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dell’Aquila, Italy
3 Department of Mechanical and Aerospace Engineering, University La Sapienza, Rome, Italy
4 Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Italy
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In this paper we deal with the problem of choosing the best linear model capable to describe the mechanical characteristics
and the behavior of media with viscoelastic properties. Two different cases are studied: asphalt concrete subject to forced
vibrations and PVC cantilever beam subject to free vibrations. In both cases, experimental results are compared with
specific models and the identification of the most suitable one is carried out with the help of optimization theories, namely
the minimization of an objective function, the Kalaman filtering or the Bland and Lee approach.

1 Introduction

Motivation and basic ideas

Nowadays, the necessity of having good mechanical models for describing the behaviour of various materials is pressing.
Experimental data can be obtained by different laboratory setups, which may test mechanical properties (such as strength,
hardness, ductility) under certain specific loading conditions. This could be a good starting point for the characterization of
material models; however, it is quite restrictive, since a model obtained in this way, cannot be used when different loading
schemes have to be considered. Therefore, a good method, capable of including a wider range of behaviors, is required.

The characterization of a material, in particular in the case of viscoelastic materials, is usually made in two steps: first
one chooses the mathematical model and then he evaluates the proper parameters which fit in it. Nevertheless, obtaining
the right values for the elements that model our material, i.e. the stiffness of a spring or the viscous damping of a dashpot,
is far to be a simple matter. Obviously, when the constitutive relations are known, it is much easier to identify the material
constants; still this would be not enough to perform effective analysis, meant to be more accurate with respect to simplified
engineering analysis, which may come out too rough to ensure total reliability of the results.

In this paper, we propose a comparison between different models, in order to choose which one can best determine the
viscoelastic properties of our materials. Each of these models must be able to describe all the basic mechanical properties
and phenomena of the considered material while preserving generality and simplicity e.g. by limiting the number of material
parameters (for investigations in similar directions the reader may see e.g. [25, 26, 31, 36, 51]). This will make the model
suitable for further applications in complex numerical calculations, for experimental identification and for mechanical
interpretation i.e. the identification of the model parameters with specific effective material behaviors. The final choice
will be made by confronting the models parameters, found analytically or by FEM analysis, with the ones obtained by
laboratory experiments, via different methods taken from optimization theory, namely the least square method, the Kalman
filtering and the sensitivity analysis.

It is well known that fractional calculus has proved a reliable tool for the description of visco-elastic phenomena (see for
instance [28,39]). The richness and the flexibility provided by fractional calculus is clearly much greater when compared to
the models of linear visco-elasticity. However, it is also becoming increasingly common the need of analyzing the behavior
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of a very large number of elementary constituents, for instance when dealing with complex microstructures [23]. This
means that computation speed has also to be taken into account when comparing the advantages of various models, and in
this respect the simplicity of linear models comes in handy. This justifies our choice in the present work.

Two different cases are considered: first, a Polivinilchloride cantilever beam which is clamped at one end and whose
free end is subject to an initial displacement and then set free to vibrate; second, a block of Asphalt concrete fixed to
an hydraulic system which imposes forced vibrations to the specimen. The two experimental phenomena are clearly of
different nature, both concerning the material analysed and the set-up and type of tests which they undergo. In the present
paper, however, we want to emphasize the identification method more than the details of the two cases. Explicitly, in both
cases we:

� perform experiments on the real material
� extract relevant data from each experiment
� examine and choose different viscoelastic models which can describe the behavior of the considered case
� test the different models with a fitting procedure
� select the best model for the considered case.

The whole procedure is setup at room temperature, therefore thermal effect are neglected, and plasticity effects are
excluded. Moreover we restrict for simplicity our analyses to one-dimensional cases.

2 Specimens and experimental setups

As stated in the introduction, in order to be able to select the most suitable model to the considered viscoelastic material,
we need to be supported by experimental results. We will try to model a viscoelastic cantilever beam, which can be found
in sandwich structures, as core material, and viscoelastic composites, as concrete asphalt.

In this section, we describe both the materials that we are going to consider and the laboratory experiments. The values
obtained in this way will be used later on (see Sect. 4) in the objective function, in order to measure the differences between
analytical solutions and measured displacements.

We recall once again that we will study different experimental conditions in the two cases (in particular, free versus
forced vibrations). Therefore we will obtain clearly different outputs; nevertheless the method summarized at the end of
Sect. 1 can be applied in both cases.

2.1 Polivinilchloride cantilever beam

We consider a beam made of Polivinilchloride (PVC) foam. The beam is clamped to a steel frame which is rigidly attached
to a concrete basement. The measuring equipment is mounted on the top of the frame and is composed by a laser diode
module with an optical focus, a mirror glued to the middle and to the free end of the beam and a light sensitive receiver,
which converts the reflected laser beams into the corresponding electrical signal. Every signal is collected by the data
processing unit (B & K dual channel analyser) and stored into a computer hard disk. We can see a schematic representation
of the experiment in Fig. 1.

