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Abstract: A microbial ecosystem in which bacteria no longer live in a mutualistic association is called
dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses
(irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal
illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status
has been related to various important pathologies, and many therapeutic strategies aimed at
restoring the balance of the intestinal ecosystem have been implemented. These strategies include
the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation;
bacterial consortium transplantation; and a still poorly investigated approach based on predatory
bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.
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1. Introduction

Bacteria (bacteriome), fungi (mycome) [1], and viruses (virome) [2] live together in a harmonic
and dynamic equilibrium in the intestinal tract. Although long ignored, viruses play a relevant role
in the intestinal ecosystem: 90% of the intestinal virome consists of bacteriophages [3], while the
remaining 10% encompasses several plant and animal viruses that are constantly introduced with
food. This microbial community begins to colonize the body before delivery and lives in the
body in a mutualistic relationship until death. The intestinal microbial community contributes
to nutrient metabolism, calibrates metabolic functions, educates/stimulates the immune system,
maintains community integrity, and defends the host from pathogens [4,5]. The set of bacterial
genomes coexisting with the host is called microbiome. Its coding capacity is 150-fold higher than that
of the human genome [6], providing functional features that humans have not evolved. The sum of
the human genome plus the contribution of the microbiome is called hologenome, which determines
the metabolic characteristics of the organism [6]. Nobel laureate Eli Metchnikoff (1845–1916) said
that “the majority of diseases begin in the digestive tract when “good” bacteria are no more able to
control “bad” bacteria”, calling this condition dysbiosis. Gut dysbiosis has been linked to several
pathologies (inflammatory bowel disease, celiac disease, obesity, metabolic disorder, etc.) [7], and the
list continues to grow. The scientific community has now recognized the importance of maintaining a
balanced gut microbiota to maintain a healthy status. To this purpose, several strategic therapies to
restore and/or to maintain the eubiotic state of the microbic intestinal ecosystem are being studied.
After overviewing gut composition and factors impacting equilibrium, this review will focus on
therapeutic strategies to restore the gut microbiota ecosystem. Particularly, the administration
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of probiotics, prebiotics and synbiotics, phage therapy, fecal transplantation, bacterial consortium
transplantation (BCT), and approaches based on predatory bacteria will be discussed.

2. Gut Microbiota Composition

The variety and availability of adhesion sites enables the host genome to control the first colonizing
bacteria, which modulates the gene expression of host adhesion sites, thereby shaping an intestinal
habitat that will support the colonization of related/not competitor species [7,8]. Until recently, it was
believed that fetus development occurred within a sterile uterus [9]. This was the dogma, and any
microorganism in the uterine cavity was seen as dangerous for the fetus. However, increasing evidence
indicates that the fetus develops in an environment that is not entirely germ-free. Many microbial
species have been detected in the umbilical cord [10], the amniotic fluid [11–15], and the fetal
membranes [12–16] in apparently normal pregnancies without any indication of inflammation or
pathology. After birth, the infant acquires microbes from the environment, food, and nearby
people. In the first month of life, gut microbiota is less stable, and its biodiversity will increase
over time [17]. Parallel to microbial colonization, the human immune system must learn to tolerate
the large quantity of antigens present in the environment. Colonization in the early life stages
occurs in conjunction with the development, expansion, and education of the immune system.
This indicates that during the first colonization steps, factors with a negative impact on microbiota
composition could be prognostic of several diseases that may develop in later years. The delivery
mode (vaginal delivered babies or Cesarean section delivery) [18–20], as well as nutrition (breast or
artificial milk) [21,22] are factors that strongly impact the gut microbiota composition. Gut microbiota
evolves rapidly and stabilizes at approximately 3 years old [23–25]. Factors impacting human gut
microbiota development strongly influence baby growth and adult life [26]. At the taxonomic phyla
level, a healthy microbiota in adult humans is principally composed of Firmicutes and Bacteroidetes,
which together represent approximately 70% of the total microbiota; Proteobacteria, Verrucomicrobia,
Actinobacteria, Fusobacteria, and Cyanobacteria can also be found, although at lower percentages [27,28].
Obligate anaerobes dominate and exceed by two logs the facultative anaerobes and by three logs
the aerobes. At the taxonomic level of species, the gut microbiota composition changes from
individual to individual [8,9] and is comparable to a fingerprint. The distribution and abundance of
microbiota species/groups diverges considerably in different intestine districts and depends on gastric
acid secretion, gastrointestinal peristalsis, mucosal secretion of IgA, as well as on the individual’s
immune characteristics and environmental influences [27–29]. An increase in microbial density and
species biodiversity is observable along the gastrointestinal tract proceeding in the caudal-cervical
direction. Differences in gut composition are also observable between the intestinal lumen and
the mucosal surface [30]. Bacteroides, Bifidobacterium, Streptococcus, Enterobacteriaceae, Enterococcus,
Clostridium, Lactobacillus, and Ruminococcus are the predominant genera in the intestinal-lumen,
while Clostridium, Lactobacillus, Enterococcus, and Akkermansia are predominant in the mucosa-associated
surface [31]. The mucosa-associated microbiota plays a very important role in maintaining homeostasis,
given its proximity to the intestinal epithelium and the underlying mucosal immune system [7].
This microbiota may play an important role in maintaining host cellular homeostasis or in triggering
inflammatory mechanisms.

Once established, the composition of the gut microbiota remains stable throughout adult life.
Some differences between the gut microbiota of elderly and young adults [32] are observable,
primarily concerning the predominance of the Bacteroides and Clostridium genera in elderly and
Firmicutes in young adults [33]. Three variants of the human intestinal microbiota have been proposed
and classified as enterotypes according to/based on the variation in the levels of one of the three
genera: Bacteroides (enterotype 1), Prevotella (enterotype 2), and Ruminococcus (enterotype 3). These three
variants appear to be independent from body mass index, age, sex, or nationality [34,35].

