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Abstract In this paper, the well-established two-dimensional mathematical model for linear pyroelectric
materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic,
transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical
thermoelasticity, (b) Cattaneo-Lord-Shulman theory and (c) Green-Lindsay theory equations, characterised
by none, one and two relaxation times respectively, is presented. Suitable boundary conditions are considered
in order to determine the reflection coefficients when incident elasto-electro-thermal waves impinge the free
interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves:
(i) two principally elastic waves, namely, a quasi-longitudinal Primary (qP) wave and a quasi-transverse
Secondary (qS) wave; and (ii) a mainly thermal (qT ) wave. The observed electrical effects are, on the
other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The
computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the
elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special
cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients
are computed for Cadmium selenide (CdSe) observing the influence of (i) the anisotropy of the material,
(ii) the electrical potential and (iii) temperature variations and (iv) the thermal relaxation times on the
reflection coefficients.
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1 Introduction

In this paper, the reflection of waves at the boundary between a vacuum and a half-space filled with an elastic,
transversely isotropic, pyroelectric material is studied, under the hypothesis of thermal relaxation times. An
analysis of the reflection coefficients for the generated plane waves in dependence of the angle of incidence,
the electric-thermal-elastic parameters of the medium and the thermal relaxation times is performed. Finally,
a numerical case, referring to the thermo-piezoelectric cadmium selenide (CdSe) material is thus presented.

Studies on wave propagation, reflection and refraction at interfaces in elastic media have always been
of great interest and have manifold applications in several fields. For instance, elastic waves propagating
through the Earth, i.e. seismic waves, travel through different layers and interfaces: their velocities are
influenced by the properties of each layer and whenever these waves face discontinuities in elastic media
or between an elastic medium and vacuum, reflection and refraction phenomena occur and need hence
to be accurately investigated. Additionally, the properties of reflected and refracted waves are helpful in
providing information about the Earth’s internal structure and in exploration campaigns for the detection
of valuable materials such as oil, minerals, crystals and metals. Evaluation of mineral resources through
wave analysis is one of the most attractive technique in terms of costs and time. The study of elastic wave
propagation, reflection and refraction is thus of great importance in geophysics, mining and drilling. Since
1970, composites with piezoelectric and piezo-magnetic materials have attracted a significant interest due
to their novel magneto-electric effects [68,25]. For instance, piezoelectric materials are often employed as
resonators with strictly controlled frequencies. Furthermore, piezoelectric ceramics and composites have been
extensively employed in many engineering applications, e.g. sensors, actuators and intelligent structures [44].
The mechanics of these so-called smart materials has attracted a considerable academic attention [62,63,
64,35,36], due to novelty and conspicuous potentialities. As a consequence, in the last decade, many studies
on modelling the effective material constants of magneto-electric composites and on their experimental
manufacturing have been published [1,2,26,43,55,64].

The response characteristics of piezoelectric structures in an temperature varying environment may
change considerably due to pyroelectric effects owned by most piezoelectric materials [54]. Therefore, a
thorough understanding of the thermo-piezoelastic (pyroelectric) behaviour is required in order to conceive
practical uses of intelligent piezoelectric structures. The thermo-piezoelastic response of these composite
materials entails an interaction among mechanical, thermal and electrical properties. The comprehension
of the coupling between the thermoelastic and piezoelectric effects implies the quantification of the effects
of heat dissipation on wave propagation, at both low and high frequency ranges. Important applications
of pyroelectric materials consist in detecting the response of a structure by measuring the induced electric
charges (sensing) and/or in reducing excessive responses by imposing an external electric field or a thermal
load (actuating). If sensing and actuating are smartly integrated, a so-called intelligent structure can be
potentially designed [8,19,69].

In classical theory, thermal disturbances propagate through a continuum with infinite speed. However,
few paradoxes are introduced by this assumption, especially for circumstances involving extremely short
transient or for temperatures close to absolute zero. For this reason, modified theories have been proposed
to account for finite speeds of thermal propagation. The authors clarify that the use of the expression
nonclassical dynamical thermoelasticity means a hyperbolic thermoelasticity in which thermal disturbances
propagate with finite speeds. Some approaches are based on the general notion of relaxing the heat flux in
the classical Fourier heat conduction equation, thereby, introducing a non-Fourier effect. In this context,
Lord and Shulman [59], proposed to replace the Fourier law of heat conduction with the Cattaneo law in
order to obtain a hyperbolic heat transport equation involving a finite, yet high, speed for thermal signals.
On the other hand, Green and Lindsay [24], by including the temperature rate among the constitutive
variables, developed a temperature-rate dependent thermoelastic model not violating the Fourier law for
bodies having a centre of symmetry. Nonclassical thermoelasticity, piezoelectricity and thermoelastic and
piezoelectric coupling, generally for anisotropic elastic solids, have been extensively investigated in a copious
number of studies, [6,9,41,44,54,70,71,72,74]. On the other hand, only a limited number of analytical and
experimental publications on linear piezo-viscoelastic materials, i.e. with dissipation phenomena, may be
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found in the literature. However, in the authors’ opinion, dissipation should be taken into account and, for
this purpose, the analysis presented in [12] is to be considered.

