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ABSTRACT
In this paper we consider the problem of learning a mix-
ture of permutations, where each component of the mix-
ture is generated by a stochastic process. Learning permu-
tation mixtures arises in practical settings when a set of
items is ranked by different sub-populations and the rank-
ings of users in a sub-population tend to agree with each
other. While there is some applied work on learning such
mixtures, they have been mostly heuristic in nature.

We study the problem where the permutations in a mix-
ture component are generated by the classical Mallows pro-
cess in which each component is associated with a center and
a scalar parameter. We show that even when the centers
are arbitrarily separated, with exponentially many samples
one can learn the mixture, provided the parameters are all
the same and known; we also show that the latter two as-
sumptions are information-theoretically inevitable. We then
focus on polynomial-time learnability and show bounds on
the performance of two simple algorithms for the case when
the centers are well separated.

Conceptually, our work suggests that while permutations
may not enjoy as nice mathematical properties as Gaussians,
certain structural aspects can still be exploited towards an-
alyzing the corresponding mixture learning problem.

1. INTRODUCTION
Mixture models have been studied for more than a cen-

tury [37]. In a mixture model setting, we postulate a prob-
abilistic process for generating samples from a convex com-
bination of a small set of distributions, where the distri-
butions in this set are usually from the same underlying
family. The parameters of these distributions are typically
unknown. Given a set of independently generated samples
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from this process, the question is to learn the hidden pa-
rameters of the distributions and cluster the samples. Mix-
ture model learning is a standard way to interpret data in
many machine learning and data mining applications [31,39].
This elegant notion has enormously influenced widely-used
algorithms in computer science including the expectation-
maximization and the k-means algorithms.

A large body of literature exists on learning mixtures
where the underlying family is the Gaussian distribution.
For applications with real-valued data, the Gaussian distri-
bution is a natural candidate to model the vagaries of the
data. There are several heuristics (including versions of the
expectation-maximization algorithm and versions of the k-
means algorithm) for this learning problem; however very
little [15] can be said about these heuristics formally. For
more details, see the section on related work.

Much less theoretical work has been done on the prob-
lem of learning a mixture of permutations. Permutation
mixture models arise in many real-world settings where a
set of objects is implicitly or explicitly ranked. As a mo-
tivating example, consider a user population that (fully)
ranks a small set of local restaurants. The population could
be composed of several sub-populations where the users in
each sub-population might rank the restaurants in a simi-
lar manner. For example, a sub-population that places a
lot of emphasis on ambiance will choose a ranking where
the restaurant ambiance attribute is highlighted. Similarly,
a sub-population with an Italian cuisine preference might
rank all Italian restaurants above non-Italian restaurants.
These characteristics of such sub-populations may or may
not be known a priori. Of course, the members within a
sub-population need not necessarily agree with each other
about the entire ranking; they might have a few disagree-
ments. From an application point of view, say for restaurant
recommendation or for targeted advertisement, it is impor-
tant to identify these sub-populations, the aggregated rank-
ing of a sub-population, and cluster the entire population
into such meaningful sub-populations.

A way to model the above scenario is to use a mixture
of distributions on permutations. An important question is
which family of distributions on permutations is best suited
for this purpose, both from theoretical and practical points
of view. A compelling candidate is the Mallows model [29]:
in this model, a center (a permutation) and a parameter (a
real number) induce a distribution on the space of all per-



mutations, where the probability mass on a particular per-
mutation depends on its (Kendall) distance from the center,
scaled by the parameter. Mallows model can be thought of
as an analog of Gaussians for permutations, where the center
plays the role of the mean and the parameter plays the role
of the variance. However, unlike multidimensional Gaussian
distributions, Mallows model is much less well-behaved with
less nice properties and much less is known about the model.
Meila and Chen [32] used such a Mallows mixture model for
clustering rankings, but their work is restricted to empiri-
cal analysis. In particular, they do not have any provable
bounds on the performance of their algorithm. There has
been other work in the statistics and machine learning com-
munity to model rankings as mixtures of other choice models
such as the Plackett–Luce and Benter models [9,20,21], but
it is unclear if these models are easily amenable to algorith-
mic treatment.

