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Abstract

Iterated Bessel processes Rγ (t), t > 0, γ > 0 and their counterparts on hyperbolic spaces, i.e. hy-
perbolic Brownian motions Bhp(t), t > 0 are examined and their probability laws derived. The higher-
order partial differential equations governing the distributions of IR(t) = Rγ1

1 (Rγ2
2 (t)), t > 0 and

JR(t) = Rγ1
1 (Rγ2

2 (t)2), t > 0 are obtained and discussed. Processes of the form Rγ (Tt ), t > 0, Bhp(Tt ),
t > 0 where Tt = inf{s ≥ 0 : B(s) = t} are examined and numerous probability laws derived, including
the Student law, the arcsine laws (also their asymmetric versions), the Lamperti distribution of the ratio of
independent positively skewed stable random variables and others. For the random variable Rγ (T µ

t ), t > 0
(where T µ

t = inf{s ≥ 0 : Bµ(s) = t} and Bµ is a Brownian motion with drift µ), the explicit probability
law and the governing equation are obtained. For the hyperbolic Brownian motions on the Poincaré half-
spaces H+

2 , H+
3 (of respective dimensions 2, 3) we study Bhp(Tt ), t > 0 and the corresponding governing

equation. Iterated processes are useful in modelling motions of particles on fractures idealized as Bessel
processes (in Euclidean spaces) or as hyperbolic Brownian motions (in non-Euclidean spaces).
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1. Introduction

The analysis of the composition of different types of stochastic processes has recently
received a certain attention with the publication of a series of papers (see for example [1–3,12]).
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The prototype of these compound processes is the iterated Brownian motion whose investigation
was started in the middle of the 90s (see [6,7]). Beside the distributional properties of the
compound processes much work was done in order to derive the equations governing their
probability laws. It was found that these processes are related both to fractional equations and
to higher-order equations as is the case of iterated Brownian motion (see [1,11,32]). Iterated
processes X (T (t)), t > 0 have been considered to model the wear of equipment because the
inner process, T (t), represents the effective time during the (0, t) interval where a machine is
working while X (t) (external process) represents the wear to which the equipment is submitted
(see e.g. [27]). A similar interpretation of subordinated processes has been suggested by several
authors in an economic context (see [27]).

The core of this paper considers Bessel processes stopped at different random times. We first
study for all t > 0 the random variable IR(t) = Rγ1

1 (Rγ2
2 (t)) where Rγ1

1 , Rγ2
2 are independent

Bessel processes with parameters γ1, γ2. This is equivalent to studying a Bessel process at
a random time which is represented by an independent Bessel process. Iterated processes of
this form have proved to be suitable for describing the motion of gas particles in cracks (or
fractures). For the iterated Brownian motion this is considered in the papers by Burdzy and
Khoshnevisan [7] and DeBlassie [11] but a similar interpretation can be given to iterated
processes obtained by composing Bessel processes (this is the case here) or fractional Brownian
motions (see [12]). The r.v. IR(t) can be related to the motion of a Brownian particle on a fractal
medium possessing a Brownian structure. The law of IR(t) for a fixed time t > 0 is expressed in
terms of Fox functions (see, for example [28,29]) and possesses a Mellin transform equal to

E (IR(t))η−1 = (8t)
η−1
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We are able to derive the PDE satisfied by the pdf q of IR(t) for a fixed t > 0 which reads

∂q

∂t
(r, t) = 1

8


∂2

∂r2 − γ1 − 1
r

∂

∂r
+ γ1 − 1

r2



×


∂2

∂r2 − (γ1 + 2γ2 − 3)

r

∂
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+ (γ1 − 1)(2γ2 − 1)

r2


q(r, t). (1.1)

In the case γ1 = γ2 = 1, Eq. (1.1) reduces to the fourth-order equation

∂q

∂t
= 1

8
∂4q

∂r4 , r, t > 0 (1.2)

obtained by Funaki in [13] where the space variable r varies on the whole real line. Equations of
the form (1.2) like