In order to register the free vibrations of the beam, we need to impose initial conditions of displacement and velocity to
its free end. This will be enforced by a specific rotatable device which is then removed instantaneously at time t = 0.1 s.
The free vibration curve of the sample is shown in Fig. 2.

It can be immediately observed that the response is not exactly the one of a classical Voigt material model. Actually, it
shows aperiodic contributions to the total motion, indicating the presence of material relaxation.

2.2 Asphalt concrete

Laboratory experiments have also been performed on cylindrical samples of asphalt D100 with 15% of rubber flower. The
specimen is glued from the end surfaces to two steel fixtures, in a way that all components lie in a coaxial position. An
extensometer Denison of the type LVTD was prepared so as to enable measurements of the strain for the whole length
of the sample. The hydraulic Instron 1251 machine grips the specimen and assures vibrations at given amplitudes and
frequencies. A displacement and force transducer collects the electric signals and, via the Instrom control system, transmits
them to the digital oscilloscope (Tektronix 2230) and to the computer (see Fig. 3).
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Fig. 1 Schematic representation of the experimental fixture for the free vibration test of the PVC beam.

Fig. 2 Free vibration response of the viscoelastic PVC beam.
Fig. 3 Schematic representation of the experimental fixture for
the vibration test of the Asphalt concrete.

The results for stress σ (t) and strain ε(t) are plotted in Fig. (4). As we can see, an approximation of the experimental
results can be made in the following way:

σ (t) = σ sin(ωt + α) = AN sin(ωt) + BN cos(ωt),

ε(t) = ε sin(ωt + β) = A0 sin(ωt) + B0 cos(ωt),
(1)

where

tan(α) = BN

AN

and tan(β) = B0

A0

and thus the phase shift δ can be calculated using

tan(δ) = A0BN − ANB0

A0AN − BNB0
. (2)



Fig. 4 Strain and stress curves obtained via experimental measurements
at frequency f = 0.1015 Hz and, in dashed lines, their approximating
functions described by Eqs. (1).

3 Material models

In this section, we are going to analyse models that can describe our materials. These models will be then compared with
the previous experimental results.

3.1 PVC Beam

In our model we neglect shear deformations and rotary inertia effect. Moreover, we assume small displacement and slope
of the beam (see section on results for possible generalizations of these assumptions). Therefore, the motion of the beam
is governed by the classical Euler-Bernoulli equation:

∂2M(x, t)
∂x2

− ρA
∂2y(x, t)

∂t2
= 0. (3)

With the following initial conditions:{
y(l, 0) = y0 ≈ −4, 65 cm,

v(l, 0) = v0 = 0.
(4)

As usual, M(x, t) denotes the bending moment of the beam, ρ the mass per unit volume and A the cross-section area
(which is constant).

Voigt-Kelvin model

The Voigt-Kelvin material model cam be schematically represented as in the Fig. 5. It is simply composed by a viscous
damper with damping constant p1 = EIξ , in parallel with an elastic spring with stiffness constant p0 = EI . Since such
elements are posed in parallel, the stress and strain for each component are the same. The associated constitutive equation
is:

M(x, t) = −p0
∂2y(x, t)

∂x2
− p1

∂

∂t

∂2y(x, t)
∂x2

. (5)

If we plug (5) into Eq. (3) we get the initial value problem⎧⎪⎨⎪⎩
p0

∂4y(x, t)
∂x4

+ p1
∂

∂t

∂4y(x, t)
∂x4

+ ρA
∂2y(x, t)

∂x2
= 0,

y(l, 0) = y0,

v(l, 0) = v0,

(6)

that is the equation of motion of a classically damped beam in terms of displacement.
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Fig. 5 Schematic representation of the Zener model. Fig. 6 Schematic representation of the Voigt-Kelvin model.

Zener model

The Zener model is slightly more complex than Voigt’s one, since it involves both elements in parallel and elements in
series (see Fig. 6). It is also known as standard linear solid model and it requires the use of a third parameter q1 which
stands for the time constant. The constitutive relation reads:

M(x, t) + q1
∂M(x, t)

∂t
= −p0

∂2y(x, t)
∂x2

− p1
∂

∂t

∂2y(x, t)
∂x2

. (7)

In the same fashion as we did for the Voigt model, we substitute (7) into (3) and get the Zener three-parameter equation
of beam motion with the initial conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0
∂4y(x, t)

∂x4
+ p1

∂

∂t

∂4y(x, t)
∂x4

+ ρA
∂2y(x, t)

∂x2
+ ρAq1

∂3y(x, t)
∂t3

= 0,

y(l, 0) = y0,

v(l, 0) = v0,

a(l, 0) = a0.

(8)

The initial acceleration a0 is found solving the Eq. (3) with initial configuration ȳ(x, 0) provided by solution of the
static linear problem of a cantilever beam with imposed transverse displacement of y0 at the free end and initial velocity
˙̄y(x, 0) = 0 (see for instance the standard reference [24]).