The distal tract of the human gut is considered an anaerobic bioreactor with a metabolic activity
comparable to that of the liver, and for that reason the microbiota could be considered a real organ
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with specific functions [36]. An organ that consumes, conserves, and redistributes energy goes
under physiologically important chemical transformations and is able to maintain and repair itself
through self-replication [7]. Like all human organs, the “microbiota organ” has important functions
by regulating correlated physiological systems, and the host health status is linked to its correct
functioning. Microbiota strongly influences various physiological processes: endocrine and metabolic
pathways, expansion and regulation of the immune system, the brain in its cognitive functions,
and genome epigenetic changes. A well-functioning microbiota organ is directly related to microbiota
balance [37]; consequently, the structure and metabolic status of gut microbiota are associated with a
healthy status. When a gut dysbiotic status occurs, the microbiota organ does not function properly,
and appropriate therapies should be readily prescribed to restore eubiosis.

3. Factors Influencing Microbiota Composition

Many factors influence the gut microbiota composition. Firstly, the mother’s vaginal and intestinal
microbiota can affect the fetus microbiota, and the composition and development of the baby’s
intestinal microbiota will be strongly influenced by the mode of delivery (vaginal vs. Cesarean) and
by feeding (breast milk vs. formula) [38,39]. Furthermore, therapeutic treatments, hygiene levels,
exposure to the natural environment, and genetic background, as evidenced by studies on monozygotic
twins [40,41], also influence microbiota composition. In adult life, several factors can still disturb gut
microbiota balance: food and minor food constituents (contaminants and food additives); prebiotics,
probiotics, and synbiotics use; antibiotics and drug intake; and alcohol abuse. Among nondietary
factors, age, sex, stress, [42], gastrointestinal disorders, lifestyle, and infective events can also play
an important role in the microbiota composition [7]. Unhealthy dietary habits negatively impact
gut microbiota composition and could act as a factor triggering diseases with effects on metabolic
pathways. High-fat diets, polyunsaturated fatty acids, and meat were associated with an increased
risk of Crohn’s disease (CD) and ulcerative colitis (UC) [43]. Inflammatory bowel disease (IBD) risk
could be decreased by modulating gut microbiota community structure and/or its metabolome with a
vegetarian diet [44,45]. In addition to inflammation shifts, gut microbiota structure is also associated
with colorectal cancer, and this appears to be related to diets with copious red meat, promoting an
overgrowth of sulfate-reducing bacteria (common colonic inhabitants). Sulfate-reducing bacteria are
able to produce genotoxic substances as acid sulfide [46–48]. Conversely, a fiber-rich diet increases
the production of short-chain fatty acids (SCFAs), such as butyrate, which is beneficial for human
colonocytes and has antitumor properties [47]. Mice fed a high fiber diet are protected from pulmonary
allergic inflammation through a mechanism that involves the production of propionate during fiber
metabolism by gut microbiota [49,50]. The western lifestyle includes a diet high in animal proteins, total
and saturated fats, and simple sugars but low in fruits, vegetables, and other fibers. Several studies
indicate that subjects assuming western style diets host a major proportion of Bacteroides spp. in
their gut microbiota, while diets rich in plant polysaccharides are associated with increased amounts
of Prevotella spp. [51]. Elevated dietary intake of fat meals impacts bile acid homeostasis and colon
tumorigenesis [51]. The gut microbiota is able to metabolize these compounds and converts primary
bile acids (cholic acid and chenodeoxycholic acid) into secondary bile acids (deoxycholic acid and
lithocholic acid) by a C-7 dehydroxylation. This metabolic transformation influences the enterohepatic
circulation of bile acids and the absorption of fat at the small intestine level. In the presence of intestinal
dysbiosis, this process is less efficient and the ratio of secondary vs. primary biliary acid is significantly
reduced as a direct consequence of a significant quantitative reduction of those bacterial species that
are able to convert primary bile acids into secondary bile acids [52,53]. Obese human subjects on a
high-protein/low-carbohydrate diet were shown to have reduced amounts of intestinal SCFAs and
bifidobacteria [54].
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4. Intestinal Dysbiosis

When the central mutualistic relationship among microbiota members, metabolic products,
and the host immune system is lost in a microbial ecosystem, a condition called dysbiosis occurs.
Generally, in a dysbiotic ecosystem, potentially pathogenic microbes take over at the expense of
potentially benefic microbes. When dysbiosis takes place, a loss of overall microbial diversity can be
observed [42,55,56], and a parallel overgrowth of species named pathobionts, which are genetic variants
of the “pathogenic” microbiota, occurs [55,57,58]. Although 40% of microbial genes may be shared
in half of the population, indicating a functional microbial nucleus [59], substantial intra-individual
and inter-individual variances in gut microbiota composition are present, which complicates the
definition of a healthy microbiota. This is also the reason why dysbiosis is not a single condition
and can be classified into different forms. Deficiency dysbiosis is a condition characterized by an
overall reduction of beneficial bacterial species (such as lactobacilli and/or bifidobacteria), which can
occur as a consequence of nonhealthy diets [60] or antibiotic therapies [61], and can be associated with
food intolerances consequent to a deficiency in digestive enzymes (intolerance to milk or meat) [62].
Putrefactive dysbiosis, characterized by an increase in putrefactive bacteria (mainly Bacteroides),
generally results from a diet rich in fat and meat and poor in fibers [63], the metabolization of which
can lead to products such as ammonia, amines, and phenols, which could be the cause of symptoms not
limited to the gastrointestinal tract but that can also affect the entire body. Dysbiosis is characterized by
bacterial overgrowth in the small intestine [64] due to reduced gastric acid production with an excess
of bacterial fermentative activity. These subjects are frequently affected by intolerance to gluten or
carbohydrates, and their healthy status worsens following carbohydrate consumption. Fermentative
dysbiosis often affects irritable bowel syndrome (IBS) patients [65], patients who receive antibiotic
treatment, and those who reduce carbohydrate consumption (low fermentable oligosaccharides,
disaccharides, monosaccharaides, and polyols (FODMAPs) diet). Susceptibility dysbiosis is associated
with a lost tolerance of intestinal microbiota in which genetic causes (leading to abnormal immune
responses towards components of the gut microbiota) play an important role and are linked to
IBD and other similar diseases [66]. In susceptibility dysbiosis, alterations to the gut microbiota
ecosystem are characterized by, a reduced amount of probiotic bacteria, an increase in potentially
pathogens microbes (pathobionts) [44], altered motility of the intestine, and bowel inflammation.
Fungal dysbiosis, characterized by the overgrowth of Candida or other fungal species in the gut
microbiota, is promoted by a diet rich in sugar and low in fibers [67]. Additionally, we should take
into account the concept of “beneficial and harmful microbes” because we cannot generally speak
about beneficial or harmful species; some species could be beneficial or harmful for one person but
not for others. We should also always take into consideration the context/habitat because microbes
could have different behaviors in different contexts. Our “microbiota organ”, the composition and
functioning of which is influenced by the host genotype, environment, and diet, strongly influences
the development and functioning of the intestinal tract, as well as distant organs, including the liver,
pancreas, and brain [68]. Taking into account that there are limitations in the modification of long-term
defined gut microbiota [35], scientific evidence clearly indicates that, when imbalance of gut microbiota
occurs, eubiosis, a mutualistic relationship between microbiota members, metabolic products, and the
host immune system, should be promptly restored not only to reduce/eliminate local symptoms but
also to guarantee a state of general health.