∂u

∂t
(x, t) = κN

∂ N u

∂x N (x, t), x ∈ R, t > 0, N ≥ 2

where

κN =

(−1)N/2+1 if N is even
±1 if N is odd

emerge in the study of pseudo-processes analyzed in several papers; see [21] where the arcsine
law of the sojourn time of the even-order pseudo-processes has been obtained. More recently,
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Lachal [22–24] and Cammarota and Lachal [8], have obtained general results on the maximum
and hitting location of pseudo-processes of any order generalizing and extending (employing
different approaches) special results that appeared in the literature (for example in [4,31]).
A related process, considered in Section 4, is JR(t) = Rγ1

1 (Rγ2
2 (t)2) where Rγ1

1 , Rγ2
2 are

independent Bessel processes starting at the origin. The probability density q of JR(t) for a
fixed t > 0 can be expressed in closed form as

q(r, t) = Pr{JR(t) ∈ dr}/dr = 22− γ1+γ2
2

Γ
 γ1

2


Γ
 γ2

2

 rγ1−1

tγ2/2 K0


r√
t


, r, t > 0 (1.3)

where K0 is the modified Bessel function of order zero. The equation satisfied by (1.3) has the
form

∂q

∂t
= −r

2
∂3q

∂r3 (r, t) + (γ1 + γ2 − 4)

2
∂2q

∂r2 (r, t) − (γ1 − 1)(γ2 − 1)

2
∂

∂r

q(r, t)

r

and includes the equations governing the process |B1(B2(t)2)|, t > 0, for γ1 = γ2 = 1 (and
coincides with 3.16 of [12] for H = 1/2) where B1 and B2 are independent Brownian motions.

Interesting results can be obtained by considering the Bessel process Rγ (t), t > 0 stopped at
the first-passage time process Tt , t > 0 of an independent Brownian motion. Processes stopped at
different types of random times can be viewed as processes with a new clock which is regulated
by an independent Brownian motion B. The r.v. Tt = inf{s ≥ 0 : B(s) = t} tells the time
at which the Bessel process must be examined. This means that the clock considered below is
timed by an independent Brownian motion. Therefore Rγ (Tt ), t > 0 represents a motion where
accelerations and decelerations of time occur randomly and continuously. We show that the pdf
of Rγ (Tt ) for a fixed t > 0 reads

Pr{Rγ (Tt ) ∈ dr}/dr = 2√
π

Γ


γ+1
2



Γ
 γ

2

 trγ−1

(r2 + t2)
γ+1

2

, r, t > 0.

Bessel processes Rγ (T µ
t ), t > 0 stopped at first-passage time T µ

t = inf{s ≥ 0 : Bµ(s) = t}
where Bµ is a Brownian motion with drift µ are examined in Section 3. In particular we prove
that when γ > 0 and µ > 0

Pr


Rγ (T µ
t ) ∈ dr


/dr = 4t eµt rγ−1
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for r > 0, t > 0.
The last section is devoted to compositions involving the hyperbolic Brownian motion, that is

a diffusion on the Poincaré upper half-space

H+
n = {(x1, . . . , xn) ∈ Rn : xn > 0}

with particular attention to the planar case H+
2 and the three-dimensional Poincaré half-space

H+
3 . The hyperbolic Brownian motion in H+

2 was introduced by Gertsenshtein and Vasiliev [14]
and in H+

3 by Karpelevich et al. [20]. Applications and extensions of Hyperbolic Brownian
motion can be found in [25,17,34] and [30] where a scholar review on this topic is presented. In
the space H+

2 we study the hyperbolic distance from the origin of a hyperbolic Brownian motion
stopped at the first-passage time process Tt , t > 0 of the standard Brownian motion whose
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probability law can be explicitly written for η > 0, t > 0 as

pJ2(η, t) = sinh η

π
√

23

∫ ∞

η

ϕ√
cosh ϕ − cosh η

t

t2 + ϕ2 K2


1
2


t2 + ϕ2


dϕ. (1.4)

In H+
3 the corresponding distribution of J3(t), t > 0 reads

pJ3(η, t) = 2
√

2
π

ηt sinh η

(η2 + t2)
K2


η2 + 2t2


, η > 0, t > 0. (1.5)

The equations governing (1.4) and (1.5) are respectively

−∂2 pJ2

∂t2 = ∂2 pJ2

∂η2 − ∂

∂η


coth ηpJ2


, η > 0, t > 0

−∂2 pJ3

∂t2 = ∂2 pJ3

∂η2 − 2
∂

∂η


coth ηpJ3


, η > 0, t > 0.