Solution and finite element model

The solutions of the previous Eqs. (6) and (8) can be approximated as follows:

y(x, t) =
∞∑
i=1

Xi(x)Ti(t), (9)

with

Xi(x) = C1 sin(λix) + C2 cos(λix) + C3 sinh(λix) + C4 cosh(λix). (10)

As we can notice, the previous eigenfunctions are equivalent to those of the elastic beam. The integration constants
Cj , j = 1, ..., 4 depend on the boundary conditions. Finally, the eigenvalues λi are the roots of

cos(λil) cosh(λil) = 1, (11)

characteristic equation, where l is the length of the beam. We determine the functions Ti(t) starting from the Zener model,
using the following:

ρA

EI

{
qi

d3Ti

dt3
+ d2Ti

t2

}
+ λ4

i

{
ξ
dTi

dt
+ Ti

}
= 0, i = 1, . . . ,∞. (12)

Recalling that for the elastic beam, the circular eigenvalues are ωi = λ2
i

√
EI/ρA, we obtain

qi�
3
i + �2

i + ω2
i ξ�i + ω2

i = 0. (13)



Fig. 7 Finite element model of the viscoelastic cantilever beam. Fig. 8 Schematic representation of Burger’s model.

The previous one is the equation for the eigenfrequencies of the three parameter viscoelastic beam of Zener model; it
has either three real solutions or one real and two complex conjugates. We are interested in the second case, hence the
solutions which associate eigenvalues �i with Xi(x) are

�
(1)
i = α

(1)
i , �

(2)
i = α

(2)
i + iωvi, �

(3)
i = α

(2)
i − iωvi . (14)

Therefore, we can express (13) as

T v
i (t) = Aie

α
( 1)
i + eα

( 2)
i t

{
Bi sin(ωvit) + Ci cos(ωvit)

}
. (15)

In order to obtain the solution for the Voigt material, is sufficient to notice that the first term of Eq. (15) is zero, yielding
thus to the classical motion for the damped beam:

T v
i (t) = eαi t

{
Bi sin(ωvit) + Ci cos(ωvit)

}
. (16)

In both cases, we can determine the constants Ai, Bi, Ci from the initial conditions given by Eq. (9) by imposing a
kinematic displacement at the free end, y0(l), and assuming the velocity at time instant t = 0.1 s to be equal zero.

To conclude the study of the models for the viscoelastic beam we have to make some remarks: although we found simple
analytical models for our material, these may present strong limitations. In particular, the response of the beam modelled
in that way does show neither shear deformations (which may result important for many applications) nor rotary inertia
effects. We can overcome these problems creating a linear finite element of the beam. As we can see from the Fig. 7 the
model is composed of 5 isotropic brick elements, with 20 nodes each, for a total of 180 active degrees of freedom.

With the help of the finite element model we are able to better represent the physical and geometric properties of the
beam. Moreover, the equations obtained in this way are directly applicable for the Kalman filtering, as we will see in
Sect. 4.2.

As in the standard FE analysis the equation of motion of the beam reads:

Mü + Cu̇ + Ku = f (t), (17)

with M being the mass, C the damping, and K the stiffness matrices; u is the vector of unknown displacements and f (t)
a deterministic excitation vector. In the case of Voigt 2-parameter model, since the damping and stiffness parameteres are
the same for each element, we can write Eq. (17) as follows:

Mü + p1C′u̇ + p0K′u = f (t), (18)

where p0 and p1 are the identified stiffness and damping parameters. Concerning the Zener model, since we cannot directly
use Eq. (18), we need a different type of finite element. Therefore, in order to identify material parameters, we use the
approximate analytical solution (9).

3.2 Asphalt concrete

Let us consider isotropic viscoelastic material, one-dimensional case. The general linear constitutive relation can be
introduced as follows:

p0σ (t) + p1
dσ (t)

dt
+ p2

d2σ (t)
dt2

+ ... = q0ε(t) + q1
dε(t)
dt

+ q2
d2ε(t)
dt2

+ ... . (19)

The above formula can be written in a compacted way as

P (D)σ (t) = Q(D)ε(t), (20)
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where

P (D) =
M∑

k=0

pkD
k, Q(D) =

N∑
k=0

qkD
k k ∈ N (21)

are linear differential operators and Dk = dk

dk t
is the differentiation with respect to time; as usual σ (t) and ε(t) are

respectively the stress and strain fields, while pk, qk are the constant parameters.

