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Abstract 

 

The fundamental role that energy plays in all activities makes sustainability a crucial goal for the 

energy sector. Biomass is one of the most important parts of the energy sustainability sector due 

to the inevitability of biomass existence (linked to the existence of life), the interactions with other 

sectors (such as food, material, and human health), and the complexity of this source, which can 

be processed in many ways into different energy intermediates and final uses (heat, electricity, and 

transport fuels). Biomass can even help reduce oil dependency and global warming. However, it 

also has some undesirable impacts on ecosystems and the price of food commodities under direct 

and indirect land use change policies. One way to help minimize these impacts is to extend the 

range of feedstocks that can be used, particularly agricultural and forestry residues. However, a 

long-term successful bioenergy strategy must also take all sustainability issues into consideration. 

  

Unlike all other renewable energy resources, biomass needs conversion steps to transform raw 

biomass into a variety of marketable intermediate chemical and energy products as solids, liquids, 

and gases. The diversity of biomass nature and conversion steps creates the need for specific 

technologies to be developed for each case. 

 

Gasification and pyrolysis appear to be the most promising biomass conversion technologies, due 

to the fact that they, as highly versatile processes, can convert almost any biomass feedstock into 

syngas, bio-oil, and biochar with a very high carbon conversion and thermal efficiency. 

Furthermore, syngas and bio-oil are intermediate products that offer a large range of possible 

secondary conversion and final energy uses. Pyrolysis-based biochar application to the soil on a 

stable and carbon-rich substance can have substantial advantages from social, economic, and 

environmental points of view, leading to such outcomes as soil improvement, climate change 

mitigation, and bioenergy production, in addition to biochar production. Hydrogen from biomass 

is an attractive product, due to multiple applications in industrial market (chemical, refineries, 

metal processing, etc.), stationary power generation, and particularly in transport due to growing 

demand for zero-emission fuels and the implementation of fuel cell systems. 

Although the environmental benefits of these products in the application have been substantiated, 

the sustainability of the entire chain, from the production to the end uses, remains unclear. In fact, 

it is still to be determined whether the production of hydrogen and biochar is economical and 

environmentally and socially feasible considering costs linked to environmental impacts of its 

production process. Furthermore, no link has yet been made between the environmental 

performance of these products from the above-mentioned processes and the achieved economic 

performance. 

This study plans to assess the environmental burdens of the various stages of life cycle of hydrogen 

and biochar using life cycle assessment (LCA), a well-known technique for assessing the potential 

impacts associated with a product. In addition, the economic concept of shadow prices is applied 

to assign relative weights of socio-economic importance to the estimated life cycle impacts. This 
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novel integration of approaches complements the assessment of considered bioenergy systems 

with the inclusion of long-term global environmental impacts and the investigation of trade-offs 

between different environmental impacts through a single monetary unit.   

This study also addresses the risk related to economies of scale for bio-hydrogen from small-scale 

gasification. With the exception of technologies for heating applications, most commercially 

available technologies generally suffer from poor economics at small scale. This is a particular 

problem because of the difficulty in supplying mainly lignocellulosic feedstocks to large plants 

due to insufficient resource availability, distribution, density, and logistics. Therefore, a techno-

economic analysis was conducted on small-scale (100 kWth) system to identify system costs and 

find options to reduce production cost to the competitive rate in the market. The plant is mainly 

composed of a gasifier (double-bubbling fluidized bed reactor) coupled with a portable purification 

system (PPS: catalytic filter candles, water gas shift, and pressure swing absorption). The results 

show that hydrogen production cost is a function of hydrogen production efficiency and a PPS, 

which is a vital and high-cost unit in the system to provide purified hydrogen. Distributed hydrogen 

can be supplied at a competitive cost if the PPS unit cost falls by 50 percent and if the efficiency 

can rise by 50 percent (for example, increasing the steam-to-biomass ratio up to 1.5). 

  

Regarding the environmental impacts, this plant has a significant advantage over conventional 

hydrogen production technology (steam methane reforming) in global warming impact -0.213 kg 

CO2eq vs. 0.1 kg CO2 eq – and a relatively high score of hydrogen renewability (75 percent). In 

particular, the application of byproduct to generate electricity considerably affects    environmental  

performance and has positive impacts per 1 MJ H2 produced on global warming (kg CO2 eq), 

marine aquatic ecotoxicity (1.4-DB eq), and cumulative energy demand (MJ). On the contrary, the 

significant negative impact on abiotic depletion (MJ) and acidification kg SO2 eq comes from 

fertilizer application and consumption in the biomass production phase. 

 

Weighing the impact assessment into the single monetary unit using three valuation methods 

indicates that the societal costs of biohydrogen production are higher than the societal benefits, 

with biomass cultivation being mostly responsible for these costs. This implies that modification 

in agri-food production management such as substituting chemical fertilizers with green fertilizer 

and policies to improve biomass supply chain can decrease environmental burdens, not only in its 

sector, but also in linked bioenergy systems. 

 

The LCA has also been applied to a set of 50 vineyards. The results showed that the application 

and production of fertilizers are mainly responsible for all impact categories. After optimizing 

inputs by DEA, the on-orchard emissions had the greatest potential to reduce the environmental 

consequences in vineyards, which are connected to drops in manure and N fertilizer consumption. 

Furthermore, similar to the hydrogen production cycle, byproduct utilization (vineyard waste) by 

the installation of gasifiers could play a considerable role in improving the environmental 

performance of crops produced. 

In biochar production and application in the soil, expected savings in CO2 emissions can be 

explained by the substituted amount of heat and electricity production from (bio-oil and syngas) 

and reduced fertilizer production, amongst other things, but the highest share in total CO2 savings 

is attributable to the application of biochar in soils. The difference in savings of CO2 emissions 



5 
 
 

 

can be explained by the different stable carbon content of the produced biochar. The biochar 

produced from willow can reduce GHG emissions more than pig manure biochar (2.2 t CO2 vs 

0.98 t CO2 t
-1 of biochar) because the stable carbon content of willow biochar is higher than the 

pig manure biochar. 

 

The results of a monetary valuation of environmental impacts for biochar production from willow 

and pig manure reveal that biochar application in soil significantly increases environmental 

revenue related to global warming impact due to C sequestration and reduction in fertilizer 

consumption. Therefore, biochar production from willow is more environmentally favorable based 

on all valuation methods. 
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1.1 Energy context 
 

Since the Industrial Revolution, global demand for energy has been steadily increasing due to 

economic and social development. In fact, in the last twenty years, the global energy consumption 

has increased more than 50% [1]. Figure 1 shows the increase in primary energy consumption in 

recent years, and it can be seen that the majority consumption comes from fossil fuels (oil, coal 

and natural gas). Despite the growth of non-fossil energy sources such as nuclear energy and 

renewables, the contribution of these fuels to global energy demand has remained virtually 

constant over the last 40 years. In 2016, fossil fuels accounted for 85% of the world's primary 

energy consumption [1]. 

At present, there has been a significant increase in greenhouse gas (GHG) levels in the atmosphere, 

mainly CO2, in recent years Figure 2. In fact, in 2016 the CO2 concentration was approximately 

88% higher than in the last decade [1]. Among human activities that generate GHG, approximately 

90% of the emissions come from the energy sector due to the combustion of fossil fuels [2]. 

 

This situation has given rise to a growing interest in the study and development of new 

technologies for the production of energy that is sustainable from an environmental, economic and 

social point of view. In this regard, it is expected that renewable energy sources will play a major 

role in the future [3]. The frontlines for additional emissions reductions are in the power sector, 

via accelerated deployment of renewables and a robust clean energy research and development 

effort by governments and companies. In fact, nearly 60% of all new power generation capacity to 

2040 comes from renewables and, by 2040, the majority of renewables-based generation is 

competitive without any subsidies.  
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Figure 1. Global primary energy consumption per energy source (adapted from [1]). 

 

 

Figure 2. Global CO2 emission 
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1-2 Technologies for a sustainable energy system 
 

Due to the environmental, economic and social issues discussed in the previous section, the use of 

renewable energies has grown considerably in recent years. In fact, there has been a steady increase 

in hydropower generation and a rapid expansion of wind and solar energy, which has made 

renewable energy an important part of the global energy system. A critical factor for the rapid 

increase of renewable energies is to achieve a significant reduction in technological costs, as they 

are currently not competitive with those associated with conventional systems [3]. This has been 

achieved, for example, in the case of photovoltaic panels. Moreover, there is a need for further 

technological innovation leading to more efficient and cleaner conversion of a more diverse range 

of feedstocks. 

Among the different renewable resources, biomass is gaining great interest because it is the only 

renewable source of carbon that can be used for the production of fuels (liquid and gaseous) and 

chemicals [4]. In addition, it is considered a neutral carbon source because the CO2 emissions in 

the biomass transformation processes are partially offset by the CO2 previously fixed by the plants 

[4]. 

1-2-1 Types of biomass 

According to ISO 16559: 2014, biomass is defined as any material of biological origin. Except 

those that have undergone mineralization processes such as those originating from oil, coal and 

natural gas [5]. The Biomass can be classified according to its composition in the following types 

[6,7]: 

Sucorose biomass: It groups those materials with a high content of soluble sugars, both 

monosaccharides (glucose and fructose) and disaccharides (sucrose). Sugar cane and sugar beet 

are examples of this type of biomass.  

Amylaceous biomass: This type of biomass has a high content of starch or inulin. Examples of this 

type of biomass are cereal grain and potato.  

Oleaginous biomass: This kind of biomass has a high content of lipids, such as sunflower or 

rapeseed. 

Lignocellulosic biomass: In this type of biomass the structural components of plants predominate. 

ie cellulose, hemicellulose and lignin. The cereal straw, forestry and agricultural residues and some 

energy crops, such as poplar and willow are examples of this type of biomass. 

Depending on its origin, biomass can be classified as natural biomass (spontaneously generated in 

nature, without human intervention) and anthropogenic generated by human activities. The latter 

can be classified in the following sub-types: 

Residual biomass: it includes forest residues from the forest and timber industry, agricultural 

residues (straw, pruning waste, etc). Livestock residues and the organic fraction of municipal waste 

and municipal waste water.  

Energy crops: These are crops intended to produce biomass for energy rather than food purposes. 

These crops can be classified into oilseeds, alcohol and lignocellulosic.  
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In recent years, there has been a great interest in short rotation crops (poplar, willow, etc.) and 

residual biomass because they do not compete in the food market and can grow in small areas with 

low maintenance [8]. In addition, such crops can reduce external energy dependence. On top of 

all, residual biomass would significantly decline the potential pressure on land use, improve 

greenhouse gas emission reductions when compared to energy crops, and result in lower 

environmental and social risk [9]. 

1-2-2 Biomass conversion technologies 

Biomass can be transformed into a wide variety of energy products of interest by means of 

thermochemical, biochemical or chemical conversion routes [10]. Figure 3 shows the main 

conversion processes, as well as the products obtained in each of them. 

The thermochemical route can be considered one of the most interesting from the point of view of 

the great variety of products that can be obtained. In addition, by using lignocellulosic biomass, it 

avoids the problem of competition in the food market. This route is based on the decomposition of 

biomass at high temperature in order to obtain products of greater interest (electricity, heat, fuels 

and chemical compounds). It can be carried out through the following processes: 

- Combustion is the most known thermochemical process. It is based on the exothermic chemical 

reaction produced between a fuel (in this case biomass) and oxygen (combustion agent) to give 

rise to gaseous products, called fumes or flue gases, and solid products that are formed by ash and 

unburned. The main objective of this process is the generation of heat or the generation of 

electricity through a Rankine cycle [11]. 

- Pyrolysis consists of the decomposition of the biomass by the action of heat and in the absence 

of an oxidizing medium. This process produces gases, liquid (bio-oil) and a carbonaceous 

substance (biochar). The generated quantities of each of these products depend on the operating 

conditions (heating rate, temperature, etc.) and the type of biomass used. Currently, the main 

interest of this process is the obtaining of bio-oils that can be used for the production of fuels with 

properties similar to those of gasoline and diesel [12]. In recent years, biochar based bioenergy 

production has absorbed a great interest due to its influence on carbon sequestration in soil. 

- Gasification is a process in which a carbonaceous substrate, in this case the biomass, is 

transformed into a combustible gas (synthesis gas) by controlled heating at high temperature in the 

presence of a gasifying agent (air, oxygen and / or steam ) [13]. The synthesis gas obtained presents 

a wide variety of energy applications, among which we can highlight the production of electricity 

/ heat, the hydrogen production and the synthesis of fuels by the Fischer-Tropsch process [14]. 

- The roasting process consists of the thermal treatment of the biomass at moderate temperatures 

(200-300 ºC), in an environment lacking oxygen and at pressures close to the atmospheric. 

Through this treatment, the biomass loses water and volatile compounds (mainly CO2), resulting 

in a dry, hydrophobic product with higher energy density. In this way, roasted biomass presents 

more similar processes properties to those of fossil coal and, therefore, it is mainly used as pre-

treatment for direct combustion and gasification [15]. 

In particular, gasification is considered to be one of the most promising technologies for the 

conversion of biomass since, in combustion, the heat generated must be used directly, both the 

synthesis gas obtained by gasification and the bio-oil produced in the pyrolysis can be used at any 

time for different applications. In addition, unlike bio-oil, which requires intense improvement 
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processes to be used, the synthesis gas is a combustible gas with a wide range of applications 

[16,17]. In this study, Pyrolysis with the main purpose of long-term carbon storage creation rather 

than production of raw material for energy generation has been considered.  

 

 

 
 

Figure 3. Biomass conversion technologies 

 

1.3 Gasification: technology and uses 

1-3-1 Chemistry of the Process  

The gasification of biomass consists in the biomass transformation into a combustible gas 

(synthesis gas) by its partial oxidation in the presence of a gasifying agent, which can be air, 

oxygen and / or steam [18]. This process takes place at high temperature, between 500 and 1,400 

ºC, and can be divided into two stages [19]: 

- Pyrolysis or devolatilization: at the entrance to the gasifier, the biomass undergoes a drying 

process when coming into contact with the gases present in the reactor. Then, thermal 

decomposition of the biomass occurs giving rise to hydrocarbon gases, liquid (called tars or tars) 

and a solid carbonous residue (commonly called char). 
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- Gasification: the products formed in the pyrolysis stage react with each other and with the 

gasifying agent. The gases produced in this stage react in turn between them, resulting in the final 

gas mixture, known as syngas. 

The operating pressure varies from atmospheric pressure to 33 bar, depending on the scale of the 

plant and the final application of the synthesis gas [18]. Higher pressures lead to lower equipment 

sizes and higher efficiencies, but they mean an increase in complexity and maintenance costs. 

The main reactions that occur in a gasifier are the following: 

 

                                                      𝐶 +  𝑂2 →  𝐶𝑂2                                                            Eq. 1 

                                                      𝐶 +  
1

2
𝑂2 → 𝐶𝑂                                                             Eq. 2 

                                                       𝐶 + 2𝐻2 →  𝐶𝐻4                                                           Eq. 3 

                                                    𝐶𝑂 + 𝐻2𝑂 ↔ 𝐻2 +  𝐶𝑂2                                                 Eq. 4 

                                                   𝐶𝑂 + 3𝐻2 ↔  𝐶𝐻4 +  𝐻2𝑂                                              Eq. 5 

                                                      𝐶 +  𝐻2𝑂 → 𝐶𝑂 + 𝐻2                                                    Eq. 6 

                                                      𝐶 +  𝐶𝑂2 → 2𝐶𝑂                                                            Eq. 7 

 

The product gas consists mainly of carbon monoxide, hydrogen, carbon dioxide, methane, water 

vapor and traces of other unwanted components such as tar [18]. The composition of syngas 

depends on various factors, such as the composition of the biomass, the gasification technology 

and the gasifier used. The most used gasifying agent is air because of its low cost. However, the 

nitrogen present in the air dilutes the produced synthesis gas making its calorific value low (4-7 

MJ · Nm-3). In contrast, if gasification is carried out with oxygen and / or steam, the produced 

synthesis gas has a higher calorific value (10-18 MJ · Nm-3) [20]. 

Depending on how the required heat is supplied to the process, the gasification can be classified 

directly and indirectly. If the energy produced in the combustion and in the partial oxidation of the 

biomass is enough for the gasification to take place, the gasification is called direct or autothermic. 

Otherwise, the process requires an external heat input, it is called indirect or Allothermal 

gasification [21]. 

1-3-2 Types of gasifiers 

Biomass gasification can be carried out in a wide variety of reactors. Fixed bed, fluidized bed and 

indirect gasifiers are mostly used. Although entrained bed gasifiers are a technology developed for 

coal gasification, this type of technology has not been considered in this section since, when used 

for biomass gasification, it presents a high processing cost due to small required particle size [18]. 

i) Fixed bed gasifier 

These reactors can be classified as a function of the flow direction into the updraft and downdraft 

moving bed gasifier. 

The updraft gasifiers, Figure 4-a are the simplest form of moving bed. The biomass is fed from 

the top while the gassing agent is injected through the bottom of the reactor. In this way, the 
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biomass descends through the bed by reacting with the upwardly moving gasifying agent. At the 

top of the reactor is the drying zone which dries biomass due to contact with the product gas 

before it leaves the reactor. Then, in the zone of pyrolysis, the thermal decomposition of the 

biomass generates volatile gases, char and tar. The gases generated ascend with the rest of the 

gases, dragging part of the formed tars. The char obtained in the pyrolysis continues to react with 

the gases generated and with the gasifying agent in the so-called gasification zone. In this area 

both gas and char are gasified to H2 and CO. Finally, the residual char continues to descend to 

the bottom of the gasifier (combustion zone) generating the necessary heat for reactions of the 

previous steps. The gas temperature varies from 500 °C at the gasifier outlet to 1,000 °C in the 

oxidation zone [12,19,20].  

                       
a) b) 

 

Figure 4. Fixed bed gasifier updraft (a), Fixed bed gasifier downdraft (b) 

The updraft gasifiers allow the use of biomass with a high moisture content (above 60%) and have 

a high thermal efficiency. However, the synthesis gas produced contains a high amount of tars, 

which makes intensive cleaning necessary before it can be used in engines or turbines, or in 

synthesis applications [18,19]. This type of gasifier has been used successfully in several countries, 

such as Finland and Sweden, since the mid-1980s. An example of this type of reactor is the Bioneer 

gasifier developed in Finland [22], which is used for cogeneration of heat and power (CHP: 

combined heat and power). However, precisely because of the high quantity of tars in the synthesis 

gas, these gasifiers are no longer under investigation. 

In the downdraft gasifiers Figure 4-b the biomass and the gasification agent move in the same 

direction through the bed. As in the updraft gasifier, the biomass is fed from the top of the bed and, 

as it descends, it is heated and dried and pyrolyzed (drying and pyrolysis zones, respectively). Tars 

and char formed continue to descend to the oxidation zone where combustion occurs upon contact 

with the gasifying agent. These reactions are very exothermic and provide the necessary heat in 

the remaining areas. Finally, the residual char continues to fall and undergoes the reduction step 

when reacting with the flue gases, forming H2 and CO. 
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The synthesis gas obtained has a low tar content and therefore does not require such a thorough 

cleaning process. As main disadvantages, it is necessary to emphasize that it requires biomass fed 

with a low moisture content (<20%) and its thermal efficiency is low because the produced gas 

leaves the reactor at high temperature (900-1,000 ° C) and part of the heat generated is not used 

for the conversion of the biomass [18,23]. Although this type of gasifier has been well studied 

[24,25], the disadvantages discussed make it unattractive for future investigations [18]. 

 

ii) Fluidized bed gasifier 

Fluidized bed gasifiers typically use a bed of an inert material (such as sand, olivine or alumina) 

to improve the fluid dynamics properties and heat transfer of the system. In these reactors, the 

biomass is fed into the bed and rapidly mixed with the inert material. Unlike fixed bed reactors, in 

this type of gasifier there are no differentiated zones for the different stages [26]. The fluidized 

bed gasifiers can be bubbling or circulating bed and operate normally at temperatures between 700 

and 900 ° C [13]. 

In the bubbling bed gasifiers Figure 5-a, the gasifying agent is injected through the bottom of the 

reactor at a rate close to the minimum fluidization rate. The advantage they present is that when 

air is used as a blowing agent, bubbling bed gasification is a relatively simple process for the 

production of synthesis gas. This has made this type of gasifier very attractive to study. 

The circulating fluidized bed gasifiers Figure 5-b are similar to the bubbling, except that the rate 

of the gasifying agent is higher than the minimum fluidization rate. This causes the bed material 

to be entrained with the synthesis gas. Therefore, at the outlet of the reactor there is a cyclonic 

system which separates the gas from the unreacted solid and from the bed material that has been 

entrained, the latter being recycled to the gasifier. In this type of reactors, the fluidization is fast 

and without bubbles, which improves the heat transfer and the transfer of matter; therefore, high 

conversion rates and a low tar content are obtained. The main disadvantage of these gasifiers is a 

greater loss of charge, which results in a higher electrical consumption [18,19]. An example of this 

type of gasifier is the Värnamo demonstration plant in Sweden [27]. 

 

 
a)                                         b) 

Figure 5. Bubbling fluidized bed gasifier (a), Circulating fluidized bed gasifier (b) 
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iii) Indirect Gasifiers 

Indirect gasification can be carried out in two types of reactors: the indirect gas gasifier and the 

indirect char gasifier. These reactors are similar to those of fluidized bed, with the difference that 

they present an additional unit (a combustor) to supply the heat demand of the gasification process. 

In both cases, steam is used as a gassing agent, producing in this way a synthesis gas with a higher 

hydrogen content and a higher calorific value compared to that produced using air as a gassing 

agent. 

As can be seen in Figure 6, the indirect gas gasifier is formed by a fluidized bed gasifier 

containing a heat exchanger inside the bed and a combustion chamber. The heat required for the 

gasification is supplied by the combustion of part of the synthesis gas produced. The advantage 

of this process is that it allows working with a wide variety of raw materials [19]. The indirect 

char gasifier  

      Figure 7 consists of two reactors: a circulating fluidized bed gasifier and a fluidized bed 

combustion chamber. The biomass is converted into synthesis gas in the gasifier, which operates 

at a temperature between 700 and 900 ºC. The char formed and the bed material are separated from 

the gas in a cyclone at the outlet of the reactor and are sent to the combustion chamber where 

combustion of the char takes place and the bed material is heated. Bed material is recirculated to 

the reactor, where it yields its heat, providing the energy need for the gasification process. This 

type of gasifier has the highest conversions and a high gas yield [19]. 

