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A detumbling algorithm is developed to yield three-axis magnetic stabilization of a CubeSat deployed with unknown RAAN, orbit
phase angle, inclination, attitude, and angular rate. Data from a three-axis magnetometer are the only input to determine both the
control torque and the angular rate of the spacecraft. The algorithm is designed to produce a magnetic dipole moment which is
constantly orthogonal to the geomagnetic field vector, independently of both the attitude and the angular rate of the rigid
spacecraft. The angular rates are calculated in real time from magnetometer data, and the use of a second-order low-pass filter
allows to rapidly reduce the measurement error within ±0.2 deg/sec. Numerical validation of the algorithm is performed, and a
variety of feasible scenarios is simulated assuming the CubeSat to operate in low Earth orbit. The robustness of the algorithm,
with respect to unknown deployment conditions, different sampling rates, and uncertainties on the moments of inertia of the
CubeSat, is verified.

1. Introduction

The stabilization of a spacecraft after deployment is never a
trivial issue, and several satellites have been lost due to anom-
alies or dysfunctions occurred during this phase. Typically,
the angular rates at the deployment are much higher than
those desired for attitude maneuvering and the satellite is
said to be tumbling. Therefore, a specific detumbling con-
trol must be designed to stabilize the spacecraft within the
minimum time compatible with the mission requirements.
After the spin motion of the spacecraft has been damped
to the desired level, the control policy can be switched to fine
pointing or attitude maneuvering and mission operations
can start.

Additional issues often arise when implementing such a
detumbling control on a CubeSat, mainly because of the lim-
ited capabilities, when compared to bigger satellites, of the
Attitude Determination and Control Systems (ADCS) com-
monly used. Nevertheless, CubeSat technology has grown

dramatically fast over the last ten years and is nowadays
opening to scientific missions. Therefore, improving their
reliability, and in particular by increasing the efficiency of
their ADCS, is for sure a main target for the years to come.

In this work, we propose a solution for the contingent
scenario in which the ADCS sensor addressed to angular rate
measurement (i.e., a rate gyro) is not capable of providing
any suitable information. This can happen after a failure of
the sensor itself or if the CubeSat angular rates exceed the
measuring range of the sensor, which is therefore not suitable
to produce accurate measurements.

Focusing on CubeSats operating in low Earth orbit
(LEO), an algorithm producing both the detumbling and
angular rate determination using only three orthogonal
magnetorquers and the measurements by a three-axis mag-
netometer is developed. It is worth to outline that these
two results are independent one from each other. The
algorithm is specifically designed to be implemented on a
low computationally efficient CubeSat onboard computer.
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Additional constraints are represented by the limited energy
budget, the strict limit on the peak current, and the low
sampling rate.

The detumbling module of the algorithm is based on the
popular B-dot control, here rearranged to explicitly generate
a magnetic dipole moment constantly orthogonal to the geo-
magnetic field vector. The stability of the control was verified
numerically, simulating the detumbling of the 3U CubeSat
Tigrisat. Numerical simulations also proved that an accurate
selection of the proportional control parameter results in a
commanded magnetic dipole moment which never exceeds
a maximum value here fixed to 0.3Am2.

The problem of magnetometer-only attitude determi-
nation has been extensively examined through the last
thirty years, with relevant results obtained first by Natanson
et al., for spacecraft rotating with constant angular rate and
later extended to the case with no a priori knowledge of the
spacecraft state with uses of a Kalman filter [1, 2]. As
reviewed by Hajiyev and Guler [3], several algorithms
include a single- or multiple-step extended Kalman filter
[4–9] or an unscented Kalman filter [10]. Other approaches
are based on deterministic two vector methods [11–13] and
are typically preferred when computational efficiency of the
onboard computer is limited and lower measurement accu-
racy is acceptable.

In the proposed algorithm, measurements of the
angular rates are based on the geometric properties relat-
ing three consecutive samples of the geomagnetic field
vector, processed in real time through a second-order
low-pass filter. Simulations proved that the algorithm is
suitable for measuring the angular rates within a steady state
error of ±0.2 deg/sec and robust with respect to unknown
deployment conditions and uncertainties on the inertial prop-
erties of the CubeSat.