1.1 Our contributions
In this paper we study the problem of learning a mixture

of distributions on permutations where each distribution in
the mixture generated by a Mallows model, with its own
center and parameter. As in the Gaussian case, it is un-
surprising that the learnability of the problem can heavily
depend on how well-separated are the mixture centers. We
first address the following question: assuming the centers
are arbitrarily placed and assuming the algorithm has ac-
cess to an unlimited number of samples, what are the con-
ditions under which the mixture can be learned? We show
that for learnability, it is information-theoretically necessary
that the following two conditions hold: the Mallows param-
eter is the same for all distributions in the mixture and this
(single) parameter must be known to the learning algorithm.
We complement this non-learnability by obtaining an algo-
rithm for learning the centers from (exponentially) many
samples, provided the Mallows parameters are all the same
and the algorithm knows its value. In fact, we show that this
learnability result holds for any exponential distribution of
a distance function that is embeddable into `22; this may be
of independent interest.

Next, we focus on the cases where the centers are well-
separated, where our goal is to use only a polynomial num-
ber of samples for learning. We first obtain an algorithm
based on single-linkage clustering that can learn the cen-
ters, provided the centers are well-separated. The algorithm
works by first clustering the samples and then using an exist-
ing algorithm to infer the centers for each cluster. We next
obtain a different algorithm based on the nearest-neighbor
criterion for clustering the samples. This algorithm needs
a quadratically-weaker center separation assumption com-
pared to the single-linkage clustering, but uses a stronger
assumption of knowing the position of the centers. While
both these algorithms are very simple, the difficulty is in
proving that their performance can be tied to the separa-
tion of the centers.

Our work illustrates that while permutations and the Mal-
lows model are more cumbersome to work with than mul-
tidimensional real-valued distributions because of the finite
discrete nature of the permutation space (e.g., even counting
the number of permutations at a certain distance is not fully
resolved), we can use their structural properties (e.g., em-
beddability, a simple generative process, alternative equiva-
lent representations such as the insertion vector) in order to

analyze popular and practically used heuristics and obtain
provable bounds. On the other hand, the discrete nature of
the space also enables us to establish non-learnability for the
most general cases of the mixture model, unlike the Gaussian
models, and a larger separation between centers is necessi-
tated due to the lack of independence of the “element-wise
perturbations” in the Mallows setting.

1.2 Related work
Given a set of permutations generated according to the

Mallows model, the permutation that maximizes the like-
lihood of this set is in fact the center [41]; finding this
permutation is the well-known rank aggregation problem.
Braverman and Mossel [8] obtained an algorithm for learn-
ing the center given a set of samples from a Mallows distri-
bution; our work can be thought of as a natural extension
of this work to a mixture setting. Chierichetti et al. [12]
studied the problem of reconstructing the center from sam-
ples, where each sample is obtained from a Mallows model
with the same center but different parameter. Very recently,
Awasthi et al. [5] has considered learning the parameters of
Mallows model mixtures and obtained a polynomial time al-
gorithm for the case of two mixtures, by using a clever ten-
sor decomposition. However, [5] considers the case of only
two components, and settles the polynomial time learnabil-
ity question for arbitrary separation of the centers. We, on
the other hand, present an existential identifiability result
for arbitrary number of components, as well as polynomial
time algorithms for well-separated centers.

For the problem of learning a mixture of Gaussians, a
tremendous amount of progress has been made on the theo-
retical front over the last few years, starting with the ground-
breaking work of S. Dasgupta [14], followed by a series of
impressive results [4,15,27,40], culminating with the recent
work on the provably learning Gaussian mixtures via the
method of moments [6, 22, 24, 25, 33]. See the recent sur-
vey article by Kalai, Moitra, and Valiant [26] for an almost
up-to-date overview of this research area.

There have been some work on learning mixtures of other
distribution families. With the increasing role of heavy-
tailed distributions in contemporary applications, the mix-
ture learning problem has also been studied for such distri-
butions [11,13]. The results here are somewhat weaker than
for the Gaussian case. Another topic that has attracted a
lot of attention is learning a mixture of product distribu-
tions [19, 35]. The problem of learning mixtures of distri-
butions when the domain is discrete but the distribution
itself is allowed to be arbitrary has also been studied: the
structured case was investigated by Chan et al. [36] and the
unstructured case was investigated by Rabani et al. [38] and
Anandkumar et al. [3]. Learning mixture of tree graphical
models was considered by Anandkumar et al. [2]. None of
the tools/techniques developed in these papers seems to ap-
ply to the Mallows mixture problem in particular and to
permutations in general. While there has been some em-
pirical work [28, 34], mostly using EM, in learning Mallows
mixtures, these do not come with theoretical guarantees.