 

 
 

Figure 6. Indirect Gas Gasifier. 
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      Figure 7. Indirect fluidized bed gasifier 

 

Some examples of this type of technology are the biomass gasifier from Battelle, licensed by the 

Future Energy Resource Corporation in the USA [28] and the FICFB (Fast Internally Circulating 

Fluidized Bed Gasifier) developed by the Technical University of Vienna in collaboration with the 

company Austrian Energy & Environment [29]. This type of gasifier, by using pure steam as a 

gasifying agent, produces a high calorific value gas rich in hydrogen and CO.  

Therefore, in the last years it has attracted researchers ‘interest [30]. 

 

In the present thesis, the indirect fluidized bed gasifier is selected as the object of study because it 

produces a gas rich in hydrogen and with a high calorific value, similar to that obtained by 

gasification with pure oxygen, thus eliminating the cost associated with obtaining the oxygen.  
        

1-3-3 Cleaning synthesis gas 

Although the synthesis gas consists mainly of CO and H2, it also contains other components CO2, 

H2O and CH4 and heavy hydrocarbons named tar. There are also contaminants present in ppm  

such as solid particulates and alkaline compounds, H2S, HCl, NH3, HCN and COS. Therefore, the 

synthesis gas must undergo a cleaning and conditioning process in order to achieve a suitable 

composition for its final application. 

Firstly, tar must be removed to avoid problems in the downstream process (poisoning of catalysts, 

clogging of equipment, etc.). In general, tar can be removed by thermal or catalytic processes, as 

well as by condensation in a scrubber. At present, to achieve the required tar levels and to improve 

the composition of the synthesis gas (conversion of tars to CO and H2), a thermal or catalytic 

treatment of the tars is carried out followed by the condensation of the same. 

The thermal process of removal of tars requires temperatures between 900 and 1100 ° C, which 

are normally greater than the temperature of the synthesis gas at the outlet of the gasifier [31]. This 

means that this process requires an additional supply of heat, which is usually achieved by the 

combustion of a small fraction of the gas, implying a loss of efficiency. However, if catalysts (eg, 
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dolomite or nickel based catalysts) are used, the required temperature is lower and no additional 

energy input is required, thus increasing process efficiency. For this reason, the catalytic treatment 

is the most used to reduce the tar content [31–33].  

After the removal of the tars, a cleaning process is carried out which can be carried out using two 

technologies: wet cold gas cleaning and dry hot gas cleaning. 
Cold gas cleaning is a proven technology with several stages. First, the gas is cooled to condense 

the organic particles and the condensable alkali compounds which are then removed by filtration. 

In the next step, the particles that have not been retained by the filters, ammonia and residual tar 

are removed by washing in a scrubber. Finally, the synthesis gas is subjected to an H2S removal 

process in order to avoid the poisoning of the catalysts in downstream processes [34]. 

Among the technologies available for the H2S removal, the most important are the Rectisol, 

Selexol and LO-CAT® processes, the latter being the most used because, although it has a lower 

H2S removal efficiency, it is significantly more economical [35]. If the minimum sulfur 

requirements were not met, a bed of ZnO [35] could then be used. In this way, the concentration 

of sulfur in the gas can be reduced to below 0.1 ppm. The main disadvantage presented by the cold 

cleaning of the gas is the production of waste water during washing in the scrubber. 

The hot cleaning of the gas is based on the use of a series of adsorbent reactors and filters. First, 

alkaline impurities and halides are removed in an adsorption reactor where the adsorbent (eg, 

aluminosilicates) is injected. Subsequently, the adsorbent and the ashes are separated by a cyclone 

system. Desulfurization takes place subsequently in a second adsorption reactor by injecting a 

suitable adsorbent (eg, based on CaO). The gas is then introduced into a filter where the particles 

are completely removed [36,37]. 

Finally, the traces of S, Se, As, Hg, NH3, etc. under adsorbent conditions are eliminated in a packed 

multizone bed [36]. This cleaning system is more efficient than cold cleaning and also does not 

produce wastewater [37]. However, hot cleaning presents technological problems related to 

adsorbent and particulate filter performance [36]. 

1-3-4 Uses of synthesis gas 

The synthesis gas produced in the biomass gasification has several applications from the energy 

point of view, among which the combustion of the gas to produce electricity with cogeneration of 

thermal energy [38] and the production of energy products such as hydrogen and synthetic fuels. 

i) Electricity production 

The synthesis gas produced by biomass gasification can be used to produce electricity and / or heat  

 

ii) Hydrogen production 

The production of hydrogen from the synthesis gas obtained by gasification of biomass has aroused 

great interest due to the great variety of applications (chemical synthesis, petrochemical processes 

and fuel cells) [39]. In fact, it is considered as a promising method of producing hydrogen of 

renewable origin.  

The hydrogen content of the synthesis gas obtained by this method using air or oxygen as the 

gassing agent is very low, between 8 and 14% by volume. However, if steam is used, the hydrogen 

content increases to 30 to 60% by volume, which makes this process interesting. To increase the 

H2 content, the synthesis gas is subjected to the Water Gas Shift (WGS) reaction, whereby the CO 
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is converted into CO2 and H2 (Ec. Typically, the WGS reaction is carried out in two consecutive 

reactors, one where the reaction takes place at elevated temperature (350-500 ° C) and uses iron 

and chromium based catalysts, and another where the reaction takes place at low temperature 

(approximately 200 °C) and employs copper based catalysts. Finally, the hydrogen is purified by 

a Pressure Swing Adsorption (PSA) unit. 

 

1.4 Pyrolysis: technology and uses 
 

1.4.1 Chemistry of the process 

Pyrolysis is a thermal decomposition of the biomass into gas, liquid, and solid. This process has 

similarity to and some overlap with processes like cracking, devolatilization, carbonization, dry 

distillation and destructive distillation, but it has no similarity with the gasification process, which 

involves chemical reactions with an external agent known as gasification medium [12]. Pyrolysis 

of biomass is typically carried out in a relatively low temperature range of 300 to 650 °C compared 

to 800 to 1000 °C for gasification [40]. 

The main reaction that occurs in a pyrolyser is the following: 

 

                             𝐶𝑛𝐻𝑚𝑂𝑝 + Heat → ∑ 𝐶𝑎𝐻𝑏𝑂𝑐 +  ∑ 𝐶𝑥𝐻𝑦𝑂𝑧 +  ∑ 𝐶                                     Eq. 8 

                                   Biomass            liquid             gas                solid 

                                  

In pyrolysis, biomass is fed into a pyrolysis chamber containing hot solids (fluidized bed) that heat 

the biomass to the pyrolysis temperature, at which decomposition starts. The condensable and non-

condensable vapors released from the biomass leave the chamber, while the solid char produced 

remains partly in the chamber and partly in the gas. The gas is separated from the char and cooled 

downstream of the reactor. The condensable vapor condenses as bio-oil or pyrolysis oil; the non-

condensable gases leave the chamber as product gas. These gases may be fired in a burner to heat 

the pyrolysis chamber or released for other purposes. Similarly, the solid char may be collected as 

a commercial product or burned in a separate chamber to produce heat that is necessary for 

pyrolysis. As this gas is free from oxygen, part of it may be recycled into the pyrolysis chamber 

as a heat carrier or fluidizing medium [40].  

Based on heating rate, pyrolysis may be broadly classified as slow and fast. It is considered slow 

if the time, 𝑡ℎ𝑒𝑎𝑡𝑖𝑛𝑔, required to heat the fuel to the pyrolysis temperature is much longer than the 

characteristic pyrolysis reaction time, 𝑡𝑟, and vice versa. That is: 

 

• Fast pyrolysis: 𝑡ℎ𝑒𝑎𝑡𝑖𝑛𝑔 <<𝑡𝑟 

The primary goal of fast pyrolysis is to maximize the production of liquid or bio-oil. The heating 

rate can be as high as 1000 to 10,000 °C/s, but the peak temperature should be below 650 °C if 

bio-oil is the product of interest [41]. The biomass is heated so rapidly that it reaches the peak 

(pyrolysis) temperature before it decomposes. However, the peak temperature can be up to 1000 

°C if the production of gas is of primary interest. Four important features of the fast pyrolysis 

process that help increase the liquid yield are: (1) very high heating rate, (2) reaction temperature 
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within the range of 425 to 600 °C, (3) short residence time (<3 s) of vapor in the reactor, and (4) 

rapid quenching of the product gas [42]. 

 

•        Slow pyrolysis: 𝑡ℎ𝑒𝑎𝑡𝑖𝑛𝑔 >>𝑡𝑟 

In slow pyrolysis, the residence time of vapor in the pyrolysis zone is on the order of minutes or 

longer. This process is used primarily for char production and is broken down into two types: (i) 

carbonization and (ii) conventional. 

i) Carbonization is a slow pyrolysis process, in which the production of charcoal or char is 

the primary goal. It is the oldest form of pyrolysis, in use for thousands of years. The biomass is 

heated slowly in the absence of oxygen to a relatively low temperature (~400 °C) over an extended 

period of time, which in ancient times ran for several days to maximize the char formation. A small 

fire at the bottom provided the required heat, which essentially stayed in the well-insulated closed 

chamber. Carbonization allows adequate time for the condensable vapor to be converted into char 

and non-condensable gases[12]. 

ii) Conventional pyrolysis involves all three types of pyrolysis product (gas, liquid, and char). 

As such, it heats the biomass at a moderate rate to a moderate temperature (~600 °C). The product 

residence time is on the order of minutes. The biochar yield, bio-oil and syngas can be produced 

between 25%-35%, 30% and 35%, respectively [41]. Such a yield may vary depending on the 

nature of the feedstock, reactor type as well as the degree of operating conditions optimization 

[43].  

 

1.4.2 Types of pyrolyser 

The technologies available to produce biochar can be either manually operated or automatically 

run. In these technologies, it is possible to control some of the variables that affect the yield of 

biochar while it is not possible to directly control some operating conditions. Therefore, similar to 

gasification, the mode of operation varies with reactors designed for either autothermal or 

allothermal mode. 

The following technologies for biomass pyrolysis are proposed. They have been extensively used 

in spite of their limited application due to their respective drawbacks. These conventional pyrolysis 

units include: 

• Fixed beds: These have been used for the traditional production of charcoal. They are poor 

in heat and mass transfer because the bed is stationary in one position and there is no 

uniform mixing inside the reactor [46]. 

• Fluidized beds: Within fluidized bed reactors, the biomass is mixed with a hot sand bed 

fluidized by a gas which keeps the mixture rotating within the reactor. The attrition between 

biomass particles and sand particles doesn’t make fluidized beds a better choice for biochar 

production because there is a higher carbon conversion to gases than to solid char [52,53]. 

• Augers: In this technology, hot sand and biomass particles are fed at end of a screw which 

mixes the sand and biomass and conveys them along. This process works best when gases are the 

major product because it avoids the dilution of the other products with the carrier gases. Reheating 

sand must be done in a separate vessel therefore mechanical reliability is a concern [54].  
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• Ablative technologies: During ablative processes, biomass particles are moved at high 

speed against a hot metal surface. Ablation of any char forming at a particle’s surface maintains 

a high rate of heat transfer. This can be achieved by using a metal surface spinning at high speed 

within a bed of biomass particles, which may present mechanical reliability problems but prevents 

any dilution of the products [54,55]. 

• Rotating cone: Pre-heated hot sand and biomass particles are moved into a rotating cone. 

Due to the rotation of the cone, the mixture of sand and biomass is transported across the cone 

surface by centrifugal force [46]. 

• Circulating fluidized beds: Biomass particles are moved into a circulating fluidized bed of 

hot sand. Gas, sand and biomass particles move together. High heat transfer rates from sand ensure 

rapid heating of biomass particles and ablation stronger than with regular fluidized beds. A fast 

separator splits the product gases and vapors from the sand and char particles. The sand particles 

are reheated in a fluidized burner vessel and recycled to the reactor. Although this process can be 

easily scaled up, it is rather complex and the products are much diluted, which greatly complicates 

the recovery of the liquid products [53]. 

• Vacuum pyrolyzer: This technology comprises a number of stacked heated circular plates. 

The top plate is at about 200 °C while the bottom one is at about 400 °C. Biomass fed to 

the top plate drops into successive lower plates by means of scrapers. The biomass 

undergoes drying and pyrolysis while moving over the plates. No carrier gas is required in 

this pyrolyzer. Only char is left when the biomass reaches the lowest plate. Though the 

heating rate of the biomass is relatively slow, the residence time of the vapor in the 

pyrolysis zone is short. As a result, the liquid yield in this process is relatively modest, 

about 35 to 50% on dry feed, with a high char yield. This pyrolyzer design is complex, 

especially given the fouling potential of the vacuum pump[12,54]. 

 

1-4-3 Products of pyrolysis 

As mentioned earlier, pyrolysis involves a breakdown of large complex molecules into several 

smaller molecules. Its product is classified into three principal types which their nature depends 

on several factors, including pyrolysis temperature and heating rate: 
 

i)  Liquid (tars, heavier hydrocarbons, and water) 

The liquid yield, known as tar, bio-oil, or biocrude, is a black tarry fluid containing up to 20% 

water. It consists mainly of homologous phenolic compounds [12]. 

Bio-oil is a mixture of complex hydrocarbons with large amounts of oxygen and water. While 

the parent biomass has an LHV in the range of 19.5 to 21 MJ/kg dry basis, its liquid yield has 

a lower LHV, in the range of 13 to 18 MJ/kg wet basis [44]. It typically contains molecular 

fragments of cellulose, hemicellulose, and lignin polymers that escaped the pyrolysis 

environment [45,46]. The molecular weight of the condensed bio-oil may exceed 500 Daltons 

[45]. Compounds found in bio-oil fall into the following five broad categories [46]: 

• Hydroxyaldehydes 

• Hydroxyketones 

• Sugars and dehydrosugars 
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• Carboxylic acids 
 

 

ii) Gas (CO2, H2O, CO, C2H2, C2H4, C2H6, C6H6, etc) 

Primary decomposition of biomass produces both condensable gases (vapor) and noncondensable 

gases primary gas). The vapors, which are made of heavier molecules, condense upon cooling, 

adding to the liquid yield of pyrolysis. 

The noncondensable gas mixture contains lower-molecular-weight gases like carbon dioxide, 

carbon monoxide, methane, ethane, and ethylene. These do not condense on cooling. Additional 

noncondensable gases produced through secondary cracking of the vapor are called secondary 

gases. 

The final noncondensable gas product is thus a mixture of both primary and secondary gases. The 

LHV of primary gases is typically 11 MJ/Nm3, but that of pyrolysis gases formed after severe 

secondary cracking of the vapor is much higher: 20 MJ/Nm3 (Diebold and Bridgwater, 1997).  
 

iii) Solid (mostly char or carbon) 

Char is the solid yield of pyrolysis. It is primarily carbon (~85%), but it can also contain some 

oxygen and hydrogen. Unlike fossil fuels, biomass contains very little inorganic ash. The lower 

heating value (LHV) of biomass char is about 32 MJ/kg [45], which is substantially higher than 

that of the parent biomass or its liquid product. This product has many uses including soil 

amendment and long term carbon sequestration [47].  

 

This study concentrates on biochar production applied to soil as this pyrogenic black carbon has 

substantial advantages from social, financial and environmental point of view. These potential 

benefits have been identified as: (1) soil improvement for higher biomass yields and possible costs 

savings; (2) waste management; (3) climate change mitigation; and (4) bioenergy production in 

addition to biochar production. There are some environmental sustainability studies on biochar use 

in soil which address CO2 saving [48–51]. 
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Chapter 2: Objectives 
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In the previous chapter, the main technological alternatives for the gasification of biomass were 

assessed. Indirect Fluidized bed gasifier was chosen for this study because biomass conversion in 

these gasifiers is close to 100% and biomass flow rate per installed reactor area is double to ten 

times higher than in the fixed beds (500-1000 kgbiomass/h m2). These advantages are due to excellent 

gas-solid mixing and the large thermal inertia of the bed which uniform the temperature and the 

solid/gas concentration in the entire bed. In addition, unlike fixed bed gasifiers which need a fairly 

specific feedstock, fluidized bed gasifiers are in general more suitable for a large variety of biomass 

since they operate with uniform and relatively low temperatures (700-900 °C). Therefore, most 

high-ash content fuels, depending on ash chemistry, can be gasified without problems of ash 

sintering and agglomeration. The other technology considered in this thesis is slow pyrolysis as 

the most successful approach for high-yield biochar production which is one of the target products 

in this dissertation. Under slow pyrolysis, the longer residence time of the feedstock and the lower 

temperatures than 700 ℃ allow the volatile components to escape leaving a chary solid behind. 

Biochar is specifically addressed because its application to soil can have substantial advantages 

from a social, economic and environmental point of view, such as: (1) soil improvement for higher 

biomass yields and possible costs savings; (2) waste management; (3) climate change mitigation; 

and (4) bioenergy production in addition to biochar production. Moreover, hydrogen as a clean 

energy carrier is a promising product due to multiple applications in industrial market (chemical, 

refineries, metal   processing, etc.), stationary power generation, and particularly in transport due 

to growing demand for zero-emission fuels and the implementation of fuel cell systems. In 

particular, hydrogen from biomass can be a specific role in sustainable energy strategy. 

On the other hand, the innovative application of mentioned technologies to generate hydrogen and 

biochar entails problems linked to complexity of the system owing to biomass nature. Therefore, 

although the environmental benefits of these products in the application have been verified, the 

sustainability of the entire chain, from the production to the end uses, remains unclear. In fact, it 

is still to be determined whether the production of biochar and hydrogen from biomass is 

economical and environmentally and socially feasible which makes a sustainability assessment of 

these systems important. Life Cycle Assessment (LCA) is a well-known technique for monitoring 

environmental performance as well as integrating environmental, economic and social issues 

associated with a product.  

The goal of this thesis is to assess the environmental and economic burdens of the various stages 

of life cycle of hydrogen and biochar using life cycle assessment (LCA). Different scenarios based 

on kinds of biomass and operating condition of processes are defined to compare and analyze 

sensitivity. In addition, the economic concept of shadow prices is applied to assign relative weights 

of socio-economic importance to the estimated life cycle impacts. This approach includes long-

term global environmental impacts and the investigation of trade-offs between different 

environmental impacts through a single monetary unit. 

To reach these objectives, it will be necessary to determine the equipment and processes that 

contribute most to economic, social and environmental inefficiencies in hydrogen and biochar 

production.  

In addition, in order to propose an approach to reduce and manage environmental impact of 

biomass production. Environmental performance of vineyards associated with woody biomass 

waste production is considered as a case study. Therefore, the corresponding environmental hot 
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spots are identified and improvement potentials are proposed by the combined application of LCA 

and DEA. 
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Chapter 3: Methodology 
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3.1 Sustainable development 
 

The term sustainable development was used by the Brundtland Commission to designate the 

development that “meets the needs of the present without compromising the ability of future 

generations to meet their own needs” [56].  

 

In more detail, the social sustainability includes [57]: 

• Human health: protect, sustain, and improve human health; 

• Resource security: protect, maintain, and restore access to basic resources (e.g. food, land, 

and energy); 

• Democracy and governance: provide democratic processes; 

• Quality of life: ensure that basic needs are met; 

• Equity: provide equitable opportunities and outcomes for all members of the community, 

particularly the poorest and most vulnerable ones. 

 

Economic sustainability means [58]: 

• Jobs: create or maintain current and future jobs; 

• Incentives: generate incentives to encourage sustainable practices; 

• Natural Resource Accounting: incorporate natural capital depreciation and ecosystem 

services in cost benefit analysis. 

 

Environmental sustainability consists of [59]: 

• Air quality: attain and maintain air-quality standards and reduce the risk from toxic air 

pollutant; 

• Water quality: reduce exposure to contaminants in drinking water and recreational waters; 

• Stressors: reduce effects by stressors (e.g. pollutants, greenhouse gas emission) to the 

ecosystem; 

• Resource integrity: reduce waste generation, increase recycling, and ensure proper waste 

management; restore by mitigating and cleaning up accidental or intentional releases; 

• Ecosystem services: protect, sustain, and restore the health of critical natural habitats and 

ecosystems; 

• Green Engineering & Chemistry: develop chemical products and processes to 

reduce/prevent chemical hazards, reuse or recycle chemicals, treat chemicals to render 

them less hazardous, dispose of chemical properly. 

 

 

Therefore, sustainable development involves a pattern of resource use which aims to meet human 

demands while preserving the environment so that these needs can be met not only in the present, 

but also for future generations to come. 
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Sustainable development is conceptually regarded as the intersection of three constituent parts as 

shown in Figure 8 These three dimensions refer to environmental sustainability, economic 

sustainability and socio-political sustainability. 

 
 

Figure 8. The three pillars of sustainability 

 

The path towards sustainable development requires the modification of the current operational and 

environmental instructions. In this sense, it is necessary to pursue reductions in the consumption 

levels for materials and energy, as well as the mitigation of the corresponding environmental 

impacts. Environmental sustainability is the capability to preserve the qualities that are valued in 

the physical environment. Sustainability requires that human activity only employs nature’s 

resources at a rate at which they can be replenished naturally. The long-term result of 

environmental deterioration is the failure to sustain human life. Under this context, numerous 

environmental management tools have been developed with the aim of diminishing the 

environmental impacts linked to products, processes and services [60]. 

 

3.2 Sustainability measurement tools 

Sustainability measurement tools were developed in order to understand whether a 

product/process/activity is sustainable or not and facilitate the improvement of the environmental 

performance of production systems and the integration of environmental, economic and social 

concerns. There is a wide range of environmental measurement tools. The main methodologies 

available are: 

• Life Cycle Assessment (LCA), which assesses the interactions between the environment 

and the product or an activity, regarding the entire life cycle of the product/activity under 

evaluation; 

• Emergetic Analysis, which allows to determine the amount of solar radiation required to 

obtain a product or a flow of energy for a given process; 

• The Embodied Energy Analysis, which enables to convert all inputs used in the production 

of a product in an amount of oil equivalent; 
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• Carbon Footprint, which evaluates the greenhouse gas emissions related to the life cycle of 

a product. At the international level, guidelines have been established in order to define a 

common calculation method. 

• Water Footprint, which quantifies the volume of drinkable water consumed (and polluted) 

produce a good; 

• Ecological Footprint, which measures the area of biologically productive land and sea 

needed to regenerate the resources consumed by a certain activity and to absorb the 

corresponding waste. 