In Sections 3 and 4, the design for the detumbling control
and the angular rate determination algorithm are presented
and numerically validated, simulating the detumbling of the
3U CubeSat Tigrisat. In Section 5, a variety of detumbling
scenarios, including unknown deployment parameters and
uncertainties, is simulated to evaluate the performance of
the algorithm and the results are discussed.

2. Mathematical Model

Some preliminary considerations are worth being out-
lined to clearly define the framework in which the
detumbling problem is here studied. The algorithm is
developed for a CubeSat deployed in LEO, without a
priori knowledge about its RAAN (Ω), orbit phase angle
(ϕ0), inclination (i), attitude, and angular rate. The ADCS
only includes one three-axis magnetometer and three
magnetorquers mutually orthogonal and aligned with the
principal axes of inertia, which define the body fixed reference
frame (Fb).

Attitude dynamics is modeled assuming the spacecraft as
a rigid body on which only the magnetic dipole torque acts.
This is the torque due to the interaction of themagnetic dipole
moment produced by magnetorquers with the geomagnetic

field vector. The nonlinear angular rate dynamics can be
expressed by the following equation [14]:

ω = J −1 −ω × J ω +m × Bb , 1

where ω is the angular rate vector, J is the tensor of inertia,
m is the magnetic dipole moment, and Bb is the geomagnetic
field vector in Fb. Both ω and its rate represent the angular
velocity and acceleration of Fb with respect to Fi, namely,
the Geo Centric Inertial (GCI) reference frame [15]. The time
derivatives of the geomagnetic field vector in the two frames
are related by the following equation:

Bi = Bb + ω × Bb 2

Numerical simulations, whose results are discussed in
Sections 3, 4, and 5, were run integrating the full nonlinear
spacecraft attitude dynamics equations [16], using the fixed
step solver ODE8. The values of Bi during the time of the
simulation are obtained from the International Geomagnetic
Reference Field (IGRF) model.

3. Detumbling Control

The proposed detumbling control represents a variation of
the classical B-dot, in which the variable m is defined to be
constantly orthogonal to Bb [17]. Such a result is obtained
assuming that Bi is negligible with respect to the other varia-
tions. This approximation is reasonably accurate only if the
angular rates are higher than the maximum rate of change
of the geomagnetic field vector, equal to twice the orbital rate
(n) of the spacecraft [14]. The scenarios investigated in this
work verify the mentioned condition (see Section 5), and
thus (2) can be rearranged as follows:

Bb = Bb × ω = Bb × ω⊥, 3

where ω⊥ is the projection of ω in the direction orthogonal
to Bb.

The cross-product does not allow the determination of
ω⊥ by inverting (3). Consequently, a guessed expression for
ω⊥ is considered as follows:

ω⊥ = Bb × Bb
Bb

2 4

The suitability of (4) follows from the following:

Bb × ω = Bb × ω⊥ = Bb ×
Bb × Bb
Bb

2 = Bb + Bb
Bb · Bb
Bb

2 5

Recalling that in LEO Bb ≪ Bb , the rhs of (5) is
approximately equal to Bb, as it is required by (3).

The magnetic dipole moment is now expressed as
follows:

m = K ω⊥ × Bb , 6

where K ∈ℝ+
0 is a constant parameter, namely, the control

gain, to be defined in accord to the specifics of the mission.
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Equation (6) clearly shows that m is constantly orthogonal
to Bb.

The control algorithm was validated through numerical
analysis in MATLAB. Simulation parameters are those of
the 3U CubeSat Tigrisat, launched by the School of Aero-
space Engineering in 2014, reported in Table 1.

In order to obtain results comparable with those of
Tigrisat mission analysis [18], the same values for the initial
angular rates were set and reported below.

ω t0 = 5 − 3 3 deg/sec 7

The control gain was set equal to K = 3∙104 so that the
maximum I available for the coils is not exceeded. The initial
RAAN, orbit phase angle, and attitude are generated as
random values within 0 and 360 deg.

The time behavior of the rotational kinetic energy is
reported in Figure 1 from which it can be noticed that Tr
decreases by two orders of magnitude in less than 1 orbital
period, within roughly 4500 seconds.

