
DOP: Deep Optimistic Planning with Approximate Value
Function Evaluation

Robotics Track

Francesco Riccio
Sapienza University of Rome
Via Ariosto 25, Rome, Italy
riccio@diag.uniroma1.it

Roberto Capobianco
Sapienza University of Rome
Via Ariosto 25, Rome, Italy

capobianco@diag.uniroma1.it

Daniele Nardi
Sapienza University of Rome
Via Ariosto 25, Rome, Italy
nardi@diag.uniroma1.it

ABSTRACT

Research on reinforcement learning has demonstrated promising
results in manifold applications and domains. Still, efficiently learn-
ing effective robot behaviors is very difficult, due to unstructured
scenarios, high uncertainties, and large state dimensionality (e.g.
multi-agent systems or hyper-redundant robots). To alleviate this
problem, we present DOP, a deep model-based reinforcement learn-
ing algorithm, that attacks the curse of dimensionality and reduces
the computational demand of the planning process while achieving
good performance.

KEYWORDS

Robot Learning; Reinforcement Learning; Deep Reinforcement
Learning; Planning

ACM Reference Format:

Francesco Riccio, Roberto Capobianco, and Daniele Nardi. 2018. DOP: Deep
Optimistic Planning with Approximate Value Function Evaluation. In Proc.
of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS,
3 pages.

1 INTRODUCTION

Action planning in robotics is a complex task due to unpredictabili-
ties of the physical world, uncertainties in the observations, and
rapid explosions of the state dimensionality. For example, hyper-
redundant manipulators are typically affected by the curse of dimen-
sionality problem when planning in large state spaces. Similarly,
in multi-robot collaborative tasks, each robot has to account for
both the state of the environment and other robots’ states. Due to
the curse of dimensionality, generalization and policy generation
are time consuming and resource intensive. While deep learning
approaches led to improved generalization capabilities and major
successes in reinforcement learning [7–9] and robot planning [5, 6],
most techniques require huge amounts of data collected through
agent’s experience. In robotics, this is often achieved by spawn-
ing multiple simulations [14] in parallel to feed a single neural
network. During simulation, however, the robot explores its huge
search space, with little or no prior knowledge. While encoding
prior information in robot behaviors is often desirable, this is diffi-
cult when using neural networks and it is mostly achieved through
imitation learning [2, 16] with little performance guarantees. To

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

overcome this issue, planning techniques, such as Monte-Carlo tree
search [1], have been applied in literature. Unfortunately, these
methods fail in generalizing and show limitations in relating simi-
lar states [15]. As in prior work [11], we attack the generalization
problem in policy generation by enhancing the Upper Confidence
Tree (UCT) algorithm [4] with an external action-value function ap-
proximator, that selects admissible actions and consequently drives
the node-expansion phase during episode simulation. In this paper,
we extend the algorithm in [11] to use a more powerful represen-
tation, based on deep learning, that enables better generalization
and supports higher dimensional problems. The extended version
of this paper is available in [10]1. In fact, DOP (Deep Optimistic
Planning), is based on Q-learning and allows agents to plan complex
behaviors in scenarios characterized by discrete action spaces and
large state spaces. To model action values, we use a convolutional
neural network (CNN) that is iteratively refined by aggregating [13]
samples collected at every timestep. DOP generates action policies
by running a Monte Carlo tree search [17] and incrementally col-
lecting new samples that are used to improve a deep Q-network
approximating action values. We aim at demonstrating that DOP
can efficiently be used to generalize policies and restrict the search
space to support learning in high-dimensional state spaces. Our
contribution consists in an extension of prior work [11] to use deep
learning and improve both the focused exploration and generaliza-
tion capabilities.