Among the above-mentioned methods, the last three are a subset of the result of an LCA study, as 

they take into consideration the effects of the life cycle of a product in relation to a single 

environmental parameter.  

 

3.2.1 Life cycle assessment 

 

Among the methods cited before, the LCA methodology has gradually assumed a prominent role. 

Such method has been defined as a methodology used to evaluate the main environmental loads 

associated with products, processes or services. For this, it is necessary to take into account the 

complete life cycle of a product or activity, "from cradle to grave", that is from the acquisition of 

the raw material, to production, use and final disposal. This approach is shown in Figure 9, 

including all phases involved in the life cycle of a product which contribute to the environmental 

impacts associated with product [61]. 
 

 
Figure 9. The phases of LCA 

 

In the following section the above mentioned LCA will be discussed in detail. 
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3.4.2 Stages of LCA studies  

 

i) Definition of objectives and scope 

 

The objectives and scope of a LCA must be clearly defined and consistent with the application 

planned. Because of the iterative nature of LCA, the scope may need to be adjusted throughout the 

study. 

The objective establishes the potential use and audience of the specific LCA case study as well as 

its justification. On the other hand, the scope includes key aspects of the study such as product 

system, its function, functional unit (FU), system boundaries, allocation procedures, impact 

categories, environmental impact assessment method, data requirements, assumptions and 

constraints. The functional unit is the reference unit used in the LCA studies, which quantifies the 

functions identified in a product system [61]. Thus, the functional unit provides a reference to 

which all input and output are related. LCA studies are performed by defining product systems as 

models that present the main elements of physical systems. System boundaries determine the unit 

processes to be included within the system.  

Data quality requirements specify the characteristics of the data required for the study. Time, 

geography, technology, accuracy, completeness, consistency, reproductiveness, data sources and 

uncertainty are some of the aspects considered in data quality. 

 

ii) Life cycle inventory analysis 

 

The second phase in performing a LCA is life cycle inventory analysis (LCI). This phase comprises 

the collection of the input / output data of the system under study, as well as the explanation of the 

calculation procedures used. 

Qualitative and quantitative data should be collected or calculated for each unit process within the 

system boundaries. It is necessary to ensure a coherent understanding of the system under study 

by performing the following tasks: 

- Development of flow diagrams of the process that describe all the unit processes that must be 

taken into account, including their interrelation. 

- Listing the flows and operation data related to every unit process. 

- Listing the units used. 

- Description of the calculation and data collection techniques. 

Figure 10 shows a general flow diagram of the life cycle inventory [62]. The necessary data for 

the realization of the LCA are the following: 

- Inputs of energy, raw materials, auxiliary inputs and other physical inputs. 

- Products, co-products and waste generated. 

- Emissions to the air water and soil. 

- Other environmental aspects. 
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Figure 10. Flow diagram for life cycle inventory 

It is very important that the calculation procedures used in the analysis are correctly documented, 

clearly specifying the assumptions made. In addition, the same calculation procedures should be 

followed consistently throughout the analysis. 

A key factor in the LCA phase is to make a correct allocation or distribution of environmental 

charges to each products or processes under study. In the case of monofunctional processes (where 

a single product or function is obtained), allocation is direct. However, in multifunctional 

processes (where more than one product or function is obtained), it is necessary to decide the 

assignment of loads that is given to each the products or functions. The inputs and outputs should 

be assigned to the different products according to clearly explained and documented procedures. 

Multifunctional processes are those processes whose function requires the concurrence of more 

than one process. They include production processes which give rise to more than one product, as 

well as waste treatment processes with more than one waste flow or energy generation. In this type 

of systems, environmental burdens must be distributed among the different products or processes. 

With this purpose, inputs and outputs are allocated to the different products on the basis of 

procedures which must be clearly specified. Allocation procedures should capture the main 

features and relationships regarding inputs and outputs. The addition of the inputs and outputs 

allocated to a unit process shall equal the addition of the inputs and outputs prior to allocation [61]. 
 

iii) Impact assessment of the life cycle 

 

The third phase of the LCA is the Life Cycle Impact Assessment (LCIA) which aims to provide 

further information to evaluate the results of the life cycle inventory in order to better understand 

the environmental performance of a product system. The LCIA phase involves the following steps: 

 

- Selection of impact categories, category indicators and characterization models.  

The impact categories chosen to reflect the set of environmental burdens associated with the 

system under study, taking into account the objective and the scope. The characterization models 

relate the results of the LCI and the category indicators describe the environmental mechanism 

given in the study system. 



36 
 
 

 

- Classification. It is the allocation of life cycle inventory results to the chosen impact categories. 

 

- Characterization. It is the calculation of the values for the category indicators. 

Characterization means the conversion of the life cycle inventory results to common units and the 

addition of the converted results belonging to the same impact category. This conversion uses 

characterization factors. The calculation output is the quantitative result of an indicator. 

 

In addition to these stages, the LCIA may include the following additional elements which can 

also be useful depending on the specific LCA goal and scope. They include: 

 

- Normalization. It is the calculation of the magnitude of the indicators values based on the 

reference information. It is aimed to facilitate the understanding of the relative magnitude of each 

indicator. 

 

- Grouping. It is the organization and / or classification of impact categories. 

- Weighting. It is the conversion and potential addition of the indicator results through the impact 

categories by means of numerical factors based on value judgments.  

 

- Additional data quality analysis (gravity analysis, uncertainty analysis, sensitivity analysis). 

 

LCIA methods can be classified mainly into two major groups depending on the ultimate goal of 

the study: 

 

- Environmental impact assessment methods (mid-point). These methods aim to obtain the 

definition of an environmental profile by quantifying the environmental effect of the product under 

study on different impact categories (acidification, eutrophication, etc.). Contrary to the second 

group, mid-point methods (distance to target methods) only take into account indirect effects on 

human being (midpoints). 

 

- Damage assessment methods (end-point). These methods evaluate the final effect of the 

environmental impact by identifying and determining the damage caused to the human being and 

the natural systems.  

 

In the present work, two impact assessment methods are applying. CML, one of the most common 

mid-point methods, and IMPACT 2002+ which assesses impacts on both mid-point and end-point 

level.  

 

The CML method published by the Center of Environmental Science of the Leiden University. 

The CML guide [63] provides a list of impact categories widely used in LCA studies of energy 

systems. In particular, in this work the following are used: 

 

- Global warming (GWP). This category is characterized by the model developed by the 

Intergovernmental Panel on Climate Change. The unit of reference is kg of CO2 equivalent, the 

time horizon is 100 years and the geographical scope is global. 
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- Ozone layer depletion (OD). The characterization model is based on model developed by the 

World Meteorological Organization. The reference unit of this indicator is the kg of CFC-11 

equivalent. The geographical scope is global and the time horizon is infinite. 

Photo-oxidant formation (POFP). This model is developed by the United Nations Economic 

commission for Europe (UNECE) and analyzes loads and critical levels of various air pollutants 

and their effects, threats and trends. The reference unit is the kg of C2H4 equivalent. The time 

horizon is 5 days and the geographical scale varies between local and continental. 

 

- Abiotic depletion (AD). This impact category is related to the extraction of minerals and fossil 

fuels. The reference unit is kg of element equivalent. 

 

- Acidification (AP). Acidification is calculated using the model adapted from RAINS 10 

(simulation and information on regional acidification) developed by the International Institute for 

Applied Systems Analysis. This model describes the deposition and fate of acidifying substances 

and analyzes the costs of deposition of SO2 and NOx. The reference unit used is the kg of SO2 

equivalent. The time horizon is infinite and the geographic scale varies between local and 

continental. 

 

- Eutrophication (EP). It quantifies eutrophication in both the aquatic and terrestrial environments.  

The reference unit for this category is the kg of PO4 equivalent. The time horizon is infinite and 

the geographic scale varies between local and continental. 

 

In addition to these categories included in the CML method, this work also evaluates accumulative 

energy demand in the process (CED) which takes into account all the energy required in the process 

with a life-cycle perspective [64]. 
 

The IMPACT 2002 + is a combination of four methods: IMPACT 2002 [65], Eco-indicator 99 

[66], CML [63] and IPCC. This method includes several mid-points and four endpoint categories 

largely based on Eco-indicator 99. 

The respective midpoint units are the following [67,68]:  

- Carcinogens and Non-carcinogens. The reference substance is chloroethylene emitted into air 

and the characterization factors are expressed in kg C2H3Cl equivalent into air. 

- Respiratory inorganics. The characterization factors are expressed in kg PM2.5 equivalent into air 

and obtained by dividing the damage factor of the considered substance by the damage factor of 

the reference substance (PM2.5 into air). 

- Ionizing radiation. The characterization factors are expressed in Bq Carbon -14 equivalents into 

air and obtained by dividing the damage factor of the considered substance by the damage factor 

of the reference substance (C-14 into air). 
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- Ozone layer depletion. The characterization factors are expressed in kg CFC-11 equivalents into 

air and obtained from the US Environmental Protection Agency Ozone Depletion Potential List 

(EPA). 

- Respiratory organics. The characterization factors are expressed in kg ethylene equivalents into 

air kg C2H4 eq. 

- Aquatic and Terrestrial ecotoxicity. The characterization factors of both are given for emissions 

into air, water and soil. Aquatic ecotoxicity quantifies the ecotoxicity effects on (surface) fresh 

water (referring to streams and lakes). Whereas, Terrestrial ecotoxicity estimates those substances 

which have ecotoxic effects only by exposure through the aqueous phase in soil. The 

characterization factors are expressed in kg triethylene glycol equivalent into water (kg TEG 

water) for Aquatic ecotoxicity and kg triethylene glycol equivalents into soil (kg TEG soil) for 

Terrestrial ecotoxicity.  

- Terrestrial acidification & nitrification. The characterization factors are given for emissions into 

air only. No CFs are currently available for emissions into soil and water. The CFs are expressed 

in kg SO2 equivalents into air and have been obtained from the damage CFs by dividing the damage 

CF of the substance considered by the damage CF of the reference substance (SO2 into air). 

- Land occupation. The CFs are expressed in m2 Organic arable land equivalent and obtained by 

dividing the damage CF of the considered flow (namely, type of land) by the damage CF of the 

reference flow (Organic arable land).  

 

- Aquatic acidification. The CFs for Aquatic acidification are given for emissions into air, water 

and soil. The midpoint CFs for aquatic acidification are expressed in kg SO2 equivalent into air 

and taken directly from CML [63]. 

 

- Aquatic eutrophication. The CFs for aquatic eutrophication are given for emissions into air, water 

and soil. The midpoints CFs are expressed in kg PO4 equivalent into water and taken directly from 

CML [63].  
 

- Global warming. Global warming CFs are given for emissions into air only. The midpoint CFs 

for global warming are expressed in kg CO2 equivalents into air and taken from the IPCC list 

(IPCC 2001, and IPCC 2007 for CH4, N2O and CO). The Global Warming Potentials (GWPs) for 

a 100-year time horizon are used.  

 

- Non-renewable energy. The CFs for non-renewable energy consumption, in terms of the total 

primary energy extracted, are calculated using upper heating values. The midpoint CFs is 

expressed in kg primary energy. 

 

- Mineral extraction. The midpoint CFs are expressed in MJ surplus energy. 
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The respective damage units for endpoint assessment level are DALY for Human health, 

PDF*m2*yr for Ecosystem quality, kg CO2 equivalent into air for Climate change and MJ primary 

non-renewable (MJ primary) for Resources [65,67].  

 

 

iv) Interpretation of results 

 

The interpretation of the results is the final phase of the LCA. It aims to summarize and discuss 

the results of the LCI and LCIA phases to obtain conclusions and recommendations and make the 

appropriate decisions based on the objectives and scope defined in the study. This phase comprises 

the following elements: 

 

- Identification of the significant aspects based on the results obtained in the LCI and LCIA phases. 

- Evaluation that considers the verifications of the integrity, sensitivity and coherence analyzes. 

- Conclusions, limitations and recommendations. 
 
 

3.4.3 Shadow price for monetary weighting 

A societal techno-economic assessment takes into account both private and external costs and 

benefits by monetizing and integrating all sustainability impacts, consisting of environmental, 

social and economic aspects. Private costs and benefits are incurred by economic agents involved 

in a business transaction and are reflected in market prices, such as capital costs, purchase prices 

of inputs to the production process, sales prices of outputs etc. External costs and benefits are 

incurred by third parties that are external to the economic transaction and which are not 

compensated by the agents that take part in the transaction. Examples include costs caused by 

pollution, health benefits, and improved aesthetics amongst many others. As the private costs and 

benefits for biochar production from willow and pig manure have already been published [69,70], 

the focus here is on the monetization of the environmental impacts of the LCA. 

 

Monetization of environmental impacts can be carried out by means of benefit transfer using 

shadow prices that represent the value of those environmental aspects [71]. So far there is no 

consensus in the scientific community on the most appropriate monetization method for weighting 

environmental impacts in LCA [72]. Therefore, three monetary valuation methods were employed: 

Ecotax02 [73], Ecovalue08 [74] and Stepwise2006 [75]. The Ecotax method is based on taxes and 

fees that are paid in Sweden for emissions and resource use and hence are an expression of the 

revealed value society puts on the environmental effects. Stepwise2006 is based on a relatively 

new method [76] that takes into account the budget constraint, i.e. the annual income an average 

person can pay for an additional life year [75]. The use of a budget constraint reduces the 

uncertainty or bias that is associated with stated preference methods for economic valuation of 

environmental impacts as respondents may not adequately consider their real income when 
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answering questions related to their willingness to pay for environmental goods and services. The 

Ecovalue08 method on the other hand is based on the value individuals (rather than society) state 

on environmental goods and services. The Ecovalue08 method has been specifically developed in 

order to have a consistent weighting set which is based on the same valuation principle for all 

environmental impact categories considered [74]. The three methods hence represent different 

approaches (revealed versus stated preference whether or not taking into account budget 

constraints) that can be used towards monetary valuation of environmental impacts and thus give 

an indication of the range within which the true value of the environmental impact will fall. As the 

existing techno-economic models for the two case studies are expressed in Euro2012 terms, the 

monetary values from the weighting methods have been converted into Euro2012 using  European 

inflation rates between 2002 and 2012 [77].  

The three methods also differ in terms of the characterization method and impact category levels (midpoint 

versus endpoint) for which they have been designed. Ecotax02 and Ecovalue08 have been designed for 

weighting at midpoint level using CML midpoint categories [73,74], whereas Stepwise2006 provides the 

option of expressing results in both midpoints and endpoints using combination of IMPACT2002+ and 

EDIP 2003 impact categories [78]. To calculate shadow price connected to each impact category, Table 1 

presents relevant weighting factors which are different depending on methods applied to assess 

environmental impacts as above-mentioned. Since these factors are defined to apply in CML method’s 

impact categories, first, the characterization of impact categories was done according to CML life cycle 

impact assessment (LCIA) method. Next, the quantified environmental impacts were multiplied by the 

weighting factors represented in Table 1.  

 

Table 1. Shadow prices used in different monetary valuation methods [76] 

LCA application 

Euryear 

STEPWISE2006 

EUR2003 

ECOTAX02 

EUR2002 

ECOVALUE08 

EUR2010 

Global warming [eur/kgCO2eq] 0.08 0.07 0.23 

Ozone depletion [eur/kgCFC11eq] 100 139.56 - 

Acidification [eur/kgSO2eq] 0.00015 2.09 3.49 

Eutrophication [eur/kgPO4eq] 1.2 3.32 25.35 

Photochemical oxidation 

[eur/kgC2H4eq] 
0.00056 55.82 4.65 

Abiotic resources [eur/MJ] 0.004 0.02 0.00047 

Human toxicity [eur/kg1.4DBeq] 0.00154 0.17 1.4 
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3.3. Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a performance measurement methodology used to 

empirically quantify the comparative productive efficiency of multiple similar entities. To carry 

out a DEA (Figure 11), data for inputs and outputs from the different entities must be known. From 

these data, DEA formulates and solves an optimization model which facilitates benchmarking the 

operational performance of each assessed entity. This benchmarking provides a basis for decreases 

in inputs per unit of output, usually resulting in an improved eco-efficiency. In this sense, DEA 

enables the discrimination of inefficient operating points, therefore promoting feasible 

technological improvements under the perspective of an efficient operational 

performance. 

Therefore, DEA is a linear programming method to measure the efficiency of multiple Decision-

Making Units (DMUs) when the production process involves multiple inputs and outputs. A DMU 

is defined as the entity responsible for the conversion of inputs into outputs and whose performance 

is the object of assessment. DEA non-parametrically estimates the relative efficiency of a number 

of DMUs. Hence, DEA neither requires the user to set weights for each input and output nor 

demands the establishment of any functional form. Rather, DEA simply relies on the observed data 

for the inputs and outputs, and on a minimum of basic assumptions to solve an optimization model 

formulated for every DMU. 

The result for each DMU is an efficiency score and, for those DMU identified as inefficient, a 

target operating point. 
 

 

Figure 11. Main steps in a DEA study 
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Chapter 4: Application of methods for case studies 
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4.1. Environmental techno-economic analysis of hydrogen production using biomass 

gasification -A small scale power plant study 

 

4.1.1. Summary  

Hydrogen has the potential to be a clean alternative to the fossil fuels currently used. This is 

especially true if hydrogen is manufactured from renewable resources such as biomass. However, 

hydrogen from biomass faces Environmental techno-economic challenges especially in the small 

size required for the decentralized hydrogen production.  

In this purpose, first, a life cycle assessment was developed to evaluate environmental profile of a 

small scale (100kWth) hydrogen production system composed of catalytic candle indirectly heated 

steam gasifier coupled with Zinc oxide (ZnO) guard bed, Water gas shift (WGS) and Pressure 

swing absorber (PSA) reactors. In the next phase, techno economic analysis was carried out on 

system. Then, results of each analysis are combined through a novel integration of tools to carry 

out a comprehensive assessment of bioenergy plant with inclusion of long-term global 

environmental impacts and the investigation of trade-offs between different environmental impacts 

using a single monetary unit.  

 
 

 

4.1.2. Techno-economic analysis 

The key to develop hydrogen production via gasification technology is to overcome the problems 

associated with technical and economic aspects of the pure H2 production since commercially 

available technologies generally suffer from poor economics at small-scale. This is a particular 

problem because of the difficulty in supplying mainly lignocellulosic feedstocks to large plants 

due to insufficient resource availability, distribution, density and logistics. For this reason, 

especially the small size, once viable from a technical point of view, requires to be economically 

achievable. Techno-economic analysis is the only way to make rational selection of appropriate 

research and development paths in this complex and rich technical area. 

 

In this part, all the expenditures related to an innovative power plant for the small scale industrial 

application of H2 production is assessed. During the UNIfHY project a 100 kWth prototype 

composed by an indirectly heated fluidized bed gasifier with catalytic filter candles inserted in the 

freeboard and a Portable Purification Unit (PPS) composed of a ZnO, WGS and PSA reactors has 

been developed. Indirectly heated bubbling fluidized bed with tar reforming inside the gasifier 

was chosen in this study since this configuration provides a synthesis gas with higher hydrogen 

content than fluidized and fixed bed gasifiers [39,79–83]. In this study, all analysis is carried out 

on this plant. In addition, a cost sensitivity analysis is carried out to recognize the major 

components influencing the specific cost of hydrogen production. 
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Plant description 

As soon as fed into the gasification zone, biomass is gasified with steam. The bed material 

(olivine), together with some charcoal, circulates to the combustor which is fluidized with hot 

air and the charcoal is burned to heat up the bed material to a temperature that is higher than 

the one of the feeding. The hot bed material from the combustor is circulated back to the gasifier 

supplying the thermal power needed for the gasification reactions. Off gas from PSA is also 

burned into combustor to provide extra heat demanded by the gasification process, especially 

at high S/B. Tars are converted by Catalytic filter candles (CFC) that remove particulate in the 

freeboard of the gasifier. This is an innovative way which was adapted and testes during 

UNIQUE and UNIfHY projects. 

The composition of gas from WGS is primarily H2, CO2, residual steam, traces of CH4 and 

CO. Once cooled, compressed and cooled to ambient temperature, the gas is fed to the PSA 

where pure H2, is obtained. The off gas is employed in the combustor as was described. The 

heat of the flue gas from the combustor is used to heat the air, overheating the steam, produce 

steam and finally to heat the water and released to the environment. The operating conditions 

of the whole power plant are brought in Table 2. Data are simulated based on experimental data 

at different conditions (in particular gasifier and combustor temperature at experimental 

conditions reaches 800 ºC and 850 ºC respectively, and S/B reaches 0.5, see D4.3 and D6.4, 

where the models of the gasifier and other components are validated [19,20]). Almond shell 

as dry (not ash free) with LHV 18 MJ/kg [21] is feedstock used in the process. Indeed, 

lignocellulosic biomass can be assumed equivalent (same LHV on a dry basis, similar ashes 

melting point, bulk density, etc.), meanwhile RDF have content of sulphur and chlorine 

elements ten times higher (about 0.4 versus 0.04 %w dry) thus almond shells have been 

chosen to be used owing to the lower price respect pellets and greater bulk density versus 

wood chips. 
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Figure 12. Flow sheet of the plant 

 

 

 



46 
 
 

 

 

Figure 13. Exploded view of the PPS showing main components 

 

 

 

Figure 14. 100 kWth reactor 
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Figure 15. Picture of the 1 MWth plant realized in Trisaia .  
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Table 2. Operating conditions of gasifier under two different S/B 

Parameters S/B (1)  S/B (1.5) 

Biomass feeding rate (kg/h) 20  20 

Steam feeding rate (kg/h) 20  30 
Electricity consumption (kW)    

Start up 0.4  0.4 
Process water pump 0.0012  0.002 
Deionised water pump 1 0.042  0.052 
Deionised water pump 2 0.027  0.027 
Air blower 1.4  1.58 
Syngas blower 0.62  0.66 
Compressor 4.1  4.36 

Gasification T(ºC)        850             

850 

 
Burner operating temperature (ºC)      950  

Olivine sand circulated between combustor 

andgasifier (kg/h) 

 1000  

Burner and gasifier operating pressure (bar)  1.1  

PSA inlet pressure (bar)   7  

PSA intercooler compressor efficiency%  62  

PSA intercooler compressor temperature (ºC)  40  

Intercooler compressor stages  2  

WGS inlet temperature (ºC)   300  

Air blower pressure ratio     1.3  

Air blower efficiency   40  

Water pump pressure ratio   3  

Water pump efficiency   80  

 

 

4.1.2.1 Economic-financial analysis 

This economic analysis focuses on the estimation of the investment required for the plant under 

study and their operating costs, in order to evaluate its economic viability. To do so, it is necessary 

to calculate the CapEx and OpEx.  
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Capital costs 

Capital expenditures (CapEx) are the total cost of designing, building and installing a plant, 

consisting of the total installed cost and the total indirect costs [84]. 

i) The cost estimation of equipment 

Because Some of the installed costs come from literature in a different size from the plant of 

interest, these costs can be calculated by capital cost scaling methodology. In order to develop 

a cost estimate for an individual equipment of plant, first the category type is determined from 

Table 3 that exhibits as much commonality as possible when compared to the plant of interest. 

