 4(d+ 2)Γ

C(γ,Γ) = 1
2 (1 + 2dφγ − r(γ,Γ)) .

(6.51)

After converting to Fourier space, decomposing ûk in a parallel (to k) and d −
1 transverse components (û‖k, û⊥k ), and defining Ψ̂k = (ρ̂k, û

‖
k, û⊥k , T̂k), the time-

evolution of the modes linearized near that fixed point reads

∂tΨ̂k = L(k)Ψ̂k, (6.52)

with L(k) equal to

0 −φ(1− φ)2πik 0 0

−1−2φ
φ T02πik C(γ,Γ) 0 −(1− φ)2πik

0 0 C(γ,Γ) 0

−4dγT0 −2
d(1− φ)T02πik 0 −2r(γ,Γ)


. (6.53)

The first outcome is that the shear mode - which is reminiscent of swarming phases
- separates from other modes and it is stable only when C(γ,Γ) < 0, i.e.

Γ >
2d
d+ 2φγ. (6.54)

Shear modes are stabilized by large enough noise Γ, with the threshold decreasing
linearly with the relative dissipation rate γ. At zero dissipation the shear mode
is stable for any non-zero noise amplitude. Conversely, at zero noise amplitude,
the shear mode is always unstable. Noticeably, in the absence of a k-dependent
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competing mechanism for stability (such as shear viscosity), stability of the shear
mode is lost synchronously at any k. In Sec. 6.4 it will be numerically shown how
shear instability is a strong signal of the appearance of a swarming state.

Numerical analysis of the eigenvalues of L(k) reveals that at a given γ, at least
in the range 0 < γ < 1/(2φ), the eigenvalue associated with shear is the first to
change sign when Γ is reduced, i.e. shear instability is the leading one. Being such a
result the outcome of linear stability analysis, it does not imply that the bifurcation
leads the system to a macroscopic shear-like state: we can only claim that the fully
disordered state is replaced by a different state which - at the beginning - looks
ordered in the velocity field.

6.3 Fluctuating hydrodynamics

The last analytical result on the active model is the derivation of fluctuating cur-
rents. Hydrodynamic equations (6.28) can be seen as fluctuating hydrodynam-
ics equations; the microscopic currents j, J and J depend both upon the “fast”
variables ξp, ζp and the “slow” variables ni,p, vi,p. Therefore, analogously with
Sec. 4.4.1, at finite L the non-averaged currents can be written as the sum of their
averages over the fast variables plus remainders. In particular we can write

jl(x, t) = jl(x, t) + σl(x, t), (6.55a)

Jkl(x, t) = Jkl(x, t) + ςkl(x, t), (6.55b)
Jl(x, t) = Jl(x, t) + Σl(x, t). (6.55c)

for density, momentum and energy respectively. The terms σl, ςkl and Σl are cur-
rent noises with zero average. Similarly to the granular case, the correlations and
Gaussianity of the noises can be directly computed from microscopic evolution.

The current’s noise correlations in Eqs. (6.55) can be deduced from microscopic
dynamics, in a the same way as the one used in Sec. 4.4.2 for the granular model.
We here focus on the fluctuations of density current, since the derivation of the
others follows the same procedure. First of all, one has in discrete space and time
variables 〈

σi,p,lσi′,p′,l′
〉
∼
〈
ji,p,lji′,p′,l′

〉
(6.56)

With the definition in (6.6) and the “natural active velocity” prescription, only the
diagonal terms are non vanishing and expanding fluctuations in ∆t and ∆x one
obtains 〈

ji,p,lji′,p′,l′
〉

= δi,i′δp,p′δl,l′ ρi,p(1− ρi,p) 〈|vl|〉i,p
∆t
∆x (6.57)

hence the current’s noise is white in space, time and components; its derivation can
be found in Appendix B.3. This expression is meaningful if ∆t� ∆x, introducing
a constraint in hydrodynamic scaling.

From Eq. 6.19a, the hydrodynamic limit of the currents reads

jl(x, t) = ∆x
∆t ji,p,l (6.58)
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and delta functions in continuum limit become

δi,i′ = δ(x− x′)(∆x)d , δp,p′ = δ(t− t′)∆t, (6.59)

therefore eq. (6.57) reads〈
jl(x, t)jl′(x′, t)

〉
= δ(x−x′)δ(t−t′)δl,l′ρ(x, t)[1−ρ(x, t)] 〈|vl|〉 (x, t)(∆x)d+1. (6.60)

With the Gaussian velocity assumption, one finally finds

〈
σl(x, t)σl′(x′, t′)

〉
∼ δ(x− x′)δ(t− t′)δl,l′ρ(x, t)[1− ρ(x, t)]

√
2
π
T (x, t)(∆x)d+1.

(6.61)
This result can be generalized to momentum and energy currents given by hop-
ping particles; indeed, computing the current noise correlation η(χ)

l for the generic
transported quantity χ(n, v), with analogous steps one has〈
η

(χ)
l (x, t)η(χ)

l (x′, t′)
〉
∼ δ(x− x′)δ(t− t′)δl,l′

〈
n(1− n)χ2(n, v) |vl|

〉
(x, t) (∆x)d+1,

(6.62)
always considering the leading term in ∆t and ∆x expansion. Interaction terms
in eqs. (6.9), (6.11) are subleading and therefore do not appear at this level. The
explicit expressions for momentum and energy are straightforward and read〈
ςl(x, t)ςl′(x′, t′)

〉
∼ δ(x− x′)δ(t− t′)δl,l′ρ(x, t)[1− ρ(x, t)] 〈|vl|vkvk′〉 (∆x)d+1,

(6.63)

〈
Σl(x, t)Σl′(x′, t′)

〉
∼ δ(x− x′)δ(t− t′)δl,l′ρ(x, t)[1− ρ(x, t)]

〈
|vl|

(
v2

2

)2〉
(∆x)d+1.

(6.64)

Having shown that fluctuating currents are white and having found their ampli-
tudes, we can show they are Gaussian. Again, the procedure adopted is equiva-
lent to the one used in Sec. 4.4.3. Considering the rescaled current ̂l = ̂av

l + σ̂l =
(∆x)(d−1)/2jl, from previous results we have that

〈σ̂l(x, t)〉 = 0, (6.65a)〈
σ̂l(x, t)σ̂l′(x′, t′)

〉
∼ δ(x,x′)δ(t− t′)δl,l′A

(2)
l (x, t) (6.65b)

where A(2)
l (x, t) is the rescaled amplitude of the second cumulant, which is finite

when rescaling the current. For the generic cumulant of order n, we get

〈σ̂l1(x1, t1) · · · σ̂ln(xn, tn)〉 ∼
n−1∏
i=1

[
δ(xi − xi+1)δ(ti − ti+1)δli,li+1

]
(6.66)

×A(n)
l1

(x1, t1) (∆x)(d+1)( n
2−1)

which is non vanishing in the hydrodynamic limit only when n = 2, because
amplitudes A(n)

l are all finite. Rescaled noise σ̂l is Gaussian in the large size limit
and therefore the original noise σl is Gaussian too.
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6.4 Numerical results

Simulations of the system have shown the existence of two macroscopically or-
dered states:

1. a swarming state, where particles align their velocities and walk across the
lattice as a global swarm;

2. a clustering state, where a macroscopic fraction of the particles group and
form a large, standing aggregate when they all point towards the center of
the cluster.

A swarming and a clustering order parameters are defined and their evolution
is studied and compared with linear stability analysis of Sec. 6.2.2. A preliminary
study on the finite-size behavior suggests that the disorder-swarming transition
may be discontinuous in the infinite size limit. Finally, the amplitude of density
fluctuating current is computed and compared with theoretical predictions.

6.4.1 General simulation strategy

The simulation strategy for our active model is similar to the one used for the
granular model. We reproducedM stochastic trajectories of a system ofN particles
on a 2d periodic square lattice each one defined at a discrete position ri(t) ∈ Λ and
carrying a continuous 2d velocity vi(t). For each trajectory, the system starts with
a uniform distribution in space and a random extraction of velocities normally
distributed with 〈vl〉 = 0 and

〈
v2
l

〉
= T0, being T0 the stationary temperature of

the disordered state defined in Eq. (6.46). At each time step ∆t, a random uniform
number χ ∈ [0, 1] is drawn and its value indicates the particle eventually hopping,
according to the “natural active velocity” prescription in (6.3): the normalization
of the probability yields a constraint on the time interval, which we took ∆t ≤
(10NL)−1 to guarantee that the total probability of a hop is Ph ≤ 1, where Ph is
defined as

Ph =
N∑
i=1

∑
l=1,2
σ=±1

(1− nri(t)±σel
)g(σvi,l)

∆t
∆x (6.67)

The condition Ph < 1 has been verified throughout the simulations: it is reasonable
to think that the self-propulsion force is lowering high-velocities tails. Simulations
have been carried out for several values of γ and Γ and densities φ of 1%, 5% and
10%, since we are interested in the dilute limit. The lattice size has been taken
L = 100 (V = 104 sites), except the case of finite-size effects where the size is
changed keeping the density constant.