The following values for the maximum current (I) and
torque (τ) along the body axes were calculated as follows:

Imax
x = 175 5mA,
Imax
y = 77 2mA,
Imax
z = 64 8mA,

τmax
x = 8 476 μN,
τmax
y = 6 630 μN,
τmax
z = 6 626 μN

8

The algorithm is therefore suitable to produce the detum-
bling within the constraints defined for Tigrisat. An analysis
of its performance is reported in Section 5.

4. Angular Rate Determination

As it is well known, the B-dot control is Lyapunov stable
[14]. In virtue of it, under its effect, the magnitude of ω con-
stantly decreases, approaching a value about zero. For a vari-
ety of missions, maintaining a residual spin of rotation could
be desirable [19]. The capability of measuring the angular
rates allows the detumbling control to be stopped when a
given value of ω is matched. Measures of ω are here obtained
using three consecutive samplings of Bb from a three-axis
magnetometer, fixed to the satellite rigid body and aligned
with Fb.

In accord to equations (4) and (6), the three vectors Bb,
ω⊥, and m are always mutually orthogonal and their direc-
tions, namely the unit length vectors, form a tri-orthogonal
auxiliary reference frame, shown in Figure 2.

ξ1 =
Bb
Bb

,

ξ2 =
ω⊥
ω⊥

,

ξ3 =
−m
m

9

Table 1: Tigrisat parameters.

Orbital parameters Moments of inertia

h (km) 600 Jx (kg·m2) 0.0065

i (deg) 97.79 Jy (kg·m2) 0.0409

T (sec) 5801 Jz (kg·m2) 0.0409

Coil number of turns Coil area

Nx 320 Ax (dm
2) 0.3249

Nx 220 Ay (dm
2) 1.4934

Nx 220 Az (dm
2) 1.4934

Maximum current Imax (A) 0.3

×10−4
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Figure 1: Rotational kinetic energy behavior during Tigrisat
detumbling.
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Figure 2: Auxiliary frame (solid line) and body reference frame
(dotted line).
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Since the values of Bb are measured by a magnetometer
fixed to the spacecraft, its direction in Fb will change in time
along with both the orbital position and the attitude of the
rotating spacecraft. Considering now a short interval of time,
corresponding to the inverse of the magnetometer sampling
rate (f k), the variation of Bb due to the spacecraft orbital
motion can be neglected and, therefore, Bb would rotate with
Fb, with its direction depending only on the spacecraft atti-
tude motion. As detailed in Section 3, this assumption affects
the measures of ω by a factor equal to the rate of rotation
of the geomagnetic field vector, whose maximum value is
equal to 2n. Nevertheless, the proposed algorithm is targeted
at spacecraft operating in LEO where 2n< 0.13 deg/sec.
Therefore, the error introduced by this approximation is
lower than the minimummeasurement error achievable with
the algorithm.

Using the superscript k to indicate the generic sample of a
fixed step time discretization, it will be proved that the
following equation gives an accurate measurement of the
spacecraft angular rate vector for the spacecraft controlled
by the B-dot algorithm.

ωk = f k
Bk
b × Bk−1

b

Bk
b

2 , 10

where f k is the sampling rate and the time derivatives can be
calculated through the upwind scheme

Bk
b = f k Bk

b − Bk−1
b 11

Equation (10) correlates the unknown angular rates of
the spacecraft to the measurable rates of rotation of Bb. Its
validity is here proved for a spacecraft with a spherical mass
distribution and principal moment of inertia Jr . The results
are then extended to the general case.

For a spherical spacecraft, (1) can be rearranged as
follows:

ω = m × Bb
Jr

12

Equation (12) shows that the magnetic control torque
can only produce variations of ω along ξ2 and, as proved
hereafter, these variations correspond to rotations of the
vector Bb around ξ2.

According to (3) and (9), the vector Bb always lies on the
[ξ1, ξ3] plane. Recalling that for f k adequately high, we can
assume that Bb depends only on the attitude motion of the
spacecraft, and any rotation of Bb around ξ2 must be caused
by a rotation of the spacecraft around the same axis (see
Figure 3). Hence, a variation of ω along ξ2 corresponds to
the rate of rotation defined by (10).