2 DOP

As in previous literature [8, 9], we choose to change the representa-
tion adopted in [11] and approximate the action values using a deep
neural network. The input of the network is an image capturing
the state of the environment, and its output is the Q value for each
action. Differently from DQN, we perform a data aggregation [13]
procedure, where all the transitions are iteratively collected, aggre-
gated and used at training time. Specifically, at each iteration i we
collect a dataset Di = {x } of transitions experienced by the agent,
and we aggregate it into D0:i = {∪Dd |d = 0 . . . i}, that is used for
learning. The aggregated dataset is used to minimize the ℓ2-loss:

ℓ2 (rt+1 + γ max
a′

Qθ (st+1,a
′),Qθ (st ,at )), (1)

where s,a and r represent the state, action and reward signal at
timestep t respectively. γ is the discount factor and θ is the set of
parameters of the network. The optimization is performed using an
Adam [3] optimizer. DOP is an iterative algorithm (see Algorithm 1,
for major details [10]) that, at each iteration i = 1 . . . I , (1) generates

1https://arxiv.org/abs/1803.08501

https://arxiv.org/abs/1803.08501


Algorithm 1: DOP
begin

for i = 1 to I do
s0 ← random state from ∆.
for t = 1 to T do

1) Get state st by executing π i−1 (st−1).
2) Di ← UCTDOP(st , λ0, ϵÃ).
3) D0:i ← Di ∪ D0:i−1.

Qθ .UPDATE(D0:i , α, γ ).
4) π i (s ) ← argmaxa Qθ (s, a).

return π I

a new policy πi which improves πi−1 and (2) learns action values
that are used at planning time to reduce the search space. The agent
executes an UCT search, where admissible actions are selected
throughQ value estimates, and incrementally collects new samples
that are used to improve Q value estimates. More in detail, at each
iteration, DOP performs the following algorithminc steps. First, the
agent follows its policy π i−1 for T timesteps, generating a set of
T states {st }. Then, for each generated state st , the agent runs a
modified UCT (UCTDOP) search [4] with depth H . Specifically, at
each h = 1 . . .H , the UCTDOP algorithm

(1) evaluates a subset of “admissible” actions Ã ⊆ A in st+(h−1) ,
that are determined according to Qθ (st+(h−1) ,a) such that

Qθ (st+(h−1), a) >= λmax
a

Qθ (st+(h−1), a) + ϵÃ (2)

where λ is typically initialized to 0.5. Through ϵÃ, a certain
amount of exploration is guaranteed;

(2) selects and executes the best action a∗h ∈ Ã according to

a∗h = argmax
a

Qθ (st+(h−1), a) +C ·

√
log(
∑
a η (st+(h−1), a))

η (st+(h−1), a)
, (3)

where C is a constant that multiplies and controls the explo-
ration term e , andη(st+(h−1) ,a) is the number of occurrences
of a in st+(h−1) .

(3) runsM roll-outs by executing an ϵ-greedy policy based on
π i−1 until a terminal state is reached.

DOP uses UCTDOP as an expert and collects, a dataset Di of H
transitions experienced in simulation. After each UCT run, Di is
aggregated into D0:i = Di ∪ D0:i−1 [12, 13], and the dataset is used
to perform updates of the Q-network, as illustrated in previous
section. Finally, once Qθ is updated, the policy is generated as to
maximize the action values: π i (s ) = argmaxa Qθ (s,a).

3 SELECTED EXPERIMENT

We evaluate DOP in different robotic applications, however, due
to lack of space, we restrict here to the evaluation of a fetching
task whit a KUKA 7-DOF robotic arm (a complete set of the ex-
periments and discussion is in [10]). We compare against DQN [9],
TD-search [15] and both a vanilla-UCT and random-UCT imple-
mentations. We refer to vanilla-UCT as the standard UCT algorithm
that always expands every possible action in Aj , for every agent j.
Random-UCT, instead, is a naive algorithm where at each step of the
Monte-Carlo search one action is randomly expanded. We evaluate
the cumulative reward obtained during different executions of DOP