6.4.2 Swarming instability

Fig. 6.2 displays the arising of swarming states in the model. These can be identi-
fied through the usual swarming order parameter r(t) identified to be

r(t) =

∣∣∣∣∣∣ 1
N

N∑
j=1

eiθj(t)

∣∣∣∣∣∣ , (6.68)
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Figure 6.2. A snapshot of the system configuration in the homogeneous swarming regime.
Here φ = 0.05, γ = 9, Γ = 0.135, and the order parameters result to be r = 0.994 (strong
swarming) and C = 0.057 (negligible clustering).

where θj is the direction of velocity of the j-th particle, so that r(t) ≈ 0 in the fully
disordered state and ≈ 1 in the case of all particles’ velocities aligned along the
same direction.

Monitoring r(t) up to times tmax larger than the inverse of the minimum of the
eigenvalues of L(k) gives a reasonable idea of the fate of this initial condition and
allows us to compare the system’s phase diagram with the predictions of linear
stability analysis. In Fig. 6.3 we show the swarming order parameter r, averaged
over the time interval [tmax/2, tmax] so that the system has settled in the station-
ary regime, for three values of the density φ, together with the line predicted in
Eq. (6.54). Comparison is fair at all values of φ, especially for φ = 0.05. We argue
that this value matches our analysis because it is the best compromise between the
dilute and the large size limits at fixed volume V : on the contrary, for φ = 0.01
there are N = 100 particles in the lattice, and for such a small value the fluctua-
tions seem relevant; nevertheless, for φ = 0.1 we have N = 1000 particles, so the
fluctuations decrease but at the same time we move away from the dilute limit.

6.4.3 Clustering instability

Clustering is another ordered phase observed in our simulation. Contrarily from
swarming, clustering is nonhomogeneous: typically, active units form a single,
giant aggregate somewhere in the lattice while the rest of them swarm around,
occasionally falling on the cluster or kicking away some particles at its borders.
The typical clustered state in shown in Fig. 6.4.

In simulations, we can count the numberNl(t) of pairs of first neighbors at time
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Figure 6.3. Swarming phase parameter r (which goes from 0 in the disordered phase to
1 in the full swarming phase, see color legend on the right) as a function of relative
noise amplitude Γ and rescaled relative dissipation rate φγ at three different average
densities φ. The solid lines indicate the theoretical transition, Eq. (6.54).
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Figure 6.4. A snapshot of the system configuration in the coexistence regime “clus-
ter+gas”. Here φ = 0.1, γ = 1.5, Γ = 4.5, and the order parameters result to be
r = 0.027 (negligible swarming) and C = 0.874 (macroscopic clustering).

t, a number that goes from Nl ≈ 2φN in the unclustered case, up to Nl ≈ 2N in the
fully clustered case, so that

C(t) = Nl(t)
2N ∈ [φ, 1] (6.69)

is a good estimate of the clustering degree in the system. Of course, this parameter
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is significant only in dilute cases, with φ � 1. We study the clustering together
with the swarming and find a phase diagram in the (γ − Γ) plane similarly as
before, see Fig. 6.5.

It is clear that in the dilute cases, roughly speaking φ < 10%, there is no cluster-
ing in both disordered and swarming phases (i.e. above and below the solid line,
see also Fig. 6.3).

On the contrary, at larger packing fraction φ ≥ 10% we observe the appear-
ance of clustering as a stable phase above the critical noise amplitude for swarm-
ing. Looking at real configurations in the simulations - see Fig. 6.4 - we can attempt
an interpretation: it seems that when swarming is possible (e.g. below the transi-
tion line), many particles in the dilute phase coordinate and erode efficiently the
clusters. This is a sort of of “viscous heating” mechanism.

Figure 6.5. Clustering phase parameter C (see color legend on the right) as a function
of relative noise amplitude Γ and rescaled relative dissipation rate φγ at three differ-
ent average densities φ. The solid lines indicate the swarming theoretical transition,
Eq. (6.54).

6.4.4 Finite-size effects near the transition

We performed a preliminary study of the effect of lattice volume V in order to as-
sess the quality of the observed gas-swarming transition in the dilute case. We
have chosen a dilute value of φ and an average value of γ and measured the
swarming parameter 〈r〉 when moving from high noise Γ > Γc(γ, φ) to low noise
Γ > Γc(γ, φ), where Γc(γ, φ) = 2d

d+2γφ (see Eq. (6.54)), repeating this protocol for
increasing value of V . If the transition is discontinuous in the continuum limit, we
expect that the separation between the swarming phase (high 〈r〉) and the disor-
dered phase (low 〈r〉) increases with V . The result of the study is shown in Fig. 6.6.
It indicates that the gap r+ − r− between the value of r just above and just below
the transition tends to increase with V . Based upon this result, we conjecture that
the observed transition is discontinuous.
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Figure 6.6. Average value of the swarming parameter r, which goes from 0 in the disor-
dered phase to 1 in the full swarming phase, as a function of the lattice volume V at a
constant value of φ (dilute case) and γ, for four values of the relative noise amplitude
Γ: two values are below the instability swarming threshold, two are above.

6.4.5 Fluctuating currents

Numerical simulations have been also implemented in order to verify the predic-
tion about current noises, defined in Eq. (6.55). In the case of Gaussian local veloc-
ity distribution, the noise correlation for the hopping current reads

〈
σl(x, t)σl′(x′, t′)

〉
= δ(x− x′)δ(t− t′)δl,l′φ(1− φ)

√
2
π
T (t) (∆x)d+1 . (6.70)

In the simulation we measure the microscopic current ji,p,l = 0,±1, representing
the number of particles hopping - in the p-th time step - from site i to its neigh-
bors in the l-th direction. In the homogeneous fully disordered state, Eq. (6.70) is
equivalent, assuming ergodicity, to

1,V∑
i,i′

1,tmax/∆t∑
p,p′

ji,p,lji′,p′,l′ ' L3φ(1− φ)
√

2
π
T0 tmax. (6.71)

The verification of this relation is shown in Fig. 6.7: we see that for φ < 10% the
simulation tends to the theoretical value as L → ∞. This trend is broken when
φ > 10%, as expected in view of the used assumptions (Molecular Chaos and local
Gaussian equilibrium) which are reasonable only in the dilute limit.
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Figure 6.7. Amplitude of fluctuations of the hopping current (symbols), and its theoretical
prediction Eq. (6.70)-(6.71) (solid line), as function of φ for various sizes L. Here φγ =
0.25, Γ = 4 and the system is prepared at the steady temperature T0 = 1.
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Conclusions

In this thesis, we first of all reviewed the main properties of granular and ac-
tive matter, underlining remarkable similarities between their physical behavior.
The properties of their individual and collective motion have been analyzed in the
framework of nonequilibrium statistical mechanics. Experiments and simulations
suggested us a specularity between granular and active particles, especially be-
cause of the continuous energy exchanges driving the systems out of equilibrium
and leading to the observed collective motion. Hydrodynamics has been intro-
duced to describe the macroscopic behavior of fluid systems. Indeed, when many
active or granular units are present, they can be seen as a flowing material under
some assumptions. A derivation of hydrodynamics for conservative systems has
been introduced and later extended to the granular case, while the recent develop-
ments on hydrodynamic descriptions of active matter have been reviewed. Finally,
we introduced lattice models as a powerful tool to analyze theoretically the behav-
ior of nonequilibrium systems. My thesis’ work has been focused on the analysis
of granular and active matter through the formulation of two lattice models.

The first model we introduced is a lattice model of granular particles on a lin-
ear chain. A hydrodynamic description of the system has been derived: although
some realism has been sacrificed in the formulation of the model, the latter has
reproduced the average hydrodynamic equations derived from kinetic theory of
sheared granular gases. The characteristic granular states like the Homogeneous
Cooling State, the Uniform Shear Flow and the Couette Flow have been derived
and hydrodynamic equations have been solved for each case, even in the transient
or non-homogeneous state. The Homogeneous Cooling instability was recovered,
obtaining exact expression for the critical value of dissipation and system size. We
derived the fluctuating hydrodynamic currents and computed their noise prop-
erties at the leading order from microscopic dynamics, without the need of an
equilibrium approximation: the latter has been used only in some cases of need
to formulate the noise correlations in terms of hydrodynamic fields.