5. Rebalance of the Intestinal Ecosystem

Many therapeutic strategies have been developed to re-establish intestinal eubiosis, and new
strategies are constantly proposed and investigated. The main and at present best known and
most adopted therapeutic strategies include (i) the administration of probiotic bacteria likely to
displace potentially pathogenic bacteria and promote a rebalance of the microbial community;
(ii) the administration of prebiotics (i.e., formulations of nutrients being preferentially or exclusively
metabolized by probiotic bacteria) to favor the overgrowth of probiotic bacteria; and (iii) the
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administration of probiotics and prebiotics combinations (called synbiotics). More recent therapeutic
approaches have been proposed, including phage therapy, fecal transplantation, BCT, and a still poorly
investigated approach based on predatory bacteria. All of these strategies share the same goal of
replacing harmful microbes with more favorable ones to restore eubiosis.

6. Probiotics, Prebiotics, and Synbiotics

6.1. Probiotics

The International Scientific Association for Probiotics and Prebiotics redefined probiotics as
“live microorganisms that, when administered in adequate amounts, confer a health benefit on the
host” to exert a wide range of effects [69]. Probiotics can be used both to prevent the onset of
dysbiosis when the patient is exposed to predisposing conditions (prolonged antibiotic therapies,
intense physical or mental stress, chronic debilitating diseases, etc.) and as therapeutic agents
to rebalance an ongoing condition of dysbiosis. Probiotic strains should: belong to species that
form normal components of our gut microbiota; belong to the group of microorganisms designated
GRAS (generally regarded as safe), even for immune-compromised patients; prove to stay active and
vital (for a reasonable period) in the intestinal environment; and resist when exposed to the gastric
environment (bile and pancreatic secretions). Human indigenous strains certainly possess adaptive
traits, which allow them a stable colonization and more effective and lasting beneficial effects [70].
Beneficial effects of probiotic strains can be categorized as immunological and nonimmunological [71].
Immunological benefits include the activation of local macrophages, an increase in the production
of immunoglobulin, the modulation of cytokine profiles, and the induction of hypo-response to
food antigens. Nonimmunological benefits include the digestion process, competition with potential
pathogens for nutrients and intestinal adhesion sites, pH alterations, and bacteriocins production [71].
Anticancer properties have also been associated with probiotics, which act as anti-mutagens and
exert effects at different stages of carcinogenesis [72]. Currently used probiotics include lactic acid
bacteria [73], bifidobacteria, enterococci, the yeast Saccharomyces boulardii, dairy propionibacteria,
Bacillus spp., and the Gram-negative Escherichia coli strain Nissle 1917 [74].

