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Abstract—The analysis of underwater towed systems attracted
the interest of many researchers because of the recent years
utilization of remotely-operated underwater vehicle (ROV) and
towed array in offshore and military applications. The purpose
of this work is to show, by experimental validation, that
towed cable configurations may be computed effectively and
accurately by discretizing the towing cable rather than using
a continuous modeling approach. Two mathematical models
have been developed to predict the stationary configuration of
an underwater towed system loaded by hydrodynamic forces.
The system is composed of a towed inextensible cable, with
no bending stiffness, and a depressor that is fixed at the cable
free end. This configuration is currently used for underwater
remotely-operated vehicle. This work investigates the compar-
ison between continuous and discrete models of the 2D static
equations of the steady-state towing problem in a vertical plane
at different towing speeds. The results of the models have been
validating using experimental trials. In the first part of this
paper, a continuous model is presented, which is based on
geometric compatibility relations, equilibrium equation. A set
of nonlinear differential equations has been derived and solved
using Runge-Kutta iterative procedure. In the second part, a
discrete rod model is proposed to determinate the cable shape,
which is based on a system of nonlinear algebraic equations
that are solved numerically. This two models are both suitable
for analyzing an underwater towed system having a known top
tension and inclination angle obtained from experiments. The
third part of the paper describes the experiments, which have
been in a towing tank basin (CNR-INSEAN). In the fourth and
last part of this study it is demonstrated the effort and cost of
numerically integrating the continuous model do not compare
favorably with the relative ease and efficiency of solving the
discrete model, which yields the same results.

1. Introduction

The determination of cable configurations has long been
an area of considerable research effort. Cables are exten-
sively used for many ocean applications. Just a few examples
of ocean systems that strongly depend on cables are the

ocean mooring systems, towed array sonar systems and
remotely operated vehicles. In the last few decades, towed
cable has been widely employed in marine environments
as an important tool for naval defense, ocean exploitation
and ocean research. Static cable problems have traditionally
found application in the design of buoy [1] and mooring sys-
tems [2], where the maximum cable tension is an important
concern. In addition to the classical applications of mooring
and buoy, the shape of a static cable is used to model
other physical situations like towing system, turbine blades
with zero bending moments and suspended pipelines subject
to bending moments. The static cable shapes, especially
the catenary, are often used as starting configurations for
dynamic analyses [3], [4] and [5]. Numerous theories have
been developed for the static response of submarine cable. A
good survey can be found in Zajac [6], Irvine [7], Choo and
Casarella [8]. The static cable configuration can be obtained
from the solution of the system of nonlinear ordinary dif-
ferential equations modeling the continuous problem. Due
to the nonlinearity of the equations, a discretization of the
continuous mathematical model must be used to obtain the
configuration of the cable. For most of towed systems,
the steady state problem can be resolved into two-point
boundary-value problem (TPBVP), or initial value problem
(IVP) in some special cases where the initial values are
available directly. Many authors have solved this system
with the classical approaches as finite element method [9]
and finite differences method [10], [11]. Chucheepsakul and
Huang [12] solved the problem utilizing the stationary con-
dition of a functional coupled with an equilibrium equation
with finite element method. Yang, Jeng and Zhou [13] pre-
sented a semi-analytical approximation of tension analysis
of submarine cables during laying operation in order to
found the cable configuration. In [14] a shooting method
has been proposed to solve the system as a TPBV problem.
A new bisection method was proposed in [15] to solve
the TPBV problem rather than the conventional shooting
method due to its algorithm complexity and low efficiency.
An alternative discrete solution strategy is to discretize the
physical cable into segments. Then a system of nonlinear
algebraic equations is obtained from the equilibrium of