Once the category type has been determined, an estimate for the same type of plant equipment 

must be obtained using Error! Reference source not found. [85].  
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Table 3. Exponents employed for estimation  

Category Parameter value Exponent Reference  

Biomass storage and feed 
Biomass feed rate 

lb/hr 
412000-616000 0.66 

[85] 

Circulating water pumps water flow rate (gpm) 115000-550000 0.73 [85] 

Circ.Water Piping 
Circulating Water 

flow rate,gpm 
115000-550000 0.63 [85] 

Ash transport&Feed 

Equipment 
Total Ash Flow, lb/h 10-100 0.56 

[85] 

Gasifier 
Total feed flow rate, 

lb/h 
303000 0.69 

[85] 

Control Board, 

panels&Rocks Auxiliary Load, kW 28300-272000 0.13 

 

[85] 

Instrument Wiring &Tubing 

Buildings & Structures N/A 
735000-

1630000 0.1 [85] 

Shift reactors 
WGS catalysts volume 

ft3 
2000-25500 0.12 [85] 

Pressure Swing Adsorption 

Unit 
N/A N/A 0.6 [86] 

Blowback gas systems 
Candle filter flow rate 

acfm 
2000-96000 0.3 [85] 

Air compressor 
Fuel gas flow, acfm 

average 
2000-4000 0.76 [85] 

 

 

𝑆𝐶 = 𝑅𝐶 ∗ (
𝑆𝑃

𝑅𝑃
)𝐸𝑥𝑝                                                                                                                                 Equation 1 

 

Where; 

-Exp: Exponent 

-RC: Reference cost 

-RP: Reference Parameter 
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-SC: Scaled cost 

-SP: Scaling parameter 

 

The cost of PPS integrated with 200 kWth pilot gasifier was estimated by HyGear in UNIfHY 

project is shown in Table 4. Therefore, cost of this unit was scaled down for considered size (100 

kWth) in this study. In addition, the gasifier cost was counted based on actual costs of 1 MWth 

gasifier built in Trisaia, Basilicata, Italy, Table 6.  

 

Table 4. PPS equipment cost  

Portable Purification System (PPS) Unit (k€) 

Pressure Swing Adsorption Unit (PSA) 110 

Low pressure compressor & blower 100 

Rotary and slide valves, sensors & other controls 80 

Water Gas Shift & ZnO reactor  50 

Pipeline, heat exchanger & housing 55 

Total 395 

 

 

 

 

Table 5. PPS equipment cost based on scaling factor 

PPS unit sections Equipment cost (k€) 

Water Gas Shift and ZnO Reactor  50 

Low Pressure Compressor & Blower  59.04 

Pressure Swing Adsorber Unit  72.53 

Rotary and slide Valves, Sensors & Other Controls  52.78 

Pipeline, Heat Exchanger & Housing  36.28 

Total 270.63 
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Table 6. 1 MWth gasifier equipment cost 

Gasifier unit sections Equipment cost (k€) 

Biomass feeder unit     

Biomass storage and pretreatment  153 

Gasifier   272 

Gasification agents    

Steam generator and feeding agents  14 

   

Cooling water and other utilities 
  

Ash handling equipment  25 

Piping and valves  127 

Axillaries (burner, blower, flare)  54 

Control  135 

Building and structures 
  

Concrete Foundation  18 

Plant Structures 59 

Total  857 
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Table 7. 100 kWth gasifier equipment cost 

Gasifier unit sections Equipment cost (k€) 

Biomass feeder unit     

Biomass storage and pretreatment  32 

Gasifier   86 

Gasification agents    

Steam generator and feeding agents  3 

   

Cooling water and other utilities 
  

Ash handling equipment  7 

Piping and valves  55 

Axillaries (burner, blower, flare)  13 

Flue gas cleaning  5 

Control  100 

Building and structures 
  

Concrete Foundation  14 

Plant Structures 47 

Total  362 

 

 

 

 

ii)            The indirect costs 

The indirect costs are the nonmanufacturing fixed-capital investment costs. These costs are also 

determined using cost factors taken from [87]. The factors are shown in Table 8 and have been put 

as percentages in term of total installed cost. The total CapEx is the sum of the total equipment 

costs plus the total indirect costs. 

 

Table 8. Costs factors for indirect costs 

Indirect costs % of total installed cost 

Engineering & design 13 

Purchasing & construction 14 
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The CapEx can be depreciating within N years, N depending on three main parameters, namely 

the lifetime duration of the hardware, considering the maintenance quoted in the OpEx costs; the 

long-term agreement for feedstock procurement and the long-term agreement for green-hydrogen 

off take. As a first assessment, we consider 20 years of depreciation. That means that in the targeted 

business models, only locations where feedstock procurement and H2 off take can be secured for 

20 years shall be considered. The cost of capital is set at 7%. The formula for calculation of annual 

capital costs is: 

 

               
𝑘€

𝑦𝑒𝑎𝑟
= 𝐶𝑎𝑝𝐸𝑥 𝑖𝑛 𝑘€ ∗ 7%/(1 − (1 + 7%)^(−20))                                Equation 2 

 

Operating cost 

There are two kinds of operating costs: variable and fixed costs. including the assumptions and 

values for these costs. 

The variable costs are proportional to the production of the plant. These costs include raw 

materials, fuels, electricity, steam, cooling water, etc. The variable costs of operation are obtained 

by multiplying the quantity of material used by its price [84]. 

Fixed costs are costs that are not modified by production [84]. These types of costs include 

insurance and maintenance. Insurance and maintenance costs are generally calculated as a 

percentage of CapEx. 

 

 

 

Table 9. Operating cost 

Assumptions for operating costs Reference 

Maintenance  2 % of capital cost [88] 

Insurance 2 % of capital cost [88] 

Biomass 40-75 €/ton [89] 

Electricity 0.08 €/kWh [90] 

 

 

The cost analysis shows that the costs of control unit and gasifier in the free board have the biggest 

proportion of gasifier equipment cost while in PPS, PSA reactors represents the highest cost. 

The annual total cost of 100 kWth gasifier integrated with PPS is calculated using Equation 3. 

Indirect costs are also calculated based on economic hypothesis above-mentioned. The results are 

presented in Table 10. 
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Table 10. Total cost of plant 

Total cost (k€/year) 

Equipment cost 

Gasifier system 35 

PPS 25.54 

Indirect cost 

Engineering and design  7.87 

Purchasing and construction 8.47 

Total CapEx 76.91 

Maintenance 16.29 

Insurance 16.29 

Biomass 10.5 

Energy 3.7 

Total OpEx 46.79 

Total cost 123.7 

Hydrogen production (Ton/year) 9.7 

Hydrogen production cost (€/kg) 12.75 
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Figure 16. Total cost distribution  

Sensitivity analysis 

In order to determine cost sensitivity to H2 efficiency, the steam to biomass ratio (S/B) between 

1 and 1.5 was varied under operating conditions presented in Table1. Meanwhile, the PPS as 

second high cost and prototype component have been altered to analyze total cost sensitivity. 

The aim of PPS cost reduction as an achievable target is evaluation of the influence of PPS cost 

on hydrogen production cost. Since PPS cost has been estimated for Prototype it can decrease 

per increase in the number of units. Manufacturing 5-10 more unit of PPS results in 44-50% 

decrease in cost for each unit [91]. On the other hand, standardization of components can reduce 

this cost more intensively. That is why fall in cost of PPS as a feasible and accessible way to 

drop in total cost is considered in this article. Three scenarios can be defined namely; base 

scenario ‘worst’ S/B: 1 and no PPS cost decrease (Table 10), scenario A ‘middle’ describes 

plant costs at S/B:1 while PPS cost has a 50% decrease and scenario B ‘best’ which relates 

costs according to S/B:1.5 and a 50% decrease in PPS cost. Table 11 Table 12 indicate the 

effects of alleviation in costs. The cost sensitivity is the change in total cost that comes from 

decreasing one unit of input cost (CapEx and OpEx). 
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Table 11. Cost changes under scenario A, B 

 S/B=1 S/B=1.5 

Equipment cost  

The percentage of cost decrease 50% PPS 50% PPS 

Gasifier system 35 35 

PPS 12.77 12.77 

Indirect cost  

Engineering and design  6.21 6.21 

Purchasing and construction 6.7 6.7 

Total CapEx 60.7 60.7 

Maintenance 12.85 12.85 

Insurance 12.85 12.85 

Biomass 10.5 10.5 

Energy 3.7 4 

Total OpEx 39.9 40.2 

Total cost 100.6 100.9 

Hydrogen production (Ton/year) 9.7 10.6 

Hydrogen production cost (€/kg) 10.37 9.5 

 

 

 

Figure 17. The cost distribution under scenario B 
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According to Table 11 and Table 12 costs, cost sensitivity has been calculated and results have 

been provided in table 4. The purpose of this analysis is to determine the level of sensitivity of 

total cost to the effective input cost. 

 

Cost sensitivity:  
𝛥𝑦

𝛥𝑥
 ×

𝑥

𝑦
                                                                                Equation 3 

 

Where, Y: H2 specific cost and X: input cost (PPS cost for scenario A and H2 efficiency for 

scenario B). 

Sensitivity cost shows that changes in total cost are highly influenced by changes in PPS cost, due 

to the fact that regarding the considered assumptions in part 3, PPS cost is included in equipment 

cost which impacts directly on engineering costs and OpEx. 

 

Table 12. Costs and cost sensitivity under scenario A and B 

 PPS Cost (k€) % on total cost Total cost (k€) Specific cost of H2 (€/kg) 

Basic cost 25.54 21% 123.7 12.75 

Scenario A 12.77 13% 100.6 10.37 

Scenario B 12.77 13% 100.9 9.5 
Cost sensitivity Scenario A 0.36   Scenario B 0.9 

 

Cost sensitivity based on H2 efficiency shows that cost and performance change nearly at the same 

rate. Therefore, it is practical to decline about 1% of H2 cost per 1% more efficiency, while in 

scenario A where PPS cost halves, 18% of specific cost could be cut which leads to a 0.36% 

decrease in production cost per 1% fall in PPS cost. Therefore, as a result technical efficiency of 

plant has the most influence on the cost. After 50% reduction in PPS cost, specific cost can reach 

9.5 €/kg. A value below 10 €/kg is competitive considering with respect to the actual cost of the 

hydrogen in the market, especially considering that, owing to the small size, i.e. hydrogen 

distributed production, there is no distribution cost. In order to be competitive in the refueling 

station fuel market the cost have to be less than 5 €/kg. This can be obtained in large centralized 

plant [22] or via a more important capex and biomass reduction cost together with a more 

important efficiency increase (e.g. via CO2 capture as indicated in the technical analysis) in this 

small size plants. The results showed that system efficiency increase cannot be able to reduce costs 

to favorable level alone. In other words, PPS cost recognized as the major cost is requisite to go 

down. 
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Therefore, the 50% reduction of PPS cost and the variation of steam to biomass from 1 to 1.5 allow 

the cost to fluctuate between 12.75-9.5 €/kg. 

4.1.3. Life Cycle Assessment 

4.1.3.1. Goal and scope definition 

 

The environmental impacts and energy requirements of the hydrogen production system from the 

almond shell production to the subsequent use for electricity were determined. In addition, 

environmental hotspots were identified to reduce the impact and improve the environmental and 

energy profiles. SimaPro 8.0.2 software, developed by PRé Consultants was used for the 

environmental evaluation of the process. 
 

System boundaries 

The system is divided into four subsystems: Biomass production (SS1), syngas production (SS2), 

syngas conversion (SS3) and offgas management (SS4). The system boundaries and processes 

considered under assessment are illustrated in Fig. 18. 
 

 

 

 

Fig. 18.   Life cycle boundaries for hydrogen production system 
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Subsystem 1: Biomass production 

In this phase, all the biomass production processes were considered comprising main crop planting, 

fuels consumed by agricultural machinery, requirements of fertilizer, pesticides  and water for 

irrigation, transportation, fuel consumed in factory and biomass collection [92–94].  
 

Bioenergy plant operation 

This part was divided into two main stages: from biomass to syngas (SS2) and from syngas to 

hydrogen (SS3). All inputs and outputs demanded for the plant running operations are included to 

consider the environmental burdens related. The main operating conditions of the entire power 

plant are listed in  Table 2 [95]. 
 

Subsystem 2: Syngas production 

Syngas production stage involves the gasification process. Gasification is performed in a 100 kWth 

Indirectly Heated Bubbling Fluidized Bed gasifier (IBFB), working under mentioned conditions 

in Table 2 and 7000 operating hours (even if it is 120 h achieved during the project for pure 

hydrogen production).  

To be noted that 1 MWth gasifier built and experimented in project is an Oxygen bubbling fluidized 

bed gasifier. Thus, similar to economic analysis, we considered the same technology running in 

100 kWth indirectly heated configuration. 

First, tar and methane are treated and the cleaning process of synthesis gas from particles is carried 

out by 6 Catalytic Filter Candles (CFC) allocated in the gasifier freeboard.  

In the gasification process, both electricity and heat are requisite. Electricity, chiefly consumed in 

the syngas compressor and in the air blower which is taken directly from the national grid. Thermal 

energy is required to preheat the air and to heat the water, generate and overheat the steam which 

are provided by syngas and flue gas cooling, respectively. Owing to the indirectly heated 

configuration, hot bed material (olivine) from the combustor is circulated back to the gasifier 

supplying the thermal power needed for the gasification reactions. Carbon dioxide emission from 

flue gas was considered in biogenic basis according to IPCC guidelines. 
 

Subsystem 3: syngas conversion 

In the syngas conversion stage, the produced syngas is utilized in a portable purification station 

(PPS) generating hydrogen. This unit combines a ZnO reactor (in order to remove the Sulphur 

compounds within syngas), a WGS reactor (Water Gas Shift in order to convert CO to further H2) 

and 4 PSA membrane reactors (in order to separate H2 from the other syngas components). Since 

atmospheric pressure gasification are more suitable for small-scale applications, the conventional 

WGS that operates at high pressure has been substitute with ceramic foams catalytic WGS 

operating at atmospheric pressure. The use of a ceramic foam with a wide catalytic surface area 

impregnated with catalyst eliminates the need to operate at high pressure in order to have high 

conversion efficiency [82].  
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The ZnO data have been taken into account but this unit is not present in the flowsheet Figure 12 

because the trace elements have not been considered in the simulation. The heat from the heat 

exchangers in PPS is recovered to meet low temperature thermal need. 

All inputs and outputs needed for the hydrogen production unit (PPS), such as electricity, ZnO 

required, de-ionized water and WGS Cu foams, are included in the model. Additionally, the 

derived emissions from burning offgas (such as nitrogen oxides and sulfur dioxide) were 

considered within the subsystem boundaries. The details of catalysts production are extracted from 

questionnaire filled out by University of Strasburg, a partner of UNIfHY project. Main 

assumptions to estimate material and energy required for catalysts production in order to use at 

100 kWth power plant are presented in Table 2: 

 

 
 

Table 13. Material and energy employed for catalysts production (100 kWth) 

                         Parameters (unit) value 

Number  10 

Size (cm) 
D: 30 

H: 10 

Lifetime (year) 3 

Material and energy   

Water (kg) 400 

Cerium nitrate (kg) 270 

Heat (MJ) 6000 

Emission to water  

Cerium nitrate solution (L) 250 

Copper nitrate Solution (L) 250 

Emission to air                                                                                                                                  

NOx (kg) 3 

 

 

Subsystem 4: offgas management 

In the syngas conversion process, offgas is co-produced from PPS and it is mainly burned in the 

combustor of gasifier. This subsystem involves the use of the residual off gas in a conventional 

combined heat and power system (Internal Combustion Engine, ICE). Under conditions mentioned 

in Table 2, energy content of residual offgas represents 12% of total energy output, H2 signifies 

43% meanwhile thermal energy losses are 45% (flue gas 8% and other 37%).  In fact, the 

production of offgas, under fixed parameters of gasifier (residence time, temperature, etc.) and 

conditioning (residence time, temperature, etc. of Ni catalyst based filters, atmospheric pressure 



62 
 
 

 

Cu foams WGS), mainly depends on S/B ratio and PSA efficiency. According to [96], it is inferred 

that the residual offgas decreases with higher S/B ratio (e.g. with S/B greater than 1.5-2, depending 

on the PSA efficiency, the offgas is completely used in the burner).  

Offgas ends up generating electricity via CHP system. The offgas application in ICE was taken 

into account within the system boundaries together with the consequently avoided conventional 

electricity. Meanwhile the heat generation, owing to the not always present heat demand, has been 

disregarded. In accordance to ISO standards allocation procedure is avoided by system expansion 

in this LCA study. Therefore, hydrogen was considered as the main product and electricity from 

offgas which can be sold to the national grid designated as an avoided product in base case of this 

study. In other words, system is expanded rather than allocated. In addition, impacts derived from 

the production and transmission of the avoided electricity were also included within the subsystem 

boundaries in this case.  
 

Functional unit 

The functional unit (FU) expresses the function of the system in quantitative terms and provides 

the reference to which all the inputs and outputs of the product system are calculated [97]. The 

functional unit selected for this assessment was the production of 1 MJ of hydrogen (purity: 

99.99%). 
 

4.1.3.2. Inventory data acquisition 

 

The most effort-consuming step in the execution of LCA studies is the collection of inventory data 

in order to build the Life Cycle Inventory (LCI). A high quality data (input and output) is essential 

to make a reliable evaluation [98].  

Inventory data for bioenergy production plant is classified as background and foreground data. 

Data related construction of heat and power co-generation unit and production of primary inputs 

like electricity were extracted from the process data of EcoInvent3.0 database included in SimaPro 

8.0.2. Foreground data of actual plant realized were collected through questionnaire filled out by 

designer, producer and operators of the equipment and gasifier plant. Inventory data related to 

almond shell production process (SS1) were taken from the literature [99]. They examined 

California almond production at the orchard scale over a typical 26-year orchard life cycle. Yield 

and inputs of theses orchards including area-weighted average almond yield (kernel) of 

approximately 1,780 kg per hectare per year (kg ha−1 yr−1), requiring 184 kg of nitrogen (N) 

fertilizer and 9,535 cubic meters (m3) of irrigation water per ha per year. On farm emissions 

derived from fertilizers application have been also modeled following the IPCC guidelines [100]. 

Groundwater pumping and irrigation system pressurization was assumed to be powered by diesel 

pumps in 50% of orchard sites and electric pumps in the remaining 50%. In addition, Mass 

proportion of almond co-products were taken from [93]. Emissions from diesel combustion in both 

bioenergy plant and agricultural machinery (SS1) are calculated according to Tier 1 method 

described in IPCC guidelines. In offgas management subsystem (SS4), the derived emissions from 

CHP were calculated with the emission limits reported by [101]. 
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Table 14. Global inventory data (per 1 MJH2) for Subsystem 1 

Input from technosphere  Output to technosphere 

Materials and fuels  Products and coproducts 

Diesel 0.07 kg Kernel (main product) 1 kg 

Nitrogen fertilizer 0.1 kg Almond shell 0.56 kg 

Energy   Other Co-products 2.9 kg 

Electricity 0.15 kWh   

Input from nature    

Water 5363.43 kg Output to environment 

  Emissions to air  

  Nitrogen oxides 1.8 E-3 kg 

  Methane 1.4 E-6 kg 

  Carbon dioxide  0.035 kg 

  Emissions to water  

  Nitrogen oxides 8 E-4 kg 
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 Table 15. Main inventory data for hydrogen production via Almond shell gasification per FU 

Input from technosphere Output to technosphere 

Materials and fuels Products and coproducts 

Almond shell (SS1) 0.144 kg Hydrogen 1 MJ 

Diesel (SS2) 3.55 E-5 kg   

Water (SS2) 0.144 kg Avoided product 

De-ionized water (SS3)  0.128 kg 

Zinc oxide (SS3) 1.3 E-4 kg Electricity 0.26 kWh 

Cu foam (SS3) 3 E-7 P   

Heat and power co-generation unit 4 E-8 P 

Energy 
   

Electricity (SS2) 0.014 kWh 
Emissions to air 

Electricity (SS3) 0.027 kWh 

Input from nature 
 Nitrogen oxide (SS2) 1 E-9 kg 

Methane (SS2) 1.7 E-8 kg 

Olivine (SS2) 0.00027 kg Carbon dioxide, biogenic 

(SS2) 

0.16 kg 

  Water (SS2) 0.15 kg 

  Sulfur dioxide (SS4) 2 E-6 kg 

  Nitrogen oxide (SS4) 2.5 E-5 kg 

  
Emission to water 

  Wastewater (SS3) 0.05 kg 

  
Solid waste flows 

  Ash (SS2) 1.6 E-3 kg 

  Olivine (SS2) 2.7 E-4 kg 

  Insulation (SS2) 5.5 E-7 kg 

  Hydrogen Sulfide (SS3) 5 E-5 kg 

 

 

4.1.3.3. Impact assessment 

 

According to some criteria defined for selecting the impact assessment methods such as the 

scientific robustness, which takes into account also the level of uncertainty, the development 

occurred over time, their application in LCA practice and the European environmental policy 

goals, the midpoint CML method is chosen to assess hydrogen production system [102]. In the 

line with [102–104], eleven midpoint categories were taking into account: Abiotic depletion (AD), 

Abiotic depletion (fossil fuel) (ADF), Global warming potential (GWP), Ozone layer depletion 

(OD), Human toxicity (HT), Fresh water aquatic ecotox (FAET), Marine aquatic ecotoxicity 
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(MAET), Terrestrial ecotoxicity (TET), Photochemical oxidation formation potential (POFP), 

Acidification potential (AP) and Eutrophication potential (EP). The cumulative (non-renewable) 

fossil and nuclear energy demand (CED) of the whole life cycle was also quantified [105].  
 