In particular, fundamental for the present work is the paper by Keith and Crampin [30]. The latter eval-
uated the energy distribution among waves generated by a plane wave impinging on a boundary between
anisotropic media; furthermore, a comprehensive account is presented for longitudinal Primary (P ), trans-
verse Secondary (SV and SH) waves at a boundary between an isotropic half-space and an orthorhombic
olivine half-space. On the other hand, another key study is [31] where Kuang and Yuan, applying the Lord
and Shulman model, investigated and simulated with numerical examples two-dimensional wave reflections
at the free interface of a semi-infinite pyroelectric medium. In the framework of non classical thermoelas-
ticity theory, further contributions were performed by Sharma et al. [56,57] who discussed the reflection of
quasi-P (qP), quasi-S (qS) and thermal waves from a transversely isotropic, pyroelectric half-space with a)
stress-free, thermally insulated and isothermal open circuit boundaries [56] and b) charge- and stress-free
boundaries [57]. Waves reflection from pre-stressed boundaries of transversely isotropic, pyroelectric half-
space were analyzed by Singh [61], who also investigated the plane wave velocities with both Lord-Shulman
and Green-Lindsay models [60]. Very recently, results related to the topics addressed in the present paper
were reported in the original investigations by Yuan et al. [75] and Abd-alla [3,4,5], where wave refraction
and reflection in anisotropic piezoelectric media are studied. For the sake of completeness, it is worth citing
some other relevant papers: a) the results obtained by Tomar and Khurana [67], concerning the reflection of
plane waves from a stress-free plane boundary of an electro-micro elastic solid, b) the study by Kumar and
Rupender [32], on electro-microstretched generalised thermoelastic solids c) and the articles by Kumar and
Kumar [33] and Singh [62] on thermoelastic media with voids. In this last context, several studies are relevant
to the topics under investigation: Quiligotti et al. [50] inspected particular generalised continua constituted
by porous deformable solids infused with an inviscid compressible fluid; Berezovski and Maugin [10] consid-
ered the propagation of both thermoelastic waves and phase-transition fronts in a unified framework, based
on thermodynamic consistency conditions; Placidi et al. [46,49] studied the propagation of bulk transverse
and longitudinal waves and the influence of pre-stresses, deriving evolution equations through a variational
approach [49]; Madeo et al. [16,37,38], starting from an extended Hamilton-Rayleigh principle, defined a
general set of boundary conditions related to fluid-permeable interfaces between dissimilar fluid-filled porous
matrices and the effects of confined fluid streams. Many investigations deal with interfaces endowed with
mass, deformation energy, frictional or other physical properties: e.g. Misra et al. [39,40] suggested how
micro-mechanical, frictional effects or interfacial roughness and nonlinearities could be incorporated in the
models; dell’Isola et al. [17] studied reflection and transmission of plane waves at flat displacement disconti-
nuity surfaces, for a specific class of second gradient continua [18,65]. Concerning this last class of materials,
it is possible to observe wave trapping phenomena [53] and reflection and transmission of compression [52]
and shear [48] waves at planar interfaces formed by porous matrix discontinuities. Other relevant studies
take into account micromorphic models [21,34,42], dissipative contact phenomena [7,13] and stability and
bifurcation of piezoelectric structures [29,28].

The organisation of the present paper is as follows. In Section 2 the mathematical formulation employed
for the description of pyroelectric media is outlined, with particular attention on the differentiation deriving
from the three thermal models adopted. In Section 2.2, the mathematical expression of the waves are
shown and the dispersion relation is derived. In Section 3.1 a comparison among different model solutions is
exposed. The reflection coefficients are deduced in Section 3.2 and, finally, the conclusions and the discussion
of the results are summarised in Section 4.

Notation: subscripted commas indicate spatial derivatives, while superimposed dots denote time deriva-
tives.

2 Model of pyroelectric media

We consider an infinite, homogeneous, transversely isotropic, pyroelectric medium, initially at uniform
temperature T0 and electrical potential ϕ0, occupying a semi-infinite space adjacent to a vacuum half-
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Fig. 1 Geometry of incident and reflected waves.

space. The coordinate system (O, x, y, z) is chosen such that the direction of wave propagation is parallel
to the xz-plain so that all particles on a line parallel to the y-axis are equally displaced. Therefore, all the
fields are independent of the y-coordinate: the displacement vector u = (u1, 0, u3), the electrical potential
ϕ(x, z, t) and the temperature change ϑ = T − T0, where T is the absolute temperature of a point x =
(x1, 0, x3) = (x, 0, z) of the medium. We define the z-axis to be along the axis of symmetry of the material,
determined by the elastic constants and the thermal and electrical poling. Specifically, the region z 6 0
locates the medium and the region z > 0 the vacuum. It is assumed that the interface between the two
regions, z = 0, is stress-free, electrically shorted and isothermic.

