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Abstract We consider generalized potential games, that constitute a funda-
mental subclass of generalized Nash equilibrium problems. We propose differ-
ent methods to compute solutions of generalized potential games with mixed-
integer variables, i.e., games in which some variable are continuous while the
others are discrete. We investigate which types of equilibria of the game can
be computed by minimizing a potential function over the common feasible set.
In particular, for a wide class of generalized potential games, we characterize
those equilibria that can be computed by minimizing potential functions as
Pareto solutions of a particular multi-objective problem, and we show how dif-
ferent potential functions can be used to select equilibria. We propose a new
Gauss-Southwell algorithm to compute approximate equilibria of any general-
ized potential game with mixed-integer variables. We show that this method
converges in a finite number of steps and we also give an upper bound on this
number of steps. Moreover, we make a thorough analysis on the behaviour
of approximate equilibria with respect to exact ones. Finally, we make many
numerical experiments to show the viability of the proposed approaches.

Keywords Generalized Nash equilibrium problem · Generalized potential
game · Mixed-integer nonlinear problem · Parametric optimization

1 Introduction

Generalized Nash equilibrium problems (GNEPs) are widely used tools to
model multi agent systems in many fields [16]. In the past two decades, sev-
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eral algorithms have been proposed for the numerical solution of GNEPs, see
e.g. [1,6,12–14,17–19,21,25,27]. But, in spite of the fact that there are many
applications in which some or all the variables of the players must be assumed
to be integers, all the above-mentioned methods for GNEPs work only if the
variables of all the players are continuous. Very recently, some methods have
been proposed that can deal with integer variables [30,31], but they are de-
signed only for standard Nash equilibrium problems (NEPs), that are GNEPs
in which the feasible region of any player is independent on the other players’
variables.

We consider generalized potential games, that constitute a fundamental
subclass of GNEPs, see e.g. [7,20,24,32,33,38]. In particular we focus on po-
tential games in which the feasible region of any player depends on the other
players’ variables, that is, games that are real GNEPs and not simple NEPs. All
the proposed methods for these potential GNEPs assume that all the variables
are continuous. In particular, in [20] the authors do not assume any convexity
of the feasible sets of the players, but a basic condition for the convergence
of their algorithms is the inner semicontinuity of the feasible mappings of the
players, which is a very strong assumption in the mixed-integer setting, see
section 4. We investigate different and new methods to compute solutions of
generalized potential games with mixed-integer variables, i.e., games in which
some variable are continuous while the others are discrete.

In section 2 we define the generalized potential game with mixed-integer
variables and the concept of approximate equilibrium. Moreover, we describe
two general applications of generalized potential games in the mixed-integer
setting. In particular, in section 2.1 we propose a class of linear games that,
thanks to the presence of integer variables, can model alternative choices, fixed
costs, precedence constraints, and disjunctive constraints. In section 3 we in-
vestigate which types of equilibria of the game can be computed by minimizing
a potential function over the common feasible set. Particular attention is given
to the subclass of games in which the objective function of any player is in-
dependent on the other players’ variables (note that all linear games belong
to this class). For this subclass of games, we characterize those equilibria that
can be computed by minimizing potential functions as Pareto solutions of a
particular multi-objective problem. And, moreover, we show how different po-
tential functions can be defined to select equilibria. In section 4 we propose
a new Gauss-Southwell algorithm to compute approximate equilibria of the
generalized potential game with mixed-integer variables. We show that this
method converges in a finite number of steps and we also give an upper bound
on this number of steps. Moreover, we make a thorough analysis on the be-
haviour of approximate equilibria with respect to exact ones. We prove that
any sequence of approximate equilibria, as the approximating parameter goes
to zero, always converges to an exact equilibrium in the completely continuous
(if some mild assumptions hold) and the completely discrete settings, and also
in the mixed-integer setting when the game is a NEP. This analysis is valid for
all GNEPs with mixed-integer variables, and not only for generalized potential
games. Finally, in section 5 we make many numerical experiments. In section
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5.1 we consider an application in economics and we compute different equilib-
ria by using different potential functions to show how an effective equilibrium
selection can be obtained in potential games. In section 5.2 we consider the
counter-example given in [20] and we show that, in spite of the fact that our
Gauss-Southwell algorithm does not exploit any regularization, it effectively
computes approximate equilibria of the potential game. In section 5.3 we use
our Gauss-Southwell algorithm to compute equilibria of a discrete flow control
problem on networks.

2 Problem description and examples

Consider a GNEP with N players. Let ν be a generic player of the game. We
denote by xν ∈ Rnν the vector representing the private strategies of player ν
and by x−ν , (xν

′
)Nν 6=ν′=1 the vector of all the other players strategies. We

write Rn 3 x , (xν ,x−ν), where n , n1+· · ·+nN , to indicate the vector of all
the strategies of the game. Any player ν must solve the following parametric
optimization problem

minxν θν(xν ,x−ν)

(xν ,x−ν) ∈ X
xνj ∈ Z, j = 1, . . . , iν ,

(1)

where θν : Rn → R is continuously differentiable and convex with respect to
xν , X ⊆ Rn is convex and compact, iν ≤ nν is a nonnegative integer, and the
feasible set

Ω , {x ∈ X : xνj ∈ Z, j = 1, . . . , iν , ν = 1, . . . , N}

is nonempty. Moreover, we assume that a continuous (not necessarily con-
vex) function P : Rn → R exists such that for all ν ∈ {1, . . . , N} and all
(xν ,x−ν), (yν ,x−ν) ∈ X:

θν(xν ,x−ν) < θν(yν ,x−ν) ⇐⇒ P (xν ,x−ν) < P (yν ,x−ν).

We say that P is an ordinal potential function for the game, and we say
that the described GNEP is a generalized potential game with mixed-integer
variables. Here the term “generalized” must be intended to be related to the
fact that we are considering real GNEPs and not simple NEPs.

All in all, the GNEP considered in this work enjoys some peculiarities: (i)
since P exists, then it is an ordinal potential game [23], (ii) all the variables
must satisfy the so-called “Rosen’s law” [29], that is, x ∈ X, and (iii) some
variables are subjected to integrality constraints.

Roughly speaking, “a generalized potential game is a GNEP where the
players are (unknowingly) minimizing the same function and where the feasible
set of each player is the section of a larger set in the product space Rn”, cit.
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[20]. For such games, a (continuous) exact potential function P : Rn → R may
exist: for all ν ∈ {1, . . . , N} and all (xν ,x−ν), (yν ,x−ν) ∈ X:

θν(xν ,x−ν)− θν(yν ,x−ν) = P (xν ,x−ν)− P (yν ,x−ν).

Clearly any exact potential function is an ordinal potential one.
Let us introduce the best response set for player ν at x ∈ Ω:

x̂ν(x−ν) , arg min
xν

θν(xν ,x−ν), s.t. (xν ,x−ν) ∈ Ω. (2)

Computing an element of the best response set requires, in general, the solution
of a mixed-integer nonlinear problem (MINLP), see e.g. [3,4,26,36].

Given ε ≥ 0, we say that x ∈ Ω is an ε-approximate equilibrium if, for all
ν ∈ {1, . . . , N}, it holds that

θν(xν ,x−ν)− θν(x̂ν ,x−ν) ≤ ε, with x̂ν ∈ x̂ν(x−ν). (3)

If ε = 0 the concept of ε-approximate equilibrium reduces to the classical
concept of equilibrium [16]. When x satisfies (3) with ε = 0, we say that it is
a 0-approximate equilibrium of the game.

