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ABSTRACT 
We present an adaptive system for the automatic assessment of both physical and anthropic fire impact factors on periurban 
forestries. The aim is to provide an integrated methodology exploiting a complex data structure built upon a multi resolution grid 
gathering historical land exploitation and meteorological data, records of human habits together with suitably segmented and 
interpreted high resolution X-SAR images, and several other information sources. The contribution of the model and its novelty rely 
mainly on the definition of a learning schema lifting different factors and aspects of fire causes, including physical, social and 
behavioural ones, to the design of a fire susceptibility map, of a specific urban forestry. The outcome is an integrated geospatial 
database providing an infrastructure that merges cartography, heterogeneous data and complex analysis, in so establishing a digital 
environment where users and tools are interactively connected in an efficient and flexible way. 

 
1  Introduction 
 
In this paper we present the main guidelines of a new 
approach towards an integrated model for the analysis and 
assessment of vulnerability to fire, applied to large urban 
forestry, see for example Figure 1 depicting Hyde Park in 
London. 
Fire prevention in periurban forests, namely, wildlife 
ecosystems enclosed within inhabited regions or interfacing 
metropolitan areas, such as parks or protected woodlands, is 
crucial for urban management. In fact, several reasons affect 
a balanced growth of these areas, and fire risks is one of the 
major causes. Regardless of the good intentions, fire risk 
prevention often alters biodiversity, likewise the utmost cost 
for protection, maintenance and for public emergency have a 
negative impact on the destination of urban areas to forestry.  
 
 

 
Figure 1. Hyde Park, London, Google Earth. 

 
Deterioration and lack of well modelled protection plans can 
cause dreadful consequences for these historical rich legacies 
and also great risks for the surrounding urban areas.  
Indeed, if on one hand urban forestry is a great economic and 
social asset in metropolitan areas, for air pollution reduction, 
climate control, and recreational and social benefits (see 

Konijnendijk et al., 2005), on the other hand a lack of 
accurate protection plans can cause a deterioration of these 
areas. 
A crucial scientific contribution to urban management in 
European metropolis, where large urban forests and parks 
form a beautiful interface with the metropolitan settlement, is 
to provide a strategic view of vulnerability to fire. 
In particular, in this project we consider several layers of data 
at different resolution that can integrate physical, natural and 
social factors. We consider the high resolution data obtained 
from X-SAR images, provided by Cosmo-SkyMed products, 
urban and land data, meteorological data and finally the 
automatic coregistration of the SAR images on Google Earth. 

 
Figure 2. X-SAR Enhanced spotlight of Hyde Park 

 
The paper is organized as follows. In Section 2  we present 
the main aspects characterizing X-SAR images. In Section 3 
we present the coregistration algorithm of the rectified SAR 
images on Google Earth. In Section 4 we introduce the 
segmentation algorithm, that returns a partition of the image 
into thematic areas. In Section 5 a model for the computation 
of the relative humidity of the thematic areas is presented, 
and in Section 6 we discuss the integration with urban and 
land use data. In Section 7 we introduce the classification of 
these integrated data using the descriptors based on features 
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extracted with the SURF algorithm.  Finally we end the paper 
with a short overview of the state of the art on these issues in 
Section 9.  

 

 

 
 
Figure 3.Realization of the 4D tensor by projection of the 
cropped X-SAR image on Google Earth, to illustrate the 
coherence of the projection we display different opacity 
levels. 
 
2 X-SAR images 
 
Synthetic Aperture Radar (SAR) data have a great potential 
as a source of relevant and near real time information for the 
change detection, early warning, mitigation, and management 
of natural disasters. That is because of its observation 
capability regardless climate conditions and sun illumination. 
Indeed, synthetic aperture radar is an active form of remote 
sensing. The surface is illuminated by a beam of energy with 
a fixed wavelength that can be anywhere from 1 cm (K band) 
to approximately 70 cm (P-band). These long wavelengths 
penetrate clouds and atmospheric interferences common to 
optical imagery and therefore are not limited spatially or 

temporally because of solar illumination or atmospheric 
interferences. The images available for the present paper are 
Cosmo-SkyMed products provided by the Italian Space 
Agency (ASI). They are high quality and high spatial 
definition, with resolution ranging from 0.6 to 1 m in the 
SpotLight mode, level 1C-GEC: this is a Geotiff format, the 
image is rectified and geo-referenced according to the UTM 
coordinate system, speckle filtered on demand. Data are 
obtained in the X-band (wave length ranging from 2.4 to 3.8 
cm) . Smooth surfaces have a darker response to X-band than 
ragged ones. Indeed, the X-band is known to be sensitive to 
changes in the target moisture content, namely, the response 
is lighter on increasing humidity. On the other hand different 
patterns on X-SAR images, corresponding to regions with 
different characteristics, are distinguishable only by the gray 
level spatial distribution (texture). In Figure 2 an example of 
X-SAR image of Hyde Park is illustrated. 
 