2. PRELIMINARIES
Let Sn be the symmetric group on [n] = {1, . . . , n}. For

a permutation σ ∈ Sn and an element i, let σ(i) denote the
rank of the ith element. For two permutations π, σ ∈ Sn,



let K(π, σ) denote the Kendall tau distance, which is the
number of inversions between π and σ.

Let β ∈ (0,∞) be a parameter and let σ ∈ Sn be a fixed
permutation. In the Mallows model M(σ, β) of generating
permutations [29], the parameter β and the permutation σ
induce a distribution on Sn as follows:

Pr
M(σ,β)

[π] =
e−βK(π,σ)

Zβ
,

where Zβ is the normalization constant defined as Zβ =∑
π∈Sn e

−βK(π,σ). We use π ∼ M(σ, β) to denote that π

is generated according to M(σ, β). When σ is the identity
permutation, we simply denote K(σ, π) by K(π) andM(σ, β)
by M(β).

Let k > 1 be an integer. Let σ = {σ1, . . . , σk} be a set of
distinct permutations and let β1, . . . , βk be their correspond-
ing parameters. In the Mallows mixture model setting with
k centers, a sample permutation is generated by the follow-
ing mixture process: pick σi ∈ σ according to a probability
distribution (called weight distribution)W on σ and output
the permutation generated according to M(σi, βi). Here,
the σ is the set of hidden centers. In the mixture model
learning problem, we are given a set S of samples generated
according to the mixture process and the goal is find the
hidden centers. In a variant of the problem, in addition to
the samples, we are also given the set σ of centers and the
goal is to assign each sample to the center it came from. The
complexity of the learning task is measured in terms of the
size |S| of the samples, the running time of the algorithm,
and the quality of inferred centers (i.e., their distance to the
true hidden centers). Sometimes, we will deal with the case
when W is the uniform distribution on σ; we call this the
uniform Mallows mixture learning problem.

We need the following two tail bounds from [7], which
show that no element deviates too far off from its original
position and that the Kendall distance of the sample to the
center is also bounded.

Theorem 1 (Bhatnagar and Peled [7]). For all β >
0, i ≥ 1 and t ≥ 1 if π ∼M(β), then

(a) Pr
π

[|π(i)− i| ≥ t] ≤ 2e−βt,

and for all c > 0,

(b) Pr
π

[
K(π) > c

n

β
ln(2nt)

]
< (nt)−c.

3. ARBITRARY MIXTURES
In this section we consider the problem of learning the

mixtures when the centers can be arbitrarily placed, in par-
ticular, when they can be very close to each other. In such
settings, we first show that it is necessary to assume that
the Mallows parameter β’s are the same and are known, for
otherwise it is not feasible to identify the components of the
mixture. Next, we show that if the β’s are the same, then we
can learn the mixture for arbitrary separation between the
centers provided we have access to sufficiently many samples
from the mixture. Note that such a result is not obvious,
even for Gaussian mixture models.

3.1 Non-learnability
We first show two easy non-learnability results: the first

considers the case of when the parameters can be different

and the second considers the case when the parameters, even
if all same, are not known to the learning algorithm. Note
that in both these results, we will need the centers to some-
times be placed very close (within K(·, ·) = Θ(1)) to each
other, i.e., these results are not necessarily true when we
assume a super-constant separation between the centers.

First we note that for learnability, the parameters should
all be positive for otherwise there is a very simple instance
that is not learnable. Indeed, the following two worlds are
indistinguishable. In the first world, there are n! centers, all
with same β, and W is uniform. In the second world, there
is one center with β = 0. It is easy to see that both these
worlds induce the uniform distribution on Sn.

Therefore, in what follows, we assume that β’s are all
positive. We now show that if the β’s are not all the same,
then there are instances of the mixture learning problem
that are information-theoretically impossible to learn. We
show that this holds in a very strong sense: even if there are
only two centers {σ1, σ2} and the weight distribution W is
uniform on this set of centers.

Lemma 2. The uniform Mallows mixture learning prob-
lem with two centers cannot solved in general, without a
knowledge of k, β1 and β2, regardless of the number of sam-
ples.