To better understand the modelling power of the mixed-integer setting in
potential games, now, we describe two general applications.

2.1 Jointly convex linear GNEPs with mixed-integer variables

Linear GNEPs in a completely continuous setting have been widely studied in
[8,9,15,35]. In our mixed-integer framework, the problem solved by any player
ν is the following

minxν (cν)Txν

N∑
µ=1

Aµxµ ≤ b

lν ≤ xν ≤ uν

xνj ∈ Z, j = 1, . . . , iν ,

(4)

where cν ∈ Rnν , Aµ ∈Mt×nµ , for all µ = 1, . . . , N , b ∈ Rt, and lν ≤ uν ∈ Rnν .
We observe that in this generalized Nash game all the players share t linear
constraints (since the game is a jointly convex GNEP), and that the function

P (x) =
∑N
µ=1(cµ)Txµ is an exact potential function for the game.

These generalized potential games with mixed-integer variables consider-
ably extend the classes of systems that can be modeled with continuous linear
GNEPs. In that, as it is well known, by using binary variables we can model,
e.g., alternative choices, fixed costs, precedence constraints, and disjunctive
constraints. Thus the problem solved by any player could be a scheduling, a
partitiong, a covering, a facility location, or a p-center problem, just to name a
few. Finally, more simply, discrete variables can represent indivisible quantities
such as quantity of houses, cars or machines.
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In the following example we describe a general production application of
jointly convex linear GNEPs with mixed-integer variables.

Example 1 Let us consider a market with N firms. Any firm ν produces ngν
different goods and must decide their quantities qν ∈ Rngν , with 0 ≤ qν ≤ uν .
We indicate with pν ,mν , fν ∈ Rngν the prices, the marginal costs, and the fixed
costs of the goods, respectively. The private part of the feasible set of the firm,
which can be defined by technological or economic constraints, is defined by
linear inequalities

Bνqν ≤ dν ,

where Bν ∈ Mlν×ngν and dν ∈ Rlν . We suppose that all the firms share a set
of r common resources, and then they have the following common constraints

N∑
µ=1

Dµqµ ≤ h,

where Dµ ∈ Mr×ngµ (Dµ
ij indicates the unitary consumption of resource i

relative to the jth good of player µ) and h ∈ Rr (hi is the amount of resource
i available in the market). Moreover, we assume that an authority imposes k
quality constraints on the problem of each firm (e.g. constraints to control the
environmental pollution)

Eνqν ≤ sν , (5)

where Eν ∈ Mk×ngν and sν ∈ Rk, but only k ∈ {1, . . . , k − 1} of these con-
straints must be satisfied (disjunctive constraints).

To model the fixed costs, we introduce, for each firm ν, the binary variables
δν ∈ {0, 1}ngν , whose values are decided by the firm itself. And we add the
following constraints

qν −Mδν ≤ 0,

where M is a large constant.

To model disjunctive constraints (5), we introduce, for each firm ν, the
binary variables γν ∈ {0, 1}k, whose values are decided by the firm itself.
Then we rewrite constraints (5) as follows

Eνqν −Mγν ≤ sν ,
k∑
j=1

γνj ≤ k − k,
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where, again, M is a large constant. Therefore, the optimization problem
solved by each firm ν is the following

min
δν ,γν ,qν

(fν)T δν + (mν − pν)T qν

N∑
µ=1

Dµqµ ≤ h

Bνqν ≤ dν

qν −Mδν ≤ 0

Eνqν −Mγν ≤ sν ,
k∑
j=1

γνj ≤ k − k

δν ∈ {0, 1}ngν , γν ∈ {0, 1}k, 0 ≤ qν ≤ uν .

(6)

We observe that problem (6) is a particular instance of problem (4).
As a possible generalization, we can also consider the case in which the

k authority constraints are shared by all the firms:
∑N
µ=1E

µqµ ≤
∑N
µ=1 s

µ.
To model these new disjunctive constraints, we introduce, for each firm ν, the
binary variables γν ∈ {0, 1}k and τν ∈ {0, 1}k, whose values are decided by
the firm itself. And we rewrite the constraints as follows

N∑
µ=1

Eµqµ −M
N∑
µ=1

τµ ≤
N∑
µ=1

sµ,

τν − 1
N

∑N
µ=1 γ

µ ≤ 0,

k∑
j=1

γνj ≤ k − k, ∀ ν = 1, . . . , N.

(7)

Roughly speaking, any firm ν can play k− k bonuses (variables γν), and only
if all the firms play the bonus on the same constraint j then the corresponding
variable τνj , of any firm ν, can be active and then constraint j is omitted.

Certainly, if we assume that all the firms act rationally and have com-
plete information, and there is no explicit collusion, then the Nash equilibrium
paradigm fits well within this framework, see e.g. [37]. Moreover, assuming that
the objectives are measured in euros or dollars, any approximating parameter
ε < 0.01 models a realistic behaviour of the firms. ut

2.2 Discrete flow control problems on networks

A general transmission network model based on fluid approximation was pre-
sented in [20], here we consider the more realistic case in which the flows are
discrete.

In general, we consider a network on which different users independently
and simultaneously route discrete flows. Let V = {1, . . . , V } be the set of
vertices, and let L = {1, . . . , L} be the set of links of the network. For each
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user ν ∈ {1, . . . , N}, there is a predetermined path Pν ⊆ L, which is the subset
of the links that form the path on which the user route its flow. The discrete
flow that the user sends through Pν is denoted by xν ∈ Z. We introduce the
L × N routing matrix A (defined by Alν = 1 if l ∈ Pν and 0 otherwise), the
vector of the capacities of the links c ∈ RL, and the upper bounds of the flows
u ∈ ZN . The optimization problem solved by each user is the following

min
xν

∑
l∈Pν

Cl

( ∑
ν : l∈Pν

xν

)
− Uν(xν)

Ax ≤ c
0 ≤ xν ≤ uν , xν ∈ Z,

(8)

where Cl is a cost function relative to the congestion on link l, and Uν is
a utility function for the user. For example, to have the objective functions
convex, we can define the functions as follows

Cl

( ∑
ν : l∈Pν

xν

)
=

al
bl + cl −

∑
ν : l∈Pν x

ν
, Uν(xν) = dν log (eν(1 + xν)) ,

where al, bl, dν , and eν are positive constants. We observe that in this multi
agent framework the Nash equilibrium concept can be effectively used to model
the system. Moreover an exact potential function for the GNEP is the following

P (x) =
∑
l∈L

Cl

( ∑
ν : l∈Pν

xν

)
−

N∑
ν=1

Uν(xν).

3 Methods based on potential functions

In this section, we investigate which types of equilibria of the potential game
can be computed by minimizing a potential function P over the common
feasible set Ω. In particular, our aim is to understand how to use potential
functions to effectively select equilibria of the game.

A simple method to find equilibria of the generalized potential game con-
sists in computing global minima of any ordinal potential function for the
game.