3 Coregistration 
 
To identify X-SAR features in the absence of other bands, a 
very first problem is to register the image so as to compute 
the cross correlation between different intensity and colour 
channels. The considered X-SAR enhanced spot-light images 
from Cosmo-SkyMed are provided at different incidence 
angles (within 20° and 50°) and HH/VV polarization, are 
rectified, speckle filtered (Gamma Map). Data are in uint16 
format, and a typical SpotLight image is represented by a 
raster of size 25856 x 25856 . 
In order to realize a 4D tensor including both a colour image 
and the X-SAR one, the X-SAR is first cropped, using a 
graphic interface, so as to obtain a manageable size to work 
with.  
The algorithm automatically computes the new coordinates 
and projects them on Google Earth, and it superimposes the 
X-SAR cropped image on the automatically selected area, see 
Figure 3. For a similarity transformation four pairs of control 
points are needed. The process can be repeated producing a 
whole tessellation of the original SpotLight image, with each 
cell very well manageable. A first analysis of features can be 
done by considering the cross correlation between the 
backscattering and the colour image, here we provide the 
normalized cross correlation between the X-SAR cropped 
image and each of the channel of the corresponding Google 
image. 
 

Figure 4. Cross Correlation between the RGB and X-SAR 
coregistered images 
 
We can see that there is an inverse correlation with respect to 
the water, river while there is a strong correlation with 
respect to the green. This implies that the 4 channels might be 
used for early texture analysis. 
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In the follow we consider a case study area, the Castel 
Fusano forest, near Rome, Italy. It suffered a severe fire event 
in the year 2000, and a great deal of data (urban, land use and 
fuel characteristics, past fire data) is available, thanks to the 
collaboration of the Italian Civil Protection. 
 
4 Segmentation 
 
The region of interest is displayed on Fig. 5: it is a portion of 
the X-SAR data acquired on the first of June 2010, HH 
polarization with incidence angle of 29°, at 17.30 local time. 
The image is not speckle filtered.  
 
 

 
Figure 5. X-band SAR image of the Castel Fusano area 

 
A first step in the interpretation of X-SAR images is achieved 
by a segmentation procedure based on a discrete level set 
method (see De Santis et al., 2007), applied to a suitable 
transformation of the data aiming at the enhancement of the 
texture properties that better describe the characteristics of 
the zones to be identified. For example, typical 
transformations are the contrast, the uniformity and the 
entropy . Indeed uniformity is obtained as the sum of the 
square of the local image histogram bins value, while the 
local contrast is based on the local signal variance. For 
example, to identify the larger burned area of Castel Fusano 
the uniformity transformation is well suited. A four levels 
discrete level set segmentation of the region of interest 
applied on the transformed data provides a simplified 
representation of the original image preserving the 
information to be retrieved. A four levels segmentation is 
obtained by successive image binarizations: first the image I 
is partitioned into two distinct subregions (not necessarily 
simply connected)  and represented, for any pixel 
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To obtain the binarization elements  a cost 

function is minimized: it contains the fit error between the 
image and its binary representation and a regularization term 
for the level set function: 
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Figure 6. Contour of the canopy subregion in the Castel 
Fusano area 

 
 
 
Parameter   is chosen to enhance the fit error influence over 
the optimal solution. In De Santis et al. , 2007 it has been 
shown that the problem has a unique optimal solution.  
Once the first level optimal binarization is obtained, the 
regions  are further binarized with the same procedure. 

Thus a four levels optimal segmentation is finally obtained. 
The measure of the local contrast allows in the chosen zone 
of Castel Fusano the identification oh subregions like the 
typical canopy of the old oak forest, planted in rows, see 
Figure 6. About ten different subregions can be identified in 
the Castel Fusano forest area. For each of them the high 
resolution X-SAR data allow for an accurate determination of 
the contour and extension, the fuel type, the gray level mean 
value that yields an estimation of average zone moisture 
content, one of the relevant physical parameter in the fire 
susceptibility model. 