Interestingly, the interplay between momentum conservation and energy dis-
sipation has shown several unforeseen properties: for finite systems, the global
cooling contributes to the development of long-range spatial velocity correlations,
which at the same time affect the temperature evolution. Velocity correlations be-
tween colliding particles are generally disregarded because of the Molecular Chaos
ansatz. In our model, we can avoid this ansatz and obtain a closed set of equations
for temperature and correlations from microscopic dynamics: both of them decay
in time at the same rate, and the rescaled correlation profile tends to a steady value
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independent from initial conditions. Furthermore, the mesoscopic dissipation co-
efficient has been redefined through a multiple scales analysis. The fluctuations
of rescaled total energy have shown a divergent behavior in time, an unexpected
feature in our model: again, a microscopic derivation through average balance
equations allowed the computation of the multi-particle velocity moments and
has shown a multiscaling behavior driving the fluctuations away from a stationary
value. So, the model enables direct computations of fluctuating quantities under
a few controlled assumptions, by means of a perturbative approach which may be
easily extended to next orders, depending on the required accuracy.

The encouraging results on the granular lattice model inspired us in the for-
mulation of a lattice model of active granular particles; the model was enhanced
allowing hopping (and therefore compressibility) and moving to a general d > 1
case. Again, the model provided a clear and general derivation of hydrodynamic
equations in the dilute limit from microscopic rules of the model. For a specific
choice of microscopic ingredients, hydrodynamic equations can be derived in the
Local Equilibrium Approximation yielding the existence of homogeneous disor-
dered and ordered states. The former has been proved to be unstable depending
on the strength of noise, dissipation and self-propulsion: we derived a phase di-
agram, showing the competition between noise (fostering disorder) and dissipa-
tion (fostering order). When the disordered system is unstable, ordered phases
like swarming or clustering arise. Two essential points must be underlined: first,
hydrodynamic equations have shown that viscosity and heat transport are not re-
quired for the existence of a disorder-swarming transition. Second, when moving
to the unstable region all the modes become simultaneously unstable: this is in
contrast with HCS instability, which was actually caused by the first mode (longest
wavelength) amplification and driven by viscosity, which is absent in our model
of active matter. Furthermore, fluctuating currents have been computed also in the
active case, and the theoretical results have shown a fair agreement with simula-
tions.

Dissipation Injection Noise Disordered state Instability

Granular model Inelasticity Formal rescaling absent Homogeneous Cooling State Shear instability ν > νc

Active model Aligning forces Self-propulsion White noise Homogeneous Disordered State Swarming γ > γc(Γ)

Table 6.1. A comparative recap of granular and active models

Our main result is the development of a class of lattice models and a procedure
to reproduce the average hydrodynamic equations of granular and active systems
and derive their fluctuating hydrodynamics from microscopic behavior. In addi-
tion, the Molecular Chaos ansatz is not always needed because it is sometimes
possible to compute the correlations in the system, as it has be shown for granular
Maxwell Molecules: analytical results successfully explain the new phenomena ob-
served in simulations. The procedure introduced may be applied to several other
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cases.

The results obtained in the two models can be compared: indeed we have
found that strong analogies between granular and active model are present. In
Tab. 6.1, the main features are presented both considering microscopic ingredients
defining the models - dissipation, injection and noise terms - and concerning the
hydrodynamic states most analyzed, namely the Homogeneous Cooling State and
the homogeneous disordered state. Those are the most suitable for a direct com-
parison, which can be enhanced in further studies.

The models have shown to be adaptive, i.e. the rules determining their evolu-
tion can be easily changed separately. Further perspectives of the granular model
include the generalization to d > 1, a dilute case with hopping particles and the
introduction of hard-spheres collisions. Also, adapting the model to the frame-
work of Macroscopic Fluctuation Theory would be an intriguing challenge, since
this has never been done for models with momentum conservation such as the one
described here.

The active model can represent a basis for several possible developments: the
first one is that the ordered phase still needs to be studied analytically. A next step
may then be the hydrodynamic analysis of ordered phases such as swarming or
clustering. It is probable that the Local Equilibrium Approximation will not be a
good assumption any more for these states, so the development of a theory beyond
Local Equilibrium and Molecular Chaos may be attempted, following the results
derived for the granular model. Thereafter, the generality of the active system al-
lows to introduce several choices for collisions, self-propulsion and all the physical
parameters. A comparative study may clarify the role of microscopic parameters
in macroscopic behavior, both in theoretical analysis and empirical observations.
Further investigations may include the introduction of “Navier-Stokes” terms such
as viscosity and heat conductivity.

The models presented can be seen as part of a wider framework, nonequi-
librium statistical physics, and further studies may deal with several theoretical
problems such as entropy production or fluctuation-dissipation relations. The the-
oretical achievements could be compared with experimental evidences, pointing
out new issues and research directions. The possibility of deriving new and more
general results from the theoretical analysis here developed is still to be explored.
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A
Analytical results for the granular model

A.1 Microscopic derivation of balance equations

Microscopic balance equations in Sec. 4.2.1 can be directly derived computing the
gain and loss terms of local velocity vl,p as a stochastic processes in discrete time,
writing a pseudo-Langevin equation. For our granular model, velocity vl,p evolves
as

vl,p+1 = (1− δyp,l − δyp,l−1)vl,p + δyp,l

[
vl,p −

1 + α

2 (vl,p − vl+1,p)
]

+ δyp,l−1

[
vl,p + 1 + α

2 (vl−1,p − vl,p)
]
, (A.1)

where δyp,l is selecting the colliding particle at the p-th time step. We can also
write

vl,p+1 = vl,p − δyp,l
1 + α

2 (vl,p − vl+1,p) + δyp,l−1
1 + α

2 (vl−1,p − vl,p)

= vl,p − jl,p + jl−1,p, (A.2)

introducing the momentum current jl,p, which for our system reads

jl,p = 1 + α

2 δyp,l (vl,p − vl+1,p) . (A.3)

For the evolution of the kinetic energy, we square eq. (A.2) and we obtain

v2
l,p+1 = v2

l,p + δyp,l

[(1 + α

2

)2
(vl,p − vl+1,p)2 − (1 + α)vl,p (vl,p − vl+1,p)

]

+ δyp,l−1

[(1 + α

2

)2
(vl−1,p − vl,p)2 + (1 + α)vl,p (vl−1,p − vl,p)

]
, (A.4)
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which can be written as

v2
l,p+1 = v2

l,p + α2 − 1
4

[
δyp,l (vl,p − vl+1,p)2 + δyp,l−1 (vl−1,p − vl,p)2

]
− (vl,p + vl+1,p)jl,p + (vl−1,p + vl,p)jl−1,p. (A.5)

We now compute the averages. For the velocity we have that

ul,p+1 − ul,p = −〈jl,p − jl−1,p〉, (A.6)

with
ul,p = 〈vl,p〉. (A.7)

Reminding that 〈δyp,l〉 = 1/L in the MM case, we can compute the mean current

〈jl,p〉 = 〈1 + α

2 δyp,l (vl,p − vl+1,p)〉

= 1 + α

2L 〈vl,p − vl+1,p〉

= 1 + α

2L (ul,p − ul+1,p). (A.8)

Then, the time evolution equation for the mean velocity is

ul,p+1 − ul,p = 1 + α

2L (ul+1,p + ul−1,p − 2ul,p). (A.9)

For the mean quadratic velocity, from eq. (A.5) we have that

〈
v2
l,p+1

〉
−
〈
v2
l,p

〉
= α2 − 1

4L 〈(vl,p − vl+1,p)2 + (vl−1,p − vl,p)2〉

− 1 + α

2L 〈(vl,p + vl+1,p) (vl,p − vl+1,p)− (vl−1,p + vl,p) (vl−1,p − vl,p)〉. (A.10)

Developing the terms on the rhs, we find

〈
v2
l,p+1

〉
−
〈
v2
l,p

〉
= α2 − 1

4L
[〈
v2
l+1,p

〉
+ 2

〈
v2
l,p

〉
+
〈
v2
l−1,p

〉
− 2〈vl,pvl+1,p + vl−1,pvl,p〉

]
− 1 + α

2L
[
2
〈
v2
l,p

〉
−
〈
v2
l+1,p

〉
−
〈
v2
l−1,p

〉]
(A.11)