1 2 3 4 5 6 7

Iteration N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

DOP

vanilla-UCT

random-UCT

TD-search

DQN

(a) Rewards

1 2 3 4 5 6 7

Iteration N

0

1000

2000

3000

4000

5000

6000

N
um

.
of

ex
pl

or
ed

st
at

es

Exploration
DOP

vanilla-UCT

random-UCT

TD-search

DQN

(b) States

Figure 1: The fetching task. (a) reports the avg. cumulative

reward, while (b) number of explored states obtained by

DOP, DQN, TD-search, random-UCT and vanilla-UCT.

against the number of explored states and iterations of the algo-
rithms. In this scenario, the state space is represented through an
image collected by an overlooking camera. The robot can perform
10 actions to translate and rotate its end-effector in the environment.
The reward function is shaped and it is computed as a weighted
sum of four components: the first is inversely proportional to the
Euclidean distance of the end-effector to the target, the second it
proportional to the distance to the virtual center of the obstacle,
the third and the fourth are inversely proportional to the pitch and
yaw angle respectively. In this way the reward function promotes
states that are near the target, far from the obstacle, and with the
end-effector oriented upwards – to fetch objects with a preferred
orientation, e.g. glass full of water. It is important to notice that,
since first iterations and with a reduced set of training samples,
DOP is able to outperform other algorithms that need a huge train-
ing set to learn competitive policies, e.g. DQN. Still, vanilla-UCT
shows comparable rewards, but the number of explored states for
this algorithm is ∼65% larger than DOP.

4 CONCLUSION

DOP is an iterative algorithm that uses action values learned through
a deep Q-network to guide and reduce the exploration of the state
space in high-dimensional scenarios. Our key contribution consists
in an extension of Q-CP [11] to use deep learning and improve
both the focused exploration and the generalization of the algo-
rithm. Our future work points towards applications for continuous
and online learning, where focused exploration is key to further
improve the performance of the system.



REFERENCES

[1] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games 4, 1 (2012), 1–43.

[2] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard. 2010.
Learning and Reproduction of Gestures by Imitation. IEEE Robotics Automation
Magazine 17, 2 (June 2010), 44–54. https://doi.org/10.1109/MRA.2010.936947

[3] Diederik P. Kingma and JimmyBa. 2014. Adam: AMethod for Stochastic Optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

[4] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
Machine learning: ECML 2006 (2006), 282–293.

[5] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
training of deep visuomotor policies. Journal of Machine Learning Research 17,
39 (2016), 1–40.

[6] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2016. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. The International Journal of Robotics Research
(2016), 0278364917710318.

[7] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[8] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on
Machine Learning. 1928–1937.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540 (26
02 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[10] F. Riccio, R. Capobianco, and D. Nardi. 2018. DOP: Deep Optimistic Plan-
ning with Approximate Value Function Evaluation. ArXiv e-prints (mar 2018).
arXiv:cs.RO/1803.08501

[11] Francesco Riccio, Roberto Capobianco, and Daniele Nardi. 2018. Q-CP: Learning
Action Values for Cooperative Planning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA) (2018-01-30). –.

[12] Stephane Ross and J Andrew Bagnell. 2014. Reinforcement and imitation learning
via interactive no-regret learning. arXiv preprint arXiv:1406.5979 (2014).

[13] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. 2011. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning. In
International Conference on Artificial Intelligence and Statistics. 627–635.

[14] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu,
and Raia Hadsell. 2016. Sim-to-real robot learning from pixels with progressive
nets. arXiv preprint arXiv:1610.04286 (2016).

[15] David Silver, Richard S Sutton, and Martin Müller. 2012. Temporal-difference
search in computer Go. Machine learning 87, 2 (2012), 183–219.

[16] Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal
Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
2017. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017).

[17] Mark H. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. 2008. Monte-Carlo
Tree Search Solver. In Proceedings of the 6th International Conference on Computers
and Games (CG ’08). Springer-Verlag, Berlin, Heidelberg, 25–36. https://doi.org/
10.1007/978-3-540-87608-3_3

https://doi.org/10.1109/MRA.2010.936947
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/cs.RO/1803.08501
https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1007/978-3-540-87608-3_3

	Abstract
	1 Introduction
	2 DOP
	3 Selected Experiment
	4 Conclusion
	References