forces on the segments. This physical discretization ap-
proach has been used extensively for mooring lines because
the phenomena of varying cable properties like mass, elas-
ticity, bending stiffness, etc. The chain of segments of the
discretized cable could, for example, be modeled by lumped
masses connected by string, or alternatively by hinged rods.
The lumped mass model has been used extensively by
researchers, [8], [15]. However two particularly attractive
features of the rod model is that the forces on the segments
are used directly in force balance equations on the rods,
and that the characteristics of cables, as bending stiffness,
can be incorporated into the model by using moments in
a very natural way. The equivalence of these two model-
ing approaches for perfectly flexible cables was proved by
Dreyer and Murray [16]. Following the Dreyer and Vuuren
[17] work, in this paper, comparison between continuous and
discrete models of the two-dimensional steady-state towing
problem in a vertical plane at different towing speeds has
been presented. The towed system in analysis is currently
used for underwater remotely-operated vehicle. The towed
system is composed of a cable and a depressor that is fixed
at the cable free end. The propose of the depressor is to
guarantee passively the reaching of the operative depth of
the entire system. In order to found the cable configuration
and the reached depth, two kind of mathematical models are
compared: the continuous model and the discrete one. Both
models solved the stationary towed problem as an initial
values problem because initial values are available directly.
In fact, the initial values, top tension and inclination angle
at the towing point, have been founded by experimental
trials at different towing speed. At the end the reached
depth values at varying towing velocity will be compared
with its experimental values. The paper is divided in the
following sections. In Section 2 the two different mathe-
matical models are presented. In Section 2.1 the continuous
mathematical model is presented and numerically solved by
Newton-Rapshon iterative procedure. Section 2.2 describes
the discrete rigid-rod mathematical model, also solved nu-
merically. In Section 3 the experimental setup and the trials
are explained. In Section 4 the comparison between the two
mathematical models, validated by measurements, and the
discussion of the depth values have been done. The final
Section 5 shows the conclusions. Intuitively better results
from the continuous model than from discretizing the cable
are expected. However, the solution of the continuous model
is quite involved and costly in terms of computer time, while
the solution of the discrete model is comparatively simple
and time efficient. Moreover, the accuracy of the continuous
model is not far superior to that of the discrete model, even
for relatively few cable elements in the discrete case. Our
main aim in this paper is therefore to show, by experimental
validation, that cable configurations at varying towing speed
may be computed effectively and accurately by discretizing
the cable rather than using a continuous modeling approach.

2. Mathematical Models

The present theory is used to solve the steady-state
configuration of an underwater towed system composed by
a cable and a depressor fixed at the cable free end. The two
mathematical models compared in this study are based on
the following assumptions:

• The length of the cable is much larger than the
diameter of its cross-section so that the cable can
be modeled as a one-dimensional body.

• The constant cross-sectional area of the cable is
chosen circular and with a small diameter in order
to minimize the vortex shedding effect.

• The mass per unit length is constant.
• The cable is inextensible.
• The seawater is ideal fluid: inviscid and incompress-

ible.

The cable is subjected to uniaxial tension without flexure,
shear or torsion and the rotational motion has not been con-
sidered in the submarine cable motion balance. The gravity
and hydrodynamic forces have been taking into account as
external forces acting on the cable and the drag coefficients
cn and ct are taken as constant values.

2.1. Continuous Model

A curvilinear axial coordinate s has been employed,
which assumes a zero value at the towing point (Figure 1).
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Figure 1: Towed system model.

When the system is towed by ship moving at constant
speed, there are at least four components that contribute to
the tensional force and configuration along the submarine
cable:

• Net in water weight of the cable per unit length: Wn

• External normal force per unit length: Rn(s)
• External tangential force per unit length: Rt(s)
• Local tension: T(s)
• Local inclination angle: φ(s)
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Figure 2: Force balance on continuos model.