For a spacecraft with a generic mass distribution, (1)
must be considered in its original form and the direction
of ω cannot be defined a priori. Nevertheless, also in this
framework, the rate of rotation of Bb can lead to angular
rate determination. In fact, with respect to the case exam-
ined before, ω will also change along ξ1 and ξ3. The

components along these two directions are due to the
shape of the tensor of inertia and to the nonlinear terms
in the rhs of (1). When calculating the angular rates by
means of (10), the ξ1 and ξ3 components introduce a mea-
surement error that has the shape of a high frequency
noise. Figure 4 shows the measurement error on the rota-
tional kinetic energy (Tr), defined as follows:

Tr =
1
2ω

T J ω 13

The measurement accuracy can be increased by
compensating the effects of the nonlinear terms and fil-
tering the results using a second-order Bessel low-pass

m
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Figure 3: Rotation of Bb within a short interval of time.
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Figure 4: Tr high frequency measurement error.
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filter. The compensation is obtained by adding to (10) the
following one:

Δωk = f k J −1 −ωk−1 × J ωk−1 14

The results from (10) and (14) are then processed
through a second-order Bessel low-pass filter that is charac-
terized by the following transfer function:

H s = 3
s/f co 2 + 3 s/f co + 3

, 15

where f co is the filter cutoff frequency in Hz, whose value is
unknownapriori and canbedetermined through simulations.

For the numerical analyses discussed in Section 5, the
values of f co were selected in accord to the following
criterion. First, the normalized (nondimensional) cutoff
frequency (λ) of the filter is defined as follows:

λ = f co
f k

16

Then, a reference value for the normalized cutoff fre-
quency (λr), for the axis corresponding to the mean
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Figure 5: Actual and measured angular rates (ωx , ωy , and ωz) during Tigrisat detumbling.
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Figure 6: Difference between actual and measured angular rates (ωx , ωy , and ωz) during Tigrisat detumbling.
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principal moment of inertia (Jr), can be determined
through numerical simulations, assuming f co is equal to
the maximum angular rate ωmax that can be expected at
the deployment (this value is eventually provided by the
deployer datasheet or can be guessed during mission anal-
ysis, depending on the geometry of the satellite and on the
characteristics of the deployer).

λr =
ωmax

2πf k
17

Finally, the other values of λ can be calculated scaling λr
by a factor proportional to

λi =
λr J i
Jr

i = x, y, z ∨ i ≠ r 18

Angular rate determination was tested, along with the
detumbling control discussed in Section 3, by means of
numerical simulations in MATLAB. Both the angular rates
obtained from the numerical integration of the attitude
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Figure 8: Difference between actual and measured angular rates (ωx , ωy , and ωz) for a Y-Thompson spin control.

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

−10

0

10

�휔
y 

(d
eg

/s
ec

)

−10

0

10

�휔
y 

(d
eg

/s
ec

)

−10

0

10

�휔
x 

(d
eg

/s
ec

)

1000 2000 3000 4000 5000 6000 70000
Time (sec)

1000 2000 3000 4000 5000 6000 70000
Time (sec)

Figure 7: Actual and measured angular rates (ωx , ωy , and ωz) for a Y-Thompson spin control.
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dynamics equations (solid line) and from the algorithm
(dashed line) are reported in Figure 5.

The difference between the two, here regarded as the
measurement error, can be seen in Figure 6, showing that
the steady state error is limited within ±0.2 deg/sec.

Angular rate measurements can be particularly useful for
missions in which different control on the three axes is
required; this is for instance the case of Y-Thompson spin
[20, 21]. An application of such a control was verified as well
assuming a referenced angular rate along the y-axis is equal
to 2.5 deg/sec.

The time behavior of the angular rates determined from
both the attitude dynamics equations (solid line) and the
algorithm (dashed line) are reported in Figure 7.

It can be noticed that both ωx and ωz are damped to zero,
while ωy only decreases down to the desired value. The
measurement errors are shown in Figure 8.