Lactobacilli are known to be modulators of intestinal inflammation and immune responses.
Their administration is recommended in gastroenteric diseases characterized by high levels of
inflammation, in diarrhea prevention, in infections treatment caused by enteric pathogens, and in
pediatric patients to prevent/treat infant colics. Several studies indicate that the Lactobacillus/human
host relationship should be reconsidered [74]. Notably, only a minority of known Lactobacillus
species are found to be residents of the human intestinal tract [75], and a large majority of them
are allochthone members derived from fermented food [70,74,75]. Bifidobacteria represent 8–10%
of the intestinal microbiota and are able to produce vitamins, enzymes, acetic and lactic acids;
they also lower the pH of the colon, inhibit pathogens, and have immune activation properties [76].
The oral administration of Bifidobacterium bifidum G9-1 appears to suppress the production of specific
immunoglobulin E and to promote the IgA response, which is useful for prophylactic treatment in
allergic IgE responses [77]. Bifidobacteria are predominant in the microbiota of breastfed babies [55],
and their presence is positively correlated with health status. In contrast, the gut microbiota of formula
or mixed fed infants is characterized by a significantly reduced prevalence of bifidobacteria and
by an increase in Bacteroides species and Escherichia coli [55]. Such differences correlate with an
increased incidence of colic pain and other disturbances of intestinal origin. Bacillus subtilis is able
to secrete many extracellular enzymes (a-amylase, arabinase, cellulase b-glucanacase, and DNase),
and it is one of the most effective anti-diarrhea therapies [78]. Escherichia coli strain Nissle 1917
increases intestinal homeostasis and improves the intestinal barrier, reducing intestinal epithelial
cell invasion by several pathogens [79–83]. Finally, bacteria strains belonging to the Streptococcaceae
family, particularly the two genera Streptococcus and Lactococcus, as well as the strain Enterococcus
faecium (ex Streptococcus, now separated to from the genus Enterococcus), have also been used as
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probiotics in food and feed. Lactococcus lactis is highly resistant against artificial gastric acid and
bile juices [84,85]. The probiotic Lactococcus lactis is an indigenous species that produces bacteriocins
(active on several pathogens) and lactic acid. It also cooperates with the hydrolysis of milk proteins,
thus facilitating milk digestion [84–87]. Streptococcus thermophilus has anti-inflammatory properties
and helps fight potentially pathogenic bacteria [88]. Gastrointestinal disorders treated with probiotic
Enterococcus spp. have been evaluated in several hosts (mice, piglets, and humans) [89]. E. faecium
was shown to affect gut microbiota structure, to regulate immune function, to show inhibitory effects
versus enteric pathogens, [90,91] and is a lactic and butyric acid producer. Enterococcus faecium is
not GRAS, and its use as a probiotic is still questioned. Several strains of the Enterococcus genera are
associated with infective diseases [92–95] and could represent a risk for antimicrobial resistance and
virulence gene transfers to human strains. Therefore, further benefit/risk evaluations of E. faecium
use as probiotic should be carried out. Saccharomyces boulardii is a yeast probiotic that is resistant to
gastric acidity, to proteolysis, and of course to antibiotics [96]. Although the oral administration of
Saccharomyces boulardii is not able to stably colonize the intestine (it is eliminated within a few days),
it is nonetheless able to reach and maintain high concentrations in a short time. These characteristics
make it suitable for use during antibiotic treatments. Available data indicate that it promotes eubiosis
by facilitating the production of lactic acid and group B vitamins and by preventing the proliferation
of harmful yeasts. A recent study showed that the administration of Saccharomyces boulardii for
four weeks resulted in a significant reduction in the daily number of evacuations and diarrhea in
patients with IBS [97]. In recent years, thanks to their safety and effectiveness, probiotics were
included not only in dairy products but also in nondairy foods such as fruit juices and cereals [87].
Several recent studies have focused on the utilization of probiotics to prevent antibiotic-associated
diarrhea, to limit the use of antibiotics, and to consequently reduce the spread of antibiotic-resistant
strains [98,99]. The key messages from these studies are (i) a confirmation that the administration of
probiotics helps minimize the prevalence and severity of infectious diseases (as a consequence of the
implementation of antimicrobial immune responses and of the general health of the individual);
(ii) their specific ability to rebalance the gut microbiota permits their use as the sole treatment
in many cases of intestinal disorders, thus significantly reducing the prescription of antibiotics;
(iii) even when antibiotics are necessary, the co-administration of probiotics reduces the duration of
treatment; (iv) the reduced prescription of antibiotics is certainly potentially associated with a reduced
spread of antibiotic resistance, although this is not easy to demonstrate. However, the probiotics
in use show limitations, indicating a need to improve the selection and formulation of bacterial
strains [100]. Promising results have been obtained in the prevention/treatment of metabolic or
inflammatory diseases in preclinical studies conducted on bacterial strains that are different from
the classic Lactobacillus and Bifidobacterium strains [100–102]. The next generation probiotics includes
Akkermansia muciniphila, members of Clostridium clusters IV, XIVa, and XVIII, and F. prausnitzii [103].
Next-generation probiotics must include strains belonging to major gut microbiota groups, and they
should be safe and possess potential beneficial effects [104]. Akkermansia muciniphila is a strict anaerobe
of the phylum Verrucomicrobia, which is a mucin-degrading microbe that is related to a healthier
metabolic status. Akkermansia muciniphila has been demonstrated to be significantly decreased in
obesity, in subjects with fat metabolism disorders, diabetic subjects, and subjects with other metabolic
disorders [103,105]. Studies [103,105] on the outcomes of a high fat diet on metabolic factors and
gut microbiota structure over time highlight a decrease of A. muciniphila. Li and collaborators found
that A. muciniphila had the ability to reverse atherosclerotic injuries, improve gut barrier restoration,
and reduce metabolic endotoxemia-induced inflammation [106]. The oral administration of another
new probiotic candidate, Bacteroides uniformis CECT 7771, to high fat diet-fed mice indicates an
improvement in lipid profiles, leptin and glucose level, and an increase in TNF-α production after
LPS stimulation [107]. B. uniformis CECT 7771 did not present unfavorable effects on health status;
however, an additional search needs to be performed in humans [108]. Clostridium spp. belonging
to clusters IV and XIVa (also known as the Clostridium leptum and coccoides groups, respectively)
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are Tregs inducers in the colon and could be studied as IBD and allergy therapeutic choices [109].
Atarashi and collaborators isolated 17 Clostridia strains belonging to clusters XIVa, IV, and XVIII
from a human fecal sample, which were active in Treg cell differentiation. Treg cell differentiation
could be the consequence of influenced Foxp3 expression (a gene controlling Treg cell development)
by SCFAs produced by this Clostridia strain consortium [110]. Furthermore, fecal samples from
IBD patients show a decrease in Clostridia clusters XIVa and IV, indicating a therapeutic potential
in the 17-strain cocktail to resolve dysbiosis [110]. Faecalibacterium prausnitzii, a species with proven
anti-inflammatory properties [111,112], is able to produce butyrate and many SCFAs, which were
found to be reduced in Crohn’s disease, obesity, asthma, and major depressive disorders [111].
Its supernatant inhibits the NF-κB pathway in vitro and in vivo [113]. Different animal models,
such as a dinitrobenzene sulfate-induced colitis model, dextran sodium sulfate-induced colitis [113],
and 2,4,6-trinitrobenzenesulfonic acid induced acute colitis in mice [114], and were used to demonstrate
the properties and protective effects of F. prausnitzii. Studies have recently focused on engineering
probiotic bacteria to create new generation probiotics. These recombinant bacteria are designed to
perform specific functions in the gastrointestinal tract: secrete therapeutic molecules (mostly peptides
and small proteins) and detect specific signals (including small molecules derived from other bacteria,
food, or cancerous or inflamed tissues) [115,116]. More effort should be expended to explain the
mechanisms underlying the beneficial effects of probiotic bacteria that have been disclosed during
clinical studies. This would provide a stronger basis for the utilization of probiotic bacteria in different
applicative fields and could also enhance clinical results by allowing a more rational application of
single species endowed with activities related to clinical needs. Moreover, because the cooperating
nature of microbiomes appears to be an essential characteristic of the gut microbiota in healthy and
disease statuses, studies should develop therapies based on multi-probiotics that are able to influence
this network of cooperating organisms and that can ensure a stronger and long-lasting rebalancing
effect. Studies carried out with omics approaches should be able to demonstrate a sub-network bacterial
consortium that works jointly but in different ways to influence important human physiological process.
Paul W. O’Toole and colleagues developed an artificial bacterial consortium that mimics the structure
of healthy intestinal microbiota. Starting from fecal samples of healthy donors, and based on the
existing literature, 100 different commensal strains were selected with a range of abundance values in
the microbiota. This live bio-therapeutic association of microorganisms has been successfully used for
the modulation of the intestinal microbiota of elderly people [116]. A combination of 17 Clostridium
strains of human origin were shown to reduce the severity of induced allergic colitis in rodents;
these effects were mediated by the activation of Treg cells; however, the identity of bacterial products
implicated in this activation remains unclear [110]. The mixture VSL#3 (composed of four lactobacilli
strains: Lactobacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, and Lactobacillus acidophilus;
three from bifidobacteria: Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium infantis;
and S. thermophilus) has showed positive effects in UC treatment [117–119], whereas indications for
probiotic efficacy in CD are low [120]. Ecologic®Tolerance/SyngutTM is another mixture containing
four probiotic strains (Bifidobacterium lactis W51, L. acidophilus W22, L. plantarum W21, and Lactococcus
lactis W19). This consortium appears to reinforce gut barrier function, show a beneficial impact on
post-immunological provoked stress, and inhibit and stimulate Th2 and IL-10 levels, respectively,
therefore offering useful effects in food intolerance patients [121]. Additionally, multispecies probiotics
relieved IBS symptoms and modulated microbiota composition [122]. The dose needed to ensure
the clinical efficacy of probiotics is variable; in general, products containing probiotics must have a
minimum number of cells viable between 106 and 108 colony-forming units per gram (CFU/g) of the
product final or 108–1010 CFU/day (considering 100 g or 100 mL of ingested food) [123]. Although the
long use of probiotics, as well as data from in vitro and in vivo studies, corroborates the notion that
probiotics are safe, some case reports note evidence of several risks, including systemic infections,
altered metabolic pathways, intensified immune stimulation, gene transfer, and gastrointestinal
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disorders. More studies are required to accurately define the occurrence and severity of unfavorable
events linked to probiotics [124].