In order to consider a linear model, we assume small strains εkl = (uk,l+ul,k)/2 and small temperature
changes |ϑ/T0| � 1. We assume the quasi-electrostatic approximation instead of the full electromagnetic
equations because the phase velocities of elastic waves are five orders of magnitude less than the velocities
of electromagnetic waves, thus we suppose the electric vector field E is derivable from a potential, i.e.
Ek = −ϕ,k. The pyroelectric medium is described by the mechanical, electric and thermal fields. The
constitutive equations for the Piola stress tensor σ, for the electric displacement field D and for the entropy
density S can be written in component form as follows:

σij = cijklεkl − ekijEk − γij
(
ϑ+ δGLt1ϑ̇

)
Dk = ekijεij + pikEi + dk

(
ϑ+ δGLt1ϑ̇

)
ρS = γijεij + dkEk +

ρCε
T0

ϑ+ (δLS + δGL)
ρCε
T0

t0ϑ̇+ δGL
bi
T0
ϑ,i

(1)

The third equation in Eqs. (1) represents the Rayleigh potential density which accounts for dissipative
phenomena. In addition, the heat conduction equation is assumed

qi = −Kijϑ,j − δLSt0q̇i − δGLbiϑ̇ (2)

In Eqs. (1)–(2) the symbols employed have the following meaning: cijkl stands for the elastic stiffness tensor,
ekij the piezoelectric tensor; γij the thermo-mechanical tensor, pik the dielectric permittivity tensor, dk the
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pyroelectric constants, ρ the mass density of the medium, Cε is the specific heat capacity at constant strain
and constant electric vector field and Kij are the components of the thermal conductivity tensor. The non-
dimensional constants δLS and δGL allow to switch from three different theories: the Classical Dynamical
coupled theory of thermoelasticity, referred to as CD-model, and two generalisations, the Lord-Shulman
theory, referred to as LS-model, characterised by one relaxation time [59] and the Green-Lindsay theory,
referred to as GL-model, characterised by two relaxation times [24]. The relaxation time t0 is the time-
lag needed before a steady-state heat conduction is reached when a temperature gradient is suddenly
imposed [59]. The relaxation time t1 is a characteristic parameter of the Green-Lindsay theory.

Hence, we obtain three different models, respectively named:

1. CD-model, with δLS = δGL = 0;
2. LS-model, with δLS = 1, δGL = 0;
3. GL-model, with δLS = 0, δGL = 1.

Let us observe that in Eq. (2), LS-model employs the Maxwell-Cattaneo model of heat conduction instead
of the classical Fourier relation, while GL-model includes also ϑ̇ in the list of independent constitutive
variables.

The elastic stiffness tensor, cijkl, [66,27], can be written as

cijkl =
6∑
r=1

crI
(r)
ijkl (3)

where, in components, the fourth-order tensors I
(r)
ijkl are

I
(1)
ijkl = 1

2 (δikδjl + δilδik) , I
(2)
ijkl = δijδkl,

I
(3)
ijkl = Nijδkl, I

(4)
ijkl = δijNkl,

I
(5)
ijkl = 1

2 (δikNjl + δilNik + δjlNik + δjkNil) , I
(6)
ijkl = NijNkl,

(4)

being cr the elastic material parameters, the tensor Nij = ni nj and ni the components of the unit vector
parallel to the axis of transverse isotropy and the tensor δij is the Kronecker delta.

The conservation of linear momentum, the conservation of charge and the entropy balance equation can
be expressed as: 

σik,k = ρüi

Dk,k = 0

ρT0Ṡ = −qi,i

(5)

Inserting the constitutive Eqs. (1) into Eqs. (5), the thermo-kinetic model for a linear pyroelectric medium
can be obtained [59,24,58]:

cijklεkl,j + ekijϕ,kj − γik
(
ϑ+ δGLt1θ̇

)
,k

= ρüi

ekijεij,k − pikϕ,ik + dk

(
ϑ+ δGLt1ϑ̇

)
,k

= 0

Kijϑ,ij = ρCε
(
ϑ̇+ (δLS + δGL) t0ϑ̈

)
+ T0

[
γij (ε̇ij + δLSt0ε̈ij) + dk

(
Ėk + δLSt0Ëk

)]
− δGL2

bi
T0
ϑ̇,i

(6)
We pose bi equal to zero, the material having a centre of symmetry. The last equation of (6) for the

CD-model is a parabolic equation and consequently leads to the nonphysical behaviour of infinite velocity
for the propagation of thermal disturbances; for the LS-model and the GL-model, this last equation turns
hyperbolic and, in the uncoupled case and for isotropic diffusion tensor Kij = Kδij , it results in a finite
characteristic velocity, i.e. vc =

√
K/(ρCεt0). Hence, in these hyperbolic cases, the perturbations ϑ are
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dissipative wavelike solutions, in the sense that no information can propagate with speed higher than a
definite limit, see e.g. fig. 11.