The case study allowed validating the algorithm. Its
performance and applicability on multiple scenarios with
uncertainties are discussed in the next section.

5. Simulation with Unknown Deployment
Conditions and Uncertainties

The target is to design an algorithm which is effective even
when the deployment conditions are unknown or uncertain.
This was proved simulating the detumbling for a variety of
scenarios, in which the initial RAAN, orbit phase angle, atti-
tude vector, angular rates, inclination, and altitude are
unknown. Also, a 10% error on J was assumed. In fact,
the moments of inertia of a CubeSat are sometimes known
with little accuracy, given the complicate and time-
expensive procedure necessary for determining them. The
mentioned constraints are hereafter summarized as follows:

Ω, ϕ0 ∈ −180 180 deg,
φ, θ, ψ ∈ −180 180 deg,

ωx, ωy, ωz ∈ −10 10 deg/sec,
h ∈ 400 700 km,
i ∈ 0 100 deg,

f k ∈ 1 8 10 Hz,
m < 0 3Am2,
10% error on J

19

The value of the control gain matching all the men-
tioned requirements was defined from the simulations,
resulting in K = 3∙104. This value allows a satisfactory
detumbling for all the scenarios considered and was set
constant for the sake of simplicity, although an optimal
value for the gain might be determined [22]. The parame-
ters of the low-pass filter, defined as in Section 4, are sum-
marized in Table 2.

A total of 100 test cases were simulated for a time equiv-
alent to 3 orbital periods. The angular rates and the measure-
ment errors for all the cases are shown in Figures 9 and 10,

proving that the algorithm is suitable to produce both detum-
bling and the angular rate determination regardless of the
uncertainties on the deployment conditions and on the iner-
tial properties of the CubeSat.

Table 3: Results from some selected test cases for h= 600 km and
i= 97.79 deg

Initial ω (deg/sec) [10 10 10] [5 5 5] [1 1 1]

Initial Tr (J/1000) 1.316 0.336 0.013

Detumbling time (sec) 6363 5895 4623

Settling time for ωx (sec) 1215 1122 518

Settling time for ωy (sec) 1365 1179 530

Settling time for ωz (sec) 1500 1008 509

Table 4: Results from some selected test cases for ω= [10 10 10]
deg/sec.

i= 0 deg

Altitude (km) 700 600 500 400

Detumbling time (sec) 9266 9046 8652 8267

Settling time for ωx (sec) 1050 1236 1158 996

Settling time for ωy (sec) 1270 1250 1180 1191

Settling time for ωz (sec) 1218 1168 1153 1192

i= 30 deg

Altitude (km) 700 600 500 400

Detumbling time (sec) 9078 8932 8548 8166

Settling time for ωx (sec) 1170 1169 1080 975

Settling time for ωy (sec) 1246 1243 1156 1055

Settling time for ωz (sec) 1239 1129 1165 1126

i= 60 deg

Altitude (km) 700 600 500 400

Detumbling time (sec) 8299 6832 5982 5796

Settling time for ωx (sec) 1166 1088 1066 958

Settling time for ωy (sec) 1246 1334 1032 966

Settling time for ωz (sec) 1217 1178 1025 1094

i= 90 deg

Altitude (km) 700 600 500 400

Detumbling time (sec) 7964 6228 5170 4374

Settling time for ωx (sec) 1182 1153 1102 1022

Settling time for ωy (sec) 1234 1173 1076 997

Settling time for ωz (sec) 1454 1541 1079 1012

Table 2: Filter parameters.

Gain 1

λx 0.1319

λy 0.4334

λz 0.4334
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Once the robustness of the algorithm with respect to the
parameters considered was verified, the effect of each single
onewas investigated. In order to compare the results fromdif-
ferent test cases, two evaluation parameters are introduced,
the detumbling time (td), here defined as the time to reduce
by two orders of magnitude the initial Tr and the settling time
(ts), namely the time at which the measurement error enters
and remains within the error band± 0.2 deg/sec.

We first focus on the effect of the deployment conditions,
assuming therefore an exact knowledge of the tensor of iner-
tia and a fixed value for the sampling rate, equal to 10Hz.
Simulations for these conditions were performed, and rele-
vant results are reported in Tables 3 and 4.