Proof. Suppose that we select the world uniformly at
random between the following two possible worlds:

World 1: k = 1 with σ = (1, 2), β = ln 2.
World 2: k = 2 with σ1 = (1, 2), β1 = ln(14) and σ2 =

(2, 1), β2 = ln(3/2); W is uniform on {σ1, σ2}.
The mixture distribution P1(·) in World 1 is

P1(1, 2) =
1

1 + e−β
and P1(2, 1) = 1− P1(1, 2).

In World 2, since W is uniform, the mixture distribution
P2(·) is

P2(1, 2) =
1

2
·
(

1

1 + e−β1
+

e−β2

1 + e−β2

)
=

1

1 + e−β
= P1(1, 2).

Since the two distributions are identical, no algorithm can
distinguish between the two worlds. Note that this argu-
ment can work for any β1 > 0. Then, for any 0 < β <

ln
(

3− 8

eβ1+3

)
, set β2 = ln 1−eβ+2eβ1

eβ1 ·(eβ−1)+2eβ
.

We next show that even if all the parameters are the same,
if the algorithm does not know the value of the parameter,
the Mallows mixture problem cannot be solved in general.

Lemma 3. Let n ≥ 2 and let all the centers have the same
β > 0. The Mallows mixture learning problem cannot be
solved in general if β is unknown, regardless of the number
of samples.

Proof. Fix any β > 0. Let pe(σ, β) be the probability
of obtaining a permutation from M(σ, β) that has an even
Kendall τ distance to σ. Then,

pe(σ, β) =
∑

π|K(π,σ)∈2Z

e−βK(π,σ)

Zβ
= pe(β),

since the sum has the same terms and hence the same value
for any choice of σ. Note that 1

2
< pe(β) < 1. It is also

easy to see that pe(β) is continuous and increasing in β,
pe(0) = 1

2
, and limβ→∞ pe(β) = 1.



Let 0 < β1 < β2 be chosen arbitrarily. Let

α =
pe(β1) + pe(β2)− 1

2pe(β2)− 1
;

1

2
< α < 1.

Let An ⊆ Sn be the set of the even permutations on [n],
i.e., permutations π such that K(π,1) is even where 1 is the
identity permutation. It follows |An| = |Sn|/2.

We select the world uniformly at random between the fol-
lowing two possible worlds:

World 1: create a center for each σ ∈ An and each center
has the parameter β1; W is uniform on An.

World 2: create a center for each σ ∈ Sn and each center
has the parameter β2. W is defined as:

W(π) =

{
α/|An| π ∈ An,

(1− α)/|An| π ∈ S \An.

We now calculate the probability of any given even permu-
tation in both worlds. The probability of any given even
permutation in World 1 is pe(β1)/|An| and in World 2 is

α

|An|
· pe(β2) +

(1− α)

|An|
· (1− pe(β2))

=
1

|An|
· (α(2pe(β2)− 1) + 1− pe(β2))

=
pe(β1)

|An|
,

by our choice of α. Analogously, it can be seen that the
probability of any given odd permutation in both worlds is
1−pe(β1)
|An| . Since both these worlds induce the same distribu-

tion on Sn, no algorithm can distinguish between the two
worlds.

Note that even though k = n!/2 in the above proof, since it
holds for any n ≥ 2, k need not be particularly large for the
instance. Also, even though we definedW to be non-uniform
in World 2, this was for simplicity: for infinitely many β’s,
by replicating the centers appropriately, we can create an
equivalent instance for World 2 where W is uniform.

3.2 Uniform parameters
In this section we obtain algorithms that can learn Mal-

lows mixtures for arbitrary separation between centers as
long as all the parameters are the same and are known. In
conjunction with the non-learnability results in Lemma 2
and Lemma 3, these assumptions about the parameters are
inevitable. The main idea in the algorithm is to use the
invertibility of a certain Gram matrix.

Let |X| = n, and let d : X×X → [0,∞) be a function. We
say d is isometrically embeddable into `22 if and only if there
exists n vectors x1, . . . , xn such that d(i, j) = ||xi − xj ||2.
The Kendall distance can be isometrically embedded into
`1, and therefore into `22. Indeed, let I(σ) be the

(
n
2

)
length

vector that in the {i, j}th position is 1 if and only if i < j
and σ(i) > σ(j); it follows K(π, σ) = |I(π)− I(σ)|.