In order to close the rhs of the last equation, we factorize the 2-points correla-
tions 〈vl,pvl±1,p〉 = ul,pul±1,p: this assumption correspond to the Molecular Chaos
ansatz assumed in Sec. 4.2.1. Now, in the rhs of eq. (A.5) we have

〈
v2
l,p+1

〉
−
〈
v2
l,p

〉
= −1− α2

L

[〈
v2
l,p

〉
− 1

2ul,p(ul+1,p + ul−1,p)
]

+
(1 + α

2

)2 1
L

(〈
v2
l+1,p

〉
+
〈
v2
l−1,p

〉
− 2

〈
v2
l,p

〉)
. (A.12)
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Eqs. (A.9) and (A.12) are the balance equations for our lattice system, with dis-
crete sites l at discrete times p. Introducing the hydrodynamic scaling of Eq. (4.25)

x = l

L
, ∆x = 1

L
, ∆t = 1

L3 , (A.13)

and by assuming that ul,p and Tl,p are both smooth functions x = l/L, we can
develop the following terms

ul±1,p = ul,p ±
∂u

∂x

1
L

+ 1
2
∂2u

∂x2
1
L2 +O(L−3) (A.14)

〈v2
l±1,p〉 =

〈
v2
l,p

〉
± ∂〈v2〉

∂x

1
L

+ 1
2
∂2〈v2〉
∂x2

1
L2 +O(L−3). (A.15)

and with a similar development in ∆t = 1/L3 we have the evolution equations
for the fields u(x, t) and 〈v2〉(x, t)

1
L3

∂u

∂t
=1 + α

2
1
L3

∂2u

∂x2 +O(L−4) (A.16a)

1
L3

∂〈v2〉
∂t

=− 1− α2

L
(〈v2〉 − u2) +

(1 + α

2

)2 1
L3

∂2〈v2〉
∂x2

+ 1− α2

4
1
L3 2u∂

2u

∂x2 +O(L−4) (A.16b)

We here introduce the macroscopic inelasticity coefficient ν, that in this case
reads

ν = L2(1− α2) > 0, (A.17)

and if we want ν to be finite we need 1 − α = O(L−2). So, multiplying by L3

and neglecting O(L−1) terms, we have

∂u

∂t
=1 + α

2
∂2u

∂x2 (A.18a)

∂〈v2〉
∂t

=− ν(〈v2〉 − u2) +
(1 + α

2

)2 ∂2〈v2〉
∂x2

+ 1− α2

4 2u∂
2u

∂x2 . (A.18b)

Now, we find evolution equations for u(x, t) and T (x, t) by replacing 〈v2〉(x, t) =
T (x, t) + u2(x, t) in eq. (A.18b); the derivatives read

∂〈v2〉
∂t

=∂T

∂t
+ 2u∂u

∂t
= ∂T

∂t
+ 1 + α

2 2u∂
2u

∂x2 (A.19a)

∂2〈v2〉
∂x2 = ∂

∂x

(
∂T

∂x
+ 2u∂u

∂x

)
= ∂2T

∂x2 + 2
(
∂u

∂x

)2
+ 2u∂

2u

∂x2 (A.19b)
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and substititung them into eq. (A.18b), the 2u ∂2u/∂x2 terms vanish and we
have

∂u

∂t
=1 + α

2
∂2u

∂x2 (A.20a)

∂T

∂t
=− νT +

(1 + α

2

)2
[
∂2T

∂x2 + 2
(
∂u

∂x

)2]
, (A.20b)

which are the evolution equations for u and T continuous in our model. Since
the limit L→∞ yields (1 + α)/2→ 1, we finally have

∂u

∂t
=∂2u

∂x2 (A.21a)

∂T

∂t
=− νT + ∂2T

∂x2 + 2
(
∂u

∂x

)2
. (A.21b)

We found then that the velocity field u(x, t) follows a diffusion equation, while
the temperature evolution equation (A.21b) shows the presence of sink, diffusion
processes and viscous heating, represented respectively by the first, second and
third term in Eq. (A.21b). The obtained results are equivalent to the ones discussed
in Sec. 4.2.1: I presented an alternative derivation of hydrodynamic equations,
without the need of a Boltzmann Equation, which has been our first derivation
of hydrodynamic equations in this work.

A.2 Balance equations for moments with n ≥ 3

Starting from the microscopic evolution equation (A.2), we can get the dynamic
equations for any moment of the velocity with few considerations.

First of all, let’s look at the δ-functions in Eq. (A.2); since we need to compute
averages over trajectories, it is useful to see that for MM one has〈

δnyp,l

〉
=
〈
δyp,l

〉
= 1
L
,

〈
δnyp,lδ

m
yp,l′

〉
= 0 ∀m,n > 1 (l 6= l′) (A.22)

So, we can write

vnl,p+1 − vnl,p =
n∑
k=1

(
n

k

)
vn−klp (jl−1,p − jl,p)k

=
n∑
k=1

(
n

k

)
vn−klp

k∑
h=0

(
k

h

)(1 + α

2

)k
×

×δk−hyp,l−1δ
h
yp,l (vl−1,p − vl,p)k−h (vl+1,p − vl,p)h . (A.23)

When we average the two sides over the trajectories, we can exploit the prop-
erties in eq. (A.22): the only terms remaining in the sum over h are for h = 0, k.
Then, defining ζ = (1 + α)/2

〈
vnl,p+1

〉
−
〈
vnl,p

〉
= 1
L

n∑
k=1

(
n

k

)
ζk
〈
vn−klp

[
(vl−1,p − vl,p)k + (vl+1,p − vl,p)k

]〉
. (A.24)
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After some algebra, the term into square brackets reads

(vl−1,p − vl,p)k + (vl+1,p − vl,p)k =
k∑
j=0

(
k

j

)
(−1)k−jvk−jl,p

(
vjl−1,p + vjl+1,p

)
, (A.25)

then

〈
vnl,p+1

〉
−
〈
vnl,p

〉
= 1
L

n∑
k=1

(
n

k

)
ζk

k∑
j=0

(
k

j

)
(−1)k−j

〈
vn−jl,p

(
vjl−1,p + vjl+1,p

)〉
. (A.26)

We can now use the Local Equilibrium approximation to split the average into two
parts: namely, the LEA is equivalent to

〈vml,pvnl+1,p〉LE = 1
2π
√
Tl,pTl+1,p

∫ +∞

−∞
dvl

∫ +∞

−∞
dvl+1 v

m
l v

n
l+1

× exp{−(vl − ul,p)2

2Tl,p
} exp{−(vl+1 − ul+1,p)2

2Tl+1,p
}

=
〈
vml,p

〉
LE

〈
vnl+1,p

〉
LE
, (A.27)

which includes not only Molecular Chaos but also the Gaussianity of the veloc-
ity distribution. This assumption allows us to compute all the moments indepen-
dently. Furthermore, the expansion in eq. (A.15) can be generalized and then

〈
vnl,p+1

〉
−
〈
vnl,p

〉
= 1
L

n∑
k=1

k∑
j=0

(
n

k

)(
k

j

)
ζk(−1)k−j

〈
vn−jl,p

〉 [
2
〈
vjl,p

〉
+ 1
L2∂

2
x

〈
vjl,p

〉]
.

(A.28)
We now move to the L → ∞ limit: to lighten the notation, we introduce the

momentum fields un(x, t) defined as

un(x, t) = lim
L→∞

〈
vnl,p

〉
, (A.29)

so that, with the continuum limit defined in eq. (A.13), eq. (A.28) yields

∂tun(x, t) =
n∑
k=1

k∑
j=0

(
n

k

)(
k

j

)
ζk(−1)k−jun−j(x, t)

[
2L2uj(x, t) + ∂2

xuj(x, t)
]
,

(A.30)
where the L2 factor doesn’t baffle us because the sum of the ζk will give the

leading and also the subleading terms, knowing that 1 − ζ = O(L−2). It is then
possible to derive all the required moments, and to compute the central moments.
For n = 1, 2, we recover the results of the previous paragraph; for n ≥ 3, we have
all the new dynamic equations we were looking for. For instance,

∂tu3(x, t) =− 3
2ν [u3(x, t)− u1(x, t)u2(x, t)] + ∂2

xu3(x, t) (A.31a)

∂tu4(x, t) =− 2ν [u4(x, t)− u1(x, t)u3(x, t)] + ∂2
xu4(x, t) (A.31b)
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. . . and so on.
The last equations are the first step of an infinite hierarchy. Interestingly, they

are closed at each order: the equation for u3 contains only n ≤ 3 fields, the equation
for u4 only n ≤ 4, etc. etc. So, starting from the equation for u1 ≡ u(x, t) one can
solve the equations at any order for given boundary conditions. Eqs. (A.31) give
us the evolution equations for central moments µn = 〈(v − u)n〉, which have been
written in (4.36b).