Theorem 1 Let P be any ordinal potential function for the GNEP defined by
(1). Any 0-approximate global solution of the following optimization problem

min
x
P (x), s.t. x ∈ Ω, (9)

that is, any x ∈ Ω such that

P (x) ≤ P (x), ∀ x ∈ Ω, (10)

is a 0-approximate equilibrium of the GNEP.
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Proof Clearly, (10) implies (3) with ε = 0. ut

This fact was already observed, e.g., in [20]. A direct consequence of Theorem
1 is that the generalized potential games considered in this paper always admit
at least one 0-approximate equilibrium.

On the other hand, if we are interested in computing approximate equilib-
ria, we can use exact potential functions.

Theorem 2 Let P be any exact potential function for the GNEP defined by
(1). Given ε ≥ 0, any ε-approximate global solution of the following optimiza-
tion problem

min
x
P (x), s.t. x ∈ Ω, (11)

that is, any x ∈ Ω such that

P (x) ≤ P (x) + ε, ∀ x ∈ Ω, (12)

is an ε-approximate equilibrium of the GNEP.

Proof Clearly, (12) implies (3). ut

We observe that problems (9) and (11) are MINLPs. The converse of Theorem
1, and of Theorem 2, is not necessarily true as it is witnessed by the following
example.

Example 2 There are two players each controlling one variable. The players’
problems are

min
x1

θ1(x1, x2) =
9

2
(x1)2 + 8x1x2 − 153

2
x1

0 ≤ x1 ≤ 9

min
x2

θ2(x1, x2) =
9

2
(x2)2 + 8x1x2 − 153

2
x2

0 ≤ x2 ≤ 9

x2 ∈ Z.

It is easy to see that

P (x1, x2) =
9

2
(x1)2 + 8x1x2 +

9

2
(x2)2 − 153

2
x1 − 153

2
x2,

is an exact potential function for the game. The points A =
(
19
6 , 6

)
and E =(

73
18 , 5

)
are 0-approximate equilibria of the game (see figure 1). Let us consider
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the following sequence of points from A to E and the corresponding values of
θ1, θ2, and P :

A B C D E(
19
6 , 6

)
→

(
19
6 ,

11
2

)
→

(
4, 112

)
→ (4, 5) →

(
73
18 , 5

)
θ1 : −45.125 −57.792 −58.000 −74.000 −74.014

θ2 : −145.000 −145.292 −108.625 −110.000 −107.778

P : −342.125 −342.417 −342.625 −344.000 −344.014

This sequence is decreasing for any ordinal potential function and E is feasible,
then the converse of Theorem 1 cannot hold. Moreover, for any ε < P

(
19
6 , 6

)
−

P
(
73
18 , 5

)
= 1.889, A is not an ε-approximate global solution of problem (11),

then also the converse of Theorem 2 cannot hold. ut

Fig. 1 A sketch of Example 2. Points A and E are 0-approximate equilibria of the gener-
alized potential game.

Therefore we can conclude that not all the equilibria of the generalized poten-
tial game can be computed by minimizing a potential function. Nonetheless,
following the techniques described in Theorems 1 and 2, potential functions
can be used to compute different equilibria of the game. In particular, if we are
solving the game by addressing problem (9) or (11), then we are computing a
point that has two important features: (i) it is an (approximate) equilibrium
of the game, and (ii) it is an (approximate) optimal solution of a specific merit
function, i.e., the potential function used. This is equivalent to selecting the
equilibrium that best fits with the merit function. It is then interesting to de-
fine wide classes of ordinal and exact potential functions for different types of
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potential games, since any potential function is a specific merit function with
which we can select the equilibria.

Now we focus our attention on a particular subclass of generalized potential
games for which we can give stronger results. Let us consider problems in which
the objective function of any player ν depends only on the private variables
xν , i.e., θν : Rnν → R. We observe that linear problems described in section
2.1 belong to this class of problems. The function P (x) =

∑N
ν=1 θν(xν) is

an exact potential for any game in this class. Given any continuous function
f : RN → R strictly increasing relative to RN+ , i.e., f(y) < f(y + d) for all
y ∈ RN and all d ∈ RN+ , the function P (x) = f(θ1(x1), . . . , θN (xN )) is an
ordinal potential function for any generalized potential game of this class. We
describe three emblematic examples of function f :

(i) f(θ1(x1), . . . , θN (xN )) =
∑N
ν=1 ανθν(xν), with weights αν > 0 for all ν:

this potential function selects those equilibria that favour the most the
players with heavier weights α;

(ii) f(θ1(x1), . . . , θN (xN )) = αmin {θν(xν)}Nν=1 +
∑N
ν=1 θν(xν), with α >>

0: this choice “promotes evolution”, in that it is suitable if one wants
to compute the equilibria for which one single player (no matter who)
reaches its best possible objective;

(iii) f(θ1(x1), . . . , θN (xN )) = αmax
{
θν(xν)− θν

}N
ν=1

+
∑N
ν=1 θν(xν), with

α >> 0: this choice “promotes parity”, in that it selects the equilibria at
which all the players have objective distance from the reference values
θν as similar as possible.

In all these three cases, problem (9) can be remodeled as a MINLP with a
convex and continuously differentiable objective function and with convex and
continuously differentiable constraints. In case (i), P is trivially convex and
continuously differentiable. In case (ii), P is neither convex nor continuously
differentiable, but we can introduce one continuous variable z and N binary
variables δ, and thus rewrite problem (9) by adding disjunctive constraints as
follows

min
x,z,δ

αz +

N∑
ν=1

θν(xν)

θν(xν)− z − (1− δν)M ≤ 0, ν = 1, . . . , N

N∑
ν=1

δν ≥ 1

x ∈ X
xνj ∈ Z, j = 1, . . . , iν , ν = 1, . . . , N,

δ ∈ {0, 1}N , M >> 0.

(13)
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In case (iii), P is not continuously differentiable, but problem (9) can be solved
by addressing the following problem

min
x,z

αz +

N∑
ν=1

θν(xν)

θν(xν)− θν − z ≤ 0, ν = 1, . . . , N

x ∈ X
xνj ∈ Z, j = 1, . . . , iν , ν = 1, . . . , N.

(14)

Keeping the focus on the class of potential games with independent objective
functions, to better understand which equilibria can be computed by opti-
mizing potential functions and which can not, let us consider the following
multi-objective optimization problem

min
x

(
θ1(x1), . . . , θN (xN )

)
, s.t. x ∈ Ω. (15)

A point x ∈ Ω is a Pareto optimum of problem (15) if a point x̃ ∈ Ω does
not exist such that θν(x̃ν) ≤ θν(xν) for all ν ∈ {1, . . . , N}, and at least one of
these inequalities is strict.

It is not difficult to see that any Pareto optimum of problem (15) is a
0-approximate equilibrium of the generalized potential game. In that, this is
a direct consequence of the definition of Pareto optimality. Moreover, we can
prove that any solution of problem (9) is a Pareto optimum of problem (15).

Theorem 3 Let x be a 0-approximate global solution of problem (9), then x
is a Pareto optimum of problem (15).