A real matrixM is positive definite (resp., positive semidef-
inite) if, for every non-zero real vector x, it holds xMxT > 0
(resp., xMxT ≥ 0). We denote M � 0 (resp., M � 0) to
denote M is positive definite (resp., positive semidefinite).
The Gram matrix of the real vectors x1, . . . , xn is defined as

Gi,j = 〈xi, xj〉 and the Hadamard exponential Â of a ma-

trix A is defined as Âi,j = eAi,j . We will use the following
folklore results.

Fact 4. If G is a Gram matrix, then G � 0.

Lemma 5 (Theorem 7.5.9 [23]). If A is a positive semidef-
inite matrix and if A does not contain two equal rows, then

its Hadamard exponential satisfies Â � 0 and hence it is
non-singular.

Using these, we now prove the following.

Theorem 6. Let x1, . . . , xk be pairwise different vectors
and let M be the k × k matrix such that:

Mi,j =
e−β ||xi−xj ||

2∑∑k
`=1

e−β ||xi−x`||2
.

Then, M is non-singular.

Therefore, the n! × n! matrix Ni,j = e
−β K(σi,σj)∑n!

`=1
e−β K(σi,σ`)

is

non-singular.

Proof. The latter claim follows from the former since
the Kendall tau distance is isometrically embeddable into
`22, and since K(σi, σj) = 0 if and only if i = j. We now
prove the former claim for an arbitrary matrix M .

Let M ′′ be the Gram matrix corresponding to the vectors
x1, . . . , xk, i.e., M ′′i,j = 〈xi, xj〉. We use two properties of
M ′′. First, from Fact 4, we know that M ′′ � 0 and hence
for any β > 0, we have

2βM ′′ � 0. (1)

Second, we argue that M ′′ does not contain two equal rows.
Indeed, assume the contrary and let the ith and the jth
row (j 6= i) of M ′′ be equal, i.e., 〈xi, x`〉 = 〈xj , x`〉 for all
`. By choosing ` = i, we have that ||xi||2 = 〈xi, xi〉 =
〈xj , xi〉 and by choosing ` = j, we have 〈xi, xj〉 = 〈xj , xj〉 =
||xj ||2. Thus, ||xi||2 = 〈xi, xi〉 = 〈xj , xj〉 = ||xj ||2. By
the Cauchy–Schwarz inequality, we know that for 〈xi, xj〉2
to equal ||xi||2 · ||xj ||2, we need xi and xj to be linearly
dependent. Since ||xi||2 = ||xj ||2, this implies xi = xj ,
which is a contradiction, since we assumed that the x`’s are
pairwise different.

Let M ′ = 2̂βM ′′, i.e., the Hadamard exponential of 2βM ′′

given by M ′i,j = e2β〈xi,xj〉. By (1) and since M ′′ (and hence
2βM ′′) has no two identical rows, using Lemma 5, we get

M ′ � 0 =⇒ detM ′ > 0. (2)

Finally, using these, we will show M is non-singular by
showing its determinant is non-zero. The determinant of M
can be written as:

detM =
∑
π∈Sn

sgn(π) · e
−2β

∑n
i=1 ||xi||

2+2β
∑n
i=1〈xi,xπ(i)〉∏n

i=1

∑
σ`∈σ

e−β K(σi,σ`)

=
e−2β

∑n
i=1 ||xi||

2∏n
i=1

∑
σ`∈σ

e−β K(σi,σ`)

·
∑
π∈Sn

sgn(π) · e2β
∑n
i=1〈xi,xπ(i)〉.

Note that the first term in this product is positive and the
second term is precisely detM ′, which is also positive using
(2).

Theorem 7. If β > 0 is known and is the same for all the
centers and if sufficiently many samples are given, then we
can learn the Mallows mixture model with probability 1−o(1).



Proof. Consider the matrix N of Theorem 6. Since it is
invertible, let

u =
∣∣∣∣N−1

∣∣∣∣
∞ .

For any i, j, since K(σi, σj) ≤
(
n
2

)
, we have

Ni,j =
e−β K(σi,σj)∑

σ`∈σ
e−β K(σi,σ`)

≥ e−β (n2)∑
σ`∈σ

e−β K(σi,σ`)

≥ 1

n!
· e−β (n2) ≥ e−(1+β)n2

= v.

Finally, let η be the minimum non-zero probability in W:

η = min
σ∈σ,W(σ)>0

W(σ).

Now, let Ct be the column vector of length n! indexed
by π ∈ Sn such that the πth entry contains the fraction of
times that the permutation π was produced by the mixture
model, if it were sampled t times. Let M be the vector of
length n! such that the πth entry is the expected number of
times the mixture model outputs π.