Finally, it is worth mentioning that the pyroelectric medium can be treated as a metamaterial with a
micro-structure whose behaviour is based on a multi-field coupling [20].

2.1 Boundary conditions

The boundary conditions at the surface z = 0 are the following, with superscripts (n) indicating the
incident (0) or the reflected (1, 2) waves (figure 1):

Mechanical conditions: the surface of the half space is assumed to be stress-free∑
n=0,1,2

σ
(n)
33 = 0,

∑
n=0,1,2

σ
(n)
13 = 0; (7)

Electrical conditions: the surface of the half-space is assumed to be electrically grounded∑
n=0,1,2

ϕ(n) = 0; (8)

Thermal conditions: the interface with vacuum is assumed to be an isothermal surface with tempera-
ture T0: ∑

n=0,1,2

ϑ(n) = 0. (9)

2.2 Plane waves in pyroelectric media

The solutions of Eqs. (6) are plane waves travelling in the n direction that can be represented by wave-
functions 

uα(x, t) = Aα e
i(−kn·x+ωt)

ϕ(x, t) = B ei(−kn·x+ωt)

ϑ(x, t) = C ei(−kn·x+ωt)

(10)

where Aα is the amplitude of the displacement wave, B is the amplitude of the electrical potential wave, C
is the amplitude of the thermal wave, i.e. unknown amplitudes to be determined by means of the boundary
conditions; k is the wave number, ω is the wave angular frequency and x is an arbitrary point on the
xz-plane. We remark that the wave number k is complex due to the thermal dissipation introduced by the
third of Eqs. (6), and then we can assume

k = k(<) + i k(=) (11)

Herein, we assume that the propagation (k(<) n) and attenuation (k(=) n) directions coincide, under the
homogeneous wave condition, while in a more general inhomogeneous case, these two vectors are not
collinear [73]. Rewriting the Eq. (10), we obtain a wave solution in the form

uα(x, t) = Aα e
k(=) n·x ei(−k

(<) n·x+ωt)

ϕ(x, t) = B ek
(=) n·x ei(−k

(<) n·x+ωt)

ϑ(x, t) = C ek
(=) n·x ei(−k

(<) n·x+ωt)

(12)

The phase velocity of this plane wave is directed as n with amplitude
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v =
ω

k(<)
(13)

and its attenuation is due to the imaginary part k(=).
Substituting Eqs. (10) into governing Eqs. (6), dropping the common exponential factor, we obtain a

linear algebraic system of four equations with four unknowns, i.e. the amplitudes A1, A3, B, C. This set of
equations displays nontrivial solutions if the determinant of the characteristic matrix Λ is zero

det [Λ(k, ω)] = 0 (14)

which represents the dispersion relation for the pyroelectric medium, resulting in an eighth order polynomial
in the wavenumber k, as a function of the angular frequency ω.

3 Numerical simulation and discussion

To perform a numerical analysis of this problem, we consider, as pyroelectric material, Cadmium Selenide
(CdSe) which has a hexagonal crystal structure. Its physical properties, taken from references [9,57,60],
are listed in Table 1. Specifically the elastic material parameters cr in Eq. (3) are related to the moduli cij
in Voigt notation by the following relations [11,27]

c1 = c11 − c12 = 2 c66, c2 = c12, c3 = c4 = c13 − c12,
c5 = 2 (c55 − c66) , c6 = c11 + c33 − 2 c13 − 4 c55,

(15)

when the axis of isotropy is along the z-direction; analogously, for the piezoelectric constants eiq we can
write

eiq = eikl, k = l, q = 1, 2, 3
eiq = 2eikl, k 6= l, q = 4, 5, 6

(16)

3.1 General solution: comparison among the three models

Eq. (14) gives, for each model considered, four pairs of complex roots. It is important to recall that each
of these four pairs leads to a wave solution which is simultaneously composed by three components, i.e. a
mechanical, an electrical and a thermal (Eqs. (12)). Due to the quasi-electrostatic approximation, the roots of
one of the pairs are null and for the other three waves the electrical component, corresponding to the second
expression of Eqs. (12), stems exclusively from the coupling with mechanical and thermal components. The
three non-trivial solutions, each characterised by a specific dispersion relation, thereinafter are referred to
as:

1. quasi-longitudinal Primary (qP) wave with the mechanical component quasi-longitudinal;
2. quasi-transverse Secondary (qS) wave with the mechanical component quasi-transverse;
3. thermal wave or quasi-Thermal wave (qT ), with a dominant thermal component.

For each wave, the phase velocity closely approximates the value of the correspondent uncoupled subsystem;
in other words, we assume that the first two solutions are mainly mechanical, while the third is predominantly
thermal.

Since the differential Eqs. (6) are dissipative and the medium is anisotropic, the propagation velocity
depends on the angle of propagation and is greater for the qP wave than for the qS one.

Figs. 2-10 show the graphs of propagation velocities v and attenuation factors k(=) vs propagation angle
θ and angular frequency ω, for qP, qS and qT waves, for the three models.