The hyperbolic distance of a hyperbolic Brownian motion plays in the non-Euclidean spaces
H+

n , n = 2, 3, . . . the same role of Bessel processes in the Euclidean spaces. The structure
of the probability law of two-dimensional hyperbolic Brownian motion is rather complicated
(see formulas (6.4) and (6.5)) and therefore we have restricted ourselves only to compositions
involving first-passage times. Much more flexibility is allowed by three-dimensional hyperbolic
Brownian motion. Millson formula (see [16]), in principle, permits us to examine compositions
of higher-dimensional hyperbolic Brownian motions stopped at random times.

2. Notations

For the convenience of the reader we list here some of the symbols appearing in the paper:

• B(t), t > 0 is a Brownian motion
• Bµ(t), t > 0 is a Brownian motion with drift µ ∈ R,
• Rγ (t), t > 0 is a Bessel process of parameter γ > 0,
• Tt = inf{s ≥ 0 : B(s) = t} is the first-passage time of B,
• T µ

t = inf{s ≥ 0 : Bµ(s) = t} is the first-passage time of Bµ,

• Bhp
n (t), t > 0 is a hyperbolic Brownian motion on the n-dimensional space H+

n ,
• Sγ (t) = Rγ (t)2, t > 0 is a squared Bessel process,
• Aγ

r , (Aγ
r )∗ are the infinitesimal generator of Rγ and its adjoint,

• Ãγ
r , (Ãγ

r )∗ are the infinitesimal generator of Sγ and its adjoint,
• Hn is the generator of Bhp

n (t), t > 0.

3. Compound processes and PDEs

Let X1(t), t > 0 and X2(t), t > 0 be two independent stochastic processes such that X1(t) ∈
R and X2(t) ≥ 0 for all t > 0 and set p1(x, s) = Pr{X1(s) ∈ dx}/dx, s > 0, x ∈ R and
p2(s, t) = Pr{X2(t) ∈ ds}/ds. Let us introduce the compound process IX (t) = X1(X2(t)), t > 0
and set q(x, t) = Pr{IX (t) ∈ dx}/dx . We readily have

q(x, t) =
∫ ∞

0
p1(x, s)p2(s, t) ds, x ∈ R, t > 0.
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Note that in p1(x, s), x stands for the space variable and s for the time variable related to X1
while in p2(s, t), s stands for the space variable and t for the time variable related to X2. The
main result for the compound process IX is the following one.

Theorem 3.1. Assume that p2 satisfies the PDE

∂p2

∂t
(s, t) = ∂2

∂s2 (a2(s)p2(s, t)) − ∂

∂s
(a1(s)p2(s, t)) + a0(s)p2(s, t) (3.1)

where a0, a1, a2 are some functions and that p1 satisfies the PDEs

D0,x p1(x, s) = a0(s)p1(x, s),

D1,x p1(x, s) = a1(s)
∂p1

∂s
(x, s), (3.2)

D2,x p1(x, s) = a2(s)
∂2 p1

∂s2 (x, s),

where D0,x , D1,x , D2,x are some differential operators related to the variable x. Moreover
assume that

lim
s→+∞ p1(x, s) = lim

s→+∞ p2(s, t) = 0, for any x ∈ R, t > 0. (3.3)

Then q satisfies the PDE

∂q

∂t
(x, t) = Dx q(x, t) + c(x, t), x ∈ R, t > 0 (3.4)

where Dx is the differential operator Dx = D0,x + D1,x + D2,x and c is the function (or possibly
the distribution)

c(x, t) = lim
s→0+


a1(s)p1(x, s)p2(s, t) + a2(s)p2(s, t)

∂p1

∂s
(x, s)

− p1(x, s)
∂
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(a2(s)p2(s, t))


.