A.3 Sum rule

Here, we rigorously derive, in the continuum limit and up to O(L−1), the sum rule
(5.10) that stems from momentum conservation.

Our starting point is (5.5), which is equivalent to

T (t) + 2
L−1

2∑
k=1

Dk(t)∆x = 0, ∆x = L−1. (A.32)

Now, we go to the continuum limit by making use of (5.7). To be precise, we denote
here x = (k − 1)/L by xk. Then,∫ xk+1

xk

dxD(x, t) = L−1D(xk, t) + L−2

2 ∂xD(x, t)|xk
+O(L−3). (A.33)

Hence,

L−1
2∑

k=1
D(xk, t)︸ ︷︷ ︸
Dk(t)

∆x =
∫ 1

2−
1

2L

0
dxD(x, t)− L−1

2

∫ 1
2−

1
2L

0
dx ∂xD(x, t) +O(L−2)

=
∫ 1

2−
1

2L

0
dxD(x, t)− L−1

2

[
D

(1
2 −

1
2L, t

)
−D(0, t)

]
+O(L−2). (A.34)

The expression above can be further simplified to

L−1
2∑

k=1
Dk(t)∆x =

∫ 1
2

0
dxD(x, t) + L−1

2 [ψ(t)− 2χ(t)] +O(L−2), (A.35)

where we have made use of the definitions of ψ and χ in (5.9). If we insert (A.35)
into (A.32), we obtain (5.10) of the main text.

A.4 Energy fluctuations

We here look at the normalized energy fluctuations for the granular model with
Maxwell molecules. Our aim is a theoretical derivation of the quantity

Σ2(t) ≡
〈
E2(t)

〉
− 〈E(t)〉2

〈E(t)〉2
(A.36)
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where E(t) = limL�1Ep = limL�1
∑L
l=1 v

2
lp.

From now on all our calculations will be done in the homogeneous state, i.e.
where the system is invariant for space translation and inversion; hence, all the
one-point fields become spatially flat fields, all the two-point fields become one-
point fields, and so on.

If we assume local equilibrium, we have 〈E(t)〉 = LT (t) and
〈
E2(t)

〉
= 3LT 2(t).

So, local equilibrium prediction is LΣ2(t) = 2. However, numerical results diverge
from this value as time increases in trajectories. The numerical behavior of LΣ2(t)
is shown in Fig. 5.4. This behavior cannot be explained with a local equilibrium
assumption. We need to compute a result without using it, so let’s go back to
Eq. (A.36): we can see that

〈
E2(t)

〉
=
〈1,L∑
l,l′

v2
lpv

2
l′p

〉
=

L∑
l=1

〈
v4
lp

〉
+

L∑
l=1

1,L∑
l′ 6=l

〈
v2
lpv

2
l′p

〉

= L

[
qp +

L−1∑
k=1

(
C22
kp + T 2

p

)]
(A.37)

with the following definitions (the last will appear later)

〈
v4
lp

〉
≡ qp, (A.38a)〈

v2
lpv

2
l±k,p

〉
≡ C22

kp + T 2
p , (A.38b)〈

v3
lpvl±k,p

〉
≡ C31

kp, (A.38c)〈
vl∓m,pv

2
lpvl±n,p

〉
≡ C121

mnp. (A.38d)

Hence, in the continuum limit we have

Σ2(t) = 1
L2T 2(t)

[
Lq(t) + L(L− 1)T 2(t) + L2

∫ 1

0
dxC22(x, t)− L2T 2(t)

]
= 1
L

q(t)− T 2(t) + L
∫ 1

0 dxC22(x, t)
T 2(t) (A.39)

From Sec. 5.1, we already know T (t) up to the L−1 order; we need to compute q(t)
and C22(x, t) out of a local equilibrium approximation.

In Eq. (A.38) there are all the quartic fields that we will consider in these notes;
they are all evolving in time with a Langevin equation that depends on the micro-
scopic dynamics, as usual. For instance, reminding the velocity current definition

jlp = ζδyp,l (vlp − vl+1,p) with ζ = 1 + α

2 (A.40)
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for qp we have

qp+1 =
〈
v4
l,p+1

〉
=
〈

(vlp − jlp + jl−1,p)4
〉

=

=
〈
v4
lp

〉
− 4

〈
v3
lp (jlp − jl−1,p)

〉
+ 6

〈
v2
lp

(
j2
lp + j2

l−1,p

)〉
− 4

〈
vlp
(
j3
lp − j3

l−1,p

)〉
+
〈
j4
lp + j4

l−1,p

〉
=

= qp + 1
L

{
− 4ζ

〈
v3
lp (vlp − vl+1,p − vl−1,p + vlp)

〉
+ 6ζ2

〈
v2
lp

[
(vlp − vl+1,p)2 +

(
v2
l−1,p − vlp

)2
]〉

− 4ζ3
〈
vlp

[
(vlp − vl+1,p)3 −

(
v2
l−1,p − vlp

)3
]〉

+ ζ4
〈

(vlp − vl+1,p)4 +
(
v2
l−1,p − vlp

)4
〉}

=

= . . . =

= qp −
4ζ (1− ζ)

L

{
[2− ζ (1− ζ)]

(
qp − C31

1p

)
+ 3ζ (1− ζ)

(
C31

1p − C22
1p

)}
,

(A.41)

where we exploited the delta properties in the partial averages of the velocity cur-
rent, which for Maxwell molecules read (from Eq. (A.40))

〈f(vp)jlp〉 = ζ

L
〈f(vp) (vlp − vl+1,p)〉 (A.42a)

〈
f(vp)jlpjl′p

〉
= ζ2

L
δl,l′

〈
f(vp) (vlp − vl+1,p)2

〉
(A.42b)

· · ·〈
f(vp)

(
n∏
i=1

jli,p

)〉
= ζn

L

(
n∏
i=2

δl1,li

)
〈f(vp) (vl1,p − vl1+1,p)n〉 . (A.42c)

Eq. (A.41) is very similar to Eqs (5.4) in Sec. 5.1. Indeed, for the temperature we
had

Tp+1 = Tp −
4ζ (1− ζ)

L
(Tp − C1p) (A.43)

where from its definition in Eq. (A.40) we have that 4ζ (1− ζ) = 1− α2 = νL−2.
We write Eq. (A.41) with its explicit dependence on L as

qp+1 − qp = −2ν
L3

[(
1− ν

8L2

)(
qp − C31

1p

)
+ 3ν

8L2

(
C31

1p − C22
1p

)]
, (A.44)

hence, neglecting O(L−2) terms in the rhs, for L � 1 we have the continuous
equation

q̇(t) = −2ν
[
q(t)− Γ31(t)

]
(A.45)

using the same continuum limit of Sec. 5.1, i.e. Γ31(t) = limx→0C
31(x, t) and

Γ22(t) = limx→0C
22(x, t).
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Since we don’t have any information about the magnitude of C31 and C22, we
perform a cluster expansion; in our homogenous case with 〈vlp〉 = 0, we have〈

v3
lpvl±k,p

〉
= 3

〈
v2
lp

〉
〈vlpvl±k,p〉+ g31

kp

= 3TpCkp + g31
kp, (A.46)〈

v2
lpv

2
l±k,p

〉
=
〈
v2
lp

〉〈
v2
l±k,p

〉
+ 2 〈vlpvl±k,p〉2 + g22

kp

= T 2
p + 2C2

kp + g22
kp, (A.47)

where g31 and g22 are the purely correlated terms. Then, continuous fields are

C31(x, t) = 3T (t)C(x, t) + g31(x, t), (A.48)

C22(x, t) = 2C2(x, t) + g22(x, t). (A.49)

The leading terms in the rhs of Eqs. (A.46,A.47) are respectively 3TC = O(T 2
0 /L)

and T 2. Then, we assume1 that purely correlated terms are subleading with respect
to previous ones, then g31(x, t) = O(T 2