For the CD-model, Figs. 2 and 3 show for the mechanical waves that the velocity v is substantially
independent of the angular frequency ω; concerning the attenuation, the qP solution shows a higher k(=)

with respect to qS wave; for qS solution, Fig. 3, k(=) vanishes for propagation angles θ close to zero or greater



8 Abo-el-nour Abd-alla et al.

Table 1 Physical properties of Cadmium Selenide(CdSe)

Symbol Value Unit

c11 7.41 × 1010 Nm−2

c12 4.52 × 1010 Nm−2

c13 3.93 × 1010 Nm−2

c33 8.36 × 1010 Nm−2

c44 1.32 × 1010 Nm−2

e13 −0.160 Cm−2

e33 0.374 Cm−2

e15 −0.138 Cm−2

d3 −2.94 × 10−6 CK−1m−2

γ11 0.621 × 106 NK−1m−2

γ33 0.551 × 106 NK−1m−2

p11 8.26 × 10−11 C2N−1m−2

p33 9.03 × 10−11 C2N−1m−2

K11 9 WK−1m−1

K33 9 WK−1m−1

Cε 260 J kg−1K−1

ρ 5504 kg m−3

T0 298 K

Fig. 2 CD-model, qP wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω.
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Fig. 3 CD-model, qS wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω.

Fig. 4 CD-model, thermal wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω.

than π/3. In Fig. 4, the thermal wave manifests the parabolic character of Eq. (6)3 (δLS = δGL = 0), with
a propagation velocity v growing indefinitely with increasing angular frequency; similar considerations can
be done for the attenuation factor k(=).

For the LS-model, Figs. 5, 6 and 7 show the solutions assuming a relaxation time t0 = 1× 10−12 s. The
propagation velocities for qP and qS waves do not show significant differences compared to the CD-model;
the attenuation factor k(=) of the qP wave is lower in LS-model than in CD-model, while the opposite
occurs for the qS solution. Concerning the thermal solution, a different behaviour can be observed due
to the hyperbolic character of Eq. (6)3 (δLS = 1, δGL = 0); in particular, a characteristic upper bound
velocity, about 2500 m/s, is identified, i.e. no wave can propagate with higher velocities.

For the GL-model, Figs. 8, 9 and 10 depict the solutions assuming the two relaxation times t0 =
1× 10−12 s and t1 = 40 t0. For the qP wave, a slightly dispersive behaviour is observed in this model: the
phase velocity v depends on the angular frequency ω for any angle θ; on the contrary, this effect results
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Fig. 5 LS-model, qP wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation time t0 = 1 × 10−12 s.

Fig. 6 LS-model, qS wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation time t0 = 1 × 10−12 s.

negligible for the qS solution; furthermore, the attenuation factor k(=) for qP and qS waves is the highest
of the three models. For the thermal wave, a analogous behaviour to the LS-model is found, with a similar
limit propagation velocity, due to Eq. (6)3 (δLS = 0, δGL = 1) also hyperbolic.

For the thermal waves, the results about the velocity v in Figs. 4, 7 and10 are compared in Fig. 11
where, considering that there is no significant dependence on the propagation angle θ, the velocity v and
the attenuation factor k(=) are represented vs ω only. Both LS and GL models clearly show a character-
istic velocity, arising from their hyperbolic nature. Moreover, parametric analyses have been performed to
investigate the role of relaxation times. Fig. 12 exhibits the phase velocity v for relaxation time t0 equal to
1, 2, 3 and 4 ps in the case of LS-model and for relaxation time t1 equal to 10, 400, 800, 1200 ps for the
GL-model with constant t0 = 1 ps. From this figure, it is clear that the increase of both relaxation times
implies a decrease of the characteristic velocity of the thermal wave.
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Fig. 7 LS-model, thermal wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation time t0 = 1 × 10−12 s.

Fig. 8 GL-model, qP wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation times t0 = 1 × 10−12 s and t1 = 40 t0.

It is worth to signalise that the attenuation factor k(=) resulted in all cases to have very low importance
in the frequency range of interest for mechanical systems.

For qP waves, the mechanical component has a displacement of the medium quasi parallel to the propa-
gation of energy transfer, i.e. the direction of travel of the wave; analogously, for qS waves the displacement
of oscillations is quasi perpendicular to the propagation. For the sake of completeness, Fig. 13 shows the
angle ∆θ between the medium displacement and the travel wave direction vs ω for any solution of Eq. (6)
and for θ = π/6, for which the maximum deviation ∆θ occurs. The results reported show that the mechan-
ical components can be effectively considered longitudinal or transverse with a very good approximation
for the three models. Finally, only in the qP wave of the GL-model a significant variation of ∆θ with the
frequency is observed.

The following list of references is very useful in coping with several numerical problems, involving different
materials described by more field variables: [22,23,15,14,51].
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Fig. 9 GL-model, qS wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation times t0 = 1 × 10−12 s and t1 = 40 t0.