Proof. We have by (3.1), integration by parts and by assuming that the following interchanges
of derivatives and integrals are valid

∂q

∂t
(x, t) =

∫ ∞

0
p1(x, s)

∂p2

∂t
(s, t)ds

=
∫ ∞

0
p1(x, s)

∂2

∂s2 (a2(s)p2(s, t)) ds −
∫ ∞

0
p1(x, s)

∂

∂s
(a1(s)p2(s, t)) ds

+
∫ ∞

0
p1(x, s)a0(s)p2(s, t)ds

=
[

p1(x, s)
∂

∂s
(a2(s)p2(s, t)) − a2(s)p2(s, t)

∂p1

∂s
(x, s)

]s=∞

s=0

+
∫ ∞

0
a2(s)p2(s, t)

∂2 p1

∂s2 (x, s)ds − [a1(s)p1(x, s)p2(s, t)]s=∞
s=0

+
∫ ∞

0
a1(s)p2(s, t)

∂p1

∂s
(x, s)ds +

∫ ∞

0
a0(s)p1(x, s)p2(s, t)ds.
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From conditions (3.2) and (3.3) we get

∂q

∂t
(x, t) = c(x, t) +

∫ ∞

0
p2(s, t)

[
a2(s)

∂2 p1

∂s2 (x, s)

+ a1(s)
∂p1

∂s
(x, s) + a0(s)p1(x, s)

]
ds

= c(x, t) +
∫ ∞

0
p2(s, t)Dx p1(x, s)ds

= c(x, t) + Dx q(x, t)

which proves (3.4). �

Example. If X2 is a non-negative diffusion process with infinitesimal generator A1,s = a2(s) ∂2

∂s2

+a1(s) ∂
∂s +a0(s) (where s is the space variable) then the pdf p2(s, t) satisfies the Fokker–Planck

equation ∂p2
∂t (s, t) = A∗

1,s p2(s, t). Moreover, if the functions a0, a1, a2 are constant and if X1 is
a diffusion process with infinitesimal generator A2,x (a second-order differential operator where
x is the space variable), then conditions (3.2) are fulfilled with D0,x = a0, D1,x = a1 A2,x ,

D2,x = a2 A2
2,x and then Dx is the fourth-order differential operator a2 A2

2,x + a1 A2,x + a0.

4. Composition of Bessel processes with different types of processes

4.1. Preliminaries

Let Rγ (t), t > 0 be a Bessel process of parameter γ > 0 starting at 0 and set pγ (r, t) =
Pr{Rγ (t) ∈ dr}/dr where r is the space variable. This process is a non-negative diffusion process

with infinitesimal generator Aγ
r = 1

2


∂2

∂r2 + γ−1
r

∂
∂r


. The pdf pγ (r, t) solves the Fokker–Planck

equation

∂pγ

∂t
(r, t) = Aγ

r
∗

pγ (r, t) = 1
2

[
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∂r2 (r, t) − (γ − 1)
∂

∂r


pγ (r, t)

r

]
, r, t > 0

with the initial condition pγ (r, 0) = δ(r). The pdf pγ (r, t) admits the following explicit
expression

pγ (r, t) = rγ−1kγ (r, t), r, t > 0

where kγ (r, t) = 2
Γ (γ /2)

e− r2
2t

(2t)γ /2 is the heat kernel of the differential operator Aγ
r

∂kγ

∂t
(r, t) = Aγ

r kγ (r, t).

An important feature of the kernel kγ for our analysis is the relationship

∂kγ

∂r
(r, t) = −r

t
kγ (r, t).

The Mellin transform of the function r → pγ (r, t) is given by

M[pγ (·, t)](η) =
∫ ∞

0
rη−1 pγ (r, t)dr =

Γ


γ+η−1
2



Γ
 γ

2

 (2t)
η−1

2 , ℜ{η} > 1 − γ . (4.1)
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Concerning the squared Bessel process S(t) = Rγ (t)2, this process is a non-negative diffusion
process satisfying the stochastic differential equation

dSγ (t) = γ dt + 2


Sγ (t)dB(t).

The corresponding infinitesimal generator is Ãγ
r = 2r ∂2

∂r2 + γ ∂
∂r and the pdf p̃γ (r, t) =

Pr{Sγ (t)dr}/dr solves the Fokker–Planck equation

∂ p̃γ

∂t
(r, t) =


Ãγ

r

∗
p̃γ (r, t) = 2

∂2

∂r2


r p̃γ (r, t)

− γ
∂ p̃γ

∂r
(r, t), r, t > 0.

The pdf p̃γ (r, t) admits the following expression

p̃γ (r, t) = pγ (
√

r , t)

2
√

r
= 1

Γ (γ /2)

rγ /2−1e− r
2t

(2t)γ /2 , r, t > 0.