By the Chernoff bound, for each ε > 0, there exists γ =

γ(ε) such that if t ≥ v−γ = eγ(1+β)n2

, then with probability
1− o(1), we will have

(1− ε)M(π) ≤ Ct(π) ≤ (1 + ε)M(π),

uniformly for each π ∈ Sn. By choosing t, the number of

samples, to be O
(

(3u·n!)2 logn

vη3

)
, we can assume ε = η

3u·n!
.

Let W = N−1Ct. Observe that, since N · W = M, we
have

W(π) = N−1M+ ξ,

where |ξ| ≤ εu · n! = η
3
. Therefore, the set of π’s such

that W(π) ≥ 2
3
η, is the correct set of unknown centers with

probability 1− o(1).

In fact, the above proof naturally extends to the following
more general setting. Given a set X of elements, let d :
X ×X → [0,∞) be a semi-metric, i.e., let d(x, y) = d(y, x)
for each x, y ∈ X, and d(x, y) = 0 iff x = y. Given X, d, β >
0, and some x ∈ X, we define the probability distribution
Px = Px,X,d,β as follows:

Px(y) =
e−β d(x,y)∑
z∈X e

−β d(x,z) ∀y ∈ X.

Given a set C ⊆ X, and a probability distribution W over
C, we define the mixture E of the {Px}x∈C as:

E(y) =
∑
x∈C

W(x) · Px(y) ∀y ∈ X.

Observe that E is a probability distribution over X. The
proof of Theorem 7 can be extended to show that if d can be
isometrically embedded into `22, if all the centers’ parameters
are equal to β > 0, and if β is known, then given sufficiently
many samples, it is possible to guess exactly the set C of
centers that make up the mixture E with probability 1 −
o(1).

4. WELL-SEPARATED MIXTURES
Theorem 7 in Section 3 states that with enough samples,

one can learn the Mallows mixture model for arbitrary cen-
ters if all the β’s are the same and known. Unfortunately,
the resulting algorithm requires a superpolynomial number
of samples and hence has a superpolynomial running time.

In this section we focus on developing efficient algorithms
that are provably correct if the centers are well-separated,
i.e., there is a minimal Kendall tau distance between every
pair of centers. We focus on two cases: in the first, the
algorithm does not know the position of the centers. In the
second case, the algorithm knows the centers and the goal
is to cluster the given samples with respect to the given
centers.

4.1 Unknown centers
In this section we assume that the algorithm does not

know the location of the centers (or the parameters). Nev-
ertheless, we show that we can reconstruct clusters corre-
sponding to different centers and then use the samples in
the clusters to estimate the respective centers.

Let β1 ≤ · · · ≤ βk be the Mallows parameters, and let
σ1, . . . , σk ∈ Sn be the respective centers.

Theorem 8. Let t be the number of samples. If for each

1 ≤ i < j ≤ k we have K(σi, σj) ≥ Ω
(
n log(nt)

β1

)
, then we can

learn the Mallows mixture model with probability 1− 1

(nt)Θ(1) .

Proof. The algorithm we use is the so-called single-linkage
clustering, which is a popular practical heuristic. Each of
the t samples starts as a singleton. Repeat the following
until we obtain k clusters: select clusters C1, C2 such that
minπ1∈C1 minπ2∈C2 K(π1, π2) is the minimum and merge C1

and C2 into a single cluster.
To prove the correctness of this algorithm, we appeal to

Theorem 1(b). From this, if the minimum distance between
the centers is at least c′ n

β1
ln(2nt), for c′ > 2c, then we

are guaranteed that no two samples coming from different
centers will end up in the same cluster. Thus, it is possible to
guess correctly for each pair of samples if they were produced
by the same center (by the mixture process) with probability

at least 1− 1/(nt)Θ(1).
After obtaining this clustering, for the final step of com-

puting the centers themselves, we use the polynomial algo-
rithm of Braverman and Mossel [8, Theorem 7] to use the
samples in each cluster in order to estimate the centers.

4.2 Known centers
In this section we still focus on the case of well-separated

centers, when the centers are known in advance to the al-
gorithm; the parameters β· need not be known to the al-
gorithm. Interestingly we can show that it is possible to
obtain an algorithm that for some parameters outperforms
the algorithm in Theorem 8.