0 /L
2) and g22(x, t) = O(T 2

0 /L). So, we
have that both C31 and C22 are at most O(T 2

0 /L). Then, Γ31 in Eq. (A.45) is a L−1

correction and introducing the same expansion of Sec. 5.12

q(t) = q0(t) + 1
L
q1(t) + 1

L2 q2(t) + . . . , (A.50a)

LC31(x, t) ≡ D31(x, t) = D31
0 (x, t) + 1

L
D31

1 (x, t) + . . . , (A.50b)

LC22(x, t) ≡ D22(x, t) = D22
0 (x, t) + 1

L
D22

1 (x, t) + . . . , (A.50c)

we can solve Eq. (A.45) at the zeroth order that is{
q̇0 = −2νq0

q0(t = 0) = 3T 2
0 (t = 0)

⇒ q0(t) = 3T 2
0 (t = 0)e−2νt. (A.51)

This solution is the local equilibrium solution that is exact when L = ∞. We see
that the quartic velocity field is cooling as T 2

0 (t), so we introduce the usual rescaled
fields

q̃(t) ≡ q(t)/T 2
0 (t) = q(t)e2νt/T 2

0 (t = 0), (A.52)

and analogously we define D̃31 and D̃22. The tilde represent the Haff’s law scaling
taking into account the dimension of the field, so T̃ (t) and D̃(x, t) are still scaled
with T0(t = 0)e−νt.
Hence, we have the following equations for q̃0 and q̃1

d
dt q̃0 = 0, (A.53)

d
dt q̃1 = 2νψ31(t). (A.54)

1Ansatz n.1
2where we use the rescaled fields D31 and D22, which shouldn’t necessarily vanish in the contin-

uum limit, and we define ψ31 = LΓ31, ψ22 = LΓ22
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So we have q̃0 = 3, and the first order correction for q(t) may be computed once
we know D31(x, t).
We then move to the study of the time evolution ofD31 andD22: first, we introduce
the following exact initial conditions for our model

T (t = 0) = T0(t = 0)
(

1− 1
L

)
, (A.55a)

D(x, t = 0) = −T0(t = 0), (A.55b)

q(t = 0) = 3T 2
0 (t = 0)

(
1− 1

L

)2
, (A.55c)

D31(x, t = 0) = −3T 2
0 (t = 0)

(
1− 1

L

)
, (A.55d)

D22(x, t = 0) = 2
L
T 2

0 (t = 0). (A.55e)

which derivation can be found in Sec. A.4.1. Second, we derive evolution equations
for D31 and D22 with the same technique used for D field; then, we write the
difference in time for C31

1p , C31
kp , C22

1p , C22
kp (with k ≥ 2); we neglect the equation for

k = L/2 because the symmetry of the system yields a reflecting boundary at all
orders at x = 1/2 (however I studied it in calculations, you can check this result if
you wish).
After some painful algebra one gets

C31
1,p+1 =

〈
(vlp − jlp + jl−1,p)3 (vl+1,p − jl+1,p + jlp)

〉
=

= . . . =

= C31
1p + 1

L

{
−7ζ (1− ζ)

[
1− 8

7ζ (1− ζ)
]
C31

1p+

+
(
ζ3 + ζ

) (
C31

2p − C31
1p

)
+

+ ζ (1− ζ) [1− 2ζ (1− ζ)]
(
qp + 3T 2

p + 3C22
1p

)
+

+ 3ζ (1− ζ)
[
(1− ζ)C121

1,1,p + ζC121
−2,1,p

]}
(A.56)

C31
k,p+1 =

〈
(vlp − jlp + jl−1,p)3 (vl+k,p − jl+k,p + jl+k−1,p)

〉
=

= . . . =

= C31
kp + 1

L

{
− 6ζ (1− ζ)C31

kp+

+
(
ζ3 + ζ

) (
C31
k+1,p + C31

k−1,p − 2C31
kp

)
+

+ 3ζ (1− ζ)
[
(1− ζ)

(
C121
−1,k,p + C121

1,k,p

)
+

+ ζ
(
C121

1,k−1,p + C121
−1,k+1,p

)]}
(A.57)
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C22
1,p+1 =

〈
(vlp − jlp + jl−1,p)2 (vl+1,p − jl+1,p + jlp)2

〉
− T 2

p+1 =

= . . . =

= C22
1p + 1

L

{
−8ζ (1− ζ)

[
1− 3

4ζ (1− ζ)
]
C22

1p+

+ 2ζ2
(
C22

2p − C22
1p

)
− 8ζ (1− ζ)TpC1p+

+ 4ζ (1− ζ) [1− 2ζ (1− ζ)]C31
1p+

+ 2 [ζ (1− ζ)]2
(
qp + 3T 2

p

)
+ 4ζ (1− ζ)C121

−2,1,p+

− 16[ζ (1− ζ)]2

L
(Tp − C1p)2

}
(A.58)

C22
k,p+1 =

〈
(vlp − jlp + jl−1,p)2 (vl+k,p − jl+k,p + jl+k−1,p)2

〉
− T 2

p+1 =

= . . . =

= C22
kp + 1

L

{
− 8ζ (1− ζ)

(
C22
kp + TpC1p

)
+ 2ζ2

(
C22
k+1,p + C22

k−1,p − 2C22
kp

)
+

+ 4ζ (1− ζ)
(
C121
−k,k−1,p + C121

−(k+1),k,p

)
+

−16[ζ (1− ζ)]2

L
(Tp − C1p)2

}
(A.59)

where the · · · indicate long, painful but straightforward algebra.
These equations rule the time evolution of C31 and C22; before going to the

continuum limit, we notice that they all contain the 3-point correlation function
C121
i,j,p =

〈
vl∓i,pv

2
lpvl±j,p

〉
defined in Eq. (A.38d). We don’t want to derive ad hydro-

dynamic equation for this field too; so, we use a cluster expansion to approximate
it, and we find

C121
ijp = 〈v2

lp〉 〈vl∓i,pvl±j,p〉+ 2 〈vlpvl∓i,p〉 〈vlpvl±j,p〉+ g121
i,j,p

= TpCi+j,p + 2CipCjp + g121
i,j,p (A.60)

so we see that the leading term is TpC1p = O(L−1). To get a closed set of equations,
we neglect g121

i,j,p
3 and we write

C121
1,1,p ' TpC2p + 2C2

1p (A.61a)

C121
−2,1,p ' TpC1p + 2C1pC2p (A.61b)

C121
−1,k,p ' TpCk−1,p + 2C1pCkp (A.61c)

· · ·

3Ansatz n.2
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... and so on.
With this second ansatz and the quasielastic limit 4ζ (1− ζ) = νL−2, through the
usual hydrodynamic scaling for space and time

∆x = 1
L
, x = k − 1

L
(A.62a)

∆t = 1
L3 , t = p

L3 (A.62b)

we get the continuous evolution equations for both fields:

1
L4∂tψ

31(t) = 1
L4

{
−7ν

4

(
1− 2ν

7L2

)
ψ31(t)+

+ 2L
(

1− ν

2L2 +O(L−4)
)(

∂xD
31|x=0 + 1

2L∂
2
xD

31|x=0 +O(L−2)
)

+ ν

4

(
1− ν

2L2

) [
L
(
q(t) + 3T 2(t)

)
+ 3ψ22(t)

]
+

+ 3ν
4

[
ν

4L2

(
T (t)

(
ψ(t) + L−1∂xD|x=0 +O(L−2)

)
+ 2L−1ψ2(t)

)
+

+
(

1− ν

4L2

)(
T (t)ψ(t) + 2L−1ψ(t)

(
ψ(x, t) + L−1∂xD|x=0 +O(L−2)

))]}
(A.63)

1
L4∂tD

31(x, t) = 1
L4

{
−3ν

2 D31(x, t)+

+ 2
(

1− ν

2L2 +O(L−4)
)(

∂2
xD

31
)

+

+ 3ν
4

[
ν

4L2

(
2T (t)D(x, t) +O(L−2)

)
+

+
(

1− ν

2L2

)(
2T (t)D(x, t) + 4L−1ψ(t)D(x, t) +O(L−2)

)]}
(A.64)

1
L4∂tψ

22(t) = 1
L4

{
−2ν

(
1− 3ν

16L2

)
ψ22(t)− νT (t)ψ(t)+

+ 2L
(

1− ν

2L2 +O(L−4)
)
∂xD

22|x=0 + ν

(
1− ν

2L2

)
ψ31(t)+

+ 2ν
L
ψ(t)

(
ψ(t) + L−1∂xD|x=0 +O(L−2)

)
+

+ ν2

8L
(
q(t) + 3T 2(t)