The force balance in the tangential and normal coor-
dinates, shown in Figure 2, gives two coupled equations
depending on T and φ:

dT

ds
=Wnsinφ−Rt (1)

T
dφ

ds
=Wncosφ+Rn (2)

The external forces are the fluid drag. The tangential com-
ponent of drag is proportional to the drag coefficient Ct and
the normal drag is controlled by a crossflow drag coefficient
Cn. The value of Ct has been considered proportional to
Cn, as usual for underwater cylindrical body [15]. The fluid
velocity vector, U horizontal in both cases toward the left,
has been projected onto the global axes, obtaining:

Rt = −
1

2
ρCtdU

2cosφ2 (3)

Rn = −1

2
ρCndU

2sinφ2 (4)

The drag law has been simplified from the usual form |u|u
to u2 since the configuration angle φ of the cable can
change between 0 and π/2 values. With regard to the global
cartesian coordinates x and y, the cable configuration follows

dx

ds
= cosφ (5)

dy

ds
= sinφ (6)

The simultaneous integration of all four equations (1), (2),
(5) and (6) defines the cable configuration and tension.
The obtained system of Ordinary Differential Equations
(ODE) has been solved as an initial values problem with
the fourth order Runge-Kutta iterative procedure. The initial
values, T0, φ0, x0 and y0, are available directly from the
experiments which are explained in Section 3.

2.2. Discrete Model

A two-dimensional cable of length L is divided in n
segments with li length. The discretization of the cable has
been developed between the towing point (0,0) and the end

point (xe, ye) where the depressor is fixed. A rod model
has been used in order to discretize the cable, as Figure 3
shows.
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Figure 3: Two-dimension cable discretization.

Consider a general segment i-th of the cable (Figure 4).
The i-th segment presents an inclination angle φi and the
(xi+1, yi+1) and (xi, yi) indicates, respectively, the position
of the left (A) and right (B) endpoint. The components of the
tension force at the endpoints of the i-th rod is directly re-
ferred to the global system as continuity forces. Let (Fx,i+1,
Fy,i+1, φi+1) and (Fx,i, Fy,i, φi) be the continuity forces
acting on the left and right endpoint.
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Figure 4: Two-dimension cable discretization.

The other distributed loads acting on the i-th rod, which
act through rod center li/2, are also directly represented in
the global system. The components of the hydrostatic loads
are denoted by the vectors FHxi and FHyi respectively along
the x and y global axis direction.

FHxi = Rtsinφi −Rncosφi (7)
FHyi = Rtcosφi +Rnsinφi (8)

The expression of Rt and Rn, which are respectively the
values of the tangential and normal component of the hydro-
dynamics force referred to the local body system, have been
already shown in (3) and (4). The weight per unit length Wn

of the i-th rod has been also apply in the segment center li/2.
The inclination angle φi of the i-th rod has been calculated



from the moment balance respect to the left endpoint A
which is the only unknown:

Fy,ilicosφi−Fx,ilisinφi+FHyi
li
2
cosφi−FHxi

li
2
sinφi+

+Wn
l2i
2
cosφi = 0 (9)

Once φi has been calculated, the coordinates of the left
endpoint A can be computed:

xi+1 = xi − licosφi (10)
yi+1 = yi − lisinφi (11)

The continuity forces acting on the A endpoint have been
also compute:

Fx,i+1 = Fx,i + FHxi (12)
Fy,i+1 = Fy,i + FHyi −Wnli (13)

Repenting this iterative scheme of solution the stationary
configuration of the cable has been estimate starting from the
known experimental values of x0, y0, Fx0 and Fy0 solving
the problem as an initial values problem.

3. Experimental Set-up

The physical system under investigation comprises a
towing cable and a depressor connected at its free end. The
tests was performed at the CNR-INSEAN towing tank basin
(470 m long, 9 m wide and 6,5 m deep) and the entire
system has been towed by moving a carriage along the tank.
The experimental measures have been performed in order
to compute the values of the top tension and inclination
angle at the towing point which have been used as initial
values of both the mathematical models and also the reached
depth value in order to validate the models. The trials have
been conducted for different operative towing speeds from
1m/s up to 4m/s. The geometry and the dimensions of the
depressor are respectively shown in Figure 5 and Table 1 in
which Wd is the weight in water of the depressor.
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Figure 5: Shape of depressor.