Fig. 10 GL-model, thermal wave: phase velocity v and attenuation factor k(=) vs the propagation angle θ and the angular
frequency ω. Relaxation times t0 = 1 × 10−12 s and t1 = 40 t0.

3.2 Free boundary solution: reflection coefficients

Although the dissipative feature of Eqs. (6) and considering that the medium anisotropy [45,47] imply that
the mechanical components of qP and qS waves are not exactly longitudinal or transverse, we consider
with good approximation merely longitudinal and transverse mechanical components, given the negligible
phase shift (Fig. 13). Furthermore, we assume also the attenuation negligible and the propagation velocity
independent of the angular frequency ω as previously remarked. In the following analysis, it should be noted
that the quasi-thermal solution has been neglected, the mechanical components being too small if compared
to those of qP and qS solutions.

Referring to Fig. 1 and labelling with (0) the incident wave, let us assume a qP wave travelling through
the medium in the half space z 6 0, with a propagation direction forming an angle θ0 with the z-axis and
incident on the free interface. The incident wave is expressed through Eqs. (12) for a qP wave in the xz-plane
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Fig. 11 Comparison among models: phase velocities v and attenuation factors k(=) of the thermal wave. Relaxation times
t0 = 1 × 10−12 s and t1 = 40 t0.

Fig. 12 Parametric analysis of phase velocities v: LS-model (left) for various values of relaxation time t0 and GL-model
(right) for t0 = 1 × 10−12 s and various values of t1.

Fig. 13 Comparison among models for θ = π/6: angle ∆θ between displacement of the medium and direction of travel of
elastic component for qP waves (left) and qS wave (right). Relaxation times t0 = 1 × 10−12 s and t1 = 40 t0.
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with a displacement vector exactly parallel to n(0), a unit propagation vector n(0) = (sin θ0, 0, cos θ0) and

for a null attenuation factor k
(=)
0 :

u(0) =
(
u
(0)
1 , u

(0)
3

)
= A0 (sin θ0, cos θ0) exp

[
ik

(<)
0 (x sin θ0 + z cos θ0 − vP0t)

]
ϕ(0) = B0 exp

[
ik

(<)
0 (x sin θ0 + z cos θ0 − vP0t)

]
ϑ(0) = C0 exp

[
ik

(<)
0 (x sin θ0 + z cos θ0 − vP0t)

] (17)

where A0, B0 and C0 are the amplitudes of the components and the propagation velocity is written as

vP0 = ω/k
(<)
0 .

Indicating with the label (1) the reflected qP wave also in this case with the displacement purely
longitudinal, the unit propagation vector is n(1) = (sin θ1, 0,− cos θ1) and, with analogous notation, one
may write: 

u(1) =
(
u
(1)
1 , u

(1)
3

)
= A1 (sin θ1,− cos θ1) exp

[
ik

(<)
1 (x sin θ1 − z cos θ1 − vP1t)

]
ϕ(1) = B1 exp

[
ik

(<)
1 (x sin θ1 − z cos θ1 − vP1t)

]
ϑ(1) = C1 exp

[
ik

(<)
1 (x sin θ1 − z cos θ1 − vP1t)

] (18)

where vP1 = ω/k
(<)
1 .

In the same way using the label (2) for the reflected qS wave, the unit propagation vector is n(2) =
(sin θ2, 0,− cos θ2) and it is perpendicular to the unit displacement vector (cos θ2, 0, sin θ2); so, we write:

u(2) =
(
u
(2)
1 , u

(2)
3

)
= A2 (cos θ2, sin θ2) exp

[
ik

(<)
2 (x sin θ2 − z cos θ2 − vS2t)

]
ϕ(2) = B2 exp

[
ik

(<)
2 (x sin θ2 − z cos θ2 − vS2t)

]
ϑ(2) = C2 exp

[
ik

(<)
2 (x sin θ2 − z cos θ2 − vS2t)

] (19)

where vS2 = ω/k
(<)
2 .

Let us substitute the waves represented in Eqs. (17), (18) and (19) in the boundary conditions (7), (8)
and (9) at the interface z = 0, defining the exponent of waves as

i η̄n = i k(<)n (x sinθn − vHnt) , (20)

where the index n labels the various types of waves and H stands for P or S. Considering that all Eqs. (7), (8)
and (9) must be satisfied for every value of x and t, necessarily we have:

η̄0 = η̄1 = η̄2 (21)

that implies {
k
(<)
0 sin θ0 = k

(<)
1 sin θ1 = k

(<)
2 sin θ2

k
(<)
0 vP0 = k

(<)
1 vP1 = k

(<)
2 vS2 = ω

(22)

From them and the transverse isotropy properties, we obtain for the incident and reflected qP waves,

k
(<)
0 = k

(<)
1 , θ0 = θ1, vP0 = vP1, (23)

while between the reflected waves we set,

k
(<)
2

k
(<)
1

=
vP1

vS2
= τ1, sin θ2 =

1

τ1
sin θ0 (24)
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Substituting Eqs. (17), (18) and (19) for incident and reflected waves into the two-dimensional Eq. (6)1
and simplifying the exponentials, we get the following relations among the wave amplitudes