)
− ν2

L2

(
T (t)− 1

L
ψ(t)

)2
}

(A.65)

1
L4∂tD

22(x, t) = 1
L4

{
− 2νD22(x, t) + 4ν

L
D2(x, t) +O(L−2)+

+ 2
(

1− ν

2L2 +O(L−4)
)(

∂2
xD

22 +O(L−2)
)

+

− ν2

L2

(
T (t)− 1

L
ψ(t)

)2
}

(A.66)
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Eqs. (A.63)-(A.66) are the coupled evolution equations for the 4th order correla-
tions: they can be solved separately at each order, together with the perturbative
solution of q(t) from Eq. (A.45). we then write the first order with the help of the
expansion defined in Eq. (A.50), in terms of rescaled fields as defined in Eq. (A.52).
So, we get

∂tD̃31
0 (x, t) = 2∂2

xD̃
31
0 (x, t) + ν

2
[
D̃31

0 (x, t) + 3D̃0(x, t)
]

∂xD̃31
0 (x, t)|x=0 = −3

4ν

∂xD̃31
0 (x, t)|x=1/2 = 0

D̃31
0 (x, t = 0) = −3

(A.67)

where we used the result T̃0 = 1, and for long times we have the solution

D̃31
0 (x) = 3D̃0(x) (A.68)

which confirm that at the first order the clustering approximation is good.
For D̃22

0 (x, t) we have 

∂tD̃22
0 (x, t) = 2∂2

xD̃
22
0 (x, t)

∂xD̃22
0 (x, t)|x=0 = 0

∂xD̃22
0 (x, t)|x=1/2 = 0

D̃22
0 (x, t = 0) = 0

(A.69)

that immediately lead to the flat solution

D̃22
0 (x, t) ≡ 0 (A.70)

So, we can compute the correction to the cooling of q(t) and solve Eq. (A.53): for
long times we have

q̃1(t) = q̃1(ts) + 6ψ̃∞ν(t− ts) (A.71)

where ts is the time at which we have ∂tD̃(x, t)|t≥ts = 0.
The results of Eqs. (A.68,A.70,A.71) can be plugged into Eq. (A.39), yielding

Lσ2(t) = q̃(t) +
∫ 1

0 dxD̃22(x, t)
T̃ 2(t)

− 1 =

=
q̃0 +

∫ 1
0 dxD̃22

0 + L−1
(
q̃1 +

∫ 1
0 dxD̃22

1

)
+ · · ·

T̃0 + 2L−1T̃0T̃1 + · · ·
− 1 =

= 2 + 1
L

[
q̃1(ts) + 6ψ̃∞ν(t− ts) +

∫ 1

0
dxD̃22

1 − 6
(
T̃1(ts) + ψ̃∞ν(t− ts)

)]
+O(L−2)

(A.72)

Eq. (A.72) shows that local equilibrium result is valid only at first order in L−1;
corrections are found, but linearly increasing contributions vanish. So, the time
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dependence shown in Fig. 5.4 must come from D22
1 (x, t); going to this order (now

the leading order for D22), from Eqs. (A.65,A.66) we have that

∂tD̃22
1 = 2∂2

xD̃
22
1 (x, t) + 4νD̃0

2(x, t)

∂xD̃22
1 |x=0 = −νψ̃0(t)

∂xD̃22
1 |x=1/2 = 0

D̃22
1 (x, t = 0) = 2

(A.73)

We don’t know how to solve this system; however, all we need to know to compute
the fluctuations is

∫ 1
0 dxD22

1 (x, t) = d̃1(t). So, integrating over x the first equation
in Eq. (A.73), we have

d
dt d̃1(t) = 2

[
∂xD̃22

1 |x=1− − ∂xD̃22
1 |x=0+

]
+ 4ν

∫ 1

0
dxD̃0

2(x, t) =

= 4ν
[
ψ̃0(t) +

∫ 1

0
dxD̃0

2(x, t)
]

(A.74)

when for long times we have

D̃0(x, t) →
t�1

D̃∞(x) = −1
2

√
ν

2
cos

(
1
2

√
ν
2 (1− 2x)

)
sin
(

1
2

√
ν
2

) (A.75)

ψ̃0(t) →
t�1

ψ̃∞ = −1
2

√
ν

2 cot
(1

2

√
ν

2

)
(A.76)

hence the long times solution of Eq. (A.74) reads

d̃1(t) = d̃1(ts) + 4

−1
2

√
ν

2 cot
(1

2

√
ν

2

)
+ ν

16 sin2
(

1
2

√
ν
2

) (1 + sin
√
ν/2√

ν/2

) ν(t− ts)

(A.77)

= d̃1(ts) +mΣ(ν)ν(t− ts) (A.78)

for which fluctuations can be written as

LΣ2(t) = 2 + 1
L

(
q̃1(ts)− 6T̃1(ts) + d̃1(ts) +mΣ(ν)ν(t− ts)

)
+O(L−2) (A.79)

We have derived an analytical prediction for the slope of LΣ2(t) for long times; the
constant term depends on the transient evolution and cannot be computed at this
stage. The final result is the slope of energy fluctuations

m(ν) =
√
ν/2

sin
(

1
2

√
ν
2

)
 1

2

√
ν
2

sin
(

1
2

√
ν
2

) − cos
(1

2

√
ν

2

) ν (A.80)

leading to the result in (5.36).
The result has been derived through a linear perturbative expansion; however,

a multiple-scales approach has been developed as well. The calculations are very
complicated and don’t lead to a improved agreement with simulation, so we don’t
report them here.
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A.4.1 Initial conditions in the center of mass frame

To get the initial conditions in Eqs. (A.55), we have to consider the correct velocity
distribution to perform the averages.

At t = 0, we draw L velocities wl with zero average and T0 variance, hence
their pdf is

P (w) =
L∏
l=1

p(wl)

with p(wl) = exp
(
−w2

l /2T0
)
/
√

2πT0.
We move to the center of mass inertial frame, so we make a change of variables
with the new ones

vi = wi −
1
L

L∑
l=1

wl

Then we can compute the averages: to compute the initial variance, for example,
we have

〈
v2
i

〉
=
∫

dwi p(wi)
(
wi −

1
L

L∑
l=1

wl

)2

=
∫

dwi p(wi)

w2
i −

2
L
wi

L∑
l=1

wl + 1
L2

1,L∑
l,l′

wlwl′


=
〈
w2
i

〉
− 2
L

L∑
l=1
〈wiwl〉+ 1

L2

 L∑
l=1

〈
w2
l

〉
+

1,L∑
l 6=l′
〈wlwl′〉


= T0 −

2
L

L∑
l=1

T0δil + 1
L2

L∑
l=1

T0

= T0

(
1− 1

L

)
To compute the initial correlation function, we exploit the property that velocities
are i.i.d., i.e. correlations are flat and all site pairs are equivalent; so, when i 6= j

〈vivj〉 =
∫

dwi p(wi)
(
wi −

1
L

L∑
l=1

wl

)(
wj −

1
L

L∑
l′=1

wl′

)

= 〈wiwj〉 −
1
L

L∑
l=1
〈(wi + wj)wl〉+ 1

L2

1,L∑
l,l′

〈wlwl′〉

= − 1
L

L∑
l=1

T0 (δil + δjl) + 1
L2

L∑
l=1

T0

= −T0
L

Similarly all the initial fields can be computed with the right correction in powers
of L−1.
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B
Analytical results for the active model

B.1 Self-propulsion with nonlinear friction

The Rayleigh-Helmoltz friction (2.19b) used as a self-propulsion force in (6.38) is a
first-order differential equation equivalent to the Cauchy problem

y′(x) = y(x)(1− y2(x))
y(0) = y0

(B.1)

in adimensional variables, namely y = v/vs and x = ωst. The equation can be
integrated by separating its variables, and the solution reads

y(x) = y0e
x

√
e2x + eC

(B.2)

when |y0| < 1 and C is an integration constant. A similar solution showing ex-
ponential approach to the fixed point y = 1 can be found for |y0| > 1. Note that
the solutions are symmetrical when changing y0 → −y0, then y(x) → −y(x). In
Fig. B.1 the solutions for three different initial values y0 = −0.2, 0.5, 4: it is worth
remarking the absence of oscillations when approaching the fixed point y = 1 and
the fast relaxation when |y0| > 1 compared to the slow one for |y0| < 1.