Proof Let us suppose by contradiction that x is not a Pareto optimum of
problem (15). Then a point x̃ ∈ Ω exists such that θν(x̃ν) ≤ θν(xν) for all
ν ∈ {1, . . . , N}, and at least one of these inequalities is strict. This fact implies
that

P (x) ≥ P (x̃1, x2, . . . , xN ) ≥ · · · ≥ P (x̃1, . . . , x̃ν−1, xν , . . . , xN ) ≥ · · · ≥
≥ P (x̃1, . . . , x̃N−1, xN ) ≥ P (x̃),

and at least one of these inequalities is strict. But this contradicts the fact
that x is optimal for problem (9). ut

Therefore, considering any generalized potential game with independent ob-
jective functions, by solving problem (9), we can compute only those equilibria
that are also Pareto optima of problem (15). The following example shows that
equilibria of generalized potential games of this class may exist that are not
Pareto optima of problem (15), and, therefore, they are not computable by
optimizing any potential function.
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Example 3 There are two players each controlling one variable. The players’
problems are

min
x1

θ1(x1) = −x1 min
x2

θ2(x2) = −x2

0 ≤ x1 ≤ 4 x2 ∈ Z

− 1

2
≤ x1 − x2 ≤ 0 − 1

2
≤ x1 − x2 ≤ 0.

All the points A = (0, 0), B = (1, 1), C = (2, 2), D = (3, 3), and E = (4, 4) are
0-approximate equilibrium of the game (see figure 2). But only E is a Pareto
optimum of problem (15), since E dominates all the other points. Therefore
E is the unique equilibrium that can be computed by optimizing a potential
function. In particular, E can be computed by minimizing, e.g., P (x1, x2) =
−x1 − x2. ut

Fig. 2 A sketch of Example 3. Points A, B, C, D, and E are 0-approximate equilibria of
the generalized potential game.

Remark 1 Let us consider the following ordinal potential function P (x) = max{
θν(xν)− θν

}N
ν=1

+ 1
α

∑N
ν=1 θν(xν), which is similar to one of the poten-

tial functions described above. We observe that, by suitably setting the pa-
rameters α and θν for all ν, then any Pareto optimum x̂ of problem (15)
is an ε-approximate global solution of problem (9), given any ε > 0. Let

∆ = minx∈Ω
∑N
ν=1(θν(xν)− θν(x̂ν)), note that ∆ is a nonpositive and finite

quantity. If we set α = −∆ε and θν = θν(x̂ν) for all ν, then, for any x ∈ Ω, we
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get the following chain of inequalities:

P (x)− P (x̂) = max {θν(xν)− θν(x̂ν)}Nν=1 +
1

α

N∑
ν=1

(θν(xν)− θν(x̂ν))

≥ 1

α

N∑
ν=1

(θν(xν)− θν(x̂ν)) ≥ ∆

α
= −ε,

where the first inequality is due to the fact that max {θν(xν)− θν(x̂ν)}Nν=1 ≥ 0
being x̂ a Pareto optimum. Therefore, P (x̂) ≤ P (x) + ε, for all x ∈ Ω.

With the following example we show that Theorem 3 may not hold when the
objective functions depend on the variables of the other players.

Example 4 There are two players each controlling one variable. The first player
solves

min
x1

θ1(x) = (x1)2 + x1x2 + (x2)2 + x1

− 1 ≤ x1 ≤ 1,

while the second player solves

min
x2

θ2(x) = (x1)2 + x1x2 + (x2)2 + x2

− 1 ≤ x2 ≤ 1.

Certainly, P (x) = (x1)2+x1x2+(x2)2+x1+x2 is an ordinal potential function.
In this case, the unique (global) solution of problem (9) is

(
− 1

3 ,−
1
3

)
. Anyway,

we obtain θ1
(
− 1

3 ,−
1
3

)
= 0 > − 1

12 = θ1
(
− 1

6 ,−
1
6

)
and θ2

(
− 1

3 ,−
1
3

)
= 0 >

− 1
12 = θ2

(
− 1

6 ,−
1
6

)
. Therefore,

(
− 1

3 ,−
1
3

)
is not a Pareto optimum of problem

(15). ut

4 Methods based on best responses

In this section we define a method to compute equilibria of the generalized
potential game, defined by (1), that does not directly solve the optimization
problem (9), but uses instead the players’ best responses as simple steps. This
can be convenient for different reasons: (i) problem (9) can be hard to solve
because it may be either nonconvex or huge dimensional, on the other hand
the best response problems are convex and, in general, easier (see e.g. sections
5.2 and 5.3), (ii) as shown in examples 2 and 3, the set of approximate global
solutions of problem (9) in general does not contain all approximate equilib-
ria of the game, and (iii) as thoroughly discussed in [20], in many practical
situations, the solution of problem (9) cannot be conceptually considered, e.g.
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if a centralized algorithm is not implementable since it would require an inef-
fective high degree of coordination among the players (see e.g. the application
described in section 2.2).

To compute approximate equilibria of the generalized potential GNEP in
its whole generality, we propose the Gauss-Southwell method described in
Algorithm 1.

Algorithm 1: Gauss-Southwell method

1 choose a starting point x0 ∈ Ω, and set k := 0;

2 while xk is not an ε-approximate equilibrium do
3 choose a player νk ∈ {1, . . . , N};
4 compute a best response x̂k,ν

k ∈ x̂νk (xk,−ν
k

);

5 if θνk (xk,ν
k
,xk,−ν

k
)− θνk (x̂k,ν

k
,xk,−ν

k
) > ε then

6 set xk+1,νk := x̂k,ν
k

;
7 else

8 set xk+1,νk := xk,ν
k

;
9 end

10 forall ν ∈ {1, . . . , N} \ νk do
11 set xk+1,ν := xk,ν ;
12 end
13 set k := k + 1;

14 end

Result: an ε-approximate equilibrium xk

With the following theorem we give a simple condition to ensure that
Algorithm 1 returns an ε-approximate equilibrium of the potential GNEP,
with a given ε > 0, in a finite number of steps.

Theorem 4 Assume that, in Algorithm 1, every h iterations at least one best
response of any player ν is computed, that is ν ∈

{
νk, . . . , νk+h

}
for each

player ν and each iterate k. Given any ε > 0, Algorithm 1 stops in a finite
number of steps and returns an ε-approximate equilibrium of the potential
GNEP defined by (1).

Proof By the assumption of the theorem, if k exists such that xk = · · · = xk+h,

then xk is an ε-approximate equilibrium of the game.
By contradiction assume that Algorithm 1 generates an infinite sequence of

points
{
xk
}
⊆ X. Let P be any ordinal potential function. By the assumptions,

for all k, it holds that P (xk) ≥ P (xk+1) ≥ P ∗ > −∞. Therefore, by the
continuity of P , we obtain

lim
k→∞

P (xk) = P (z) = P̃ ≥ P ∗, (16)

where z is any accumulation point of
{
xk
}

.
By the assumption of the theorem, a player ν and an infinite subset of

indices K exist such that

θν(xk)− θν(xk+1) = θν(xk)− θν(xk+1,ν ,xk,−ν) > ε, ∀k ∈ K.
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Taking the limit we obtain

lim
k→∞,k∈K

(
θν(xk)− θν(xk+1)

)
= lim
k→∞,k∈K

(
θν(xk)− θν(xk+1,ν ,xk,−ν)

)
≥ ε.

(17)
By the compactness of X an infinite subset of indices K ⊆ K exists such that

lim
k→∞,k∈K

xk = x ∈ X,

and an infinite subset of indices K̃ ⊆ K exists such that

lim
k→∞,k∈K̃

xk+1 = lim
k→∞,k∈K̃

(xk+1,ν ,xk,−ν) = (x̃ν ,x−ν) ∈ X.