κnAn +MnBn + µnCn = 0 with n = 0, 1, 2 (25)

where the parameters κn,Mn and µn are defined by the relations (34), (35) and (36) in Appendix A. Eqs. (25)
represent a system of homogeneous linear equations that defines the relations among the amplitudes of the
elastic, electric and thermal components. From Eqs. (34), (35) and (36), one may obtain the following
relations:

κ0 = −κ1, M0 = M1, µ0 = −µ1 (26)

Substituting Eqs. (17), (18) and (19) in the Gauss Eq. (6)2 and simplifying the exponentials, one obtains:

LnAn +GnBn + SnCn = 0 with n = 0, 1, 2 (27)

where the parameters Ln, Gn and Sn are defined by the relations (37), (38) and (39) in the Appendix A
and obey to the following relations:

L0 = −L1, G0 = G1, S0 = −S1 (28)

In the same way, by the substitution of Eqs. (17), (18) and (19) into the heat conduction Eq. (6)3, it
yields:

EnAn +DnBn + FnCn = 0 with n = 0, 1, 2 (29)

where the parameters En, Dn and Fn are defined by the relations (40), (41) and (42) in Appendix A. From
these equations, one obtains the following relations:

E0 = −E1, D0 = D1, F0 = −F1 (30)

From the above considerations, we have a set of nine linear, algebraic, non-independent, homogeneous
equations, connected by Eqs. (25) Eqs. (27) Eqs. (29), in the six unknowns An, Bn and Cn (with n = 1, 2).
Due to Eq. (14), one obtains non trivial relations for the reflection coefficients. We have:

X1 =
A1

A0
=
T1 + T2
T1 − T2

, X2 =
A2

A0
=

2

T2 − T1
, (31)

for the elastic components,

Z1 =
B1

B0
= −A1

A0
, Z2 =

B2

B0
=
A1

A0
− 1, (32)

for the electric components and

W1 =
C1

C0
=
A1

A0
, W2 =

C2

C0
= −A1

A0
− 1, (33)

for the thermal components, where the auxiliary coefficients T1 and T2 are defined by the relations (43)
and (44) in Appendix A. Hence, when a qP-wave impinges upon a free interface of a pyroelectric medium
with an angle of incidence equal to θ0, it originates two reflected waves: a qP-wave with a reflection angle
θ1 = θ0 and a qS -wave with a reflection angle θ2 = arcsin [(1/τ1) sin θ0] (Eqs. (23) and (24)). Each wave
has mechanical, electric and thermal components and the relative reflection coefficients are characterised
by Eqs. (31), (32) and (33).

As a special case, if we neglect the electrical constants, i.e. we set e15 = e31 = e33 = d3 = 0, p11 = p33,
the reflection coefficients provided by Eqs. (31), (32) and (33) reduce to those in [56], where wave reflection is
studied in a transversely isotropic, thermoelastic medium employing nonclassical theory of thermoelasticity.
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Fig. 14 CD-model, LS-model, GL-model: coinciding real parts of the reflection coefficients X1 and X2 versus θ0 with
t0 = t1 = 1 × 10−12s.

Fig. 15 CD-model: imaginary parts of reflection coefficients X1 and X2 versus θ0.

4 Discussion and Conclusions

Using the physical constants in Table 1, the reflection coefficients are computed as functions of the angle of
incidence θ0. The results obtained for the real and imaginary parts of the mechanical reflection coefficients
X1 and X2 (Eq. 31) are reported in Figs. 14, 15, 16 and 17, for a few values of the thermal relaxation
times t0 and t1. With the hypothesis previously made, the graphs are valid for any angular frequency ω.
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Fig. 16 LS-model: imaginary parts of the reflection coefficients X1 and X2 versus θ0 for different values of the relaxation
time t0 = m× 10−12s.

Fig. 17 GL-model: imaginary parts of the reflection coefficients X1 and X2 versus θ0 for different values of the relaxation
times t0 = 1 × 10−12s and t1 = mt0.

From an overall observation, we note in Figs. 15, 16 and 17 that the imaginary parts =(Xi) and =(X2)
decrease monotonously with increasing θ0; each investigated model shows a stationary trend for θ → 90◦,
tending to a value which in independent from t0 for LS-model and, conversely, strongly dependent for
GL-model. <(X1) and <(X2), reported for all three models in the same Fig. 14 because coinciding, show a
minimum at about θ0 ≈ 25◦ for <(X1) and about θ0 ≈ 5◦ for <(X2).

An interesting behaviour is observed for all the models considered: at about θ0 ≈ 25◦, <(X1) = −1 and
<(X2) = 0, while =(Xi) ≈ 0, i.e. at this value of the incident angle the reflected qS -wave is absent and
therefore only the qP-wave is observed.

Finally it is worth emphasising that previous studies, e.g. Achenbach [6] and Abd-alla et al. [3], can be
considered as special cases of the problem formulated in this work.