Burger’s model

Let us consider one of the simplest way of using formula (19), which is by means of Burgers model. This model,
schematically represented in Fig. 8, is composed by two dampers, with viscous damping parameters ηk, ηM , and two
springs, with relatively stiffness parameters Ek, EM . We can thus write the associated equation in the following form:

σ + A
dσ

dt
+ B

d2σ

dt2
= C

dε

dt
+ D

d2ε

dt2
. (22)

We can write the constants A, B, C, D in terms of the material parameters

A = ηM

EM

+ ηM

Ek

+ ηk

Ek

, B = ηMηk

EkEM

, C = ηM, D = ηMηk

Ek

. (23)

If we consider a steady harmonical vibration, we can express the time dependence of stress and strain with the complex
relations

σ (t) = σeiωt = (σR + iσ I )(cos(ωt) + i sin(ωt))

= (σR cos(ωt) − σ I sin(ωt)) + i(σR sin(ωt) + σ I cos(ωt)),
(24)

ε(t) = εeiεt = (εR + iεI )(cos(εt) + i sin(εt))

= (εR cos(εt) − εI sin(εt)) + i(εR sin(εt) + εI cos(εt))
(25)

where ω is the vibraiton frequency, expressed in rad/s, and σ and ε stand for the stress and strain complex amplitudes,
independent of time. We can use the previous formulas in order to get rid of the time dependence of the constitutive relation
and write them in the complex form. Indeed, if we plug expressions (24) and (25) in (20), deriving and simplifying we
arrive to

σ = E∗(ω)ε, (26)

with E∗ denoting the complex stiffness parameter, which could be compared to a stiffness or shear modulus of linear
elasticity.

This relation describes the connection between stress and strain relatives amplitudes, also including the shift between
their phases, considering various values for the frequencies of vibrations; for this reason, it is often used for investigating
the dynamic properties of viscoelastic materials, mechanically represented by different combinations of elastic springs and
viscous dashpots.

Notice that a substantial improvement of the numerical model could be obtained by using B-spline or NURBS inter-
polations (NURBS are a generalization useful to represent exactly circles and ellipses). A simple introduction to NURBS
regarding 1-D beams, and the related problems, is reported in [8, 9, 13, 29, 30] while for fully 3-D B-spline isoparametric
finite elements see [5]. Moreover dynamic problems could also be explored by using refined 1-D numerical models such
as presented in [10, 11].

4 Optimization techniques

Up to now, we just described our experimental setups and results and different material models which may fit to the
viscoelastic bodies subject of this study. The identification problem comes when one has to describe the real material, with
enough accuracy, for given ranges of initial excitations; In order to select the most suitable differential model, that makes
use of independent of initial conditions constants, we have to be able to select the adequate number of material parameters
necessary to describe the behaviour of the body. This is done through the use of an objective function, which is usually a
mean for measuring the difference between experimentally assessed and analytically calculated response of a material.
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4.1 Least square method

The first method that we will see, is the most straightforward, and is easily applicable to the Zener material model (see
Sect. 3). As we saw from the experimental setup (see Sect. 2.1) the displacements of nodes 39 and 63, that are respectively
at the middle and at the free end of the beams, are measured in a discrete set ti (i = 0, ..., N) of instants, in both x and y

directions (see Fig. 7). We can write the objective function F (θ), taking the analytical solution of Eq. (9), in its own form,
and comparing it with the measured one, as follows:

F (θ) =
N∑

i=0

{
ȳi(x) − z(x, ti)

}2
, (27)

where ȳi(x) = 1
t
i+1 −ti

∫ t
i+1

ti
y(x, t)dt is the mean value of the theoretical solution in the i-th time step, z(x, ti) are the

measured displacements and θ is a vector of unknown material parameters. As we minimize the previous objective
function, we get the set of equations:

∂F

∂θi

=
N∑

i=1

2
{
ȳ(x) − z(x, ti)

} ∂ȳ(x)
∂θj

= 0, j = 1, ..., n (28)

where n represents the number of material parameters. It should be clear that, using the previous equation and if more
oscillations have to be considered, computations may become harder. Fortunately, theoretical analysis has shown that, in
the response of a cantilever beam subject to an initial displacement at its free end, only the first two mods can be observed
and only one of them is predominant (see for example [34–36]). This is also confirmed by the spectral analysis of the beam
response, as we will see in the next Sect. 5.

4.2 Kalman filter

The next method we are going to explain will be able to evaluate the parameters recursively as they are part of a state
vector. It will be then applied to the Voigt material model. The advantage of using Kalman algorithm is that it is able to
filter noisy and biased measurements, producing estimates of the unknown parameters.

As we will see, the filter is mainly divided in two steps: in the first one the values of the current state variables are
predicted, though with their errors; in the second one, after obtaining the next measurement, the values are updated, using
a weighted average, giving more importance to the more accurate estimates. As new measurements are observed the
algorithm is repeated.

In our paper we are not going to use the classical Kalman filter but rather a generalization of it which works with
nonlinear systems, namely, the extended Kalman filter.