On the other hand, we introduce the first-passage time process Tt , t > 0 of a Brownian
motion B(t), t > 0 starting at 0: Tt = inf{s ≥ 0 : B(s) = t}. Set

f (s, t) = Pr{Tt ∈ ds}/ds = t e− t2
2s√

2πs3
, s, t > 0.

The pdf f (s, t) is a solution of the heat equation

∂2 f

∂t2 (s, t) = 2
∂ f

∂s
(s, t), s, t > 0 (4.2)

and the Laplace transform of f (s, t) with respect to s is
∫ ∞

0
e−λs f (s, t)ds = exp{−t

√
2λ}, λ > 0. (4.3)

We shall also consider the first-passage time process T µ
t , t > 0 of a Brownian motion Bµ(t),

t > 0 with drift µ starting at 0. Set

fµ(s, t) = Pr{T µ
t ∈ ds}/ds = t e− (t−µs)2

2s√
2πs3

, s, t > 0.

The pdf fµ(s, t) is a solution of the PDE

∂2 fµ
∂t2 (s, t) − 2µ

∂ fµ
∂t

(s, t) = 2
∂ fµ
∂s

(s, t), s, t > 0. (4.4)

4.2. The iterated Bessel process

We consider here the iterated Bessel process

IR(t) = Rγ

1 (Rγ

2 (t)), t > 0

where Rγ

1 and Rγ

2 are two independent Bessel processes of parameters γ1 and γ2 starting at 0.
The pdf of IR(t) for a fixed time t > 0 is

q(r, t) = Pr{IR(t) ∈ dr}/dr = 4
Γ (γ1/2)Γ (γ2/2)

∫ ∞

0

rγ1−1e− r2
2s

(2s)γ1/2

sγ2−1e− s2
2t

(2t)γ2/3 ds.
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The function q can be expressed by means of Fox functions. Recall that Fox functions are defined
as

H m,n
p,q

[
x


(ai , αi )i=1,...,p
(b j , β j ) j=1,...,q

]
= 1

2π i
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]
x−ηdη

where θ ∈ R and

Mm,n
p,q

[
η
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]
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Γ (1 − b j − ηβ j )
p∏
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Γ (ai + ηαi )

.

For a profound analysis of the Fox function and related topics, see [29]. This function is
characterized by its Mellin transform

∫ ∞

0
xη−1 H m,n

p,q

[
x


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[
η
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.

Recall also the property valid for any c ∈ R

H m,n
p,q

[
x
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x
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]
, c ∈ R. (4.5)

Theorem 4.1. The pdf of IR(t) is given by

q(r, t) = 1
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 , r, t > 0 (4.6)

= 1

r(8t)1/4 H 2,0
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
 , r, t > 0. (4.7)

Proof. Let us compute the Mellin transform of the function r → q(r, t). By (4.1),

M[q(·, t)](η) =
∫ ∞

0
rη−1q(r, t)dr =

∫ ∞

0
pγ2(s, t)

[∫ ∞

0
rη−1 pγ1(r, s)dr

]
ds

= 2
η−1

2

Γ


η+γ1−1
2



Γ
 γ1

2


∫ ∞

0
s

η+1
2 −1 pγ2(s, t)ds

=
Γ


η+γ1−1
2


Γ


η+2γ2−1
4



Γ
 γ1

2


Γ
 γ2

2

 (8t)
η−1

4

where ℜ{η} > max{1 − γ1, 1 − 2γ2}. Observing that

M2,0
2,2

[
η


(a1, α1); (a2, α2)

(b1, β1); (b2, β2)

]
= Γ (b1 + β1η)Γ (b2 + β2η)

Γ (a1 + α1η)Γ (a2 + α2η)
,
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we deduce that

M[q(·, t)](η) = (8t)
η−1

4 M2,0
2,2

[
η


(γ1/2, 0); (γ2/2, 0)

(γ1/2 − 1/2, 1/2); (γ2/2 − 1/4, 1/2)

]

from which we immediately extract (4.6). Formula (4.7) comes from (4.6) and (4.5) with
c = 1. �

Theorem 4.2. Fix t > 0. The pdf q(r, t) of the random variable IR(t) is a solution to the PDE

∂q

∂t
(r, t) = 1

8


∂2

∂r2 − γ1 − 1
r

∂

∂r
+ γ1 − 1

r2



×


∂2

∂r2 − (γ1 + 2γ2 − 3)

r

∂

∂r
+ (γ1 − 1)(2γ2 − 1)

r2


q(r, t) (4.8)

which can also be written as

∂q

∂t
(r, t) = 1

8


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r



×


∂2

∂r2 − (γ1 + 2γ2 − 3)
∂

∂r

1
r

+ 2(γ1 − 2)(γ2 − 1)

r2


q(r, t).