By (17) and the continuity of θν we obtain

θν(x)− θν(x̃ν ,x−ν) ≥ ε.

This implies that
P (x)− P (x̃ν ,x−ν) > 0,

and thus, by using (16), we get

0 < P (x)− P (x̃ν ,x−ν) = P̃ − P̃ = 0.

But this is impossible, and the thesis holds. ut

Therefore, Algorithm 1 always produces an ε-approximate equilibrium of the
GNEP. In principle, choosing a specific sequence of players’ problems to opti-
mize during the iterations, all the approximate equilibria are computable by
the algorithm. However, it is easy to show that equilibria could exist such that
the algorithm can compute them only by starting from them.

To give an upper bound on the number of steps required by Algorithm 1
to return an ε-approximate equilibrium of the potential GNEP, we make the
following non-demanding assumption.

Assumption 1 Assume that an exact potential function P exists such that
∇P is Lipschitz continuous on X with constant LP , i.e.,

‖∇P (x)−∇P (y)‖2 ≤ LP ‖x− y‖2, ∀x,y ∈ X.

Let us denote

ψ , max
x∈X

∥∥∇P (x)
∥∥
2
, φ , max

x,y∈X
‖x− y‖2 .

By the assumptions done and if Assumption 1 holds, ψ and φ are well defined
and finite quantities.

Theorem 5 Assume that, in Algorithm 1, every h iterations at least one best
response of any player ν is computed, that is ν ∈

{
νk, . . . , νk+h

}
for each

player ν and each iterate k. Suppose that Assumption 1 holds. Therefore, given
any ε > 0, Algorithm 1 returns an ε-approximate equilibrium of the potential

GNEP defined by (1) in at most h

(
ψφ+

L
P
2 φ2

ε + 1

)
iterations.
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Proof Let x∗ be a 0-approximate global solution of problem (11). By Assump-
tion 1 and the descent lemma, see e.g. [5], we can write

P (x0)− P (x∗) ≤ ∇P (x∗)T (x0 − x∗) +
LP
2
‖x0 − x∗‖22 ≤ ψφ+

LP
2
φ2.

We observe that for any iterate k it holds that P (xk) ≥ P (xk+1), and that,
unless the algorithm stops, P (xk) − P (xk+h) ≥ ε. Therefore, after at most

h

(
ψφ+

L
P
2 φ2

ε + 1

)
iterations, it holds that P (xk) = P (x∗), i.e., by Theorem

2, xk is an ε-approximate equilibrium of the GNEP. ut

Note that, despite the rule to choose the player νk is left free in Algorithm 1,
the upper bound on the iterations in Theorem 5 suggests to use the minimum
h = N , which is achieved by cyclic choosing the players. We use this strategy
in the numerical experiments reported in section 5.

Moreover, we observe that, considering the linear GNEPs in which any
player solves (4), Assumption 1 holds and the upper bound defined in Theorem
5 is simply equal to

h

(
‖c‖2 ‖u− l‖2

ε
+ 1

)
, with c =

 c1

...
cN

 , u =

 u1

...
uN

 , l =

 l1

...
lN

 .

Theorems 4 and 5 show that Algorithm 1 converges, within a finite number of
steps, to an ε-approximate equilibrium whenever the given ε is strictly positive.
However, it is well-known, see [20] and section 5.2, that it may fail if ε = 0.
So it is interesting to understand if any accumulation point of any sequence
of ε-approximate equilibria, as ε goes to 0, is a 0-approximate equilibrium of
the game. To do this, we distinguish three cases.

The first one is the case in which iν = 0 for all ν, i.e., Ω = X, which is
the completely continuous setting. First of all it is useful to recall some basical
definitions of nonsmooth analysis, see e.g. [28].

Definition 1 A function f : F → R, with F ⊆ Rn, is upper semicontinuous
(usc) at x ∈ F relative to F if

lim sup
xk→x, {xk}⊆F

f(xk) = f(x),

i.e., for any sequence {xk} ⊆ F that goes to x, the limit value of f is not
greater than f(x).

Definition 2 A set-valued mapping S : D ⇒ Rm, with D ⊆ Rn, and which is
closed-valued, is inner semicontinuous (isc) at x ∈ D relative to D if

lim inf
xk→x, {xk}⊆D

S(xk) = S(x),

i.e., for any sequence {xk} ⊆ D that goes to x, and for any u ∈ S(x), a
sequence {uk} exists such that uk ∈ S(xk) and uk → u.
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Now we are ready to give a technical result.

Lemma 1 Let x be any accumulation point of any sequence of ε-approximate
equilibria {xε} as ε goes to 0, and let, for any ν,

Ων(x−ν) ,
{
xν ∈ Rnν : (xν ,x−ν) ∈ Ω

}
be isc at x−ν relative to its domain, i.e., the set

domΩν , {x−ν ∈ Rn−nν : Ων(x−ν) 6= ∅}.

Then x is a 0-approximate equilibrium of the game.

Proof Let us define, for any player ν, the value function

ϕν(x−ν) , min
xν∈Ων(x−ν)

θν(xν ,x−ν).

By the fact that all the mappings Ων are isc at x−ν relative to domΩν , and
by using [2, Theorem 4.2.2 (1)], we obtain that all the functions ϕν are usc at
x−ν relative to domΩν .

By using optimality conditions (3), we have, for any ε-approximate equi-
librium xε,

θν(xε) ≤ ϕν(x−νε ) + ε, ∀ ν ∈ {1, . . . , N}.

Taking the limit xε → x, subsequencing if necessary, and exploiting the con-
tinuity properties of the functions, we obtain

θν(x) ≤ ϕν(x−ν), ∀ ν ∈ {1, . . . , N},

i.e., the thesis holds. ut

Let us assume that Ω = X is defined by continuous convex inequalities sat-
isfying some constraint qualification. Although a formal proof is not given in
the literature, no examples are known in which the conditions of Lemma 1 do
not hold in this case, see the discussion in [34]. In particular, if X is polyhedral
as in all the examples of this work, then all the conditions of the lemma are
certainly satisfied, and, therefore, any accumulation point of any sequence of
ε-approximate equilibria, with ε → 0, is a 0-approximate equilibrium of the
game.

The second case we consider is that in which all the variables must be
integers, i.e., iν = nν for all ν.

Theorem 6 (discrete setting) Let iν = nν for all ν. Then any accumula-
tion point of any sequence of ε-approximate equilibria, as ε goes to 0, is a
0-approximate equilibrium of the game.
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Proof Let us define the strictly positive quantity

δ , min {δ ∈ R :δ = |θν(xν ,x−ν)− θν(yν ,x−ν)|, (xν ,x−ν) ∈ Ω,
(yν ,x−ν) ∈ Ω, ν ∈ {1, . . . , N}, δ > 0

}
,

which is well defined since Ω contains a finite number of points. Trivially, any
ε-approximate equilibrium, with ε < δ, is a 0-approximate equilibrium of the
game. Thus the proof readily follows. ut

Finally, in the last case in which a player ν exists such that 0 < iν < nν
(the mixed-integer setting), the desired result cannot be proved in general.
Certainly one can resort to Lemma 1 to check if a specific sequence of ε-
approximate equilibria leads to a specific 0-approximate equilibrium, but the
following example shows that there is no hope to obtain a general result even
if X is polyhedral.