Consider the measurements z(t) and the state variables y(t). The relationship between the two in the Kalman filtering
algorithm is: {

z(t)
ż(t)

}
= T

{
y(t)
ẏ(t)

}
+ W(t), (29)

where W(t) is a vector whose components are uncorrelated zero mean white noise, and T is a linear transformation matrix,
that in our case reduces to the identity matrix due to the fact that we directly measure the displacements of the corresponding
nodes. As regarding the velocities, which are not directly measured, we could reconstruct them from the displacements, by
numerical differentiation or apply direct Fourier transform. In this way, excessive vibration modes will be directly filtered,
useless since they do not bring any information on the estimated parameters. After adding the parameter vector θ to the state
vector, yT = {

uT , u̇T , θT
}
, and introducing H (t) = (C ′u̇ K ′u) and h(t) = p1C

′u̇ + p0K
′u, we can rewrite Eq. (29) in

the state space form as follows:⎛⎝ C M 0
M 0 0
0 0 I

⎞⎠ ẏ −
⎛⎝−K 0 −H (t)

0 M 0
0 0 0

⎞⎠ y =
⎛⎝f (t)

0
0

⎞⎠ +
⎛⎝h(t)

0
0

⎞⎠ +
⎛⎝ 0

0
w(t)

⎞⎠ . (30)

Last equation can also be reformulated in the shorter form:

Aẋ − Bx = c(t) + d(t) + e(t). (31)

https://www.researchgate.net/publication/245329117_Application_of_Variational_Methods_in_Analysis_and_Synthesis_of_Viscoelastic_Continuous_Systems?el=1_x_8&enrichId=rgreq-7b8e2e013d8c26881ca5aeebeb74bc01-XXX&enrichSource=Y292ZXJQYWdlOzMxMTI0OTMzNjtBUzo0MzU4NjU4MzE5MDczMjhAMTQ4MDkyOTkyMDE5Mw==
https://www.researchgate.net/publication/222070929_Modelling_and_identification_of_viscoelastic_properties_of_vibrating_sandwich_beams?el=1_x_8&enrichId=rgreq-7b8e2e013d8c26881ca5aeebeb74bc01-XXX&enrichSource=Y292ZXJQYWdlOzMxMTI0OTMzNjtBUzo0MzU4NjU4MzE5MDczMjhAMTQ4MDkyOTkyMDE5Mw==


Taking its expectation we can arrive to the prediction of the mean by the equation:

Â̇x − B′x̂ = c(t) where B′ =
⎛⎝−K 0 0

0 M 0
0 0 0

⎞⎠ , (32)

whose corresponding eigenvalue problem is

A�� − B′� = 0 (33)

being � the vector of eigenvalues and � the modal matrix. If we use the transformation x̂ = �̂z to decouple Eq. (33) and
represent it in the modal coordinates z, we can find the analytical solution, which reads:

ẑk(t) = eλk(t−t0)
{̂
zk(t0) +

∫ t−t0

0
pk(t0 + τ )e−λiτ dτ

}
, (34)

where pk(t) = �T c(t).
Instead, the equation of the state space (31) for the variances reads:

A ˜̇x − B(t)x̃ = e(t) where x̃ = x − x̂, (35)

with the relative characteristic equation

A�� − B� = 0. (36)

Notice that the matrix B is time dependent, therefore, solving the eigenvalue problem (36) for large finite element
systems may require a lot of computations, since the solution must be updated at every time step. Instead, we could recover
the solution from the system (33), obtaining the eigenvectors � from the matrices � and H (t) (which is of course computed
at every time step). In this way, using the transformation x̃ = �z̃ the Eq. (35) reads:

Pz = E(zżT ), (37)

where the elements of the covariance matrix Pz are

Pij (t) = e(λi+λ̇j )(t−t0)
{
Pij (t0) +

∫
0
(t − t0)Fij e−(λi+λ̇j )τ dτ

}
. (38)

In the previous equation, F represents the autocorrelation matrix of the right hand side vector in modal coordinates i.e.
E

{
�T e(t)eT (t + τ )�

} = Fδt .
We can summarize the algorithm for calculating the response of the system in the following steps:

� Predict mean value with Eq. (34)
� Compute the matrix H
� Reconstruct the eigenvectors � from �
� Predict the covariance matrix from (38)
� Transform the mean of the response from modal to physical coordinates
� Use Px = �Pz�̇

T to obtain the covariance matrix in the real space

There is also another way to transform backward the covariance matrix. Considering the equation for the condtional
mean of the state variable

x̂(tk+1 | tk+1) = x̂(tk+1 | tk) + G(y(tk+1) − Tx̂(tk+1 | tk)), (39)

with G = Px(tk+1 | tk)TT
{
TPx(tk+1 | tk)TT + N

}−1
and N the noise covariance matrix.

After filtering we get the covariance matrix of the response, which reads

Px(tk+1 | tk+1) = (I − GT)Px(tk+1 | tk). (40)

One of the drawbacks of the extended Kalman filtering is that it requires a priori knowledge of the mean and covariance
matrix of the system response. Sometimes we can just guess the initial estimate of parameters, taking into account their
relation with the root mean square value of the measured time series and choosing the one with less uncertainty. About
the identification problem for actual material, also in order to consider different methodologies, it deserves to mention the
review paper [61]
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4.3 Sensitivity analysis