Proof. According to the settings of Theorem 3.1, we have

∂pγ2

∂t
(s, t) = ∂2

∂s2


1
2

pγ2(s, t)


− ∂

∂s


γ2 − 1

2s
pγ2(s, t)


,

we then see that (3.1) is fulfilled with a0(s) = 0, a1(s) = γ2−1
2s , a2(s) = 1

2 . Next, in view of

(3.2), we have D0,r = 0, D1,r = 1
2


Aγ2∗

r
2

and

a1(s)
∂pγ1

∂s
(r, s) = γ2 − 1

2s
rγ1−1 ∂kγ1

∂s
(r, s) = γ2 − 1

2s
rγ1−1 Aγ1

r kγ1(r, s)

= −γ2 − 1
2

rγ1−1 Aγ1
r


1
r

∂kγ1

∂r
(r, s)



= −γ2 − 1
2

rγ1−1 Aγ1
r


1
r

∂

∂r

pγ1(r, s)

rγ1−1


.

As a byproduct, we have obtained that

a1(s)
∂pγ1

∂s
(r, s) = D1,r pγ1(r, s)

with D1,r = − γ2−1
2 rγ−1 Aγ1

r


1
r

∂
∂r

1
rγ1−1


. By Theorem 3.1, we get ∂q

∂t (r, t) = Dr q(r, t) + c(r, t)

where clearly c(r, t) = 0 for r, t > 0 and

Dr = D0,r + D1,r + D2,r

= 1
2


Aγ1 ∗

r
2 − γ2 − 1

2
rγ1−1 Aγ1

r


1
r

∂

∂r

1

rγ1−1



= 1
8


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r

2

− γ2 − 1
4

rγ1−1


∂2

∂r2 + γ1 − 1
r

∂

∂r


1
r

∂

∂r

1

rγ1−1


.
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An elementary computation shows that

rγ1−1


∂2

∂r2 + γ1 − 1
r

∂

∂r


1
r

∂

∂r

1

rγ1−1


=


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r


1
r

∂

∂r
− γ1 − 1

r2



and then

Dr = 1
8


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r



×


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r

− 2(γ2 − 1)

r

∂

∂r
+ 2(γ1 − 1)(γ2 − 1)

r2



= 1
8


∂2

∂r2 − (γ1 − 1)
∂

∂r

1
r


∂2

∂r2 − γ1 + 2γ2 − 3
r

∂

∂r
+ (γ1 − 1)(2γ2 − 1)

r2



which proves Theorem 3.1. �

Remark 4.1. For γ1 = γ2 = 1 Eq. (4.8) becomes

∂q

∂t
= 1

8
∂4q

∂r4 , r, t > 0. (4.9)

Funaki (see [13]) has proved that the artificial process

Z (1)(t) =


B1(B2(t)), B2(t) ≥ 0
iB1(−B2(t)), B2(t) ≤ 0

t > 0

has a law satisfying Eq. (4.9). Hochberg and Orsingher [18] have shown that

Z (2)(t) =


B1(iB2(t)), B2(t) > 0
iB1(−iB2(t)), B2(t) < 0

t > 0

instead has the law

q(r, t) =
∫ ∞

−∞
e− r2

2is√
2π is

e− s2
2t√

2π t
ds (4.10)

satisfying

∂p

∂t
= −1

8
∂4 p

∂r4 , r ∈ R, t > 0.