Hydrogen renewability 

 

The concept of renewability was first introduced by Neelis et al. [106]. In fact, this indicator can 

assist decision makers to choose fuel with superior renewability character. According to 

Cumulative energy demand (CED) method, renewable and non-renewable energy involved in 

whole life cycle can be counted. The index represented for this cycle is shown in Equation 4, [106]:  
 

             𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [%] =
𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 

(𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑛𝑜𝑛𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡𝑠)
                 Equation 4 

 

 

 

4.1.3.4. Interpretation  

 

i) Characterization 

The characterization results are shown in Table 16, they are presented into two different results 

based on assumption if electricity is an avoided product (system expansion) or a separate 

byproduct which its impacts are allocated based on economic price in market (system allocated). 

These comparison in the part of sensitivity analysis are described. According to [90,107], 

allocation percentages for hydrogen and electricity in economic basis are 96%, 4%, respectively. 

In the following, a detailed assessment per process was carried out in order to recognize in detail 

the responsible processes of these environmental results. These results are presented into 

characterization of hydrogen production by environmental impact category, derived by the 

application of CML2 baseline methodology, in Figure 19. The functional unit is 1 MJ hydrogen 

produced.  

Based on the obtained results, avoided production of electricity from by product leads to 60-70% 

environmental benefits in terms of global warming, abiotic depletion, marine toxicity, terrestrial 

ecotoxicity and fresh water ecotoxicity.  

Negative impacts from the electricity consumption in hydrogen compressor and syngas blower are 

relatively high in all categories compared with other inputs in system. 

Biomass production phase contributes considerably to all impact. The most impact categories 

affected by cultivation phase are acidification and eutrophication. Acidification is emission of 

gasses (SO2, NOx, HCl, NH3) into the air that combine with other molecules in the atmosphere and 

result in acidification of ecosystems [48]. Eutrophication includes emission of substrates and 

gasses to the air and water that affect the growth pattern of ecosystems. N-eutrophication (mainly 

NOx, NHx, N𝑂3
− −) has some main effects including changes of the composition of vegetation 
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towards N-loving species, disturbing the nutrient balance in the soil and leaching surplus N in the 

form of nitrate to the ground water [48]. 

P-eutrophication results in excessive growth of algae and higher plants [48].  
 

Table 16. Characterization results corresponding to the production of 1 MJH2. 

Category Unit System expansion System allocated 

Abiotic depletion  kg Sb eq -1.7E-08 3.04E-08 

Abiotic depletion (fossil fuels) MJ 0.95 2.6 

Global warming (GWP100a) kg CO2 eq -0.0196 0.115 

Ozone layer depletion (ODP) kg CFC-11 eq 1.23E-09 1.62E-08 

Human toxicity kg 1,4-DB eq 0.0078 0.033 

Fresh water aquatic ecotox. kg 1,4-DB eq -0.00502 0.02 

Marine aquatic ecotoxicity kg 1,4-DB eq -5.40539 88.08926 

Terrestrial ecotoxicity kg 1,4-DB eq -0.00016 0.000137 

Photochemical oxidation kg C2H4 eq 1.42E-05 4.18E-05 

Acidification kg SO2 eq 0.0006 0.0011 

Eutrophication kg PO4 eq 7.97E-05 0.0002 

Cumulative energy demand MJ 0.54 2.82 
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Figure 19. Percent characterization of hydrogen production by environmental impact category 

(CML2 baseline). (system expansion) 

 

ii) Normalization 
 

Normalization is a step used to solve the incompatibility of units and to simplify the interpretation 

of the results. 

Normalization allows to better understand the contributions of impact categories to the global 

environmental effects. Normalization results are depicted in Figure 20. It is evident that marine 

aquatic ecotoxicity is the pivotal impact category. The contributor for this positive impact is the 

avoided production stage of electricity. On the contrary, abiotic depletion and acidification have 

the significant negative impact due to fertilizer application and consumption in biomass production 

phase. 
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This indicates that modification in agri-food production management such as substituting chemical 

fertilizers with green fertilizer and policies for improvement in biomass supply chain can decrease 

environmental burdens not only in its sector, but also in linked bioenergy systems. 

 
 

 

 

 
 

Figure 20. Normalization of Hydrogen production by environmental impact category (CML2 

baseline). (system expansion) 

 

The renewability score of hydrogen under conditions considered in our study was estimated 75%, 

this value for wind and solar based hydrogen production is 96% and 93%, respectively [108]. In 

fact, high energy saving in energy generation step from offgas leads to achieving this appreciative 

value. According to [39] other approaches for hydrogen production were compared in Figure 21. 

As observed, renewability of biogas SMR, another method to produce biohydrogen, is just 20% 

more approving than natural gas SMR. It refers to energy loss and low technical efficiency of 

biogas based pathway to produce hydrogen, [39]. 
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*Raw biogas from bio-waste             ** Raw biogas from Maize 

 

Figure 21. Hydrogen renewability for each technology 

 

 

Sensitivity analysis 

 

Sensitivity analysis was performed to assess influence of change in technical efficiency of 

hydrogen production and environmental charge allocation on the model results. As observed in 

techno-economic analysis, steam to biomass ratio (S/B) is an effective factor on efficiency. 

Therefore, results of study have been compared with results related to S/B 1.5. Alternatively, an 

economic allocation between hydrogen and electricity produced in the bio-energy plant was 

assumed. Table 17 implies that increase in hydrogen production efficiency can not necessarily 

result in diminution of environmental impacts but even can grow these impacts. In fact, rise in 

hydrogen produced leads to fall in offgas volume, electricity obtained and its avoided impacts. 

These results clarify role importance of byproducts in environmental efficiency of hydrogen 

production. In addition, since the Italian electric profile includes high fraction of non-renewable 

sources in (more than 65% is generated from non-renewable sources, mainly natural gas, oil and 

hard coal) [98], renewability of hydrogen can be affected by decline in avoided energy demands 

in the production of fossil-based electricity followed by drop in offgas volume. 
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Table 17. Sensitive analysis results for increase in hydrogen production environmental 

efficiency 

Category Unit System expansion 

(S/B: 1) 

System expansion 

(S/B:1.5) 

System allocated 

Abiotic depletion  kg Sb eq -1.7E-08 3.2E-08 3.04E-08 

Abiotic depletion (fossil 

fuels) 
MJ 0.95 2.736055 2.6 

Global warming 

(GWP100a) 

kg CO2 

eq 
-0.0196 0.121525 0.115 

Ozone layer depletion 

(ODP) 

kg CFC-

11 eq 
1.23E-09 1.71E-08 1.62E-08 

Human toxicity 
kg 1,4-

DB eq 
0.0078 0.035046 0.033 

Fresh water aquatic ecotox. 
kg 1,4-

DB eq 
-0.00502 0.021581 0.02 

Marine aquatic ecotoxicity 
kg 1,4-

DB eq 
-5.40539 92.72553 88.08926 

Terrestrial ecotoxicity 
kg 1,4-

DB eq 
-0.00016 0.000144 0.000137 

Photochemical oxidation 
kg C2H4 

eq 
1.42E-05 4.4E-05 4.18E-05 

Acidification 
kg SO2 

eq 
0.0006 0.00123 0.0011 

Eutrophication 
kg PO4 

eq 
7.97E-05 0.000221 0.0002 

Hydrogen renewability % 75 48 50 

 

 

 

Discussion 

 

In this section, the results obtained in our study for the impact categories of GWP, AP and EP are 

compared with other LCA reports. To simplify comparison our results with other findings, they 

are presented in functional units used in other works, H2 density is 11 m3/kg. (-0.0196 kg CO2 eq 

per MJ, -0.213 kg CO2 eq per Nm3 or -0.045 CO2 eq g/s).  

Kalinci et al. [109] reported value of GWP as 17.13 CO2 eq g/s in the CFBG system and 0.175 

CO2 eq g/s in the DG system. In this study, the production of pine wood as feedstock to the use of 

the produced hydrogen in Proton Exchange Membrane (PEM) fuel cell vehicle were defined into 

system boundary. Hydrogen compression and transportation were found to be the main sources of 

environmental impact. In spite of kind of biomass used which does not need cultivation process 
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and has a great carbon fixation considering more subsystems and wider system boundary, their 

result for CFBG (comparable with our system) is just significantly higher. 

Moreno and Dufour [110] reported values for the GWP concerning different biomass. Economic 

allocation was considered to designate relevant emissions to waste biomass in orchard products. 

They found that use of allocation approach leads to decrease in CO2 fixation and carbon credits of 

waste since it is distributed between fruit with 90-99% of total price and waste. Therefore, GWP 

for almond pruning by taking into account and regardless allocation was determined as 1.5 and 

0.18 kg CO2 eq per Nm3 of hydrogen and 1.1 and 0.2 kg CO2 eq per Nm3 of hydrogen for vine 

pruning. In this estimation, non-converted CH4 was recovered into system to provide energy needs. 

In comparison, emissions estimated are higher than ours. For the reason that emission from CH4 

recovered is taking into account which are the main responsible for GWP in our system.  

Thus, differences on the feedstock and the system boundaries have influence on the results and 

explain the variations in relation with other studies. 

In addition, comparison of results obtained from other technologies with our considered 

technology in hydrogen production can provide a wider view relating other technologies. In other 

research [111], CO2 emitted from raw biogas reforming under two different feedstocks (maize and 

bio waste) was assessed. GWP value is estimated as 0.046 kg CO2 per 1 MJh2 for Maize-based 

biogas and 0.037 if bio waste is applied. In fact, emissions from fertilizer supply and use of diesel 

for farming machines in maize cultivation are main responsible for these values. These results are 

quite higher than our technology. Moreover, value reported to generate hydrogen by conventional 

method, natural gas SMR, was 0.1 [39,112,113]. Therefore, 100% of kg CO2 per 1 MJh2 can be 

reduced if waste biomass gasification is utilized to produce hydrogen. 

Regarding other categories, remarkable differences have also been identified. In terms of AP and 

EP, Moreno and Dufour [110] reported 0.006,0.008 kg SO2 eq and 0.03,0.045 kg PO4 eq per Nm3 

of hydrogen for vine and almond pruning, respectively. According to these authors, these 

categories were significantly affected by the emissions of nitrate and ammonia consumed as 

fertilizer. Susmozas et al. [114] considered 1 kg of Hydrogen as functional unit and reported results 

of 0.011 kg SO2 and kg 0.0027 PO4. They found that the electric power-generation subsystem due 

to direct NOx emissions to the air has significant contributions to these categories. 

Our result in others unit can be presented in terms of EP 0.0095 kg PO4 and AP 0.072 kg SO2 per 

kgH2 and 0.0008 kg PO4 and 0.0065 kg SO2 per Nm3. As previously indicated, derived emissions 

from production and application of fertilizer and avoided electricity were the main contributors to 

both impact categories in our study. Differences in the selection of the system boundaries and kind 

of biomass were in charge of these results.  
 

4.1.3.4.1 Results of societal techno-economic  

Environmental valuation aims to convert different environmental impacts into common unit in 

order to simplify the evaluation of total impacts. In this study, all environmental impacts quantified 

through the LCA are converted into monetary values in order to obtain real production cost of 

hydrogen which includes shadow prices related to environmental performance of the process. The 

results of the environmental valuation of hydrogen production per kg for each of the three 
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monetary valuation methods (Stepwise2006, Ecotax02 and Ecovalue08) and under two scenarios, 

scenario 1 (environmental charges of cultivation are associated to both products (main crop and 

pruning wastes) and scenario 2 (environmental charges of cultivation are distributed according to 

products price: 1% of charges correspond to almond pruning wastes) are shown in Table 18 and 

Table 19. Negative values reflect avoided environmental impacts, whereas positive values 

represent processes that release emissions and hence are an environmental burden. After 

multiplying the avoided or additional emissions with their shadow price, the negative values can 

be interpreted as a benefit for society, whereas the positive values represent the societal cost for 

each impact category considered.  

 

 

 

Table 18. Environmental valuation per 1 kg H2, scenario1 

Stepwise 2006 

Impact category Environmental benefits  Environmental costs Total 

Abiotic depletion (fossil fuels) -0.85 € 1.3 € 0.45 € 

Global warming (GWP100a) -1.35 € 1.16 € -0.19 € 

Ozone layer depletion (ODP) 0 0 0 

Human toxicity 0 0 0 

Photochemical oxidation 0 0 0 

Acidification -0.01 € 0.02 € 0.01 € 

Eutrophication -0.02 € 0.03 € 0.01 € 

Net balance -2.23 € 2.51 € 0.28 € 

    

         Ecovalue08   

Abiotic depletion (fossil fuels) -0.1 € 0.15 € 0.05 € 

Global warming (GWP100a) -3.9 € 3.35 € -0.54 € 

Ozone layer depletion (ODP) 0 0 0 

Human toxicity -4.57 € 5.88 € 1.3 € 

Photochemical oxidation -0.02 € 0.02 € 0 

Acidification -0.25 € 0.5 € 0.25 € 

Eutrophication -0.42 € 0.67 € 0.24 € 

Net balance -9.26 € 10.57 € 1.3 € 

    

       Ecotax02   

Abiotic depletion (fossil fuels) -4.28 € 6.56 € 2.28 € 

Global warming (GWP100a) -1.2 € 1.02 € -0.18 € 

Ozone layer depletion (ODP) 0 0 0 € 

Human toxicity -0.55 € 0.7 € 0.15 € 

Photochemical oxidation -0.2 € 0.3 € 0.1 € 

Acidification -0.15 € 0.3 € 0.15 € 

Eutrophication -0.05 € 0.09 € 0.04 € 

Net balance 
-6.43 € 8.97 € 2.54 € 
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Table 19. Environmental valuation per 1 kg H2, scenario 2 

Stepwise 2006 

Impact category Environmental benefits  Environmental costs Total 

Abiotic depletion (fossil fuels) -0.85 € 0.16 € -0.69 € 

Global warming (GWP100a) -1.35 € 0.23 € -1.12 € 

Ozone layer depletion (ODP) 0 0 0 

Human toxicity 0 0 0 

Photochemical oxidation 0 0 0 

Acidification -0.01 € 0 -0.01 € 

Eutrophication -0.02 € 0 -0.02 € 

Net balance -2.23 € 0.39 € -1.84 € 

    

         Ecovalue08   

Abiotic depletion (fossil fuels) -0.1 € 0.02 € -0.08 € 

Global warming (GWP100a) -3.9 € 0.67 € -3.23 € 

Ozone layer depletion (ODP) 0 0 0  

Human toxicity -4.5 € 1 -3.5 € 

Photochemical oxidation -0.016 € 0 -0.02 € 

Acidification -0.25 € 0.056 € -0.19 € 

Eutrophication -0.43 € 0.1 € -0.33 € 

Net balance -9.20 € 1.85 € -7.35 € 

    

       Ecotax02   

Abiotic depletion (fossil fuels) -4.3 € 0.8 € -3.50 € 

Global warming (GWP100a) -1.2 € 0.2 € -1 € 

Ozone layer depletion (ODP) 0 0 0  

Human toxicity -0.55 € 0.13 € -0.42 € 

Photochemical oxidation -0.2 € 0.038 € -0.16 € 

Acidification -0.15 € 0.033 € -0.12 € 

Eutrophication -0.056 € 0.013 € -0.04 € 

Net balance -6.46 € 1.21 € -5.24 € 

 

 

In terms of the net balance of societal benefits and costs in scenario 1, all three valuation methods 

indicate that the societal costs of biohydrogen production are higher than the societal benefits.  

According to both Ecotax and stepwise methods, Abiotic depletion is the main contributor to the 

societal costs from cultivation phase and fertilizer consumption in biomass production. It is also 

clear that the production of energy from the process byproducts results in societal benefits as a 

consequence of the avoided use of electricity. 

As a consequence, although Biohydrogen from biomass gasification can be interesting and 

promising compared with conventional hydrogen production systems, external cost of this system 

is not negligible and entails undesirable societal burdens. Therefore, improvement in biomass 

supply chain can be a major step to develop sustainability these systems. 
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But results of scenario 2 indicates that in all three valuation methods environmental benefits are 

higher than costs. This shows importance of biomass role in sustainability assessment for hydrogen 

production process via biomass gasification.  

 

 

4.1.4 Conclusion 

 

Hydrogen production cost is as a function of hydrogen production efficiency and portable 

purification unit (PPS) cost. The results showed that system efficiency increase cannot be able to 

reduce costs to favorable level alone. Therefore, the 50% reduction of PPS cost recognized as the 

major cost and the variation of steam to biomass from 1 to 1.5 allow the cost to fluctuate between 

12.75-9.5 €/kg. 

 

Environmental characteristics of hydrogen and consequent electricity production in a real 

gasification plant were evaluated by LCA methodology. Real input and output flows for the whole 

system were identified and managed in detail from a cradle-to-gate perspective. This study 

reported that biomass production phase mainly influences all impact categories and 

environmental profile. Whereas, due to multifunctional nature of this process and considering 

byproduct treated into electricity as well as no auxiliary energy consumption, these 

environmental impacts can massively decrease. Negative values in marine aquatic ecotoxicity, 

global warming and abiotic depletion chiefly illustrates this improvement. Following this 

result, a sensitivity analysis was conducted to assess the influence of variations in hydrogen 

and byproduct on environmental consequences. Steam to biomass ratio was chosen as 

parameter which can affect both offgas and hydrogen produced. Results indicates that although 

increase in hydrogen production can directly reduce all environmental impacts, this implies a 

fall in offgas volume which indirectly influenced on impact categories leads to rise the impact 

in all categories. 

As a result, in considered production system, environmental effects not only can be influenced 

by hydrogen production rate but byproducts produced can even play more important role.  

In this line of research, development of system boundary into biorefinery products can also 

lead to higher reduction in environmental footprints of hydrogen production system. 

In addition, the sensitivity analysis shows allocation method also highly affects the system 

profile. In fact, allocation of environmental charges can considerably overestimate results.  

After weighting all impact categories based on shadow prices. Results show that, although bio-

hydrogen application entails substantial environmental benefits, its production can be 

undesirable from environmental and economic impacts during biomass supply chain. 

Therefore, employing other kinds of biomass with less dependency on human intervention and 

activities can be considered. 
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 4.2.  Societal techno-economic assessment of biochar production 

 

4.2.1 Summary 

It is unclear whether the production of biochar is economically feasible. As a consequence, firms 

do not often invest in biochar production plants. However, biochar production and application 

might be desirable from a societal perspective as it might entail net environmental benefits. 

Therefore, a societal techno-economic assessment (TEA) which includes all environmental impact 

categories and integrates the environmental aspects with the economic aspects has been performed 

for two potential biochar production systems in Belgium based on two different feedstocks: (i) 

willow and (ii) pig manure. is still missing. First, the environmental impacts of the two biochar 

production systems are assessed from a life cycle perspective, assuming one ton of biochar as the 

functional unit. Therefore, life cycle analysis (LCA) using SimaPro software has been performed 

both on the midpoint and endpoint level. Biochar production from willow achieves better results 

compared to biochar from pig manure for all environmental impact categories. In a second step, 

monetary valuation has been applied to the LCA results in order to weigh environmental benefits 

against environmental costs using the Ecotax, Ecovalue and Stepwise approach. As a result, it is 

suggested that biochar production from willow is preferred to biochar production from pig manure 

from a societal point of view. 

 

4.2.2 Biochar Sustainability  

Biochar is the stable, carbon rich substance obtained from pyrolysis of biomass materials such as 

wood, manure or leaves [115]. The application of this pyrogenic black carbon can have substantial 

advantages from a social, economic and environmental point of view, such as: (1) soil 

improvement for higher biomass yields and possible costs savings; (2) waste management; (3) 

climate change mitigation; and (4) bioenergy production in addition to biochar production 

[116,117]. Since sustainable biochar systems are essential to the future of biochar, these systems 

need to address a wide range of potential environmental, social and economic impacts [118].  
Life cycle assessment (LCA) has already been applied several times to quantify the environmental 

impacts of biochar production systems.  The majority of the research is focused on calculating 

potential savings in greenhouse gas (GHG) emissions, which is the most quoted benefit of biochar 

production and application [48–51,119,120]. It has also been illustrated that agricultural land 

occupation might become an issue when dedicated crops are grown specifically for biochar 

production [121]. However, an assessment of biochar production systems that includes all 

environmental impact categories and that integrates the environmental aspects with the economic 

aspects is still missing.   

 

One way to solve the issue of integration is to use the optional weighting approaches in LCA for 

converting and aggregating the results into a single indicator. Weights can be determined in a 

quantitative or qualitative way [122], or can be expressed in monetary units, both for midpoints 
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and endpoints [78]. Social and biophysical impacts are then translated into monetary values by 

means of shadow prices reflecting the societal value of non-market goods, such as environmental 

quality, for which no prices exist. The advantage of using shadow prices is that they make 

environmental impacts comparable, so that all impacts can be aggregated and integrated in a 

techno-economic assessment containing private costs and benefits related to the production of 

market goods such as biochar. The use of monetary valuation is recognized in LCA [123] and easy 

to understand by and communicate to a wide range of decision-makers [124,125]. A societal 

techno-economic assessment of biochar production systems integrates those economic, 

environmental and social aspects into a single monetary indicator in order to support decision 

making from a societal perspective.  

 

However, the use of monetary values in LCA is controversial as the choice of valuation method is 

subjective and mirrors underlying social, ethical and political values [126,127]. Therefore, we 

apply and compare three monetary valuation methods to LCA results for a case study in Belgium 

in order to answer the research question: “What is the societal value of biochar production and 

application?”. 

 

 

4.2.2 Case studies 

In order to answer the research question: “What is the societal value of biochar production and 

application?”, cases were selected based on data availability in the research group of 

Environmental Economics at Hasselt University. Data related to the private costs and benefits of 

biochar production were available for two case studies in Belgium.  