The most important problem when dealing with viscoelastic material is that, using differential model, one has to deal with
a big number of constants, independent of frequency material parameter, in order to properly model the behaviour of the
body, still considering the widest range of frequencies as possible. Therefore, may result difficult to identify which term
have to be taken in consideration, which of them play an important role or, on the other hand, which of them has small
effect and hence can be neglected. In our case, we consider mechanical models which are combinations of few springs
and dashpots, from which we can get some useful information. But if we have to deal with more complex models made
of a higher number of elements the investigation of their influence with respect to the associated parameter may become
much harder. For this reason we can introduce a method made of optimization techniques and sensitivity analysis, which
is able to recover the problem also in the case in which a wide number of unknown material parameters is encountered.
In this section we are going to confront forced harmonical vibration tests made on Asphalt concrete with the previously
described models for this material; from now on, all the variables with subscript e will denote experimentally obtained
values. The laboratory measurements will provide informations about amplitude of the response and phase shift between
it and the excitation, for a discrete frequency set ωi covering a wide range of ω, for i = 1, ..., Ne, Ne denoting the number
of experiments, within the material has to be considered.

Let us consider Eq. (19). For given haromonical motion with frequency ωi we can write the complex stiffness as

E∗
i (ωi) =

∑N
k=0 qk(iωi)k)∑M
k=0 pk(iωi)k)

= ER
i + iEI

i (41)

whereas the amplitudes of stress and strain are

σi =
√

(σR
i )2 + (σ I

i )2, εi =
√

(εR
i )2 + (εI

i )2. (42)

Once we have a set Ne of measurements and we know the components of the amplitudes of stresses σR
i,e, σ I

i,e and strains
εR
i,e, εI

i,e, for different vibration frequencies ωi, i = 1, ..., Ne we can introduce an objective function J which we use for
material parameters identification. We propose one which is an overall measure of the discrepancy between the calculated
components of the stiffnesses (ER

i,e, E
I
i,e, E

R
i , EI

i ) and the ones obtained by experimental measurements:

J =
Ne∑
i=1

[
(ER

i − ER
i,e)

2 + (EI
i − EI

i,e)
2] , (43)

where

ER
i = A1B1 + A2B2

B1B1 + B2B2
, EI

i = A2B1 − A1B2

B1B1 + B2B2
(44)

resulting from Eq. (20), with

A1 =
N ′−1∑
k=0

(−1)kω2k
i q2k,

B1 =
M ′−1∑
k=0

(−1)kω2k
i p2k,

A2 =
N−N ′+1∑

k=1

(−1)k−1ω2k−1
i q2k−1

B2 =
M−M ′+1∑

k=1

(−1)k−1ω2k−1
i p2k−1.

(45)

On the other hand, the experimental stiffness components are

ER
i,e = σR

i,eε
R
i,e + σ I

i,eε
I
i,e

εi,e

, EI
i,e = σ I

i,eε
R
i,e + σR

i,eε
I
i,e

εi,e

. (46)

Using all the previously stated relations, we can write the stationary condition for j , namely δJ = 0, to find the optimal
values for the parameters pk and qk:

δJ =
M∑

k=0

∂J

∂pk

δpk +
N∑

k=0

∂J

∂qk

δqk = 0. (47)



Now, we can analyse how sensitive is J to the parameters pk and qk , in order to understand and, whenever is necessary,
to adapt their weight in the constitutive relations. After carrying out equations from (41) to (46), we can write the relations
for sensitivity as follows:

δpk
J = ∂J

∂pk

δpk =
[

2
∂ER

i

∂pk

Ne∑
i=1

(
ER

i − ER
i,e

)
+ 2

∂EI
i

∂pk

Ne∑
i=1

(
EI

i − EI
i,e

)]
δpk,

δqk
J = ∂J

∂qk

δqk =
[

2
∂ER

i

∂qk

Ne∑
i=1

(
ER

i − ER
i,e

)
+ 2

∂EI
i

∂qk

Ne∑
i=1

(
EI

i − EI
i,e

)]
δqk.

(48)

Finally we apply the next algorithm:

� Assume M and N arbitrarily, large enough
� Minimize the objective function to compute pk and qk
� Calculate the relative parameters values of the spring kj and the damper cj for the associated mechanical model to

the assumed constitutive relation
� Estimate the individual components contribution to the mechanical model by means of sensitivity analysis and

coefficients calculated in the previous step

δkj
J =

[
M∑

k=0

∂J

∂pk

∂pk

∂kj

+
N∑

k=0

∂J

∂qk

∂qk

∂kj

]
δkj , δcj

J =
[

M∑
k=0

∂J

∂pk

∂pk

∂cj

+
N∑

k=0

∂J

∂qk

∂qk

∂cj

]
δcj

This gives an idea of which term may be neglected in the constitutive equation, still without loosing important
information necessary for a good model of the material

� Obtain the constitutive equations from the simplified material model and eventually correct the parameters pk and qk

repeating the minimization of the objective function.

In the next section we will see and discuss the results obtained by using the previous procedure, applied to the asphalt
concrete model.

5 Results and comparison

In this section we show the results obtained by means of previously explained models and methods and compare them. At
the end we try to choose which is the best model for each material, basically selecting the right number of parameters that
are necessary to describe it.