Inside the body of the depressor sensors of pressure have
been inserted in order to be able to estimate the value of the
depth reached from the entire system. The reached depth is

TABLE 1: Depressor dimension

lx[m] ly[m] lz[m] Wd[N]
0,45 0,58 0,15 5

an important value for the validation of the models. In order
to reduce normal drag and thus achieve more depth and
also to eliminate cable vibration caused by vortex shedding,
commonly known as cable strum, a towing cable has been
chosen which presents a very small diameter. The geometry
and dimensions of the towing cable are shown respectively
in Figure 6 and Table 2. In Table 2 the nondimensional
hydrodynamic coefficients are also listed.

Figure 6: Shape of towing cable

TABLE 2: Towing cable dimension

[m] Towing cable
lc 4
d 0,005
cn 0,9
ct 0,014

As already explained, the experimental trials have been
also developed in order to reach the initial values of the
mathematical models, the top tension and the inclination
angle at the towing point at different towing speeds. The
towing cable has been attached to the carriage by using a
load cell in order to measure the value of the top tension
T0 and in the same point an inclinometer has been used
to compute the inclination angle φ0 referred to the y axis
direction. For the continuos model this experimental values
are directly utilized as initial values instead for the discrete
model it is useful to remember that the initial values, referred
to the global system, Fx0 and Fy0 are correlated to the
experimental values as (14) and (15) show.

Fx0 = T0sinφ0 (14)
Fy0 = T0cosφ0 (15)

4. Experimental results and comparison be-
tween mathematical models

In this section the experimental results at different tow-
ing speeds are shown and a comparison between the math-



ematical models for each towing speed are done. In Table
3 the experimental values of the top tension and angle of
inclination at varying towing speed have been shown. The
values of Fx0 and Fy0 have been also list in Table 3 in order
to have directly the initial values in the better form for the
evaluation of the discrete model.

TABLE 3: Experimental results

v[m/s] T0[N] φ0[grad] Fx0[N] Fy0[N]
1 12 31 6 10
2 51 48 38 34
3 114 51 89 72
4 197 52 155 121

The experimental results seem to be in a good accor-
dance with the theoretical predictions. In fact the values
of the drag and lift of the entire towed system are directly
proportional to the square of the towing velocity value. This
proportion is due to the fact that the fluid has constant
density and the drag and lift coefficients have been consider
constant. The last assumption is off course an approximation
because the dependency between Reynolds number, φ0 and
drag and lift coefficients. The experimental initial values
have been insert in both the mathematical models and the
configuration of the towing system has been plot for each
mathematical models at different operative towing speed. In
the next figures the configurations of the towing system has
been show for the continuos model (Figure 7) and discrete
one (Figure 8) for each towing speed (1-4 m/s). The origin
of the system coordinates has been fixed at the towing point,
the x axis direction represents the distance from the ship and
y axis direction is the depth from the free surface.

Figure 7: Configuration of towing system for the continuos math-
ematical model at different towing speeds

Figure 7 shows the different continuos model configu-
ration of the entire towing system at varying towing speed.
From the graphics it is possible to notice how the reached
depth from the system increases for low value of the towing
speed and, on the contrary, it decreases for high towing
velocity values, as we expect. Furthermore, the configuration
of the towing cable becomes flatter with the increasing of
the towing speed.

In the Table 4, the values of the reached depth for the
continuos mathematical model have been compared with

TABLE 4: Towing system reached depth: Continuos model

v [m/s] Depth [m] Experimental Depth [m]
1 3,651 3,691
2 2,893 2,933
3 2,728 2,768
4 2,676 2,716

the experimental values of depth reached by the sensors of
pressure. The experimental and mathematical values of the
depth present a percentage difference around 2%.

Figure 8: Configuration of towing system for the discrete mathe-
matical model at different towing speeds

In Figure 8 the different configurations of the towing
system at varying towing speed for the discrete model
have been report. Even for the discrete model case, the
reached total depth of the system presents a trend inversely
proportional to the speed as for the continuos model. The
configuration of the towing cable has the same behavior
already explain in the continuos case: it is flatter when
the towing speed increases. In Table 5, the values of the
reached depth have been report in the case of the discrete
mathematical model and also in this case, they have been
compared with the experimental values. The experimental
and mathematical values of the depth present a percentage
difference around 2%.