6.2. Prebiotics and Symbiotc Formulations

The concept underlying the use of prebiotics was first introduced in 1995 [125]. According to
the Global Guidelines of the World Gastroenterology Organization, prebiotics are nondigestible
substances taken by the human host that, when taken in adequate amounts, produce beneficial
physiological effects on the host by stimulating, in a selective manner, the growth and metabolic
activity of a limited number of beneficial indigenous bacteria (bifidobacteria and lactic acid
bacteria) [107–109]. Prebiotics are considered a specific fuel that indigenous probiotic bacteria can
utilize to grow. Prebiotics are primarily dietary components of foods (mostly nonstarch polysaccharides
and oligosaccharides) used as enrichment ingredients. Most commonly known and characterized
prebiotics include fructo-oligosaccharide supplements (FOS), galacto-oligosaccharides, inulin (also
able to increase calcium absorption), lactulose (a synthetic disaccharide used as a drug for the
treatment of constipation and hepatic encephalopathy), and breast milk oligosaccharides [126,127].
However, inulin supplementation modulates metabolic endotoxemia and inflammation in women
with type 2 diabetes [128,129]. These substances are frequently included in synbiotics formulations
containing probiotic bacteria to promote their rapid growth in the intestinal environment. FOS are able
to cross the digestive lumen, undigested and unabsorbed, to reach the ascending colon unmodified,
where they will be selectively metabolized by the resident probiotic component of the microbiota.
Their digestion causes a significant decrease in pH, creating an unfavorable habitat for putrefactive
bacteria (clostridia) growth. Consumers do not have sufficient technical knowledge to choose the
correct FOS without medical supervision. Finally, of note are postbiotics, which are bioactive
microbial metabolites derived from heat-killed microbes that present positive effects on human
functioning by interacting with the immune system and presenting anti-inflammatory outcomes [130].
Structural bacterial constituents may be promising candidates as inducers of beneficial effects in
humans. These are also attractive because they can be part of treatments encompassing non-viable
bacterial cells [130]. Because the microbiota structure/composition is comparable to a fingerprint and
there are different levels and types of dysbiosis, the correct use of probiotics/prebiotics/synbiotics
should consider prior knowledge of the type of dysbiosis to proceed with a targeted treatment for
the patient. The positive effect of probiotic, prebiotic, or synbiotic treatment could depend on the
individual’s pathology, as indicated by systematic reviews considering different milieus [131,132].
Results of studies conducted thus far on pro/prebiotics are very variable and reflect the diversity
of the tested probiotic strains, as well as the diversity of the populations examined. Prebiotics
appear to be promising therapeutic options for gastrointestinal diseases; however, further studies
are needed with larger study populations to establish their effectiveness, modalities, and treatment
durations. Large-scale studies, specifically well-designed randomized controlled trials, are essential to
demonstrate the security and effectiveness of these supplements. Furthermore, few studies have been
carried out on gastrointestinal discomfort following treatment with probiotic, prebiotic, and synbiotics,
such as high osmotic pressure, flatulence, and bloating [133].

7. Diet Approach

Diet Approach to Modulate Gut Microbiota

The Mediterranean and Atlantic diets should be distinguished from the Western diet.
The Mediterranean and Atlantic diets are both considered to preserve a good health status [134].
The Mediterranean diet is an assortment of habitual eating behaviors followed by people in the
countries contiguous to the Mediterranean Sea. Significant protection from chronic degenerative
diseases has been provided by observing the Mediterranean diet [134–137]. The Atlantic diet has been
associated with metabolic health and lower mortality from coronary diseases and some cancers [116].
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The three components of the Atlantic diet include Vitamin B, omega 3 fatty acids, and iodine,
which may bring health benefits to consumers in the Atlantic area [138]. Diet has an immediate
impact on microbiota composition. This can be synthetically described in terms of an increase or
decrease in representative groups of species, as well as of a significant modification in the metabolites
released in the environment (and in part absorbed by the host). Nondigestible carbohydrates are
fermented by the intestinal saccharolytic microbiota, thereby producing SCFAs. The types and amount
of carbohydrates that we consume quantitatively and qualitatively influence the single bacterial
species. To increase bacterial fermentation and SCFAs production, diet adjustment is a very attractive
and safe therapeutic strategy. Furthermore, when adopting a dietary approach, the contribution of
micronutrients should be considered as an important factor influencing gut microbiota composition.
Micronutrients (zinc, vitamins D and A, folate) deficiency in early life may influence the maturation of
the gut microbiota and its interaction with the host, with effects in adolescence and adult life [139,140].
Additional information about gut micronutrient synthesis and its impact on microbiota composition
and functions is necessary to improve the current understanding of the role of micronutrients. Studies
investigating the impact of the microbiota on obesity and other pathologies should take into account
the impact of micronutrient deficits [141]. A study using chickens as an animal model demonstrated
that zinc deficiency provokes changes in the microbial ecosystem composition and in metabolic profiles
with a decrease in SCFAs [141]. Epigenetic processes influence microbiota/host communications; folate
is an essential donor of the methyl group in methylation reactions that are associated with epigenetic
changes [139].