The analysis of these data suggests that ts is influenced by
the initial value of Tr and h. In particular, the variations in ts
are more marked for higher values of the corresponding
principal moment of inertia.

It is possible to notice as well that as the inclination of the
orbital plane increases, the detumbling time decreases while
the settling times are almost constant.

The influence of f k on the accuracy of the angular rate
determination algorithm is now examined. According to
(10) and (11), increasing the sampling rate corresponds

to a reduction in the accuracy of the time derivatives Bk
b

calculated and, consequently, on that of ωk. An example
of this effect is shown in Figure 9, representing the mea-
surement errors for 3 different values of f k (10Hz, 8Hz,
and 1Hz).

As shown in Figure 11, increasing the sampling rate from
1 to 10Hz, the measurement errors grow and the effect seems
to be more marked on the x-axis, the one with the minimum
moment of inertia. Despite the lower accuracy, also for the
highest value of f k, the measurement errors rapidly converge
to the ±0.2 deg/sec error band.

Finally, the uncertainty on J is taken into account. The
measurement errors, calculated assuming exact knowledge
of J , a 10% error on Jx and a 10% error on both Jx and Jy
are represented in Figure 12. These results show that under-
or overestimating the values of J by one-tenth determines
an increase of the mean measurement error in the early filter-
ing phases, though not significantly affecting the perfor-
mance of the system. This behavior can be better visualized
in Figure 13, reporting the measurement errors for the initial
600 seconds of the detumbling. It is worth to outline that,
within the range examined, an error on one moment of iner-
tia only affects the measurement of the angular rate on the
corresponding axis.

As stated at the beginning of the manuscript, the pur-
pose of the present algorithm is allowing the detumbling
and angular rate determination of a CubeSat based on
the only data from a three-axis magnetometer. The results
from the analyses presented in this section indicate that
the algorithm is suitable for both producing the detum-
bling under unknown or uncertain conditions and measur-
ing the angular rates in real time, with a measurement
error rapidly converging to ±0.2 deg/sec. According to it,
the algorithm can represent for CubeSats an adequate
alternative to rate sensors and a suitable backup solution
in case of their failure, eventually allowing the recovery
of the mission.

Once the performance of the algorithm is verified, a com-
parative analysis can be performed, to characterize it with
respect to similar solutions available in scientific literature,
highlighting the novelty it introduces and identifying its lim-
itations. We recall here that gyroless algorithms for angular
rate estimation can be classified into two main classes, esti-
mator-based, more accurate but computationally expensive,
and deterministic, more efficient and easy to be implemented
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Figure 9: Time behavior of the angular rates (ωx , ωy , and ωz) during the detumbling for 100 test cases simulated considering uncertainties on
the deployment conditions and on the inertial properties of the spacecraft.
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on a CubeSat onboard computer [3]. The proposed work
belongs to this second class.

Deterministic gyroless algorithms typically require atti-
tude knowledge, either directly measured or calculated, to
be differentiated and used along with the attitude kinematic
equations to compute the angular rates. Because of the noise
introduced by the differentiation process, further data pro-
cessing is necessary to improve the accuracy of the results
and it can be obtained by means of either an estimator
(usually a Kalman filter) or a passive one, such as the

low-pass filter discussed in this work, significantly reducing
the computational cost.

The use of a low-pass filter was already proposed by
Bar-Itzhack, for processing the coarse angular rates calcu-
lated differentiating the attitude data determined from the
measurements of the three-axis magnetometer and the sun
sensor on the Rossi X-ray Timing Explorer satellite [23]. It
can be noticed that the behavior of the estimated angular
rates reported in the referenced paper, before and after
the filtering, resembles those shown in the previous sections.
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Figure 11: Measurement errors for 1Hz (solid line), 8Hz (dashed line), and 10Hz (dotted line) sampling rates.
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Figure 10: Time behavior of the measurement errors (Δωx , Δωy , and Δωz) during the detumbling for 100 test cases simulated considering
uncertainties on the deployment conditions and on the inertial properties of the spacecraft.
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Further development by Bar-Itzhack et al. [24], reporting rate
estimation error graphs, allows a more detailed analysis. The
plots related to the simple passive filter show that rate estima-
tion errors are comparable to the measurement errors pre-
sented by the authors in this manuscript. Despite the
similarity in terms of accuracy, it is worth noting that our
results are obtained based on the only inputs of a single
three-axis magnetometer and without measuring or comput-
ing the attitude.