We start with the Zener model, whose constants are obtained by the least square identification. As we already discussed,
we will consider just two predominant modes of the solution, only one of which is then the most important. The spectral
analysis of the beam response, recovered by B & K Dual Channel Analyzer 2032, confirm what theoretical analysis claims.
Indeed, as we can see from Fig. 2, the first mode is like the one of the perfect elastic beam, damped very lightly, whereas
the second mode is essential to estimate the damping constant. In Fig. 9 the results for the parameters of Zener model are
shown.

We notice that the stiffness parameter p0 converges almost ideally to the value 7.2 · 107 N/m2, the damping constant p1,
even if not so smoothly, converges to 6.6 · 105 Ns/m2, contrariwise, the time constant q1 shows an oscillatory behaviour
which does not approach to a specific value. Anyway we can estimate the parameter value around 8.0 · 10−2 s, even if the
variation are quite large.

Unfortunately, generally, the least square estimated give biased results and it needs noise free observations. What is
more, very few statistical information about the estimated parameters is available. Even if we got very accurate results,
thanks to the precise optical method, the resulted parameter value may contain bias errors due to uncertainty of the initial
conditions (see for example [40]).

The results for the Voigt model, which we use with the Kalman filter, are shown in Figs. (10). We can see that, also in
this case, the stiffness parameter converges quite quickly to the value 7.6 · 107 N/m2. Notice that the obtained value is not
very far from the one obtained with the Zener model. On the contrary the damping constant shows large fluctuation at the
beginning, still converging to 5.4 · 105 Ns/m2 after 120 time steps.

Let us consider the standard deviations of these values (Fig. 11): for the constant p0 it reduces to 0 already after 30 − 40
iterations, while for p1 decreases much slower , and we need a quite large amount of time to identify the damping. The
obtained value for this latter constant is considerably smaller (about 20%) than the one obtained for the Zener material



Fig. 9 Zener’s model material parameters by means of least square estimation: a-stiffness constant p0; b-damping constant p1; c-time
constant q0.

model. We can thus conclude that the Voigt model is not capable of representing in a proper way the viscoelastic behaviour
of the PVC beam, since it does not include the relaxation effect which we observed from the free vibration test (see Fig. 2.

Concerning the method explained for the Asphalt model, let us start with an initial guess of M = 2 and N = 2. We
consider a series of frequencies for the vibrations 0.1 Hz < fi < 50.0 Hz, for which experimental datas are provided. The
associated material model is the five-parameters model, shown in Fig. 12, for which

p0 = k2(k1 + k3),

p1 = c2(k1 + k2 + k3) + c1k2,

p2 = c1c2,

q0 = k1k2k3,

q1 = k3 [c2(k1 + k2) + c1k2] ,

q2 = k3c1c2.

(49)

We impose the additional constrain of pk � 0 and qk � 0, minimize the objective function (43) and find that for some
sub-domain of ω q0 = 0 yielding k1 = 0. Thus the complex five-parameters model is simplified to the Burgers model. In the
Fig. 13, the results for complex stiffness modulus and phase shift are presented (in red) and compared to the experimental
measurements and to the geometrical method, proposed in the latest fifties by Bland and Lee. As we can see, even if our
theoretical results do not perfectly fit perfectly the experimental ones, they are significantly better than the ones obtained
with the geometrical method. Indeed, Bland an Lee introduced that method specifically for viscoelastic materials which
respond to Burgers model, while our method is more general and capable to better capture the material behaviour. Moreover,
in order to check our sensitivity analysis, to understand which is the relevance of each parameter, as initial guess, we used
different numbers of parameters, to perform the identification. The generalized model scheme is shown in Fig. 14. In order
to identify the material parameter of the constitutive model, we minimized the following objective function

J =
Ne∑
i=1

[
(
E∗

i − E∗
i,e

E∗
min

)2 + (
δi − δi,e

δmin

)2

]
, (50)

where E∗
i =

√
(ER

i )2 + (EI
i )2, modulus of the complex stiffness, and δi is the phase shift introduced in Eq. (2). The results

for coefficients computed for models with 4, 6, 8, and 10 parameters are reported in the Table 1.
From the Fig. 15-a, it can be observed that theoretical results for values of the complex stiffness fit sufficiently well to

the experimental measured ones. We also noticed that the picture does not change when increasing, above 8, the number
of components used in the material model, therefore they are not reported. On the other hand, if we observe the results for
the phase shift, reported in Fig. 15-b, the previous assertion can not be repeated.



Fig. 10 Voigt’s model material parameters by means of Kalman
filtering: a-stiffness constant p0; b-damping constant p1.

Fig. 11 Standard deviations of: a-stiffness constant p0; b-
damping constant p1.

Fig. 12 Schematic representation of the five parameters material model.

Fig. 13 a-Complex modulus, function of frequency; b-Phase shift, function of frequency.



Fig. 14 Schematic representation of the general model for viscoelas-
tic materials.

Table 1 Obtained coefficients computed for models with different number of parameters.

4-par. 6-par. 8-par. 10-par.