Example 5 There are two players each controlling one variable. The players’
problems are

min
x1

θ1(x1) = x1 min
x2

θ2(x2) = −x2

x1 ≥ 0 x2 ≥ 0, x2 ∈ Z
x1 + x2 ≤ 2 x1 + x2 ≤ 2.

Any point xε = (ε, 1), with ε > 0, is an ε-approximate equilibrium of the
game. But, as ε goes to 0, xε → B = (0, 1), which is not a 0-approximate
equilibrium of the game since point A = (0, 2) is better for player 2 (see figure
3). Notice that, as expected, Ω2 is not isc at 0 relative to domΩ2 = [0, 2]. To
see this, let us consider {xk} = { 1

k2+1} ⊆ [0, 2], which is a sequence converging

to x = 0 as k →∞, and let us consider u = 2 ∈ Ω2(x). Since {0, 1} = Ω2(xk)
for all k, therefore a sequence {uk} cannot exist such that uk ∈ Ω2(xk) and
uk → u. ut

However, notice that the result can be trivially obtained if the set X is sepa-
rable, i.e., if the game is a NEP with mixed-integer variables.

Theorem 7 (separable mixed-integer setting) Let X =
∏N
ν=1Xν , with Xν ⊆

Rnν . Then any accumulation point of any sequence of ε-approximate equilibria,
as ε goes to 0, is a 0-approximate equilibrium of the game.

Proof By exploiting Lemma 1, we only need to show that, for any player ν,
the feasible mapping Ων is isc at any point in domΩν relative to domΩν . In
this case all Ων are fixed sets, therefore the thesis trivially holds. ut

Example 5 also shows that the inner semicontinuity of the feasible mappings
Ων cannot be assumed to be true in mixed-integer games. This fact makes the
methods proposed in [20] not effective in order to solve generalized potential
games with mixed-integer variables.
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Fig. 3 A sketch of Example 5. Point A is the unique 0-approximate equilibrium of the
generalized potential game.

Moreover, notice that this last analysis (Lemma 1, and Theorems 6-7) is
valid for all GNEPs with mixed-integer variables, and not only for generalized
potential games.

Remark 2 Algorithm 1 can be used to define a procedure to compute 0-
approximate equilibria of the GNEP. Specifically, given a sequence {εk} > 0
such that εk → 0, such procedure produces a sequence of εk-approximate equi-
libria in which the generic kth equilibrium is computed by using Algorithm 1
starting from the (k − 1)th equilibrium. This procedure always converges to
a 0-approximate equilibrium in all the cases (discussed above) in which any
accumulation point of any sequence of ε-approximate equilibria, as ε goes to
0, is a 0-approximate equilibrium of the game. In particular, it provably pro-
duces a 0-approximate equilibrium in the following cases: (i) in all the cases
in which the algorithms proposed in [20] work, (ii) in the completely discrete
setting, and (iii) if the game is a NEP. In the general mixed-integer setting,
this procedure computes a 0-approximate equilibrium if an accumulation point
of the sequence of εk-approximate equilibria exists such that all the maps Ων
are isc at it relative to their domain, see Lemma 1.

However, we remark that Algorithm 1 could compute 0-approximate equi-
libria even if it is running with a given ε > 0. In particular, this occurs in our
numerical tests in sections 5.2 and 5.3.

Remark 3 In [10,11,22] some local error bound conditions are proposed for
GNEPs in a totally continuous setting. Such good results are strongly related
to the possibility of reformulating the GNEP as a quasi-variational inequality,
and, then, as a constrained system of equations. As described in [30], these
reformulations cannot be used whenever, in the GNEP, there are discrete vari-
ables. Therefore, it is very difficult to obtain similar local error bound results in
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our mixed-integer framework. On the other hand, the concept of ε-approximate
equilibrium considered in this work (and also used by other authors), referring
to the objective values of the players, seems to fit rather well with this mixed-
integer setting. In that, it is directly related to the definition of equilibrium.

Moreover, we underline that an ε-approximate equilibrium can be arbitrar-
ily far from any other 0-approximate equilibrium. Consider for simplicity the
case of a single player (N = 1) that minimizes θ1(x1) = (4x11 + x12 − 4)2 +
δ(x12 − (2 − δ))2 over Ω = {x1 ∈ Z2 : 0 ≤ x11 ≤ 1, 0 ≤ x12 ≤ 4}, where δ is a
small positive parameter (e.g., δ = 1e−4). The point (1, 0) is the unique global
solution, i.e., it is the unique 0-approximate equilibrium. The point (0, 4) is
an ε-approximate equilibrium for any ε ≥ 8δ2. But, the euclidean distance be-
tween (0, 4) and (1, 0) is

√
17, and then it does not depend on δ or ε. Thus, the

concept of ε-approximate equilibrium seems not linked with any error bound
result.

5 Numerical experiments

In this section we make numerical experiments to show the practical effective-
ness of the proposed methods. In particular, in section 5.1 we consider the
market described in Example 1, and we compute different equilibria by using
different potential functions. Our aim is to show how an effective equilibrium
selection can be obtained in potential games. In section 5.2 we consider the
counter-example given in [20] and we show that, in spite of the fact that our
Gauss-Southwell algorithm does not exploit any regularization, it effectively
computes approximate equilibria of the potential game in a finite number of
iterations. In section 5.3 we use our Gauss-Southwell algorithm to compute
equilibria of the discrete flow control problem on networks described in sec-
tion 2.2.

All the experiments were carried out on an Intel Core i7-4702MQ CPU @
2.20GHz x 8 with Ubuntu 14.04 LTS 64-bit and by using AMPL. As optimiza-
tion solver we used CPLEX 12.6.0.1 with default options. We never report
CPU time consumption since, in all our tests, AMPL returns a solution in less
than one second.

5.1 Experiments on the market described in Example 1

We consider the jointly convex linear GNEP with mixed-integer variables de-
fined by problems (6). This generalized potential game is particularly relevant
if the number of the firms is small, and challenging if the number of decision
variables of each firm is large. Thus, we assume that in the market there are
N = 3 firms each producing ngν = 30 goods. The goods are divided into three
groups: high quality (HQ), medium quality (MQ), and low quality (LQ) goods.
Firm 1 produces 10 HQ, 10 MQ, and 10 LQ goods. Firm 2 produces 8 HQ,
14 MQ, and 8 LQ goods. Firm 3 produces 12 HQ, 6 MQ, and 12 LQ goods.
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Moreover, there are r = 10 common constraints, k = 5 authority constraints
whereof only k = 3 must be satisfied, and each firm ν has lν = 5 private
constraints.