A diet-based approach to modulate the microbiota should consider the effect of long-term
diets [141,142]. Recent studies have highlighted important differences in the ability to modulate
microbiota composition in long-term and short-term diets. In short-term diets, changes are significant
and rapid, but the magnitude of changes is modest and insufficient to relocate individuals from one
enterotype to another [35]. In contrast, long-term diets are adequate to relocate enterotypes [35].
If an enterotype is shown to be causative/linked to a disease, long-term dietary interventions could
represent a good strategy to help [35]. Among diet interventions, a feeding regime with a low content
of fermentable oligosaccharides, disaccharides, monosaccharaides, and polyols (FODMAPs) was
shown to reduce gastrointestinal symptoms in patients with IBS in less than 48 h [142].

In IBS patients who experienced a low FODMAPs diet, carbohydrates fermentation is reduced,
and a decrease in luminal osmolarity and gas generation (e.g., hydrogen) is observed. Consequently,
typical IBS symptoms of gas and bloating are reduced/eliminated [142]. However, more studies
should be carried out on the effects of a long-term low FODMAPs diet. It should be borne in mind that
FODMAPs, especially oligosaccharides, play an important role in stimulating the growth of beneficial
bacterial groups. The long-term assumption of a low FODMAPs diet could have unpredictable effects
on the composition of gut microbiota.

Diet is an easily modifiable factor and is consequently a very attractive therapeutic approach to
modulate gut microbiota. Several functional foods are proposed at present, but a diet fitting all subjects
is impossible; personalized functional foods are instead required. Metabolic profiling technologies
provide valid support for the improvement of functional foods. The existence of high inter-individual
variability indicates that a more personalized approach, accompanied by personalized functional
foods, is the way forward.

Medicines derived from microbiota should be employed to treat gut dysbiosis. The development
of functional foods can be supported by metabolic profiling. This can start with food
composition and by looking for biomarkers that are helpful to trace ingested food [143].
Randomized, clinically controlled dietetic interventions to shape the gut microbiota of humans have
been described. Results indicate that energy-restricted foods rich in fiber and vegetables guarantee
microbial changes in the gut and present health advantages [143–145]. Specific dietetic treatments,
alone or in addition to combinations of probiotic species, could represent a potentially interesting
tool to improve public health [43]. Furthermore, we should consider the subjects that do not respond
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to diet treatments. This could depend on several factors, such as the subject age and microbiota
composition before diet treatment [144,145]. Additionally, some bacterial clusters persist unaltered by
alimentary modification, likely because they are able to consume a wide range of dietary resources and
are able to adapt/change their metabolism as a function of the environmental/nutritional change [146].
Additionally, in a diet approach to rebuild the gut microbiota, we must have prior knowledge of the
type of dysbiosis to establish personalized/targeted treatments.

8. Fecal Microbiota Transplantation

The use of feces for therapeutic purposes is not a recent discovery. As early as 4th century
China, suspensions of feces were used to treat food poisoning. Following suggestions from the
Bedouins, during the Second World War in Africa, German soldiers adopted the consumption of
fresh camel feces as a remedy for bacterial dysentery [147]. In 1958, Ben Eiseman, an American
physician, treated four patients affected by pseudomembranous colitis with fecal microbiota transplant
(FMT) [148]. The first successful treatment of a Clostridium difficile infection (CDI) by FMT was
documented in 1983 [149]. While all previously discussed approaches are substantially comparable
to conventional therapies, FMT resembles an organ transplant: the transplant of the microbiota
organ. Currently, FMT is a treatment for Clostridium difficile diarrhea that is unresponsive to standard
antibiotic therapy [150]. Microbiological investigations revealed that, following FMT, a rapid change
of fecal microbiota composition is observed in the receiving patient and that the microbiota becomes
similar to that of the healthy donor. Such changes are maintained for at least up to 24 weeks [151].
Although very simple in its general traits, FMT requires care, as with any other organ transplant,
especially with respect to donor selection. All analysis addressed to evaluate the risk of transmission
of any infectious disease must be carried out on the selected donor. According to protocols presently
in use, any potential donor is subjected to blood and stool sampling 4–5 days before the collection of
the feces to be processed for transplantation to assess negativity for hepatitis viruses (A, B, and C),
HIV, Treponema pallidum, C. difficile, and common gastrointestinal pathogenic bacteria and parasites.

In addition, we believe that the eubiotic status of the donor fecal microbial ecosystem should
also be evaluated. This could be performed either by species-specific qPCR for species/groups of
bacteria, which are indicated by literature to be important for the eubiosis status, or more deeply by
next generation sequencing methods. The evaluation of the donor fecal ecosystem eubiosis status
should become a must. Several recent studies indicate that changes in microbiota balance could
play an active role in the pathogenesis of several diseases rather than being a simple consequence
of it [152–154]. Experimental data in murine models showed that in genetically predisposed mice,
intestinal inflammation can be induced by transferring the intestinal microbiota from mice affected by
ulcerative colitis [154,155].

An inappropriate donor selection could expose the recipient to several risks, including the
modification of the nutritional status and body weight; an alteration in nutrient absorption; or the
acquisition of chronic diseases, obesity, diabetes, cardiovascular diseases, or IBD [152–155], all of which
are related to a dysbiosis status of gut microbiota. To overcome many of the logistical difficulties of FMT
delivery methods (clyster or nasogastric tube), capsules containing fresh bacterial preparations could
prove to be an important step ahead [156]. The extremely high success rates achieved with FMT in the
treatment of Clostridium difficile diarrhea have catalyzed the attention of a large variety of clinicians and
researchers for its potential applications in the treatment of many different pathologies characterized by
the presence of intestinal dysbiosis [157–161], such as Crohn’s disease [159], ulcerative colitis [158,160],
obesity [161], and several metabolic disorders [162–166].