1 Ek GPa 4.4610 3.484613 3.484405 3.475803

2 ηk GPa · s 0.1051 0.433184 0.871770 0.858180

3 EM GPa 9.1800 9.116613 7.335442 7.363758

4 ηM GPa · s 4.613 4.590611 4.960377 4.956908

5 η1 GPa · s 0.047036 0.183867 0.178332

6 E2 GPa 13.43623 10.33714 16.79353

7 η3 GPa · s 0.023758 0.002016

8 E4 GPa 19.04319 23.01568

9 η5 GPa · s 0.017757

10 EM GPa 23.76724

Fig. 15 a-Complex modulus, function of frequency; b-Phase shift, function of frequency.

This confirms the fact that, since the phase shift is a parameter which is easily affected in identification, may be exploited
as a measure of the accuracy of any proposed material model.

Finally, we report how the sample responds to harmonical excitation, in time domain, compared to a 4-parameters
and 8-parameters models, in the case of two different oscillation frequencies. We can observe that the biggest difference
between theoretical and experimental results appear in the 4-parameters model (in red) and that, once again, we have good
agreement in for E∗, even for low parameter model, while the phase shift differs significantly, even if it is still better fitted
for higher parameter material model.



The generalization of the results here provided is of course of great interest. In particular, one may think to the following
possibilities:

� Generalizing the method to two- and three-dimensional bodies; this may entail the need to address the problems
arising from a more complex geometry of the specimens. From a numerical point of view, Finite Elements scheme
with high regularity (as for instance isogeometric analysis [7,12,32]) may be useful in order to address these problems.

� Including in the beam model employed more general deformations (see e.g. [37, 41–43])
� Considering other kinds of concrete with additional properties (see e.g. the concrete with enhanced dissipation

properties studied in [54–56])
� Considering more general dependency of the energy on the kinematic descriptors, i.e. higher gradient models (see

e.g. [1,4,6,15,16,18–22,27,33,38,57,59,62] for theoretical aspects and [14,17,45,50,52,53] for numerical results).
This can be especially interesting if one wants to apply the methods described herein to objects produced by means
of computer-aided manufacturing [23].

� Considering more general kinematical descriptors, i.e. microstructured continuum models (see e.g. [2, 3, 6, 44, 46–
49, 58, 60, 63]).

6 Conclusions

If we want fully describe the mechanical characteristics of viscoelastic materials, nonlinear material model must be
consider. However, if we just want to consider only selected properties of the materials, simplified viscoelastic constitutive
relation may be useful, under certain loading conditions. This significantly restricts the field of applicability of the models,
but ensures simplicity in implementation and understanding of them. This paper concerns the problem of modelling
and identifying viscoelastic properties of PVC cantilever beam and Asphalt concrete by comparison with experimental
measurements. Plastic effects were neglected, as well as temperature ones, and only viscoelastic properties were taken
into consideration. We showed that even if the Voigt-Kelvin is applicable for the description of the viscoelastic beam
and gives a good estimate for the stiffness, it gives significant errors for the damping parameter, while Maxwell-Zener
three-parameter model is capable to better capture both the features of the material. Least square and Kalman filtering
are both reliable methods for identification of stiffness, wile concerning the damping coefficient the second one works
better if sufficiently large time interval is considered. Moreover, Kalman filter is able to speed up the iteration procedure,
reduce the computational effort for multi degree of freedom systems and automatically filters the noise in measurements.
The experimental measurement showed that one has to pay attention when using differential constitutive equations with
constant coefficient, like the Burgers law, especially when a significant gamma of frequencies have to be considered,
since the material coefficients may be strain velocity dependent. In the case of Asphalt concrete, we choose an objective
function which measures the offset between the complex modulus of a real material and the one theoretically obtained
when considering a specific material model. We showed that the phase shift plays a more important role than other
parameters, in identification, since it represents a characteristic feature of the material. Moreover, it was observed that,
increasing the number of the parameters in the material model, it is possible to get a improved description of the material,
still keeping in mind that there exist a best number of material number, after which, adding complexity in the description
is useless. Thus, in order to identify the ideal number of parameters to used, a sensitivity analysis was proposed and
used.

We conclude reminding that the constant parameters contained in models obtained by comparison with specific exper-
imental test, usually do not agree with those used in a model obtained on the basis of another. That is why, in order to
improve the accuracy and the applicability of a model, one should take into account non constant material parameters.

References

[1] J. J. Alibert, P. Seppecher, and F. dell’Isola, Truss modular beams with deformation energy depending on higher displacement
gradients, Math. Mech. Solids 8(1), 51–73 (2003).

[2] H. Altenbach and V. A. Eremeyev, Analysis of the viscoelastic behavior of plates made of functionally graded materials,
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 332–341
(2008).

[3] H. Altenbach and V. A. Eremeyev, On the linear theory of micropolar plates, ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(4), 242–256 (2009).

[4] N. Auffray, F. dell’Isola, V. Eremeyev, A. Madeo, and G. Rosi, Analytical continuum mechanics à la Hamilton–Piola least action
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