In [5], formula (4.10) is rewritten as

q(r, t) = 1√
2π

E


1

|B(t)|1/2 cos


r2

2|B(t)| − π

4



as can be ascertained by suitable manipulations. The pdf of the iterated Brownian motion
B1(|B2(t)|), t > 0 satisfies the fourth-order equation

∂q

∂t
= 1

8
∂4q

∂r4 + 1

2
√

2π t

∂2δ

∂r2 , r ∈ R, t > 0

(see [11,1]) and the fractional equation

∂
1
2 q

∂t
1
2

= 1

2
3
2

∂2q

∂r2 , r ∈ R, t > 0

as shown in [32].
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4.3. Another iterated process

Let us consider now the iterated process

JR(t) = Rγ1
1 (Rγ2

2 (t)2)

where Rγ1
1 and Rγ2

2 are two independent Bessel processes with parameters γ1 and γ2 starting at
0. The pdf of JR(t) for a fixed t > 0 is

q(r, t) = Pr{JR(t) ∈ dr}/dr = 21− γ1+γ2
2

Γ (γ1/2)Γ (γ2/2)

rγ1−1

tγ2/2

∫ ∞

0
e− r2

2s − s
2t

ds

s
.

This function can be expressed in terms of the modified Bessel function K0. Indeed, recalling
that

∫ ∞

0
exp


−as − b

s


ds

s
= 2K0(2

√
ab),

we have the following representation.

Theorem 4.3. The pdf of JR(t) is given by

q(r, t) = 1

2
γ1+γ2

2 −2Γ (γ1/2)Γ (γ2/2)

rγ1−1

tγ2/2 K0


r√
t


, r, t > 0.

Concerning the PDE satisfying q we have the following result.

Theorem 4.4. Fix t > 0. The pdf q(r, t) of the random variable JR(t) is a solution to the PDE

∂q

∂t
= −r

2
∂3q

∂r3 (r, t) + (γ1 + γ2 − 4)

2
∂2q

∂r2 (r, t)

− (γ1 − 1)(γ2 − 1)

2
∂

∂r

q(r, t)

r
, r, t > 0. (4.11)

Proof. In order to apply Theorem 3.1, we first observe that

∂ p̃γ2

∂t
(s, t) = ∂2

∂s2


2s p̃γ2(s, t)

− ∂

∂s


γ2 p̃γ2(s, t)


.

Therefore, with the settings of Theorem 3.1, condition (3.1) is fulfilled with a0(s) = 0, a1(s) =
γ2, a2(s) = 2s. Furthermore, in view of (3.2), we have D0,r = 0, D1,r = γ2


Ãγ1

r

∗
and

a2(s)
∂2 pγ1

∂s2 (r, s) = 2srγ1−1 ∂2kγ1

∂s2 (r, s) = 2srγ1−1 Aγ1
r
2

kγ1(r, s)

= srγ1−1 Aγ1
r


∂

∂r
+ γ1 − 1

r


∂kγ1

∂r
(r, s)

= −rγ1−1 Aγ1
r


∂

∂r
+ γ1 − 1

r

 
rkγ1(r, s)



= −rγ1−1 Aγ1
r


∂

∂r
+ γ1 − 1

r


pγ1(r, s)

rγ1−2 .
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As a byproduct, we have obtained

a2(s)
∂2 pγ1

∂s2 (r, s) = D2,r pγ1(r, s)

with D2,r = −rγ1−1 Aγ1
r


∂
∂r + γ1−1

r


1

rγ1−2 . By Theorem 3.1, we get ∂q
∂t (r, t) = Dr q(r, t) +

c(r, t) with c(r, t) = 0 for r, t > 0 and

Dr = D0,r + D1,r + D2,r

= −rγ1−1 Aγ1
r


∂

∂r
+ γ1 − 1

r


1

rγ1−1 + γ2


Ãγ1

r

∗

= −1
2

rγ1−1


∂2

∂r2 + γ1 − 1
r

∂

∂r


∂

∂r
+ γ1 − 1

r


1

rγ1−2

+ γ2

2


∂2

∂r2 − γ1 − 1
r

∂

∂r
+ γ1 − 1

r2


.

Straightforward calculations lead to

Dr = −r

2
∂3

∂r3 + γ1 + γ2 − 4
2

∂2

∂r2 − (γ1 − 1)(γ2 − 1)

2r

∂

∂r
+ (γ1 − 1)(γ2 − 1)

2r2

and the proof of Theorem 4.4 is finished. �

4.4. The Bessel process at first-passage times of a Brownian motion

4.4.1. Brownian motion without drift
Let Tt = inf{s ≥ 0 : B(s) = t} where B is a Brownian motion independent from the Bessel

process Rγ (t), t > 0 starting from zero. In this section we study the new process Rγ (Tt ), t > 0
concentrating our attention on its law and some related distributions. Stopping the Bessel process
Rγ at the random time Tt can cause either a slowing down (with respect to the natural time) or a
speed up of the time flow. The probability of slowing down is measured by the following integral

Pr{Tt ≤ t} =
∫ t

0

t e− t2
2x√

2πx3
dx = 1√

π

∫ ∞

t/2

e−u

√
u

du

which clearly decreases for all t . Furthermore, we observe that

Pr{Tt ≤ t} =


2
π t

∫ ∞

t/2
e−udu ≤


2
π t

e− t
2

and this confirms the asymptotic speed up of the time flow implied by the subordinator Tt , t > 0.
We have now the explicit distribution of Rγ (Tt ) for a fixed t > 0.