TABLE 5: Towing system reached depth: Discrete model

v [m/s] Depth [m] Experimental Depth [m]
1 3,614 3,654
2 2,862 2,902
3 2,699 2,739
4 2,647 2,687

The specific comparisons between the two mathematical
models have been developed in the next figures for each
towing speed. The red line represents the results in the
case of the continuos model while the blue crossed line
the discrete one. In Figures 9,10,11 and 12 the comparison
between the results obtained from the two mathematical
models at each towing velocity values have been show. The
towing system configuration is perfectly the same in the
two models, in fact the percentage difference between the
two models is lower than 1% for each speed. In Figure 9 it
possible to notice that the value of the angle at the attack



point between the depressor and the end of the towing cable
is around π/2 this is due to the fact that at 1 m/s the drag
of the depressor is lower than the drag of the cable and so
the value of the tension at the cable-depressor connection is
closed to the weight of the depressor. For the other values
of towing speed this consideration is not valid because the
angle is smaller than π/2 given different proportion between
the drag and the lift of the depressor.

Figure 9: Comparison between continuos and discrete mathemati-
cal model at 1m/s

Figure 10: Comparison between continuos and discrete mathemat-
ical model at 2m/s

Figure 11: Comparison between continuos and discrete mathemat-
ical model at 3m/s

With this final results it is demonstrated that the effort
and cost of numerically integrating the continuous model do
not compare favorably with the relative ease and efficiency
of solving the discrete model, which yields perfectly the

Figure 12: Comparison between continuos and discrete mathemat-
ical model at 4m/s

same results of the continuous one. Obviously, this is due to
the fact that the cable has been discretize in n=1000 element
and off course the accuracy of the result depends on the
increasing number of elements.

5. Conclusion

In this study the 2D stationary configuration of an un-
derwater towed system has been developed by experimental
trials. The system under analysis is composed of a towed
inextensible cable, with no bending stiffness, and a depressor
that is fixed at the cable free end. This configuration is cur-
rently used for underwater remotely-operated vehicle. Two
different mathematical models have been compare at differ-
ent towing speeds: the continuos and discrete model. The
purpose of this work is to show, by experimental validation
that configurations of this system can be computed effec-
tively and accurately by discretizing the towing cable rather
than using a continuous modeling approach. The results of
the models have been validating using experimental trials.
A continuous model has been present, which is based on
geometric compatibility relations, equilibrium equation. A
set of nonlinear differential equations has been derived and
solved using Runge-Kutta fourth order iterative procedure. A
discrete rod model has been also propose to determinate the
cable shape, which is based on a system of nonlinear alge-
braic equations that are solved numerically. This two models
are both suitable for analyzing an underwater towed system
having a known initial values, top tension and inclination
angle, obtained from experiments. Also the values of the
reached depth has been experimentally evaluated by using
pressure sensors inside the depressor in order to validate
the mathematical models.The experimental trials done in a
towing tank basin (CNR-INSEAN), have been illustrated.
In order to compute the initial values to solve both the
mathematical models the top tension and the inclination
angle have been measured respectively with a load cell and
an inclinometer. In the last part of the paper the results
have been illustrated. The experimental values of top tension
and angle at the attack towing point are listed in Table 3.
After inserting the experimental initial values into the math-
ematical models, the configuration of the cable has been



plotted at varying speed for both the mathematical models.
In this part of the study the dependency between the towing
speed and the reached depth from the entire system has been
discuss. Both the models have been validated by comparing
the experimental and numerical values of the depth that
seem to be in good accordance presenting a percentage
difference around 2%. Finally the comparison between the
models for each towing has been done. So it is demonstrated
that the discrete model presents the same results of the
continuos models (difference lower than 1%), so the effort
and cost of numerically integrating the continuous model do
not compare favorably with the relative ease and efficiency
of solving the discrete model.
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