The first case is related to the techno-economic model developed for investigating the economic 

feasibility of phytoremediation in the Campine region in Belgium [69]. The soil in this vast region 

has been moderately polluted with cadmium (Cd) as a consequence of pyrometallurgical 

processing of zinc until the seventies. Willow cultivated in short rotation might be able to 

decontaminate the soil within acceptable time frames. However, from the viewpoint of a company, 

phytoremediation will only take place if the biomass can be converted into saleable products such 

as bioenergy. Therefore, the case studied the profitability of thermochemical conversion of willow 

crops. In order to safely collect and deposit the Cd, pyrolysis is the preferred conversion 

technology. This means that the biomass is rapidly heated to moderate temperatures (350-650 °C) 

in the absence of oxygen in order to prevent volatilization of Cd. As a consequence, thermal 

cracking of the willow molecules takes place, resulting in the production of gases and biochar in 

which the metals (including Cd) are concentrated. However, as biochar is meant to be used as a 

soil amendment, the case study in this article assumes willow is cultivated on marginal land that 

is not polluted with Cd. It is expected that between 650 and 3,000 ha of farmland might be 

phytoremediated if pyrolysis of willow turns out to be both profitable and sustainable.  
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The second case is related to a cleantech business case [128] developed for a company processing 

pig manure in three steps. First, the pig manure is separated in water (44%), a thick fraction 

(17.5%) and a thin fraction (38.5%). The nutrients nitrogen (N) and potassium (K) end up in the 

thin fraction or concentrate, whereas phosphorus (P) is concentrated in the thick fraction. Second, 

the thick fraction is dried to a dry matter content of 95%. Third, the dried thick fraction is pyrolysed 

for the production of biochar and energy. In full operation it is expected that 60,000 ton of thick 

fraction can be processed annually. 

4.2.3. Life cycle assessment 

The LCA methodology was used for the evaluation of the environmental impacts associated with 

production and application of biochar in soil. The impacts were calculated in SimaPro software 

(version 8.3.0), according to the ISO 14040:2006 [129] requirements.  

 

4.2.3.1 Goal and scope definition 

The goal of this study is to compare the positive and negative environmental impacts of two 

potential cases in Belgium for biochar production and its use as a soil amendment. The functional 

unit is defined as 1 t of produced biochar because the main function of the system is biochar 

production [50,120]. The system boundary is shown in Figure 22. Either pig manure (case study 

1) or willow woodchips (case study 2) are used as a feedstock to the pyrolysis process. 

Two system boundary expansions are included to represent additional functions of biochar [120]: 

(i) the pyrolysis process generates excess energy as a co-product in the form of bio-oil and syngas 

avoiding some consumption and production of electricity and natural gas; (ii) the application of 

biochar as a soil amendment reduces the use of NPK fertilizer.  

The syngas is burnt to provide the internal energy requirements for heat and electricity of the 

pyrolysis process. As energy is provided internally, external heat and electricity production are 

avoided. Excess energy from burning syngas on top of internal energy requirements is offset to the 

market as a substitute for natural gas. Also, the bio-oil co-product is sold on the market as a 

replacement for natural gas.  
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Figure 22. System boundaries for LCA of biochar (-based bioenergy production) production. 
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4.2.3.2 Inventory data acquisition  

Data were collected through laboratory tests, scientific and technical literature. Some processes, 

such as willow wood chips production, transportation, electricity and fuel production were 

modeled using the Ecoinvent database from the SimaPro 8.3 software. Fuel consumption 

emissions were estimated by IPCC guidelines [100]. Emissions released from burning syngas in 

combined heat and power (CHP) are estimated based on reported emission limits  [101]. Table 20 

and Table 21 show the inventory data collected or calculated for willow and pig manure biochar 

production. 

It is assumed that the pyrolysis plant will be operational during 20 years with 7000 working hours 

per year. The residence time of the feedstock is 60 min and the process temperature is set at 500 

°C, allowing the volatile components to escape while a charred solid is left behind. 

In the first case study, wood chips with 20% water content were transported to the pyrolysis plant. 

The assumed product yields for biochar, syngas and bio-oil were 33.5%, 31.9% and 34.6% of the 

weight of the dry feedstock, respectively [41]. Moreover, from the same study, the calorific values 

of the syngas and the bio-oil were estimated to be 11 and 16 MJ/kg respectively. The carbon 

sequestration potential of biochar application to the soil was calculated based on the expected total 

carbon content of biochar, i.e. 75% of Wdry biochar for willow [41], of which a conservative share of 

80% consists of stable carbon [116,130].    

In the second case study, the dried thick fraction   is the feedstock of the pyrolysis plant. This 

implies that additional pretreatment (drying and grinding) is required after the disposal of the 

separated thick fraction of pig manure at the farm (up to a water content of 65%). The management 

of pig farms itself is not included in the system, as it is not expected that choosing pyrolysis instead 

of anaerobic digestion as the preferred manure processing technology will influence the farm’s 

operations. According to experimental results that have been obtained from the cleantech business 

case for pig manure (second case study), pyrolysis of the dried thick fraction resulted in 48.8% (in 

terms of Wdry feedstock) biochar, 23.3% bio-oil and 27.9% of syngas. The assumed carbon content in 

the biochar from the dried thick fraction of pig manure that is used in calculating its carbon 

sequestration potential was considered to be 33.7% of W dry biochar  [131].  

As part of the application to soil, the biochar not only sequesters C, but also improves crop 

performance [132,133] which is a result of enhancement in fertilizer use efficiency. This 

improvement can therefore reduce the amount of the commercial chemical fertilizers applied. 

The dose of biochar applied to the soil as a main factor affects the results [134,135]. According to 

[49], 30 t ha-1 application of biochar for winter wheat crops can lead to 10, 5, 5 and 25% decrease 

in N,P,K fertilizers and N2O emissions, respectively. Therefore, the total amount of N, P, K 

fertilizers avoided and reduction of N2O under normal management conditions of winter wheat 

[136] were calculated as 20,3,4 and 78 kg ha-1, respectively. Transportation distance of biomass 

feedstock to pyrolysis facility and biochar to field was also considered 40 km. 
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Table 20. The inventory data for 1-ton biochar via willow pyrolysis 

Input from technosphere Output to technosphere 

 Product 

1. Willow woodchips   3.73 ton Biochar 1 ton 

2. Transport feedstock to pyrolysis 

plant 
149.2 tkm Avoided products 

3. Pyrolysis  Natural gas 0.4 ton 

    Electricity 0.12 MWh Electricity 3.66 GJ 

    Heat 7.16 GJ N fertilizer 0.66 g 

4. Biochar application  K fertilizer 0.13 kg 

    Transport biochar to field 40 tkm P fertilizer 0.1 kg 

         

   Output to environment 

   Emission 

to air 
 

   1. Avoided combustion of 

natural gas 
 

   CO2 avoided -0.29 ton 

   CH4 avoided -0.005 kg 

   N2O avoided -0.0005 kg 

   2. Combustion of syngas in 

CHP 
 

   SO2 0.015 kg 

   NOx 0.2 kg 

   3. Biochar application in 

soil 
 

   CO2 avoided -2.2 ton 

   N2O avoided -2.6 kg 
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Table 21. The inventory data for 1 ton biochar via pig manure pyrolysis 

Input from technosphere Output to technosphere 

  Product 

1.Dried and ground pig manure 2.9 ton Biochar 1 ton 

   Heat 3.28 GJ  

   Electricity  0.7 MWh Avoided products 

2. Transport feedstock to 

pyrolysis plant 
116 tkm  

3.Pyrolysis  Natural gas 0.17 ton 

   Electricity 0.08 MWh Electricity 0.08 GJ 

   Heat 5.12 GJ N fertilizer 0.66 kg 

4.Biochar application  K fertilizer 0.13 kg 

   Transport biochar to field 40 tkm P fertilizer 0.1 kg 

   Output to environment 

   Emission to air  

  
 1. Avoided combustion of 

natural gas 
 

   CO2 avoided  -0.06 ton 

   CH4 avoided  -0.001 kg 

   N2O avoided  -0.0001 kg 

   2. Combustion of syngas in CHP  

   SO2  0.003kg 

   NOx  0.04kg 

   3. Biochar application in soil  

   CO2 avoided  -0.98 ton 

   N2O avoided  -2.6 kg 

 

 

 

4.2.3.3 Impact assessment 

The impact assessment was performed using IMPACT 2002+ method in SimaPro 8.3. In LCA 

studies on biochar, impact methods such as ReCipe midpoint [120] and Eco indicator 99 [119] 

were developed for biochar systems. In this study the IMPACT 2002+ method [68] was used since 

IMPACT 2002+ model is one of the mainly applied models in LCA analysis [137,138] and it 

enables to count impacts in both midpoint and endpoint level. 
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4.2.3.5 Interpretation 

4.2.3.5.1 Results of LCA midpoints 

The characterization results of the life cycle impact assessment for the two case studies are reported 

in Table 22 in terms of Impact 2002+ midpoint categories.  Case 1 and 2 represent biochar 

production from willow and pig manure, respectively. Negative values mean environmental 

savings are generated by avoided use of products during biochar production and its application in 

soil, while positive values represent a burden for the environment.  

 

Table 22. IMPACT2002+ mid-point results (per ton of biochar) 

Impact category Units Case 1 (willow) Case 2 (pig manure) 

Carcinogens kg C2H3Cl eq 7.9 14.16 

Non-carcinogens kg C2H3Cl eq -89.1 4.52 

Respiratory inorganics kg PM2.5 eq 0.33 0.25 

Ionizing radiation Bq C-14 eq -31814.2 30687 

Ozone layer depletion kg CFC-11 eq 2.87E-05 0.00015 

Respiratory organics kg C2H4 eq 0.043 0.103 

Aquatic ecotoxicity kg TEG water -126039 32574.34 

Terrestrial ecotoxicity kg TEG soil -173333 8628.49 

Terrestrial acid/nutri kg SO2 eq 8.31 3.96 

Land occupation m2org.arable 3684.84 11.8 

Aquatic acidification kg SO2 eq 1.16 1.06 

Aquatic eutrophication kg PO4 P-lim 0.58 0.032 

Global warming kg CO2 eq -2562.22 -711.71 

Non-renewable energy MJ primary -18109.3 10820.51 

Mineral extraction MJ surplus 12.4 6 

 

 

In the next step, Normalization is used to solve the incompatibility of units and simplify the 

interpretation of the results. In fact, Normalization shows to what extent an impact category 

indicator result has a relatively high or a relatively low value compared to a reference. This step 

allows to better understand the contributions of impact categories to the global environmental 

effects. The Impact 2002+ normalization set defined for European zone was employed. 

The normalization of results is carried out by applying normalization factors to impact categories 

in Figure 23. 
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Figure 23.   Normalized impact categories in each case. 

 
According to the obtained results, it can be inferred that the most affected categories are Terrestrial 

ecotoxicity, Land occupation, Global warming, Non-renewable energy. These categories are 

analyzed in detail below. 

Land occupation 
 

Case 1 (willow) has the most adverse impact on land occupation. This is due to land use for the 

willow production process. Hence, if case study 1 will be implemented, the willow should be 

cultivated on marginal land (though not polluted with Cd).  Case 2 (pig manure) has the lowest 

impact as the dried thick fraction is considered as waste from a pig farm. 
 

Global warming 
 

Both case studies result in net savings of CO2 emissions and thus can be considered as a measure 

to fight global warming. The expected savings in CO2 emissions can be explained by the 

substituted amount of heat and electricity production, reduced fertilizer production, amongst 

others, but the highest share in total CO2 savings is attributable to the application of biochar in 

soils. The difference in savings of CO2 emissions can be explained by the different stable carbon 

content of the produced biochar. The biochar produced from willow can reduce GHG emissions 

more than pig manure biochar (2.2 t CO2 vs 0.98 t CO2 t
-1 of biochar) because the stable carbon 

content of willow biochar is higher compared to pig manure biochar. The value obtained for 

savings of CO2 emissions as a consequence of application of willow biochar is close to those 

reported by Hammond et.al [49]: between 2.1 and 2.7 t CO2 t
-1 biochar. 
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Non-renewable energy 
 

Case 1 (willow) reduces the amount of primary energy consumed, whereas case 2 (pig manure) 

results in a net increase of primary energy consumption. The reduction of 18109 MJ of primary 

energy per ton biochar in case 1 (willow) can be explained by the substitution of natural gas and 

electricity resulting from the use of the pyrolysis byproducts (syngas and bio-oil). The increase 

with 10820 MJ primary energy per ton biochar in case 2 (pig manure) is the result of the energy 

needed during the pretreatment process (especially drying) for pig manure.   
 

Terrestrial ecotoxicity 

 

Also in the impact category of terrestrial ecotoxicity, case 1 (willow) results in a net reduction of 

emissions, whereas case 2 (pig manure) results in a net increase of emissions. The main 

contribution to the reduction of emissions in case 1, comes from the absorption of Zinc, Copper 

and Cadmium emissions from soil during production of willow wood chips whereas the main 

contribution to the increase of emissions in case 2 comes from high electricity consumption in the 

pretreatment of pig manure. 

 

4.2.3.5.2 Results of LCA endpoints 

Table 23 shows the damage endpoint categories and total impact single scores for each case per 

ton of biochar production. Case 1 (willow) resulted in reduced impacts on all categories except 

ecosystem quality due to land occupation and human health for agro-chemical application during 

willow production. Case 2 (pig manure) on the other hand results in increased impacts on all 

categories except climate change. 

Figure 24 can be used to analyze the contribution of the process steps to the total damage. For case 

1 (willow), the net reduction of resources consumption is caused by the avoidance of electricity 

and fuel production (and use) during the biochar production process. In both cases the use of heat 

in the biochar production process and additionally in case 2 (pig manure) for drying the feedstock 

is the hotspot in the human health impact category. 

According to the single score in the last line of Table 23, which represents a weighted score of 

overall impact categories that is not based on monetization, one can conclude that biochar 

production from willow is preferred over biochar production from pig manure from a life cycle 

perspective based on the aforementioned assumptions. In addition, according to the single score 

one can even say that production and application of biochar from willow is beneficial for the 

environment. Another important take home message from Figure 24 is that one should look for 

more sustainable solutions for the pretreatment of pig manure. If these can be found, another 

iteration of the life cycle analysis should provide a better insight in the environmental balance for 

both biochar production pathways as a basis for selecting the preferred biochar production 

pathway. 
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Table 23. IMPACT 2002+ endpoint results (per ton of biochar) 

Damage category Unit Case 1 Case 2 

Human health DALY 1.3E-06 2.4E-04 

Ecosystem quality PDF*m2*yr 2600 87 

Climate change kg CO2 eq -2600 -710 

Resources MJ primary -18000 11000 

Total points Pt -184.4 39.3 

 
 
 
 

 
Figure 24. Process contribution to the damage categories 

 

4.2.3.5.3 Results of societal costs and benefits 

 

In this part, the environmental impacts were weighted by the monetary values reported in Table 1. 

First, environmental impacts were calculated through CML method and they subsequently were 

weighted into three different monetary values.  
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Table 24. CML characterization results (per ton of biochar) 

Impact category Unit Case 1 (Willow) Case2 (Pig manure) 

Global warming (GWP100a) kg CO2 eq -2859.53 -978.75 

Ozone layer depletion  kg CFC-11 eq 2.87E-05 0.00015 

Human toxicity kg 1,4-DB eq 71.369 96.32 

Abiotic depletion (fossil fuels) MJ -12172.72 5342.7 

Eutrophication kg PO4 eq 1.9 -0.36 

Photochemical oxidation kg C2H4 eq -0.03 0.04 

Acidification kg SO2 eq 0.92 1.04 

 

 

 
The results for the environmental valuation of willow biochar and pig manure production are 

reported in Table 25 and Table 26 respectively for each of the three monetary valuation methods 

(Stepwise2006, Ecotax02 and Ecovalue08). All values in Table 25 and Table 26 are aggregated 

and visually represented in Figure 25.  As prices cannot be negative, the signs in Table 25 and 

Table 26 reflect the sign of the environmental impact in an analogous way as in Table 22 and Table 

23, i.e. negative values reflect avoided environmental impacts, whereas positive values represent 

processes that release emissions and hence are an environmental burden. After multiplying the 

avoided or additional emissions with their shadow price, the negative values can be interpreted as 

a benefit for society, whereas the positive values represent the societal cost for each impact 

category considered.  

 

In terms of the net balance of societal benefits and costs, all three valuation methods lead to the 

same conclusion for the first case on biochar production and application with willow feedstock. 

Using shadow prices as weights for the environmental impacts, does not lead to a different 

conclusion compared to the single score of Table 23 in which non-monetized weights are used: all 

of the three methods indicate that the societal benefits of biochar production and application with 

willow are higher than the societal costs. 

 

For the second case study, it was concluded from the single score (using non-monetized weights) 

in Table 23 that biochar production and application from pig manure was rather detrimental for 

the environment, which was mainly due to the high energy demand in the pretreatment step for 

drying the thick fraction. Applying the Ecotax02 method gives the same conclusion: biochar 

production and application from pig manure results in a net societal cost and again the pretreatment 

step is the largest contributor to the societal cost. However, the distance between the societal 

benefits and societal costs, which corresponds to the value of the net societal cost/benefit, is not 

as large as the distance or net benefit in the case study for willow. Moreover, according to the 

Ecovalue08 and Stepwise2006 methods the societal benefits are even higher than the societal costs 

of the pig manure biochar system. So, if sustainable solutions can be found for the pretreatment 

step of pig manure, the sign of the net result might be reversed. Hence it is important to investigate 
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the effect of alternative pretreatment pathways on the net societal cost/benefit in the pig manure 

case.  

If we look at the results into more detail (see Table 25 and Table 26), according to the Ecovalue08 

method in both cases the application of biochar to soils is the main contributor to the societal 

benefits from reduced global warming, which again can be traced back to the stable carbon content 

of the biochar. For either method and either case, it is also clear that the production of energy from 

the pyrolysis byproducts results in societal benefits as a consequence of the avoided use of natural 

gas and electricity. However, the societal benefits from avoided energy use are smaller for the pig 

manure case, because more biochar and less byproducts are produced in the latter case study. 

When we compare the three methods, the Ecovalue08 and Ecotax02 methods indicate another 

system component as the main contributor to the total societal environmental benefit. For the 

Ecovalue08 method, it is being concluded that the application of biochar contributes the most to 

the total societal benefits. The Ecotax02 method however, indicates the reduced demand for 

primary energy or abiotic resources, i.e. the avoided energy use because of the valorization of the 

pyrolysis byproducts, as the most important contributor to societal benefits. Another difference 

can be found in the relatively high value attached to human toxicity according to the Ecovalue08 

method for both the production of the willow woodchips and the pretreatment of the pig manure. 

This can be partly explained by the relatively higher price the Ecovalue08 method attaches to this 

environmental impact category (see Table 1). 
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Table 25. Environmental valuation per 1-ton biochar produced from Willow 

Impact category Willow 

woodchips 

Transport Pyrolysis 

process 

Biochar 

application 

Natural gas 

avoided 

Electricity 

avoided 

Total 

 
                                                                               Ecovalue08 

Abiotic Resources 0.98 € 0.1 € 4.43 € 0.05 € -9.53 € -1.9 € -5.87 € 

Global warming  51.13 € 2.97 € 60.87 € -662.78 € -48.98 € -62.53 € -659.32 € 

Ozone depletion  0 0 0 0 0 0 0  
Human toxicity 148.75 € 7.3 € 52.27 € 3 € -2.6 € -109 € 99.72 € 

Photochemical oxidation 0.27 € 0 0.25 € 0 -0.5 € -0.21 € -0.19 € 

Acidification 4.85 € 0.12 € 2.87 € 0.014 € -2.24 € -2.4 € 3.21 € 

Eutrophication 69.4 € 0.18 € 4.64 € -17.86 € -0.86 € -6.6 € 48.90 € 

Net balance 275.38 € 10.67 € 125.33 € -677.58 € -64.71 € -182.64 € -513.55 € 

                                                                               Stepwise2006 

Abiotic Resources 8.41 € 0.88 € 37.71 € 0.42 € -81.13 € -16.21 € -49.92 € 
Global warming  17.78 € 1.03 € 21.17 € -230.54 € -17.03 € -21.75 € -229.34 € 

Ozone depletion  0 0 0 0 0 0 0  

Human toxicity 0.16 € 0 0.05 € 0 0 -0.12 € 0  
Photochemical oxidation 0.03 € 0 0.03 € 0 -0.06 € -0.02 € -0.02 € 

Acidification 0.2 € 0 0.12 € 0 -0.09 € -0.1 € 0.13 € 

Eutrophication 3.28 € 0 0.22 € -0.85 € -0.04 € -0.31 € 2.30 € 

Net balance 29.86 € 1.91 € 59.30 € -230.97 € -98.35 € -38.51 € -276.76 € 

 
                                                                                   Ecotax02 

Abiotic Resources 42 € 4.43 € 188.56 € 2.12 € -405.67 € -81 € -250 € 

Global warming  15.56 € 0.9 € 18.52 € -201.72 € -14.9 € -19 € -201 € 
Ozone depletion  0  0 0.01 € 0 0 -0.01 € 0  

Human toxicity 18 € 0.88 € 6.34 € 0.36 € -0.32 € -13.23 € 12 € 

Photochemical oxidation 3.33 € 0.11 € 3 € 0.03 € -6 € -2.56 € -2 € 
Acidification 2.9 € 0.07 € 1.72 € 0.01 € -1.34 € -1.45 € 2 € 

Eutrophication 9 € 0.02 € 0.6 € -2.34 € -0.11 € -0.86 € 6 € 

Net balance 91 € 6 € 219 € -202 € -428 € -118 € -432 € 
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Table 26. Environmental valuation per 1 ton biochar produced from Pig manure 

Impact category Dried pig 

manure 
Transport 

Pyrolysis 

process 

Biochar 

application 

Natural gas 

avoided 

Electricity 

avoided 
Total 

 Ecovalue08 

Abiotic Resources 3.26 € 0.08 € 3.14 € 0.05 € -4.16 € -0.15 € 2.22 € 

Global warming  99 € 2.33 € 77.07 € -382.2 € -21.39 € -5 € -230.2 € 
Ozone depletion  0 0 0 0 0 0 0  

Human toxicity 93.31 € 5.73 € 35.27 € 3 € -1.15 € -8.77 € 127.39 € 

Photochemical oxidation 0.25 € 0 0.17 € 0 -0.22 € 0 0.20 € 
Acidification 2.7 € 0.09 € 1.8 € 0.01 € -0.98 € -0.19 € 3.43 € 

Eutrophication 6.05 € 0.14 € 2.85 € -17.9 € -0.37 € -0.53 € -9.76 € 

Net balance 204.57 € 8.37 € 120.30 € -397.04 € -28.27 € -14.64 € -106.71 € 

 Stepwise2006 

Abiotic Resources 27.74 € 0.7 € 26.78 € 0.42 € -35.42 € -1.3 € 18.92 € 
Global warming  34.46 € 0.81 € 26.8 € -132.94 € -7.43 € -1.75 € -80.05 € 

Ozone depletion  0 0 0 0 0 0 0 € 

Human toxicity 0.1 € 0 0.03 € 0 0 0 0.13 € 
Photochemical oxidation 0.03 € 0 0.02 € 0 -0.02 € 0 0.03 € 

Acidification 0.11 € 0 0.07 € 0 -0.04 € 0 0.14 € 

Eutrophication 0.28 € 0 0.13 € -0.85 € -0.01 € -0.02 € -0.47 € 

Net balance 62.72 € 1.51 € 53.83 € -133.37 € -42.92 € -3.07 € -61.30 € 

 Ecotax02 

Abiotic Resources 138.74 € 3.48 € 133.9 € 2.12 € -177.14 € -6.52 € 94.58 € 

Global warming  30.15 € 0.7 € 23.45 € -116.32 € -6.5 € -1.53 € -70.05 € 
Ozone depletion  0.01 € 0 0 0 0 0 0.01 € 

Human toxicity 11.33 € 0.7 € 4.3 € 0.36 € -0.139 € -1 € 15.55 € 

Photochemical oxidation 3 € 0.09 € 2 € 0.03 € -2.64 € -0.2 € 2.28 € 
Acidification 1.6 € 0.06 € 1 € 0.01 € -0.58 € -0.11 € 1.98 € 

Eutrophication 0.8 € 0.02 € 0.37 € -2.34 € -0.05 € -0.07 € -1.27 € 

        

Net balance 185.63 € 5.05 € 165.02 € -116.14 € -187.05 € -9.43 € 43.08 € 

 

Figure 25 summarizes the cost and benefit data in Table 25 and Table 26.  