B.2 Absence of viscosity at first-order

The momentum current given by momentum transport in pairwise interaction is
given by Eq. (6.9) and reads

J
(int)
i,kl ≡ nini+el

f
(2)
k (vi,vi+el

)∆t (B.3)

Its averaged value can be computed as



178 B. Analytical results for the active model

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

y

x

y0=-0.2
y0=0.5

y0=4

Figure B.1. Solution of the differential equation in (B.1) for three different values of initial
conditions, see legend.

〈
J

(int)
i,kl

〉
= ρi(1− ρi+el

)
∫

dv dv′ Pi(v, t)Pi+el
(v′, t) f (2)

k (v,v′) ∆t (B.4)

where we have used the Molecular Chaos assumption stated in (6.16) and the
factorization in (6.17). Now we move to the continuum limit through the smooth-
ness ansatz in (6.18), which is equivalent to

Pi+el
(v, t) = P (v; x, t)± 1

L

∂P

∂xl

∣∣∣∣
(x,t)

+O(1/L2). (B.5)

This expansion can be introduced in Eq. (B.4), leading to

〈
J

(int)
kl

〉
(x, t) = ρ[1− ρ+O(1/L)]

×
∫

dv dv′ P (v; x, t)
[
P (v; x, t)± 1

L

∂P

∂xl
+O(1/L2)

]
f

(2)
k (v,v′)∆t

(B.6)

but the first term in the parenthesis vanishes because of momentum conserva-
tion in (6.1), f (2)(v,v′) = −f (2)(v′,v). So, one has

〈
J

(int)
kl

〉
(x, t) = O(∆t/L) and

J
(int)
kl does not enter in the average momentum evolution equation (6.20b) at the

first order O(∆t).
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B.3 Fluctuating currents of active matter

The noise correlations of the density current can be derived substituting micro-
scopic (fluctuating) density current from Eq. (6.6) into Eq. (6.56), yielding

〈
ji,p,lji′,p,l′

〉
=
〈

(δξp,iδζp,el
− δξp,i+el

δζp,−el
)(δξp,i′δζp,e′l − δξp,i′+e′

l
δζp,−e′

l
)
〉

(B.7)

taking the current at equal time p = p′ because fast variables ξp and ζp are inde-
pendent at different times, so the correlations must vanish.

The only non vanishing terms are the product between the first and ones in
the two parenthesis, because they respectively account for particles hopping in the
positive or negative directions. One easily sees that〈

δξp,iδζp,el
δξp,i′δζp,e′l

〉
= δi,i′δl,l′

〈
δξp,iδζp,el

〉
= δi,i′δl,l′

〈
ni(1− ni+el

)Θ(vi,l|vi,l|
〉 ∆t

∆x

(B.8)

and analogously

〈
δξp,i+el

δζp,−el
δξp,i′+el

δζp,−e′
l

〉
= δi,i′δl,l′

〈
ni+el

(1− ni)Θ(−vi+el,l|vi+el,l|
〉 ∆t

∆x.
(B.9)

Separating the (independent) density and velocity contribution and using Molec-
ular Chaos one has〈

ji,p,lji′,p,l′
〉

= δi,i′δp,p′δl,l′ [ρi(1− ρi+el
)
〈
Θ(vi,l)|vi,l|

〉
+ ρi+el

(1− ρi)
〈
Θ(−vi+el,l)|vi+el,l|

〉
].

(B.10)

Smoothness assumption on the probability distribution in (B.5) yields〈
Θ(−vi+el,l)|vi+el,l|

〉
=
〈
Θ(−vi,l)|vi,l|

〉
+O(1/L) (B.11)

so the two terms in the rhs of Eq. (B.10) sum up and at the first order give

〈
ji,p,lji′,p,l′

〉
∼ δi,i′δp,p′δl,l′ρi(1− ρi)

〈
|vi,l|

〉 ∆t
∆x (B.12)

because [Θ(x) + Θ(−x)]|x| = |x|. The procedure shown is completely general and
holds as well for momentum and energy currents: one simply has to compute the
correlations through Eq. (B.7) substituting the current of the transported quantity
χ(v), namely

J
(χ)
i,l ≡= δξp,iδζp,el

χ(vi)− δξp,i+el
δζp,−el

χ(vi+el
) (B.13)
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C
Videos

This appendix contains a collection of links to video showing experiments and
simulations on granular matter, active matter and hydrodynamics, cited in Part II,
which can be useful to clarify the meaning of the discussed phenomenology.

C.1 Granular matter

• Granular jamming through a hopper: https://youtu.be/lWSJwZhqoQw, by
J. Tang and R.P. Behringer, Duke Physics.

• A demonstration of possible applications of granular jamming: https://
youtu.be/ZKOI_lVDPpw by Cornell Creative Machines Lab.

• Convection and segregation can be seen through an experimental realization
of the Brazil-nut effect, see https://youtu.be/PGDP5DomhWc by Chung, Liaw
and Ju.

• Pattern formation is shown at https://youtu.be/s0XYrW1X0ig (experiment
and simulations) and https://youtu.be/CpZaRn0Bez0 (simulations), respec-
tively made by Howard Duan at Toronto university and by Simons Founda-
tion.

• A granular simulation showing clustering during cooling of a granular gas is
shown at https://youtu.be/ObyE8mrDjRE, made by Stefan Luding at Twente
University ; another clustering simulation can be found at https://youtu.
be/ap_PcMC2cdE, made by the MPIDS-DCF group.

• Experimental visualization and qualitative explaination of granular jets: https:
//youtu.be/Nt4jzVUEJjo, by Sixty Symbols with Roger Bowley.

https://youtu.be/lWSJwZhqoQw
https://youtu.be/ZKOI_lVDPpw
https://youtu.be/ZKOI_lVDPpw
https://youtu.be/PGDP5DomhWc
https://youtu.be/s0XYrW1X0ig
https://youtu.be/CpZaRn0Bez0
https://youtu.be/ObyE8mrDjRE
https://youtu.be/ap_PcMC2cdE
https://youtu.be/ap_PcMC2cdE
https://youtu.be/Nt4jzVUEJjo
https://youtu.be/Nt4jzVUEJjo
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• An experiment on a shaken granular showing several granular phases and
Leidenfrost effect: https://youtu.be/ueCtAlHXxCU, by Bagnoli and Guar-
ino at Florence University

• A granular rotor used to build a ratchet is shown at https://youtu.be/
aHrdY4BC71k, made by the GranularChaos group in Rome.

C.2 Active matter

• Synchronization of metronomes (Kuramoto): https://youtu.be/Aaxw4zbULMs,
by Harvard Natural Science Lectures Demonstrations.

• Swarming bacteria: https://youtu.be/q27Jn3h4kpE by Matthew Copeland,
University of Wisconsin.

• Bird flocks in Rome: https://youtu.be/8V6qUUWa4zk (Science Channel).

• Simulations showing active matter phase separation: https://youtu.be/
JtY2rtwP9v0, ratchet effect: https://youtu.be/oOtKNO-AEbY and shepherd-
ing: https://youtu.be/aIcaAuqP_KY. Made by Danielle McDermott at Wabash
University.

C.3 Hydrodynamic instabilities

Here the main hydrodynamic instabilities connected with the

• The Rayleigh-Taylor instability: https://youtu.be/yabqo7VFTYs, by Jens
Niemeyer at Göttingen University

• The Kelvin-Helmoltz instability is experimentally presented at https://youtu.
be/UbAfvcaYr00 and numerically shown at https://youtu.be/mZ19gLn6Fx4.
Videos respectively made by the DAMTP, University of Cambridge, and by
Jens Niemeyer.

• The Plateau-Rayleigh instability: https://youtu.be/UYRGEINpO50, by the
BYUSplashLab, Ira A. Fulton College.

• The Saffman-Taylor instability: https://youtu.be/FqC7VGTGh4U, by Fluid
Dynamics students at Dalhousie University, lecturer David Barclay.

https://youtu.be/ueCtAlHXxCU
https://youtu.be/aHrdY4BC71k
https://youtu.be/aHrdY4BC71k
https://youtu.be/Aaxw4zbULMs
https://youtu.be/q27Jn3h4kpE
https://youtu.be/8V6qUUWa4zk
https://youtu.be/JtY2rtwP9v0
https://youtu.be/JtY2rtwP9v0
https://youtu.be/oOtKNO-AEbY
https://youtu.be/aIcaAuqP_KY
https://youtu.be/yabqo7VFTYs
https://youtu.be/UbAfvcaYr00
https://youtu.be/UbAfvcaYr00
https://youtu.be/mZ19gLn6Fx4
https://youtu.be/UYRGEINpO50
https://youtu.be/FqC7VGTGh4U
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