The upper bounds, the prices, the marginal costs, and the fixed costs of
the goods of any firm ν were randomly generated by using the uniform dis-
tribution: uνi ∈ [200, 400] for any good i; pνi ∈ [200, 400], mν

i ∈ [0.2pνi , 0.4p
ν
i ],

fνi ∈ [5000, 10000] if the ith good of firm ν is of HQ; pνi ∈ [150, 300], mν
i ∈

[0.2pνi , 0.3p
ν
i ], fνi ∈ [2000, 5000] if it is of MQ; pνi ∈ [100, 250],mν

i ∈ [0.1pνi , 0.3p
ν
i ],

fνi ∈ [1000, 2000] if it is of LQ.
The first six common constraints state that: the total quantity of HQ goods

in the market must be in [300, 1000], that of MQ goods in [1000, 2000], and that
of LQ goods in [500, 1500]. The parameters in the last four common constraints
were randomly generated by using the uniform distribution: hj ∈ [1500, 2500],
Dν
ji ∈ [0.5, 0.8] if the ith good of firm ν is of HQ, Dν

ji ∈ [0.4, 0.7] if it is of
MQ, and Dν

ji ∈ [0.4, 0.6] if it is of LQ (in order to relate the quality of a
good with its consumption of resources). Also the parameters in the private
constraints, for any firm ν, were randomly generated by using the uniform
distribution: dνj ∈ [1000, 3000], Bνji ∈ [0.4, 0.6] if the ith good of firm ν is of
HQ, Bνji ∈ [0.3, 0.5] if it is of MQ, and Bνji ∈ [0.2, 0.4] if it is of LQ.

The five authority constraints are the following:

1) the total quantity of LQ goods produced by the firm must be no more than
30% of its production;

2) the total quantity of LQ goods produced by the firm must be no more than
80% of the total quantity of HQ goods produced by the firm;

3) the total quantity of LQ and MQ goods produced by the firm must be no
more than 60% of its production;

4) the total quantity of LQ goods produced by the firm must be no more than
300;

5) the total quantity of HQ goods produced by the firm must be at least 300.

We generated 3 different instances of the game. They are denoted by A, B,
and C. We set M = 1e6.

We computed 0-approximate equilibria of the game by solving problem
(9) with different ordinal potential functions (see section 3). In particular,
we denote with P the solution obtained with the exact potential function
P (x) =

∑N
ν=1 θν(xν), with Pmin the solution obtained by solving problem

(13) with α = 1e4, and with Pmax the solution obtained by solving problem
(14) with α = 1e4 and θ1 = θ2 = θ3 = 0. We observe that in all the cases we
solved a mixed-integer linear problem, and we used CPLEX. We report the
results for instances A-C in tables 1-3, where HQν indicates the total quantity
of HQ goods produced by firm ν, MQν that of MQ goods, and LQν that of LQ
goods. Moreover, notice that γνi = 1 means that the ith authority constraint
is not satisfied by firm ν.

As expected, tables 1-3 show that: with P we obtain the 0-approximate
equilibrium that gives the maximum market outcome, with Pmin we obtain
the 0-approximate equilibrium in which we get the maximum possible outcome
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Table 1 Market equilibria computed by solving problem (9), instance A.

P Pmin Pmax
θ1 -275033 -602161 -217243

HQ1 251.8 860.3 222.3
MQ1 1041.9 1317 766.3
LQ1 0 688.2 0
γ1 (0, 0, 1, 0, 1)T (0, 0, 1, 1, 0)T (0, 0, 1, 0, 1)T

θ2 -136158 0 -217243
HQ2 385.5 0 385.5
MQ2 0 0 432.3
LQ2 265.2 0 305.4
γ2 (1, 0, 0, 0, 0)T (0, 0, 0, 0, 1)T (0, 0, 1, 1, 0)T

θ3 -252180 -6.6 -217243
HQ3 320.6 0 243.3
MQ3 654.3 12.5 654.3
LQ3 291.7 0 194.6
γ3 (0, 1, 1, 0, 0)T (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T

Table 2 Market equilibria computed by solving problem (9), instance B.

P Pmin Pmax
θ1 -322057 0 -264526

HQ1 303.9 0 194.2
MQ1 1004.8 0 937.2
LQ1 300 0 155.3
γ1 (0, 1, 1, 0, 0)T (0, 0, 0, 0, 1)T (0, 0, 1, 0, 1)T

θ2 -237265 -687431 -264526
HQ2 300 1000 300
MQ2 552.8 2000 704.1
LQ2 300 768 300
γ2 (0, 1, 1, 0, 0)T (0, 0, 1, 1, 0)T (0, 1, 1, 0, 0)T

θ3 -243205 0 -264526
HQ3 396.1 0 505.8
MQ3 442.4 0 358.7
LQ3 311.2 0 400.1
γ3 (0, 0, 1, 1, 0)T (0, 0, 0, 0, 1)T (1, 0, 0, 1, 0)T

earned by a single firm, and with Pmax we obtain the 0-approximate equi-
librium in which all the firms gain the same. Moreover, as stated in Theorem
3, any computed equilibrium is not dominated, in terms of outcome, by any
other equilibrium since it is also a Pareto solution of problem (15).

Remark 4 Consider games in which the players act rationally and simultane-
ously, they have complete information, and there is no collusion. If there is a
unique Nash equilibrium, then it is the best decision for any player. On the
other hand, whenever the Nash equilibrium set is not a singleton (this is a
typical situation in generalized games), it is crucial to select one single equi-
librium that best fits with some rule that achieves consensus of all the players.
This selected equilibrium is then the best decision for any player. The equilib-
rium obtained by solving problem (9) with P or Pmax, assuming that it is
the unique solution of the optimization problem, could be a suitable choice in
this sense.
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Table 3 Market equilibria computed by solving problem (9), instance C.

P Pmin Pmax
θ1 -285883 0 -212960

HQ1 378.5 0 293.8
MQ1 750.6 0 547.7
LQ1 294.8 0 235
γ1 (0, 0, 1, 0, 1)T (0, 0, 0, 0, 1)T (0, 0, 1, 0, 1)T

θ2 -389529 -637350 -212960
HQ2 393 880.8 0
MQ2 1249.4 1742.2 1118.4
LQ2 314.4 684.891 0
γ2 (0, 0, 1, 1, 0)T (0, 0, 1, 1, 0)T (0, 0, 1, 0, 1)T

θ3 0 0 -212960
HQ3 0 0 529.6
MQ3 0 0 253.5
LQ3 0 0 296.7
γ3 (0, 0, 0, 0, 1)T (0, 0, 0, 0, 1)T (0, 1, 0, 1, 0)T

Now we consider the case in which the k authority constraints are shared by
all the firms (see (7)). We report the results for instances A-C in tables 4-6.
Notice that τ1i + τ2i + τ3i ≥ 1 means that the ith authority constraint is not
satisfied by the market.

Table 4 The case of shared authority constraints: market equilibria computed by solving
problem (9), instance A.

P Pmin Pmax
θ1 -350286 -608561 -219680

HQ1 603.5 912.6 230.5
MQ1 1041.9 1102.2 766.3
LQ1 0 874.9 0
γ1 (0, 0, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 0, 1, 0, 1)T

τ1 (0, 0, 1, 0, 0)T (0, 0, 0, 0, 0)T (0, 0, 1, 0, 0)T

θ2 -129989 0 -219680
HQ2 385.5 0 694.1
MQ2 0 0 215.8
LQ2 229.7 0 150.8
γ2 (0, 0, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T

τ2 (0, 0, 1, 0, 0)T (0, 0, 1, 0, 0)T (0, 0, 1, 0, 0)T

θ3 -188319 -2752.4 -219680
HQ3 0 0 0
MQ3 654.3 26.6 654.3
LQ3 291.7 0 489.3
γ3 (0, 0, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 0, 1, 0, 0)T

τ3 (0, 0, 0, 0, 0)T (0, 1, 0, 0, 0)T (0, 0, 0, 0, 0)T

The outcomes obtained by the firms in this different situation are always
better than those obtained in tables 1-3. In fact, in this case, even if each
firm loses the possibility to drop the authority constraints independently, this
different version of the authority constraints is a relaxation of the previous
one.
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Table 5 The case of shared authority constraints: market equilibria computed by solving
problem (9), instance B.