The core intuition behind the algorithm is that even if the
average distance between a center and a sample is large, a
sample should be closer to the center that generated it than
to any other center. In particular, we analyze the following
natural algorithm: assign each sample to its nearest center.
In the rest of this section we show that, under a separation
assumption, this algorithm recovers the correct clustering.

Before describing our results, we recall some properties of
the Mallows model. It is well known that a permutation



can be sampled from the Mallows distribution using a sim-
ple process. For completeness, we describe the process; a
full proof of why it corresponds to the M(β) distribution is
available in [17].

Insertion process P . Define q = e−β . We consider the
elements 1, . . . , n in this order. For each i, πi will denote a
permutation over the elements 1 to i. Define π1(1) = 1. We
then define πi in terms of πi−1 as follows. First the entry at
the ith position of πi, i.e., πi(i) is chosen using the following
random process:

Pr[πi(i) = j] =
(1/q)j−1

1 + 1/q + · · ·+ (1/q)i−1
, for j ∈ {1, . . . , i}.

(3)

Then, for s such that πi−1(s) < πi(i), set πi(s) = πi−1(s)
and else set πi(s) = πi−1(s) + 1. Finally, π = πn.

We first state the following result from [12]. Let sβ,k,i be
the probability that π(i) > π(i+k) and let s′β,k,i = 1

2
−sβ,k,i.

Theorem 9 (Lemma 4 [12]). sβ,k,i is independent of

i and for all k, sβ,k ≤ sβ,1 <
β+e−β−1

eβ+e−β−2
. Furthermore, for

β > 0, s′β,k ≥ s′β,1 ≥ Θ(min(β, 1)). If β = Ω(1), s′β,k >

1−Θ(βe−β).

Finally, we will also need the following form of the method
of bounded differences [18]; the original result is due to Mc-
Diarmid [30].

Theorem 10. Let f be a function of n random variables
X1, . . . , Xn, each Xi taking values in a set Ai, such that
E[f ] is bounded. Assume that

m ≤ f(X1, . . . , Xn) ≤M.

Let B be any event and let ci be maximum effect of f assum-
ing B, i.e.,

|E[f | Xi−1, Xi = ai,B]− E[f | Xi−1, Xi = a′i,B]| ≤ ci.

Then

Pr[f > E[f ] + t] ≤ exp

(
− 2t2∑

i c
2
i

)
+ Pr[Bc],

and

Pr[f < E[f ]− t] ≤ exp

(
− t2∑

i c
2
i

)
+ Pr[Bc].

Now we are ready to prove our main result: when the
centers are known, then with only a Õ(

√
n/βs′β,1) separation

between the permutations, it is possible to label most points
accurately. We first show a claim for two centers, one of
them being the identity permutation. Then we extend the
result to an arbitrary set of permutations.

Lemma 11. Let k = 2 with σ1 being the identity permuta-
tion and σ2 = σ. For any permutation π ∼M(β), consider
the following random variable ∆:

∆ = K(π, σ)−K(π).

If

K(σ) ≥ log(1/δ)

s′β,1
min

(
n3/2,

c
√
n logn

β

)
,

then with probability 1− δ − n−c, ∆ > 0.

Proof. We analyze the expectation of ∆ and then use
Theorem 10 to obtain the high probability result. Let π ∼
M(β) and consider the random variable ∆ = K(π, σ)−K(π).
Let the indicator variables xij and yij be defined as follows:
for j < i, xij = 1[σ(j) > σ(i)] and yij = 1[π(j) > π(i)].
Also, abusing notation, let xi =

∑
j<i xij be the ith coor-

dinate of the inversion vector of σ. Now, consider that the
Mallows permutation π has been generated according the
Mallows process P. Thus, each random variable xi depends
solely on the position of the ith element in the corresponding
step. Hence the random variable xi’s are mutually indepen-
dent. Thus,

∆ =
∑
i

∑
j<i

1[σ(j) < σ(i) and π(j) > π(i))]

+ 1[σ(j) > σ(i) and π(j) < π(i))]− 1[π(j) > π(i))]

=
∑
i

∑
j<i

(1− xij)yij + xij(1− yij)− yij

=
∑
i

∑
j<i

xij − 2xijyij

= K(σ)− 2
∑
i

∑
j<i

xijyij .