The substitution of the microbiota organ by FMT could potentially impact obesity [161]; however,
concerns regarding its utilization derive from the potential risk of transmitting secondary diseases.
Results presently available on the therapeutic use of FMT are nevertheless contradictory: patients with
ulcerative colitis appear to respond better than those with Crohn’s disease [158,160]. A consensus
conference of experts from different countries recently outlined methods and indications for the
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FMT procedure in managing CDI, suggesting the implementation of FMT centers for CDI treatment;
it also encouraged the translation of scientific and technical information to study the potential of
FMT in different pathological fields, including CD, UC, and IBS [162]. Given the astonishing success
obtained with fecal transplantation in the treatment of C. difficile diarrhea, we could suppose that
dysbiosis linked to long-term antibiotic therapies and, generally speaking, dysbiosis showing a strongly
unbalanced microbiota ecosystem, which do not respond to treatment with single probiotic strains,
require a more comprehensive treatment. This would imply the entire replacement of the “microbiota
organ”. However, thorough studies on FMT, such as accurate trials and cohort studies with control
groups, are desirable to corroborate its long-term effectiveness and safety [163]. Microbiota rebalanced
by well-defined microbial communities comprising gut bacteria could represent an alternative to
FMT [164] (see paragraph: Bacterial consortium transplantation).

9. Bacterial Consortium Transplantation

A specific modulation of the intestinal ecosystem could be performed with BCT. A recent
study showed that in mice with antibiotics-induced intestinal dysbiosis, a complete recovery
of the microbial community was obtained either with FMT or BCT, indicating that the effects
of BCT are comparable to those of FMT [165,166]. The use of characterized microbial
populations of specific fecal bacteria may be developed to substitute FMT [164]. An artificial
bacterial combination of 33 different purified gut bacteria isolated from a healthy donor (stool
substitute (RePOOPulate): Acidaminococcus intestinalis, Bacteroides ovatus, Bifidobacterium adolescentis
(two strains), Bifidobacterium longum (two strains), Blautia product, Clostridium cocleatum,
Collinsella aerofaciens, Dorea longicatena (two strains), Escherichia coli, Eubacterium desmolans,
Eubacterium eligens, Eubacterium limosum, Eubacterium rectale (four strains), Eubacterium ventriosum,
Faecalibacterium prausnitzii, Lachnospira pectinoschiza, Lactobacillus casei/paracasei, Lactobacillus casei,
Parabacteroides distasonis, Raoultella sp., Roseburia faecalis, Roseburia intestinalis, Ruminococcus torques (two
strains), Ruminococcus obeum (two strains), and Streptococcus mitis) was able to treat recurrent CDI [167].
Bacterial consortiums are accurately defined and reproducible and may warrant standardization
(the proportions of each bacterium in the BCT) or even personalized preparation based on different
levels and/or types of dysbiosis. Furthermore, patient safety could be improved because the bacterial
combination can be controlled for pathogen microorganism presence [167]. In this view, BCT could be
an effective and safer alternative to FMT to modulate the intestinal microbiota dysbiosis.

10. Phage Therapy

Phages are viruses that infect bacteria, representing approximately 90% of the human virome
and having a great influence on bacterial populations of microbial communities. Phages have a great
therapeutic potential: they could be used either for antimicrobial purposes (alternative to antibiotics)
or to modulate the composition of microbial communities [168]. In addition, genetically modified
phages could be used as “gene carriers” for the biosynthesis and degradation of nutrients as well as
for genetic modulation of the intestinal microbiota.

Given the presence in our microbial ecosystem of phages, the risks of this therapeutic approach
do not appear to be high. The potential of bacteriophages as anti-infectious agents was recognized
several decades ago; protocols for bacteriophage therapy have been developed since the early 20th
century and applied mainly in Eastern Europe and Russia [169–172]. Unfortunately, these studies
were not designed according to the criteria accepted by the international community for medical
research [152] and, consequently, new studies are needed together with a modification of the current
European Regulatory Framework, which is an obstacle to the utilization of phage therapy.

Suspensions of phages can be prepared for both local or systemic therapy [173]. Notably, phages
amplify exponentially following administration. Furthermore, the kinetic of amplification is not
constant and depends on the concentration of susceptible bacteria and to the immune responses of the
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human host. These factors work differently in acute and chronic infections, making the exact dosing
and timing of administration problematic as well as of primary importance [174–177].

Despite an extremely long experience with phage therapy as a result of its constant use in Eastern
Europe since the beginning of the 20th century [178,179], essential data for the approval of phages
as antibacterial drugs by the FDA and EMA are still needed, and studies to address these points
are necessary.

11. Predatory Bacteria

In their natural ecosystems, bacteria are subject to predation not only by bacteriophages but also by
predatory prokaryotes [180]. Predation is just one of the strategies adopted by bacteria to interact with
other bacterial species. It was reasonably proposed that the term predator should be applied to those
bacteria that actively hunt and kill their prey and consume their macromolecules as nutrients [160].
Predators and prey are present in all ecosystems, and the ratio of their relative abundance is important
to maintain bionetwork balance. Predatory bacteria are in general smaller than their prey, which enables
the predator to penetrate inside the prey, kill it from the inside, and replicate. It is remarkable that
among predatory bacteria, distinct predatory behaviors have evolved; among these, the commonly
indicated epibiotic predation is a strategy that does not require intracellular replication [181,182].

Although predatory bacteria play a relevant role by controlling and affecting bacterial populations
in a wide range of environments, and despite the fact that they are known to be almost ubiquitous, only a
minority of these bacteria have been studied in some detail for their potential applications [182–187].

Our research group recently showed that the intestinal mucosa ecosystem is normally colonized
by the bacterial predator Bdellovibrio bacteriovorus [188], and when dysbiosis occurs, with an overgrowth
of Gram-negative bacteria, the predator strain is not detectable.