Comparing the willow and manure biochar system, it can be concluded that the societal benefits 

for the willow biochar system are more than double the societal benefits from the manure biochar 

system, which is explained by (i) the higher amount of saved energy consumption thanks to the 

pyrolysis byproducts in the willow biochar production system and (ii) the higher carbon content 

of the willow biochar 
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Figure 25. Environmental benefits and costs of two biochar production systems 

 
 

4.3.5 Conclusion 

Environmental impact of biochar production from two feedstocks and its use in soil by means of 

LCA was investigated. However, in decision making processes one is interested in making choices 

and hence one should find a way of integrating the results of measuring each of the environmental 

impact categories. This can be done by a weighting step in which monetary and non-monetary 

weights can be used. The advantage of monetary weights is that they reflect the values society or 

individuals attach to environmental goods or impacts, and that they can be integrated with private 

costs and benefits in a societal techno-economic assessment. Governments can then use this 

information to devise policies towards new technologies and to determine the right amount of taxes 

and subsidies to correct market failures. The goal of this paper was to determine the societal costs 

and benefits from biochar production and application for two case studies in Belgium using (i) 

willow and (ii) pig manure as a feedstock for which techno-economic models were available.   

For the most relevant (normalized) impact categories (global warming, non-renewable energy use 

and terrestrial ecotoxicity), the willow biochar pathway outperforms the manure pathway. There 

is however a problem for land occupation in the willow case, but that can be solved by restricting 

the growth of willow crops to non-polluted marginal soils. The main reason why producing biochar 

from pig manure seems less beneficial, is due to the high energy cost in the pretreatment step. 

Therefore, it is advised to have a closer look at more sustainable ways of handling pig manure 
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before it enters the pyrolysis reaction. If that can be found, another iteration of the life cycle 

analysis should provide a better insight in the environmental balance for both biochar production 

pathways as a basis for selecting the preferred biochar production pathway. 

 

 In both cases applying monetary weights resulted in the same conclusion as the one from using a 

single score environmental impact using non-monetary weights: under current assumptions the 

willow biochar pathway appears to be better for the environment compared to the manure biochar 

pathway. The applied shadow prices however differ and as a next step, it should be investigated 

which method reflects the biochar production systems under investigation the best.  For instance, 

the geographical scope might explain divergence: Ecotax2002 and Ecovalue08 are based on 

Swedish conditions whereas Stepwise2006 has a more global scope. The annual income can be 

easily adjusted to the regional context when applying the Stepwise2006 approach, though the 

Ecotax2002 and Ecovalue08 require more extensive adjustment steps in future.  
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4.3. Eco-efficiency assessment of vineyards 

4.3.1. Summary 

This part addresses the combination of life cycle assessment (LCA) and Data Envelopment 

Analysis (DEA) for environmental sustainability assessment in Iranian vineyards. In this study, a 

total of 50 orchards were assessed following LCA + DEA methodology to estimate the technical 

efficiency of each orchard. Moreover, target performance values benchmarked for inefficient 

vineyards and the potential reductions in environmental impacts linked to the technical efficiency 

improvement were counted with the aim of verifying eco-efficiency criteria. The purpose is 

assessment of the environmental consequences for grape production considering waste 

management in Iranian vineyards. In addition, improvement options by joining LCA and DEA for 

operational benchmarking in terms of productive efficiency while evaluating the environmental 

performance of vineyards will be examined.  

 
 

4.3.2 Life cycle assessment  

4.3.2.1 Goal and scope definition  

The goal is the assessment of environmental emissions of grape production in current vineyard 

management system and in optimized conditions using DEA method. The functional unit for this 

study is defined as the production of 1 ton of grape since mass based functional unit is prevalent 

in LCA studies of fruit [139]. The focus of our study was to apply LCA + DEA for monitor 

emissions of grape production rather than analyses of processing, distribution or consumption 

emissions. Therefore, the system boundaries in this study were considered to be the cradle-to-farm 

gate for the production of all operational inputs used by the farmers in their production chain (i.e. 

from the production of fertilizer and pesticides from raw materials to the harvesting). Figure 26 

illustrates the elements involved in the combined LCA and DEA framework of vineyards. LCA 

outputs embraced not only the product of grape, but also pruning biomass as well as direct 

emissions associated with energy, fertilizers and chemicals application, whereas grape crop was 

the unique DEA output. 
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Figure 26. System boundaries for each vineyard in LCA + DEA. 
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4.3.2.2 Life cycle data acquisition 

 
This work was performed in the Hamedan province, located in Northwest of Iran between latitudes 

of 49⸰ 35  َ  and 59⸰ 33  َ  N and between longitudes of 34⸰ 47َ and 36⸰ 49َ E. This province was 

recognized as a representative of the Iranian grape production since 20% of total production comes 

from this province [140]. The data used in this study were obtained from 50 farmers using a face-

to-face questionnaire method. The samples were identified using simple random sampling method. 

Data included descriptive and quantitative information on various inputs used (electricity, 

chemicals, fertilizers, etc), the amount of land possessed by the farmers, their cropping pattern, 

crops yields, operations time, etc.  

Inventory analysis involves the natural resources and other inputs as system inputs, and main and 

by-products of the system as well as environmental emissions connected with inputs consumption 

as outputs. Data used in this study can be classified as background data for the production of used 

inputs from raw materials, leading to off-farm emissions. These data were extracted from the 

process data of EcoInvent®3.0 database included in SimaPro 8.0.2. The other category was, 

foreground data for the application of inputs causing on-farm emissions. 

Grape production is modeled at the orchard scale over a 1-year orchard life cycle when yield is 

stable. Therefore, primary orchard planting is excluded from the Inventory. Almost all activities 

required for grape production in the area studied are operated by Human labor such as land 

preparation, pruning, fertilizing, harvesting and burying garden after harvesting. In fact, it is 

derived by conditions of cultivation as there is no potential to apply machinery in garden; only 

small sprayers are used for pesticide spraying.  

Main fertilizers in grape cultivation are Urea, Ammonium phosphate, Potassium sulfate and 

Farmyard manure; the inventory of their production and transportation to the field are taken into 

account. Common pesticides used to control insect and fungus are Diazinon and Captan, 

respectively. For modeling commercial chemicals, their corresponding chemical groups were 

applied. Diesel fuel consumption for garden sprayers and transporting inputs to vineyards was 

calculated according to the collecting data from farmers. In terms of transportation, all materials 

and products involved in the grape production system were carried by different transport facilities 

through different distances. The average distance to transport inputs to the vineyards was estimated 

as 100 km.  

Direct emissions from diesel fuel combustion in sprayers is calculated based on IPCC guidelines 

[141].  

There were two different approaches to treat residues in vineyards. Some gardeners removed the 

residue from the field, whereas the second group preferred to burn the crop residue at the garden, 

which causes emissions of SO2, CO, VOC and NOx. CO2 from crop residue burning is non-fossil 

and it is not considered as a net source of carbon dioxide by IPCC.  For the calculations of the 

emissions from burning crop residue, the emission factors presented in Table 27 were used. 

In case of environmental impacts of agricultural inputs, nitrogen emissions often contribute 

substantially to the final results of the LCA studies [142]. Coefficients for calculating emissions 

associated with the application of inputs presented in Table 27.  
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Table 27. Coefficients for calculating the on-farm emissions related to application of inputs in 

grape production. 

Characteristics (kg) Coefficient Emission result (kg) 

(Reference) 

A. Emissions from fertilizers  [143] 

1. N in fertilizer and manure applied 0.01 N2O   ̶ N (to air) 

2. Urea 0.2 CO2   ̶ C (to air) 

3. N in manure applied 0.2 NH3   ̶ N (to air) 

4. N in fertilizer applied 0.1 NH3   ̶ N (to air) 

5. N in fertilizer and manure applied 0.3 N𝑂3
− ̶  N (to water) 

6. Phosphorus in fertilizer and manure applied 0.05 Phosphorus emission (to 

water) 

   

B. Indirect N2O from atmospheric deposition 

of fertilizers 

 [143] 

1. N in chemical fertilizer applied 0.01×0.1 N2O   ̶ N (to air) 

2. N in manure applied 0.01×0.2 N2O   ̶ N (to air) 

   

C. Emissions from residue burning  [144] 

 

           Residue burned 

0.0026 NOX (to air) 

0.00005 SO2 (to air) 

0.0019 VOC (to air) 

0.025 CO (to air) 

   

D. Direct NOx emissions from fertilizers  [143] 

       N2O from fertilizers 0.21 NOX (to air) 

E. Emissions from diesel combustion  [141] 

 

Diesel burned 

4.16 CO2 (to air) 

0.0005 CH4 (to air) 

0.00003 N2O (to air) 

F. Emissions from pesticides   [145] 

   Pesticides used 1 Pesticides used (to soil) 
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The direct field emissions consist of  ammonia (NH3), nitrous oxide (N2O), and NOx emissions 

due to nitrogen containing fertilizers application emitted into air, carbon dioxide (CO2) from urea 

emitted into air, nitrate (N𝑂3
−) due to nitrogen containing fertilizers application emitted into 

groundwater, phosphorus emissions from application of P containing fertilizers released into 

surface water, and indirect N2O from atmospheric deposition of chemical fertilizers and farmyard 

manure have been calculated using emission models Table 27. Using the IPCC guidelines, 

Equation 5 was employed to calculate the direct N2O emissions of grape production from a variety 

of sources [143,146]. 

 

                   N2ONinputs− N = (FSN +FON) *EF1                                                   Equation 5 

 
 
Where N2ONinputs-N (kg N2O-N) is amount of annual direct N2O-N emissions produced from 

managed soil; FSN (kg N) is the amount of synthetic fertilizer N applied to soil; FON (kg N) 

represents the amount of organic N additions applied to soil; EF1 is the emission factor for N2O 

emissions from N inputs, kg N2O-N/kg N input presented in Table 27. 

Nitrate (N𝑂3
−) is formed by application of N containing fertilizers and conversion of ammonium 

(N𝐻4
+). The nitrate form of nitrogen is prone to leaching to deeper soil levels where it is 

inaccessible to plant [147]. About 30% of N applied in the form of chemical fertilizers and manure 

is leached deeper down into the soil. 

Indirect N2O from atmospheric deposition of chemical fertilizers and farmyard manure are counted 

by the coefficients presented in Table 27. The amount of N2O released into atmospheric deposition 

depends on the fraction of applied N that volatizes as NH3 and NOx, and the amount of volatized 

N that is converted to N2O. 

During denitrification processes in soils, 21% of each direct and indirect N2O emissions related to 

chemical fertilizers and farmyard manure are emitted in the form of NOx into air [143]. 

Leaching, run-off and soil erosion through water lead to releasing a part of phosphorous content 

of fertilizers and manure into water causing freshwater   eutrophication [148]. An approximately 

5% of phosphorus from applied fertilizer and manure actually reaches freshwater. In addition, all 

pesticides applied for crop cultivation were assumed to end up as emissions to agricultural soil and 

the drift was not taken into account. Therefore, the same amounts of chemical pesticides applied 

as inputs were simultaneously considered as outputs. Inventory data for different field emissions 

of inputs were extracted from EcoInvent®3.0 database analyzed by SimaPro 8.0.2. 

 

Life cycle inventories for production of grape which are includes the entire grape production 

process as well as residue which is burnt in garden. The whole 1-year orchard life cycle 

encompasses: Irrigation, fertilizing, treatment with different chemicals and their transportation to 

the garden. are presented in Table 28. 
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Table 28 . The inventory data for 1 ton grape produced 

Output to technosphere 

Grape 1 ton 

Pruning residue 27 kg 

Input from technosphere (Off farm emissions) 

 

1- Diesel 1.13 kg 

2- Pesticides  

a. Captan 0.107 kg 

b. Organo-phosphorous compound (Diazinon) 0.063 kg 

3-  Fertilizers  

Urea (46-0-0) as N 10.9 kg 

Ammonium phosphate (18-48-0) 6.54 kg 

Potassium sulfate (0-0-52-18) 9.6 kg 

4- Farmyard manure 1.45 ton 

5- Transportation 147 tkm 

6- Electricity 38 kWh 

  

Output to environment (on farm emission) 

Emission to air  

1. Combustion of diesel fuel  

CO2 4.7 kg 

CH4 0.6 g 

N2O 0.04 g 

2. Emissions from fertilizers  

a. NH3 from N 9 kg 

 b. N2O from N        1.06 kg 

 c. CO2 from urea 17.36 kg 

 d. Indirect N2O from chemical fertilizer     2 g 

 e. Indirect N2O organic fertilizer   80 g 

f. Direct Nox from fertilizer 0.3  kg 

3. Emission from burning residue  

NOx 3.7 g 

SO2 0.072g 

VOC 2.7 g 

CO 36.42 g 

Emission to water  

1. NO3 from N 31.8 kg 

2. Phosphorus 4.6 kg 

 Emission to soil  



98 
 
 

 

a. Captan 0.107 kg 

b. Organo-phosphorous compound 

(Diazinon) 0.063 kg 

 

 
 

4.3.2.3. Data envelopment analysis (DEA) 

The DEA is a non-parametric data analytic technique which applies a linear programming 

technique to assess the efficiency of all production units under investigation, indicated as decision 

making units (DMUs). DEA also allows the quantification of target feasible operating conditions 

that would turn inefficient DMUs into relatively efficient ones, which makes it a valuable tool for 

benchmarking purposes [149]. In this study, each vineyard represents one DMU (1 garden = 1 

DMU). Input-oriented slack-based measure (SBM) of efficiency model with constant returns to 

scale (CRS) was selected based on its best fit to the objectives of the current study. An input-

oriented model is adapted because there is only one output while multiple inputs are used; also in 

a farming system, a producer has more control over inputs rather than output levels, and input 

conservation for given outputs seems to be more rational [150]. Furthermore, an SBM model 

allows efficiency measurement of the DMUs regardless of the units of measure that are foreseen 

for the different items. On the other hand, the SBM model shows non-radial metrics to calculate 

the reduction potentials of each input independently from one another [151]. Finally, since all 

vineyards operate in a competitive market the CRS approach is considered [152]. The DEA model 

was formulated as follows [153,154]: 

 

Φ0 = 𝑀𝑖𝑛 (1 −
1

𝑀
∑

𝜎𝐾0

𝑋𝐾0

𝑀

𝐾=1

) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

∑ 𝜆𝑗0

𝑁

𝑗=1

𝑋𝐾𝑗 =  𝑋𝐾0 − 𝜎𝐾0Ɐ𝑘 

 

∑ 𝜆𝑗0𝑦𝑗

𝑁

𝑗=1

=  𝑦0 

 

𝜆𝑗0 ≥ 0  Ɐ j, 𝜎𝐾0 ≥ 0 Ɐ k 

 

With 𝑁: number of vineyards; 𝑗: index on the vineyard; 𝑀: number of inputs; 𝐾: index on inputs; 

𝑋𝐾𝑗: amount of input 𝐾 demanded by vineyard 𝑗; 𝑦𝑗: amount of output generated by vineyard 𝑗; 0: 
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index of the vineyard under assessment; (𝜆10, 𝜆20, … , 𝜆𝑁0): coefficients of linear combination for 

assessing vineyard 0; 𝜎𝐾0: slack (i.e., potential reduction) in the demand of input 𝐾 by vineyard 0; 

and Φ0: Technical efficiency score of vineyard 0. 

The target input values for each vineyard (�̂�𝐾0) were calculated according to the following 

equation:  

 

�̂�𝐾0 =  ∑ 𝜆𝑗0𝑋𝐾𝑗 =  𝑋𝐾0 −  𝜎𝐾0 

𝑁

𝑗=1

 Ɐ𝐾 

 

 

Concretely, if Φ =1, means that the vineyard will be considered efficient whereas, 0 ≤ Φ < 1, 

symbolizes that the vineyard is inefficient.  

For the present study, the DEA matrix according to Table 29 was implemented into an 

optimization model solved by using the EMS (Efficiency Measurement System) software [155]. 

 

 

Table 29. DEA matrix for 50 vineyards. 

 

DMU 

code 

Input  Output 

Manure 

(kg) 

Phosphate 

(kg) 

Potassium 

(kg)  

N 

fertilizer 

(kg) 

Electricity 

(kWh) 

Chemicals 

(kg) 

Fuel       

(L) 

Water  

(m3) 

Machinery 

(h) 

Labour 

(h) 

 Grape  

(kg) 

1 25600 255 240 250 750 3.3 22 7500 16 1240  20000 

2 0 136 190 280 675 2.77 18 6600 9 1220  11000 

3 0 125 150 270 750 3.3 27 6040 18 1208  12000 

4 1900 0 0 0 750 2.99 18 7400 10 1160  14000 

5 76300 208 290 247 675 2.9 25 7660 15 1132  20000 

6 30300 156 265 270 750 2.77 23 5900 16 1036  9000 

7 56100 237 250 354 750 3.6 34 7400 23 1292  23000 

8 30100 118 162 208 675 3.3 24 7760 16 1256  21000 

9 0 54 154 270 750 3.2 26 7500 15 1248  20000 

10 14100 109 283 220 675 3.5 30 6600 17 1188  9000 

11 23000 128 253 210 675 3.26 25 6500 15 1256  20000 

12 22600 138 160 306 675 3.86 26 7400 18 1200  30000 

13 46300 0 0 0 675 2.77 23 5440 15 1080  18000 

14 25000 150 275 250 750 3.8 21 5700 17 1356  21000 

15 0 258 170 250 675 3.83 26 7660 21 1368  30000 

16 75600 152 226 205 750 3.22 43 7000 30 1304  22000 

17 54600 250 350 267 675 3.2 23 5340 18 1356  21000 
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18 20000 108 164 205 750 3.2 26 6900 15 1204.01  17000 

19 69300 0 0 0 750 2.99 24 7300 11 1284  15000 

20 22800 125 273 160 750 2.25 26 7000 15 1336  20000 

21 45300 106 254 240 675 3.83 24 7500 21 1320  30000 

22 26000 0 0 0 750 3.25 20 7000 15 1160  20000 

23 22600 0 0 0 750 2.77 21 7060 15 1220  15000 

24 22600 125 260 250 750 3.3 34 7000 25 1140  21000 

25 35300 55 190 210 750 3.27 24 7310 13 1264  20000 

26 80000 170 160 209 675 3.9 23 7290 20 1292  30000 

27 11600 0 0 0 750 2.93 25 8500 18 1220  10000 

28 31800 225 170 240 750 3 22 7000 15 1316  20000 

29 0 128 192 250 750 2.8 20 7000 10 1140  11000 

30 0 75 258 230 675 2.8 37 6800 24 1172  9000 

31 0 150 245 350 750 3.2 24 7000 15 1236  16000 

32 28600 307 250 270 675 3.51 23 6800 15 1328  25000 

33 32000 135 366 180 750 3.83 36 7280 24 1228  30000 

34 26300 157 170 260 675 3.2 25 6700 15 1100  20000 

35 32500 0 0 0 675 3.22 23 7810 17 1192  21000 

36 9300 123 170 205 675 3.3 26 7560 13 1024  20000 

37 0 102 180 340 675 3.3 30 7600 23 1216  22000 

38 25300 60 265 210 675 2.77 25 6700 15 1056  11000 

39 29000 208 240 320 750 3.3 37 7000 21 1240  16000 

40 26300 145 174 280 750 2.8 27 8700 20 1232  9000 

41 82700 138 255 270 750 2.77 18 8400 16 1228  25000 

42 1200 0 0 0 750 2.95 26 6000 15 1220  9000 

43 0 0 0 0 750 2.93 16 5800 8 1244  12000 

44 33600 152 264 235 750 3.5 25 5800 15 1204  20000 

45 47300 75 278 220 750 2.92 27 8300 18 1432  22000 

46 46600 131 156 260 750 3.07 20 7270 9 1288.98  20000 

47 25300 226 174 300 675 2.79 18 6500 13 1028  21000 

48 6400 190 188 240 675 3.04 33 7300 23 1320  30000 

49 0 180 172 305 675 3.14 14 5430 10 1208  9000 

50 22300 0 0 0 750 2.77 22 7000 16 1336  12000 

Mean 26870 121.4 177.7 201.9 718.5 3.1634 25.1 7000.2 16.54 1226.6  18580 
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4.3.2.4. DEA + LCA framework 

The joint application of LCA and DEA arises as a valuable tool to benchmark the technical and 

environmental performance of multiple resembling entities.   

In particular, the five-step LCA + DEA is the most widely used due to its methodological 

consistency compared with other combined approaches, such as the three-step method [156–158]. 