Consider the random variable S =
∑
i

∑
j<i xijyij . Using

Theorem 9, for j < i, E[yij ] = sβ,i−j ≤ sβ,1. Hence,

E[S] =
∑
i

∑
j<i

xijyij ≤ sβ,1
∑
i

∑
j<i

xij = sβ,1K(σ).

Note that E[S] is the number of inversion on which both π
and σ agree. In the following we prove that S is concen-
trated using Theorem 10. The core intuition is to consider
the process P and to show that after each insertion step, S
changes by at most logn w.h.p.

More formally, for each i, the number of inversion with el-
ements j < i on which both σ and π agree is upper bounded
by yi = i− πi(i)(recall the definition of πi(i) in process P),
that is the number of inversion with elements j < i of π.

Now let the event A be defined as the following: for all i ∈
[1, n], |π(i)− i| < min(n− 1, c log(n)/β). Using Theorem 1,
Pr[A] > 1 − n−c. Let us condition on event A happening.
Note that, since the final position of each element change at
most of (c logn)/β, then yi is bounded by:

|yi| ≤ min

(
n− 1,

2c logn

β

)
.

Thus, after conditioning on A, for each i the number of
inversion with elements j < i on which both σ and π agree
is upper bounded by |yi| ≤ min(n − 1, (2c logn)/β). Fur-
thermore

∑
i y

2
i ≤ min(n3, (4c2n log2 n)/β2).

Now we can apply Theorem 10. Conditioned on A, we get
that

Pr[∆ < 0] ≤ Pr[S > K(σ)/2]

≤ exp

− ( 1
2
K(σ)− E[S])2

2 min(n3, 4c2n log2(n)

β2 )


≤ exp

− (s′β,1K(σ))2

2 min(n3, 4c2n log2(n)

β2 )

 .



Hence, when

K(σ) ≥ log(1/δ)

s′β,1
min

(
n3/2,

2c
√
n logn

β

)
,

by applying the union bound, we have the total probability
of ∆ < 0 to be at most δ + n−c.

The previous result gives us a bound for two centers and
a single sample. It is easy to extend it to more than two
centers (up to a polynomial number in n) and more than one
sample (up to a polynomial number in n). By appropriately
setting δ and c and by using the union bound we can get
that for each sample is closer to the center it was sampled
from than any other center. Hence, we obtain the following.

Corollary 12. Suppose we have k centers {σ1, . . . , σk},
and the parameters β1 ≤ · · · ≤ βk. Let W be an arbitrary
set of weights for choosing each center. Let m = poly(n) be
the number of samples taken from this mixture. Suppose all
pairs σi, σj satisfy

K(σi, σj) ≥
C log(m)

s′β1,1

min

(
n3/2,

2
√
n logn

β1

)
,

for some constant C > 0. If the σi are known, then all
sample points can be assigned to their closest center and we
would have the correct clustering with probability 1−n−c for
some constant c.

Proof. For each sample π ∼M(σi, βi), using the above
Lemma 11, we can guarantee that for any other center σj ,
since by assumption K(σi, σj) satisfies the inter-center sep-
aration of Lemma 11, K(π, σi) < K(π, σj) with probability
1− n−c for some c. By using the union bound, the proof is
complete.

It is useful to note if the centers were known in the Gaussian
mixture case, for an analogous claim to Lemma 11, we would
only need a separation between the centers that is Ω(logn)
times the maximum variance.

5. CONCLUSIONS
In this work we initiated the formal study of mixtures of

Mallows distributions and prove the impossibility of learn-
ing arbitrary mixtures in the most general case when the
parameters are different and the learnability of the compo-
nents are identifiable when the Mallows parameter is the
same and known. We point out that the setting where the
centers are well-separated is an algorithmically easier set-
ting. Our work suggests that while permutations may not
enjoy as nice mathematical properties as Gaussians, they
still posses structural characteristics such as embeddability
that can still be exploited towards analyzing the correspond-
ing mixture learning problem.

It would be interesting to investigate the feasibility of
polynomial time algorithms for learning mixtures when k =
Θ(1), center separation is Θ̃(

√
n/βc) and neither the centers

nor the parameters is known. While [5] has settled the ques-
tion for k = 2, it would be interesting to see whether we can
develop algorithms requiring polynomial number of samples
for arbitrary k, as has been done for other well-behaved dis-
tributions [1,10,16]. As we mentioned earlier, it will also be
interesting to study the learnability of other choice models
in the mixture setting.
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