The lack of dependence on attitude knowledge and the
use of the only three-axis magnetometer are therefore the

most peculiar aspects of the work presented in this manu-
script. A similar magnetometer-only deterministic algorithm
was originally proposed by Oshman and Dellus [25], for a
LEO satellite actuated by momentum wheels, and later
improved by Psiaki and Oshman [26]. The angular rates
are here determined calculating the orthogonal component
ω⊥ by means of an equation equivalent to (4) and the parallel
component from the global solution of a least-squares prob-
lem. The same result in our algorithm is obtained by means
of only elementary algebraic operations. This follows from
the different attitude dynamics of a spacecraft controlled by
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Figure 13: Measurement errors for exact [J] (solid line), 10% error on Jx (dashed line), and 10% error on Jx and Jy (dotted line) in the early
filtering phase.
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Figure 12: Measurement errors for exact [J] (solid line), 10% error on Jx (dashed line), and 10% error on Jx and Jy (dotted line).
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magnetorquers, our case, instead of reaction wheels, as in
[25, 26]. The actuation by means of a magnetic torque
implies the geometrical constraints, discussed in Section 4,
between the vectors Bb, ω⊥, andm, finally resulting into (10).

6. Conclusions

The design and numerical validation of a magnetometer-only
detumbling and angular rate determination algorithm was
presented. A variety of deployment scenarios was numeri-
cally simulated and analyzed, showing that the proposed
algorithm is suitable for yielding three-axis magnetic stabili-
zation of a CubeSat deployed in LEO with unknown RAAN,
orbit phase angle, attitude, inclination, and angular rate.
Assuming a 3U CubeSat as reference and fixing the maxi-
mum commanded magnetic dipole moment to 0.3Am2, it
was proved that the detumbling can be achieved within 2
orbital periods.

Angular rates can be determined in real time, based on
three-axis magnetometer measurements. Data collected are
processed, compensating the effects of nonlinearities, and fil-
tered through a second-order low-pass filter, obtaining a final
measurement error within the error band± 0.2 deg/sec. The
robustness of the algorithm, with respect to unknown
deployment conditions, sampling rates ranging from 1 to
10Hz, and uncertainties up to the 10% on the moments of
inertia of the CubeSat are verified. Analyses showed that
higher measurement errors correspond to higher sampling
rates, producing an extension of the settling time. With
respect to the moments of inertia, uncertainties on their value
up to the 10% produce a slight increase of the measurement
error in the early filtering phase but do not have relevant
impact on the settling time.

Allowing angular rate determination, the algorithm can
be conveniently used to monitor the detumbling phase, espe-
cially in those cases when a residual spin of rotation around
an axis is desired. Therefore, by the algorithm, a convenient
condition to switch the attitude control of the CubeSat from
detumbling to fine pointing or attitude motion can be deter-
mined, eventually producing a considerable reduction in
electric power consumption.

Nomenclature

Bb: Geomagnetic field in body-fixed coordinates
Bi: Geomagnetic field in GCI coordinates
Fb: Body-fixed reference frame
Fi: Inertial reference frame
fk: Sampling rate
h: Spacecraft altitude
[I]: Identity matrix
I: Electric current through the coil
i: Inclination of the orbital plane
[J]: Spacecraft tensor of inertia
Jr: Reference principal moment of inertia
K: Control gain
m: Magnetic dipole moment
n: Spacecraft orbital rate
T: Orbital period

Tr: Rotational kinetic energy
td: Detumbling time
θ: Spacecraft pitch angle
λ: Cutoff frequency
τ: Control torque
φ: Spacecraft roll angle
ϕ0: Orbit phase angle
ψ: Spacecraft yaw angle
Ω: RAAN
ω: Spacecraft angular rate vector
ω⊥: Projection of ω orthogonal to Bb.
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