21, AA

 
5 Moisture Information 
 
The thematic zones identified can be monitored by a 
periodical acquisition of X-SAR images: their average gray 
level value can be correlated with ground truth data obtained 
by the meteorological stations. In particular, the Aviation 
Digital Data Service (http://www.aviationweather.gov/) 
provides the daily temperature and dew point values (24 
hours) of Castel Fusano. The dew point value represents the 
temperature to which a given parcel of air, or, more precisely, 
water vapor, must be cooled down to condense into water at 
constant barometric pressure. It is strictly related to the 
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humidity value RH. To retrieve this value we can consider a 
psychrometric chart or a look-up table, or by means of 
empirical relations such as the following: 
 

100
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E
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where E  is the actual water vapor pressure and  is the 

saturated water vapor pressure, in units of millibar. These 
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From the above relations the ROI average relative humidity is 
obtained, and the values correlated with the identified 
subregions can be found by a simple proportion, using their 
average gray level value. Periodical image acquisition 
provides a time series RH moisture values for every 
subregion. The moisture content of each zone is strictly 
related with the weather conditions but also on the soil and 
vegetation characteristics. 
 
6 Data Integration 
 
To learn a fire susceptibility map, the thematic zones 
identified by segmentation must be endowed with ancillary 
data describing the fuel type ( land use and vegetation), urban 
characteristics, human intervention and in particular 
anthropic factors accounting for typical behaviors of 
pyromaniacs. These data are provided on thematic maps (see 
Figure 7) such as a soil map, a vegetation map, etc. 
Nevertheless Once these maps are co-registered with the X-
SAR image segmentation, it turns out that the data 
granularity is different, the X-SAR data being the finest. This 
can be appreciated on the detail represented on Figure 8. 
Therefore each pixel in the thematic areas from the 
segmentation can be assigned values from the other layers by 
a suitable classification algorithm interpolating data at 
coarser scale.  
Therefore a dynamic and stratified data representation of the 
area of interest (ROI) is obtained, that is able to keep track of 
the evolution of changes at various levels relevant to fire 
susceptibility assessment.  
We provide an automatic classification of high risk areas in 
the ROI based on both the data describing the past fires 
events and the data coming from X-SAR images 
segmentation. A novel and very efficient boosting technique 
combining kernel based Support Vector Machines has been 
developed and used to classify the different areas of the ROI, 
de Vasconcelos et al., 2001. 
 

Figure 7. Castel Fusano thematic maps: vegetation map (left), 
soil map (right). 
 

 
Figure 8. Detail of a thematic map showing the coarse data 
granularity  
 
7 Data classification and learning of the fire susceptibility 
map 
 
The data integration model we consider allows describing 
each pixel by a set of quantitative attributes based on the 
feature descriptors. In this paper we adopt a standard SURF 
algorithm in order to extract meaningful features from the X-
SAR images. These quantitative attributes define the spatial 
cross correlations of a pixel with the closest ones in terms of 
the local properties devised. Given the n-dimensional feature 
space, the classification task is then defined over this input 
space where each record of quantitative attributes describes 
an atomic area of the X-SAR image. More formally, a record 
x and a binary label y is assigned according to the features 
matching. The label y represents the kind of target area that 
we want to automatically identify in the X-SAR image, e.g. 
burned area, road, building, etc.  
The set of these records and their labels represents the 
training set {(x1,y1),…,(xm,ym)}. Our aim is to identify the 
classification rule defined over the training set and using this 
rule to assign the correct class to areas that have not been 
classified yet (test set). In order to define the classification 
rule we train a Support Vector Machine (Schölkopf et al., 
2001) over the training set and test the resulting classifier 
over the test set. In this case, for each atomic area x of the 
image the classification function f assigns the estimated label 
given by a linear combination of kernel functions evaluated in 
the so called support vectors.  
 