P Pmin Pmax
θ1 -306711 0 -274576

HQ1 201.3 0 0
MQ1 1004.8 0 1089.8
LQ1 303.5 0 303.5
γ1 (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T

τ1 (0, 1, 1, 0, 0)T (0, 0, 0, 0, 0)T (0, 0, 1, 0, 0)T

θ2 -238747 -691355 -274576
HQ2 0 947.9 255
MQ2 759.2 2000 680.7
LQ2 389.9 900 379.5
γ2 (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T

τ2 (0, 0, 0, 0, 0)T (0, 1, 0, 0, 0)T (0, 0, 0, 0, 0)T

θ3 -285100 0 -274576
HQ3 768.2 0 745
MQ3 229.5 0 229.5
LQ3 203.3 0 182.5
γ3 (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T (0, 1, 1, 0, 0)T

τ3 (0, 0, 0, 0, 0)T (0, 0, 1, 0, 0)T (0, 1, 0, 0, 0)T

Table 6 The case of shared authority constraints: market equilibria computed by solving
problem (9), instance C.

P Pmin Pmax
θ1 -264974 0 -214703

HQ1 378.5 0 378.5
MQ1 888.3 0 575.9
LQ1 0 0 88.8
γ1 (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T

τ1 (0, 0, 1, 0, 1)T (0, 0, 0, 0, 0)T (0, 0, 0, 0, 1)T

θ2 -369258 -637350 -214703
HQ2 393 880.8 0
MQ2 1107 1742.2 879.7
LQ2 351.2 684.9 225.4
γ2 (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T

τ2 (0, 0, 1, 0, 0)T (0, 0, 0, 0, 0)T (0, 0, 0, 0, 1)T

θ3 -42872.5 0 -214703
HQ3 0 0 366.2
MQ3 0 0 508.8
LQ3 219 0 281.5
γ3 (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T (0, 0, 1, 0, 1)T

τ3 (0, 0, 1, 0, 0)T (0, 0, 1, 0, 1)T (0, 0, 1, 0, 0)T

5.2 Experiments on the example discussed in [20, Sec. 3.1]

In [20, Sec. 3.1] an example is given for which Algorithm 1 does not work
if ε = 0. In particular, there are three players, each moving one variable in
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[−10, 10], that minimize the same continuous function

P (x) = −x1x2 − x1x3 − x2x3+
max{0, x1 − 1}2 + max{0,−x1 − 1}2+
max{0, x2 − 1}2 + max{0,−x2 − 1}2+
max{0, x3 − 1}2 + max{0,−x3 − 1}2,

and assume the classical Gauss-Seidel iterations in which the players take turns
to move their variables. As shown in [20], if x0 =

(
−1− ε, 1 + 1

2ε,−1− 1
4ε
)T

,
with ε ∈ (0, 9], then the algorithm with ε = 0 produces an infinite sequence: −1− ε

1 + 1
2ε

−1− 1
4ε

→
 1 + 1

8ε
1 + 1

2ε
−1− 1

4ε

→
 1 + 1

8ε
−1− 1

16ε
−1− 1

4ε

→
 1 + 1

8ε
−1− 1

16ε
1 + 1

32ε


→

−1− 1
64ε

−1− 1
16ε

1 + 1
32ε

→
−1− 1

64ε
1 + 1

128ε
1 + 1

32ε

→
 −1− 1

64ε
1 + 1

128ε
−1− 1

256ε

→ · · ·
This sequence has six limit points 1

1
−1

 ,

 1
−1
−1

 ,

 1
−1
1

 ,

−1
−1
1

 ,

−1
1
1

 ,

−1
1
−1

 ,

and none of them is a 0-approximate equilibrium of the potential game.
So the question is: what happens when ε > 0? By Theorem 4 we know

that the sequence produced by Algorithm 1 is finite and the returned point
is an ε-approximate equilibrium of the potential game. To strengthen this
conviction, we show the sequence produced by Algorithm 1 with ε = 1e −
3 and x0 = (−1.01, 1.005,−1.0025)

T
, see table 7. At iteration 4 the algo-

rithm with ε = 1e − 3 deviates from the path described in [20], in that, x4

is set equal to x3 and not equal to (−1.000156,−1.000625, 1.000312) since
P (1.00125,−1.000625, 1.000312)− P (−1.000156,−1.000625, 1.000312) =
1.001253−1.000625 ≤ ε. This simple and practical rule is sufficient to produce
a finite sequence converging to an ε-approximate equilibrium of the potential
game. In particular, we observe that the computed point is a 0-approximate
equilibrium.

5.3 Experiments on discrete flow control problems on networks

Let us consider the potential GNEP described in section 2.2 on the network
depicted in figure 4. The order of the links is the following

(1→ 2), (1→ 6), (1→ 5), (2→ 3), (2→ 7), (2→ 6), (3→ 4), (3→ 8),

(3→ 7), (4→ 8), (5→ 6), (5→ 10), (5→ 9), (6→ 7), (6→ 11), (6→ 10),

(7→ 8), (7→ 12), (7→ 11), (8→ 12), (9→ 10), (10→ 11), (11→ 12).
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Table 7 The sequence produced by Algorithm 1 when solving the example discussed in
[20, Sec. 3.1].

P x1 x2 x3

0 1.010169 -1.01 1.005 -1.0025
1 1.005042 1.00125 1.005 -1.0025
2 1.002511 1.00125 -1.000625 -1.0025
3 1.001253 1.00125 -1.000625 1.000312
4 1.001253 1.00125 -1.000625 1.000312
5 -4.004687 1.00125 2.000781 1.000312
6 -6.256797 1.00125 2.000781 2.501016
7 -11.317715 3.250898 2.000781 2.501016
...

...
17 -51.00595 9.223106 9.889853 8.556601
18 -54.695792 9.223106 9.889853 10
19 -56.767574 10 9.889853 10
20 -57 10 10 10

Fig. 4 A network with capacities.

We assume that there are N = 10 users whose data are:

A =



1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1 1 1



, c =



100
100
100
90
70
90
70
70
80
70
100
60
70
100
60
80
100
100
90
100
70
90
100



,
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and al = 20, bl = 1, for all l, uν = 30, dν = 10, eν = 100, for all ν.
In general, computing a global solution of problem (9) can be a demanding

task, e.g. if N >> 0. For this reason, to compute an ε-approximate equilibrium
of this generalized potential game, we used Algorithm 1, and, for simplicity,
we assumed the order of play 1, 2, . . . , 10. It is important to say that, by
using this simple procedure, we were able to compute all the best responses by
performing simple enumerations on [0, uν ] ∩ Z, which are extremely fast. We
set ε = 1e− 3 and x0 = 0. We report the sequence produced by the algorithm
in table 8. The algorithm converged in 140 iterations, and took less than one
second to compute the equilibrium. In particular, it is easy to check that the
computed point is a 0-approximate equilibrium of the game.
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