In this paper, we have studied the reflection of linear waves at the boundary separating a vacuum and a
half-space occupied by an elastic, transversely isotropic, thermo-piezoelectric material under the influence
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of thermal relaxation times. The classical Fourier description of heat conduction has been compared with
non-classical theories, namely the Lord-Shulman and the Green-Lindsay models, characterised respectively
by one and two relaxation times. The proposed two-dimensional model indicates that the reflection of a
qP wave, at the boundary between the vacuum and the medium, generates three different wave solutions,
referred to as a qP wave, a qS wave and a qT wave. The latter can be neglected since it has mechanical
components little significant. For the non–classical models considered, a finite propagation velocity has been
found, coherently to the hyperbolic nature of the modified heat equation.

The analytical results obtained were applied to compute the reflection coefficients for the specific pyro-
electric material cadmium selenide (CdSe). The results determined show a dependence on the relaxation
times for the Green-Lindsay model and illustrate a particular circumstance for which the qS -wave is absent.
We reckon that this study will be useful in signal processing, sound systems and wireless communication,
in addition to the design and construction of gyroscopes, temperature sensors, pyroelectric surface acoustic
wave (SAW) devices and defence systems.

A Appendix

Herein, the auxiliary parameters used in computation are listed:

κ0 = sin θ0
(
ρ v2P0 − c11sin2θ0 − (c13 + 2c44) cos2θ0

)
M0 = −(e15 + e13) sin θ0 cos θ0

µ0 = −γ1( i

k
(<)
0

) sin θ0
(

1 − ik
(<)
0 vP0t1

) (34)

κ1 = sin θ1
(
c11sin2θ1 + (c13 + 2c44) cos2θ1 − ρv2P1

)
M1 = −(e13 − e15) sin θ1 cos θ1

µ1 = γ1 sin θ1( i

k
(<)
1

)
(

1 − ik
(<)
1 vP1t1

) (35)

κ2 = cos θ2
(
c11sin2θ2 − (c13 + c44) sin2θ2 + c44cos2θ2 − ρv2S2

)
M2 = −(e13 + e15) sin θ2 cos θ2

µ2 = γ1( i

k
(<)
2

) sin θ2
(

1 − ik
(<)
2 vS2t1

) (36)

L0 = −((e13 + 2e15) sin2θ0 cos θ0 + e33cos3θ0)
G0 = (p11sin2θ0 + p33cos2θ0)

S0 = d3( i

k
(<)
0

) cos θ0(1 − ik
(<)
0 t1vP0)

(37)

L1 = ((e13 + 2e15) sin2θ1 cos θ1 + e33cos3θ1)
G1 = (p11sin2θ1 + p33cos2θ1)

S1 = −d3( i

k
(<)
1

) cos θ1(1 − ik
(<)
1 t1vP1)

(38)

L2 = (e15( sin θ2cos2θ2 − sin3θ2) + (e13 − e33) sin θ2cos2θ2)
G2 = (p11sin2θ2 + p33cos2θ2)

S2 = −d3( i

k
(<)
2

) cos θ2(1 − ik
(<)
2 t1vS2)

(39)

E0 = T0((1 − it0δ k
(<)
0 vP0)(γ1sin2θ0 + γ3cos2θ0))

D0 = −T0(d3 cos θ0(1 − it0δ k
(<)
0 vP0))

F0 = (K11
vP0

sin2θ0 + K33
vP0

cos2θ0 − ρCε(1 − t0ik
(<)
0 vP0))

(40)

E1 = −T0((1 − t0δ ik
(<)
1 vP1)(γ1sin2θ1 + γ3cos2θ1))

D1 = −T0(d3 cos θ1(1 − t0δ ik
(<)
1 vP1))

F1 = −(K11
vP1

sin2θ1 + K33
vP1

cos2θ1 − ρCε(1 − t0ik
(<)
1 vP1))

(41)

E2 = −T0((1 − t0δ ik
(<)
2 vS2)((γ1 − γ3) sin θ2 cos θ2)

D2 = −T0(d3 cos θ2(1 − t0δ ik
(<)
2 vS2))

F2 = −(K11
vS2

sin2θ2 + K33
vS2

cos2θ2 − ρCε(1 − t0ik
(<)
2 vS2))

(42)
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T1 =
τ1(D0µ0 − F0M0)[(D2µ2 − F2M2) (c13 − c33) sin θ2 cos θ2 − (E2µ2 − F2κ2)e33 cos θ2]

(D2µ2 − F2M2)[(D0µ0 − F0M0)(c13sin2θ0 + c33cos2θ0) + (E0µ0 − F0κ0)e33 cos θ0]
(43)

T2 =
τ1(D0µ0 − F0M0) [(D2µ2 − F2M2)c44 cos 2θ2 − (E2µ2 − F2κ2)e15 sin θ2]

(D2µ2 − F2M2) [(D0µ0 − F0M0)c44 sin 2θ0 + (E0µ0 − F0κ0)e15 cos θ0]
(44)
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