 
Figure 9. Results from the image classification algorithm: 
pink areas represent the oak tree areas (accuracy 90.03%); 
green areas represent areas being outside the oak tree forest 
(accuracy 89.40%) 
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In order to obtain good accuracy in classification we adopt a 
Radial Basis Function as kernel function and estimate the 
best kernel parameter by a 10-fold Cross Validation 
procedure. We trained a Support Vector Machine on a 
training set consisting of 30000 instances: 20000 instances 
were drawn from oak tree areas and the remaining 10000 
instances from burned areas. We obtained a 10-fold Cross 
Validation training accuracy of 99.10% and test the classifier 
f obtained on a different X-SAR test image acquired on the 
same area one day after the acquisition of the image used for 
training the classifier. In Figure 9 we report the results of the 
classification of the X-SAR test image. The classification 
rules has been used to assign the label “oak tree forest” to 
19600 test instances drawn from four test areas: two areas are 
portions of the oak tree forest; one is completely burned in 
the great fire of 2001 and one is half oak tree and half road. 
The classifier is able to recognize oak tree areas with an 
accuracy of 90.03% and to classify areas that are not in the 
oak tree forest with an accuracy of 89.40%. Other 
experiments on different areas and different polarization 
images gave similar results. 
The image classification algorithm we propose in this paper 
is based on standard feature extraction and single pixel 
recognition. The high mean training accuracy gained shows 
that the instances drawn to train the classifier are consistent 
and that potentially high quality information can be extracted 
from X-SAR images. We perform a number of experiments 
showing that the classification rules we define on the base of 
the training set yield good separating surfaces. These surfaces 
allow to recognize area being characterized by specific labels, 
in particular the ones of interest for fire susceptibility like 
canopy of the old oak forest. Therefore kind, contiguity and 
moisture content of fuel can be automatically detected by 
image classification and this information is very useful for 
fire prevention and fight. 
 
8 Conclusions  
 
In this paper we present the main components and the 
underlying guidelines of a new approach towards an 
integrated model for the analysis and assessment of 
vulnerability to fire. In particular, we apply the proposed 
approach to large urban forestry that are often interested by 
fire events, e.g. the Castel Fusano area near Rome in Italy. 
On the base of the main results on SAR image statistics, we 
introduce a method for fine segmentation and classification 
of regions according to a specific search task of interest. Our 
method is based on the collection of local scale invariant 
features descriptors tuned to X-SAR specificity. The features 
space is derived by combining the local statistics of the X-
SAR image with the corresponding image in colour space, 
obtained by projecting the rectified image on Google Map, 
and exploiting several scaling of the specific region. 
Correlation with the colour space induces a local 
interpretation rule for the X-SAR image pixel intensity 
values. The advantage of the method we propose is that it can 
be used to both search in an archive of X-SAR images, 
different from the one used for training the image classifier, 
or to automatically label the images for further search, by 
identifying specific classes of targets. 
 
9 State of art 
 
Since the earliest seventies the problem of providing an 
interpretation and a model of SAR images has been 
extensively studied under the perspective of defining the 
statistics of the intensity values of the backscattered signal.  

In fact, a characteristic of SAR images is the interference 
phenomenon known as speckle (Arsenault et al., 1976) which 
produces a typical pixelization effect, that have induced 
several interpretation of the associated statistics.  
Models provided range from very general to more empirical, 
mainly exploiting Gamma, inverse Gamma distributions, 
Generalized Gaussian models, Fisher distribution, and non-
parametric distributions, and so on, with the aim at obtaining 
a full characterization of the electromagnetic scattering of a 
scene. On the other hand, for application purposes 
classification methods have fostered a more empirical 
approach to recognize areas of different soil and vegetation 
types. Classification methods have exploited Neural 
Networks, Support Vector Machine, MAP, and regression 
analysis of backscattering models relating the measured 
signal to some parameters characterizing the soil condition. 
In this context the use of the X-band is quite recent and its 
full capability in environmental monitoring is yet to be 
completely evaluated. Our approach combining different 
methodologies is completely new in the literature. Several 
machine learning based approaches have been proposed in 
literature for fire risk analysis and prediction. In (Lapucci et 
al., 2005) the fire risk areas were located in the Livorno 
district in Tuscany region by means of a synergetic use of 
data mining techniques to estimate the fire likelihood, given 
previous fire events, and a spatial multicriteria analytical 
hierarchy process analysis, for damage evaluation. An 
analogous experience using spatial data and data mining 
algorithms, to identify fire risk analysis in Portugal is 
described in (de Vasconcelos et al., 2001). Two different 
machine learning models have been used and compared: 
logistic regression and artificial neural networks. The most 
interesting results showed that spatial fire ignition patterns, 
identified by the proposed approach, could be used for fire 
risk prediction and that these patterns could differ according 
to different fire ignition causes. Further studies and 
experiences in machine learning models for fire risk analysis 
can be found in (Betanzos et al., 2003) and in (Iliadis et al., 
2002). 
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