The first step (i) is life cycle inventory (LCI) for every DMUs which involves data collection 

regarding the input and output flows of the grape orchards. The second step (ii) is the life cycle 

impact assessment (LCIA) for each of the DMU which aims to estimate the characterization of the 

environmental profile of the current DMUs from the LCI developed in the previous step. The third 

step (iii) deals with DEA model from the LCIs of the first step and computation of the target 

DMUs. The technical and environmental efficiency of each DMU is estimated, and the target 

values are calculated for the inefficient DMUs. In the fourth step (iv) LCIA of the target DMUs 

are achieved according to the new LCI data arising from the previous step and finally, the potential 

environmental impacts determined for the virtual DMUs. The last step (v) involves the 

interpretation of the results based on eco-efficiency criteria.  

In the analysis of efficient and inefficient DMUs, the environmental improvement target ratio 

(EITR) is first applied to specify the inefficiency level of each impact category for the DMUs 

under consideration. Hu and Kao [159] have defined the energy saving target ratio to identify the 

inefficiency level of energy usage. In this study, inefficiency level of impact categories is 

determined by the formula as follows: 

 

                    EITR (%) = 
 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑡𝑎𝑟𝑔𝑒𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡
× 100                           Equation 6                                                         

 

Where environmental improvement target is the total environmental impact which could be 

avoided without declining the production level. This index defines environmental inefficiency as 

potential in impact reduction. A higher EITR percentage implies higher environmental 

inefficiency, and thus, a higher impact reduction. 

 

4.3.2.4 Impact assessment 

Impact assessment phase based on the selected impact assessment method converts the different 

types of inputs and raw materials as well as environmental emissions into their contributions to a 

range of selected impact categories (impact characterization).  

In this study, impact assessment was conducted using the CML IA baseline methodology, one of 

the most common mid-point methods. The CML guide [63] provides a list of impact categories 

widely used in LCA studies of agricultural systems. In this study, the impact categories are those 

regarding abiotic depletion, abiotic depletion of fossil fuels, global warming potential, ozone layer 

depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial 
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ecotoxicity, photochemical oxidation, acidification and eutrophication. In addition to these 

categories included in the CML method, this work also evaluates accumulative energy demand in 

the process (CED) which takes into account all the energy required in grape production with a life-

cycle perspective [64]. 

 

 

4.3.2.5 Interpretation 

i) Characterization 

The characterization results of grape cultivation system for impact categories defined by CML 

baseline methodology are presented in Table 30. 

Each impact category is divided by on-farm and off-farm emissions. Figure 27 shows the 

contribution of each source to the characterization results. Based on the obtained results, the GWP 

was estimated to be 157 kg CO2 eq per 1 ton produced grape; 135 kg associated to off-farm 

emissions and 22.07 kg CO2 eq to on-farm emissions. As illustrated in Figure 27, GWP was mainly 

affected by off-farm emissions due to the production of electricity, organic and chemical fertilizers. 

Similarly, the share of synthetic fertilizers in the impact categories of Cumulative energy demand, 

ozone layer depletion, abiotic depletion, terrestrial ecotoxicity, marine aquatic ecotoxicity and 

human toxicity is also considerable. The characterized indices of acidification and eutrophication 

were found to be 16 kg SO2 eq and 28.8 kg P𝑂4
−3eq per 1ton grape produced, respectively. 

For acidification, eutrophication and fresh water aquatic, on-farm emissions were the key 

contributors, while the all other categories were primarily due to the production of chemical 

fertilizers, especially urea and potassium sulphate. In such study the results showed that grape 

production is not efficient in terms of consumption of chemical fertilizers and electricity, and these 

inputs had the highest potential for improvement [160]. Similarly, Vázquez-Rowe et al. reported 

that diesel consumption, fertilizer usage and certain phytosanitary application practices need to be 

revised in order to guarantee a net improvement in operational efficiency.  

In addition, the contributions to CED come significantly from energy for fertilizer production. 
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Table 30. Characterization of grape production referred to the FU (1 ton of Grape) 

Impact category Unit Total Off-farm 

emissions 

On-farm 

emissions 

Abiotic depletion kg Sb eq 6.69E-04 6.69E-04 0 

Abiotic depletion (fossil fuels) MJ 1870 1870 0 

Global warming (GWP100a) kg CO2 eq 157 135 22.07 

Ozone layer depletion (ODP) kg CFC-11 eq 1.42E-05 1.42E-05 0 

Human toxicity kg 1,4-DB eq 50.9 48 2.913 

Fresh water aquatic ecotox. kg 1,4-DB eq 309 23.6 285.33 

Marine aquatic ecotoxicity kg 1,4-DB eq 67000 67000 1.72 

Terrestrial ecotoxicity kg 1,4-DB eq 2.55 1.89 0.65 

Photochemical oxidation kg C2H4 eq 5.49E-02 3.65E-02 0.0184 

Acidification kg SO2 eq 16 7.96E-01 15.15 

Eutrophication kg P𝑂4
−3eq 28.8 2.33E-01 28.55 

Cumulative energy demand (CED) MJ 2360.7 2360.7 0 

 

 

 

 

 
 

Figure 27. Percent characterization of grape production by environmental impact category 

(CML2 baseline). 
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ii) Normalization 

 
In the next step, Normalization is used to solve the incompatibility of units and simplify the 

interpretation of the results. In fact, Normalization shows to what extent an impact category 

indicator result has a relatively high or a relatively low value compared to a reference. This step 

allows to better understand the contributions of impact categories to the global environmental 

effects. Normalization results are depicted in Figure 28. It is evident that Eutrophication is the 

pivotal impact category. The inputs owning the main contribution to Eutrophication are NH3 and 

N𝑂3
− emitted to air and water from N fertilizer and manure.  Therefore, management of fertilizer 

application by increasing its use efficiency and reducing losses with improving management 

practices can reduce Eutrophication in grape production in the region. Also, we can see that human 

toxicity and ozone layer depletion have relatively low normalized impacts compared to the others. 

 

 

 
Figure 28. Normalization of environmental impact categories for grape production (CML2 

baseline). 

 

 

 

4.3.2.4.1 Gasification system model   

Waste management from grapevine pruning was also evaluated, considering an innovative 

biomass gasification system, based on indirect heated dual fluidized bed gasifier coupled with CHP 

system. A proper model of the system was developed by means of ChemCAD software, whose 
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simplified flowchart used for simulations is reported in Figure 29. The steam-gasifier was 

simulated by a previously purposely developed and experimentally validated MATLAB model 

interfaced in ChemCAD. More information on MATLAB gasifier model are available in the 

work of Di Carlo et al. [161]. Conventional ChemCAD blocks were instead used for the simulation 

of the remaining components of the plants.  

 

 

Figure 29. ChemCAD flowchart of the gasification system. 
 

 

The double fluidized bed gasifier consists in two connected reaction zones, the gasification 

(Gasifier) and the combustion (Burner) one.  Biomass is gasified in the former with steam. The 

burner is fed with air. The communication between the two chamber is assured by the circulation 

of the bed material (olivine) and charcoal from the gasifier to the combustor, where it is burned 

increasing the temperature of the bed material, which in turns circulates back to the gasifier 

providing the thermal powder needed for gasification reaction. A proper little amount of LPG is 

even fed into the combustion zone, in order to assure the system thermal balance. Even a hot gas 

cleaning system was simulated, consisting in a set-up of catalytic filter candles (Cat.Candles) for 

particulate removal and conversion of tars in additional syngas. The catalytic filter candles are 

inserted in the freeboard of the gasifier, for a compact, integrated and more efficient configuration 
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[162]. even if they were simulated as an external secondary reactor using consistent parameters 

with the real configuration. The produced syngas, mainly composed of H2, CO, CO2, CH4 and 

residual steam, first preheats the air for the combustor and provides the thermal energy for the 

superheated steam generation, and then passes through a condenser for the removal of the residual 

steam, ready to be sent to the CHP system. The flue gas produced by the combustor, instead, is 

cleaned from ashes by a cyclone and a Baghouse filter and is used for the first stages of steam 

generation. The input biomass considered was grapevine pruning, with a moisture content of 5.4% 

and a LHVdaf of 16.83 MJ/kg [163]. Biomass flowrate was set at 20 kg/h, providing about 100 

kWth of input energy. Catalytic filter candles were simulated with a stoichiometric ChemCAD 

reactor, where only toluene and naphthalene compounds were taken into account as the most 

representative and abundant heavy aromatic hydrocarbons: conversion rates were taken works 

during UNIfHY project [82]. In Table 31 are listed the other main assumption of the plant.  

 
Table 31. Operating conditions of gasifier 

Gasifier operating temperature (°C) 
850 

Burner operating temperature (°C) 950 

Burner and Gasifier operating absolute pressure (bara) 1.1 

Olivine sand circulating Burner-Gasifier (kg/h) 1000 

Steam temperature (°C)  450 

Air temperature (°C) 600 

Catalytic Candles operating temperature (°C) 850 

 

 

 

 

4.3.2.4.2 DEA performance 

The available LCI data were used to create the DEA matrix (Table 29) consisting of the most 

relevant inputs and outputs. The DEA optimization model results in Technical efficiency (Φ) for 

each vineyard. Efficient orchards with technical efficiency Φ =1 and 0% reductions were excluded 

in this Farms (30% of sample) were found to operate efficiently. The mean Φ for the vineyards is 

estimated 60%. Furthermore, operational targets were calculated for each input in order to turn 

inefficient vineyards into efficient ones. These targets are then used to indicate potential savings 

for the current amount of inputs used. Figure 30 illustrates the potential of agricultural input 

reduction per ton of output of the original inefficient DMUs compared with those associated with 

their virtual targets. 

The target efficient amounts of inputs estimated in the third step of the combined DEA and LCA 

method were subsequently used to replace the actual inefficient amounts of inputs that resulted 

from the life cycle inventory from step 1 and to calculate the corresponding environmental impact 
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of the DMUs were to behave in an efficient way.  By definition the environmental impacts of the 

virtual efficient DMUs are lower compared to the LCIA of the original DMUs as a consequence 

of the optimization of the operational inputs. In addition, the results of EITR calculation in Table 

32 indicated that if all vineyards are operated efficiently, the POFP, TET, AP and fresh water 

toxicity would have been reduced by respectively 50%, 42% and 40% at the same yield level. 

These impact categories had the highest environmental inefficiency what can be explained by the 

excess use of chemical fertilizers. Moreover, the results revealed that, the EITR percentage for the 

overall environmental impact categories was 39%. It indicates that on average about 39% from the 

total environmental consequences in grape production could be avoided at the same yield level. In 

Figure 31 the overall EITR is divided into on-orchard and off-orchard emissions. On-orchard 

emissions contribute the most (82%) to the environmental improvement target ratio, which implies 

that the greatest efficiency gains could come on the farm. This can be achieved by reform in 

orchard management. It is inferred that the farming phase of Iranian grape production requires to 

be improved due to high inefficiency in technical use of inputs led to environmental inefficiency.  

Figure 32 presents the detailed contribution of each type of off- and on-orchard emissions to the 

potential life cycle impact reductions. With a contribution of 72% chemical fertilizer production 

(i.e. the sum of N, P2O5 and K2O fertilizer) has the potential for reducing the global warming 

potential. A reduction of on-orchard emissions of NH3 and NO3 can contribute the most to 

diminishing the AP (97%) and EP (78%). The largest contributor for CED reduction came from 

the N fertilizer production (40%). In the case of other impact categories, the same trend that 

chemical fertilizers have a high potential in reducing the environmental impacts is observed, in 

particular in Marine aquatic ecotoxicity with 80%.    
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Figure 30. Percentage of reduction potential in agricultural inputs in ineffiecient farms s for 1 ton 

grape production.  

Abiotic depletion (AD), Abiotic depletion (fossil fuel) (ADF), Global warming potential (GWP), Ozone layer depletion (OD), 

Human toxicity (HT), Fresh water aquatic ecotox (FAET), Marine aquatic ecotoxicity (MAET), Terrestrial ecotoxicity (TET), 

Photochemical oxidation formation potential (POFP), Acidification potential (AP), Eutrophication potential (EP), Cumulative 

energy demand (CED) 
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Table 32. Current and optimum ecoprofile indicators for grape production 

Impact category 
Weighted index 

EITR (%) 

Current Target Environmental 

improvement target 

AD 17.32 10.52 6.80 39 

ADF 0.60 0.39 0.21 36 

GWP 0.93 0.60 0.34 36 

OD 0.02 0.01 0.01 33 

HT 0.45 0.28 0.17 38 

FAET 2.33 1.40 0.93 40 

MAET 14.65 9.00 5.65 39 

TET 1.60 0.93 0.67 42 

POFP 0.45 0.22 0.23 50 

AP 78.37 46.78 31.58 40 

EP 106.90 65.72 41.18 39 

Total 223.63 135.85 87.77 39 

 

 
Figure 31. Contribution of each phase of production to total impact factor 

 

Off-orchard
18%

On-orchard
82%
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Figure 32. Contribution of each type of off-and on-orchard emissions to the environmental 

impact reductions 

  

 

 

4.3.2.4.3 Waste management assessment 

life cycle emissions related to agricultural/orchard crops are affected by biomass fate and 

utilization [92,164]. Hence, the residue management as an effective factor on environmental 

consequences of grape production was assessed in this section. Biomass is a potential energy 

resource to substitute primary energy [165]. The biomass energy can be directly extracted as heat 

or converted into electricity, liquid and gaseous fuels [166].  According to [167], there is a high 

electricity potential in a range of 800-2300 MWe provided by gasification of agricultural and 

woody biomass resources in Iran. Therefore, electricity generation from pruning residue was 

considered as alternative scenario for waste management to be compared with base scenario that 

describes open burning waste. Table 33 indicates operating conditions of gasification system.  
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Table 33  Syngas composition + CHP 

 Fluidized bed 

H2 (%dry) 45.5 

CH4 (%dry) 7.1 

CO (%dry) 21.9 

CO2 (%dry) 19.4 

N2 (%dry) 5.8 

H2O (%wet) 7.8 

C6H6 (g/Nm3
dry) 4.9 

C7H8 (g/Nm3
dry) 0.9 

C10H8 (g/Nm3
dry) 0.1 

Gas yield (Nm3
dry/kgbio,daf) 1.48 

Syngas flow (MJ/kgbio,daf) 11.42 

Engine efficiency (%) 25.6 

Electricity (kWh/kg biomass) 0.81 

 

 
Regarding that the average pruning waste can be estimated as 500 kg/ha, table 6 implies that there 

is a 405-440 kWh/ha electricity production potential.  In fact, a half of electricity demand in the 

studied area can be meet. As mentioned in (interpretation part) CED, GWP, ADF and ODP are 

highly influenced by electricity consumption in irrigation phase. Thus, the utilization of waste to 

produce bioelectricity can avoid high proportion of these emissions in region.  

On the other hand, the derived emissions from combined heat and power (CHP) were calculated 

with the emission limits reported by [101] and compared with situation where residues directly were 

burned in the garden. Results show that SO2 and NOx emissions released due to syngas burning in 

engine can be massively lower than open burning waste. As shown in Figure 33 AP and EP 

drastically decrease up to 88% and consequently phenomena like acid rain, smoke fog is prevented 

by adapting this scenario. In addition, Human toxicity and POFP can fall by 50%. 
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Figure 33. Impact comparison. 

 

 

4.3.2.6 Conclusion 

The combined application of LCA and DEA led to join the strengths and minimize the weaknesses 

attributable to both methodologies so that a synergistic effect was achieved while maintaining a 

quantitative character. Appealing characteristics of this method following are highlighted: 

 

- Avoidance of the use of average inventories when assessing a high number of similar 

facilities. In this sense, undesirable standard deviations are prevented. 

- Facilitation and enrichment of the interpretation of the results for multiple LCAs.  

- Means for eco-efficiency verification. The five-step LCA+DEA approach reveals the link 

between operational efficiency and environmental impacts, quantifying the environmental 

consequences of operational inefficiencies.  

The strength of the approach proposed comes from its quantitative character since it is able to set 

targets and quantify potential improvements. Throughout the case study of vineyards, the direct 

link between operational efficiency and environmental impacts was proved. In this case, from a 

real data set for 50 vineyards, only 15 of them were deemed efficient. This allowed input reductions 

(26-57%) which resulted in significant reductions in potential environmental impacts, up to 50%. 

Furthermore, the illustration showed that positive inputs (those that may contribute positively to 

the environmental performance) should be given a special consideration in the DEA study. 
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Finally, in spite of the usefulness of the proposed approach, it should be noted that all processes 

and systems have differences that cannot be easily modelled (e.g. differences in local conditions). 

This often requires more detailed process models to fully understand them. The proposed 

LCA+DEA framework is no substitute of this; it is rather a benchmarking attempt to find targets 

for performance improvement within a sector, targets that are computed from a 

sample of available operational data. 

Moreover, the identification of hot spots allowed the proposal of several improvement potentials 

concerning grape production. The need to minimize fertilizers use is especially highlighted. 

Regarding feasibility of bio-electricity generation from pruning waste, installation of an energy 

hub in the region which is equipped with gasifiers fed by orchard waste could play a considerable 

role in improving environmental performance of crop produced and increase value of biomass as 

a fuel resource for renewable electricity. In addition, the use of gasification plants presents an 

opportunity to increase emissions and energy credits owing to their increased efficiency relative 

to existing biomass power plants, as well as the potential for carbon sequestration in biochar. 
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Chapter 5: General conclusions 
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LCA has been proved to be suitable in tracking transparency and accountability all along the 

production chain for the biohydrogen and biochar via gasification and pyrolysis processes.  

According to results, sustainability of biohydrogen from waste is highly influenced by biomass 

provision stage and avoided products (electricity and heat) from byproducts. Therefore, dealing 

with biomass waste and process byproducts in different ways can change results.  

Hence, if environmental charges of cultivation are associated to both products (main crop and 

pruning wastes) and byproducts (electricity and heat) are assumed as separate products, 

biohydrogen production is not considered sustainable. But on the other hand, if environmental 

charges of cultivation are distributed according to products price: 1% of charges correspond to 

almond pruning wastes and byproducts are considered as avoided products, biohydrogen 

production will be sustainable. In case of biochar production and its application in soil, carbon 

content of biomass and avoided products from byproducts play a crucial role in biochar 

sustainability. Therefore, biochar from willow is considered sustainable due to higher stable 

carbon content of the produced biochar which results in higher C sequestrated in soil and more 

economic-environmental benefits from avoided energy use compared with pig manure case study.  

In biohydrogen environmental profile, marine aquatic ecotoxicity is recognized the most positive 

and pivotal impact category. The contributor for this impact is the avoided production stage of 

electricity. On the contrary, abiotic depletion and acidification have the significant negative impact 

due to fertilizer application and consumption in biomass production phase. Sensitivity analysis 

shows steam to biomass ratio variation from 1 to 1.5, increases all impacts while it can improve 

hydrogen production efficiency. Hence, for instance, global warming potential will increase to 121 

g CO2 eq with steam to biomass ratio 1.5 while even 20 g CO2 eq saving is expected in steam to 

biomass ratio 1. The cumulative energy demand also rises, in this sense, renewability of hydrogen 

decreases from 75% to 48%. In fact, rise in hydrogen produced leads to fall in offgas volume, 

electricity obtained and its avoided impacts. These results clarify role importance of byproducts in 

environmental efficiency of hydrogen production.  

If economic allocation for environmental burdens of waste is considered and steam to biomass 

ratio was assumed 1, biohydrogen profile entails positive impacts in all impact categories 

specifically in GWP, 116 g CO2 eq saving.  

Comparison of results obtained from other technologies with considered technology for 

biohydrogen production can provide a wider view relating other technologies. GWP value is 

estimated as 0.046 kg CO2 per 1 MJH2 for Maize-based biogas and 0.037 if bio waste is applied. 

Moreover, CO2 released to generate hydrogen by conventional method, natural gas SMR, reported 

as 0.1 kg CO2 per 1 MJH2.  

Weighing environmental impact assessment into single monetary unit using three valuation 

methods indicates that the societal costs of biohydrogen production are higher than the societal 

benefits. According to both Ecotax and stepwise methods, abiotic depletion is the main contributor 

to the societal costs from cultivation phase and fertilizer consumption in biomass production. But 

on the other hand, if environmental consequences of waste are allocated in an economic basis, 

biohydrogen production leads to societal benefits 5.2, 7.3 and 1.8 €/kgH2 based on Ecotax, 

Ecovalue and Stepwise methods, respectively.  

The financial cost of hydrogen production was assumed as a function of hydrogen production 

efficiency and portable purification system (PPS) cost. Techno-economic assessment results 

showed that system efficiency increase cannot be able to reduce costs to favorable level alone. 
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Therefore, the 50% reduction of PPS cost recognized as the major cost and the variation of steam 

to biomass from 1 to 1.5 allow the cost to fluctuate between 12.75-9.5 €/kg. 

In biochar production and its application in soil, expected savings in CO2 emissions can be 

explained by the substituted amount of heat and electricity produced from (bio-oil and syngas) and 

reduced fertilizer production, amongst others, but the highest share in total CO2 savings is 

attributable to the application of biochar in soils. The difference in savings of CO2 emissions can 

be explained by the different stable carbon content of the produced biochar. The biochar produced 

from willow can reduce GHG emissions more than pig manure biochar (2.2 t CO2 vs 0.98 t CO2 t
-

1 of biochar) because the stable carbon content of willow biochar is higher compared to pig manure 

biochar. 

The results of monetary valuation of environmental impacts for biochar production reveal that 

biochar production from two scenarios, pig manure and willow, entails environmental revenues. 

In other words, environmental benefits of biochar production from two case studies outweigh 

environmental costs due to significantly C sequestrated in soil.   

Application of LCA + DEA method to a set of 50 vineyards showed that data envelopment analysis 

(DEA) proposes a pattern for agricultural input reductions (26-57%) which resulted in significant 

reductions in potential environmental impacts, up to 50%. Furthermore, similar to the hydrogen 

production cycle, byproduct utilization (vineyard waste) by the installation of gasifiers could play 

a considerable role in improving environmental performance of crop produced. In fact, a half of 

electricity demand in the studied area can be meet. Hence, acidification potential (AP) and 

eutrophication potential (EP) can drastically decrease up to 88% and consequently phenomena like 

acid rain, smoke fog is prevented. In addition, Human toxicity and photochemical oxidation 

(POFP) can fall by 50%. 

 

The identification of hot spots of considered case studies showed a need to minimize biomass 

production impacts. Therefore, modification in agri-food production management such as 

substituting chemical fertilizers with green fertilizer and policies for improvement in biomass 

supply chain can decrease environmental burdens not only in its sector, but also in linked bioenergy 

systems.  
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