According to our findings, B. bacteriovorus is not equally distributed in the various districts of the
intestinal tract. We found that it is more prevalent in the duodenum (the site in which the mucosal
surface is normally less colonized by bacteria) and becomes progressively less distally prevalent toward
the rectum zone. The fact that some predatory bacteria are normally isolated from the microbiota of
healthy humans indicates that these bacteria are not pathogenic and suggests that they could contribute
to the homeostasis of these environments. By preying on Gram-negative bacteria, attempting to
massively colonize the intestinal mucosa, B. bacteriovorus exerts its role of controlling and shaping
indigenous bacterial populations.

These observations allow speculation on the possible use of predatory bacteria as a tool to
re-equilibrate a dysbiotic gut microbiota in which Gram-negative bacteria predominates. The use of
B. bacteriovorus to restore eubiosis in the gut microbiota has already been attempted with success in
birds [189]. Considering the potential future application of predatory bacteria, it must not be forgotten
that bacterial predation has been going on for millions of years, in which the other players (the prey)
have evolved their own defensive strategies. Experimental data demonstrate that the introduction
of predators in an ecosystem frequently causes the evolution of several defensive characteristics in
the prey. It deserves consideration that many of these mechanisms also function as virulence factors
and, consequently, the presence of predators could act as a selective factor inducing an increase in the
undesirable pathogenicity and virulence of the microorganisms colonizing the environment [190,191].

This latter datum certainly indicates that we still need to check the effectiveness of the predator
strategy, as well as its potential applications and risks. Notably, predators exist in natural ecosystems
and, as recently evidenced, also in the human gut and possibly in other microenvironments of
the human body. In the human gut, their presence was shown to decrease under detection limits
in dysbiosis.

Although these data are clearly suggestive of the possible therapeutic application of predatory
bacteria, we believe that their use should be based on adequate and accurate experimental data to
precisely determine the doses to be administered. We believe that predatory bacteria could otherwise
prove deleterious, just as antibiotics when used inappropriately. The use of predatory bacteria could
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be considered when over-colonization by Gram-negative bacteria of the intestinal mucosae occurs,
as when it happens in IBD or celiac disease.

12. Conclusions

The structure of the gut microbiota undergoes significant fluctuations over the course of a
lifetime; these modifications are frequently associated or accompanied by undesirable effects on
human health. Fluctuations are influenced by several factors such as lifestyle, stress, nutritional factors,
and antibiotics. Strategies to counterbalance these harmful fluctuations were shown to be effective in
reducing symptoms and sometimes curing some of these pathologies.

Many studies are currently underway to determine how to prescribe personalized therapies
to re-balance the intestinal microbial ecosystem. The great interest in this field demonstrates the
importance of the maintenance of the intestinal microbial balance and also shows that there is no
universal cure suitable for all individuals. The therapeutic strategies actually in use showed limits,
and new probiotic candidates (Table 1) show promising results [100]. Moreover, considering the
collaborating nature of microbes living in gut ecosystem, studies should primarily focus on the
improvement of treatments based on multi-probiotics (Table 2). Additionally, the prescription of
personalized therapies that take into account the various types of dysbiosis and the individuality of
gut microbiota structure must cautiously consider the gut microbiota of each patient by evaluating all
the information from integrated “omic” platforms. These platforms will enable the characterization of
microbial communities by examining not just what they are, but also what they do, together with their
genetic potential. Strategies based on prebiotics, probiotics, and lifestyle adjustment are already widely
available but need to be implemented by specialized medical supervision and need to be directed to
the specific dysbiosis present. Innovative strategies, such as FMT, BCT, predatory bacteria therapy,
phage therapy, and next generation probiotics, need to be further studied before being routinely
applied; they nevertheless appear fascinating, and potentially present great efficiency.

Table 1. New probiotic candidates.

Strategy Disease Outcomes Should Be Bibliography

Akkermansia muciniphila
Obesity

Metabolism disorders
Diabetic subjects

Re-equilibrate gut microbiota dysbiosis
Reverse atherosclerotic injuries [103,105,106]

Faecalibacterium prausnitzii Dysbiotic gut microbiota

Re-equilibrate gut microbiota dysbiosis
NF-κB pathway inhibition

Protective effects
Short chain fatty acids (SCFAs) production

[111–114]

Predator bacteria
(Bdellovibrio bacteriovorus)

Gram negative infections
Dysbiotic gut microbiota

(with predominance of gram
negative bacteria)

Re-equilibrate gut microbiota dysbiosis
with gram negative overgrowth [160–165]

B. uniformis CECT 7771 High fat diet-fed mice
Improvement in lipid profiles, leptine,

and glucose level.
Increase in TNF-α production

[107,108]

Recombinant bacteria
Designed to perform specific functions:

Produce therapeutic molecules
Detect specific signals

Re-equilibrate gut microbiota dysbiosis [102,103]

Phage therapy Infections
Gut dysbiosis

Re-equilibrate gut microbiota dysbiosis
Therapy have been developed mainly in

Eastern Europe and Russia
Modified Phages: “gene carrier”

[147–151]
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Table 2. Multi-probiotics.

Strategy Disease Adverse Events Bibliography

Bacterial consortium
transplantation (BCT)

Stool Substitute (RePOOPulat)

Induced gut dysbiosis in mice
CDI No [146,166,167]

VSL#3

Dysbiosis induced by antibiotic
Ulcerative colitis

Pathogen infection
Atopic dermatitis

No [118,192,193]

Ecologic®Tolerance/SyngutTM Food intolerance No [121]

Ecologic AAD Diarrhea induced by amoxicillin No [194]

17 Clostridium strains of
human origin Rodents with induced allergic colitis No [104]

Fecal Microbial
Transplantation

CDI
Induced colitis model

Transmission risk of IBD
Infectious disease

Autoimmune disease
[148–152,195]
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The following abbreviations are used in this manuscript:

FMT Fecal Microbial Transplantation
BCT Bacteria Consortium Transplant
SCFA Shorty Chain Fatty Acid
CDI Clostridium difficile infection
NGS Next Generation Sequences
IBD: Inflammatory Bowel Disease
CD Crohn’s disease
UC Ulcerative colitis
FODMAP Fermentable Oligosaccharides, Disaccharides, Monosaccharaides, and Polyols
GRAS Generally Regarded As Safe
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