Theorem 4.5. Fix t > 0. The pdf of Rγ (Tt ) reads

q(r, t) = P{Rγ (Tt ) ∈ dr}/dr = 2
Γ


γ+1
2



√
πΓ

 γ
2

 trγ−1


r2 + t2

 γ+1
2

, r, t > 0. (4.12)
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Proof. By the change of variable s = (r2 + t2)/2w we have

q(r, t) = 2

Γ
 γ

2


∫ ∞

0

rγ−1e− r2
2s

(2s)γ /2

te− t2
2s√

2πs3
ds

= 2trγ−1

2
γ+1

2
√

πΓ
 γ

2


∫ ∞

0
s− γ+3

2 e− 1
2s (r2+t2)ds

= 2trγ−1

2
γ+1

2
√

πΓ
 γ

2




r2 + t2

2

− γ+1
2
∫ ∞

0
e−ww(γ+1)/2−1dw

= 2√
π

Γ


γ+1
2



Γ
 γ

2

 trγ−1


r2 + t2

 γ+1
2

, r, t > 0. �

Remark 4.2. For γ = n ∈ N the process Rn(Tt ), t > 0 can be represented as

Rn(Tt ) =


n−

j=1

B2
j (Tt ), t > 0 (4.13)

where B j (t), t > 0, j = 1, 2, . . . , n are independent Brownian motions and the r.v.’s B j (Tt ), t >

0 possess a Cauchy distribution. Therefore (4.13) represents the Euclidean distance of an n-
dimensional Cauchy random vector (C1(t), . . . , Cn(t)) , t > 0.

Remark 4.3. We can obtain the µ-moments for 0 < µ < 1 of Rγ (Tt ). With the successive
change of variable r = t

√
y and w = y/(1 + y),

E

Rγ (Tt )

µ
 =

∫ ∞

0
rµPr{Rγ (Tt ) ∈ dr} =

Γ


γ+1
2



√
πΓ

 γ
2

 tµ
∫ ∞

0

y(γ+µ)/2−1

(1 + y)
γ+1

2

dy

=
Γ


γ+1
2



√
πΓ

 γ
2

 tµ
∫ 1

0
w(γ+µ)/2−1(1 − w)

1−µ
2 −1dw

=
Γ


γ+µ
2


Γ


1−µ
2



√
πΓ

 γ
2

 tµ.

We also note that for γ = 1, the pdf (4.12) coincides with a folded Cauchy law with scale
parameter t and location parameter equal to zero.

Remark 4.4. For the distribution function of Rγ (Tt ), t > 0 we have the following result

Pr{Rγ (Tt ) > r} = 2√
π

Γ


γ+1
2



Γ
 γ

2

 t
∫ ∞

r

yγ−1

(t2 + y2)
γ+1

2

dy

= 2√
π

Γ


γ+1
2



Γ
 γ

2

 t


rγ−2

(γ − 1)(t2 + r2)
γ−1

2

+ γ − 2
γ − 1

∫ ∞

r

yγ−3

(t2 + y2)
γ−1

2

dy


(4.14)
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for γ > 1. The recursive formula (4.14) yields some interesting particular cases

Pr{Rγ (Tt ) > r} =





t

(t2 + r2)1/2 , γ = 2,

4t

π

[
r

t2 + r2 + 1
2t

π

2
− arctan

r

t

]
, γ = 3,

t

(t2 + r2)1/2 + tr2

2(t2 + r2)3/2 , γ = 4.

Remark 4.5. Another result related to distribution (4.12) states that

Pr


t3

t2 + Rγ (Tt )2 ∈ dr


dr = 1

B(γ /2, 1/2)

1
t

r

t

 1
2 −1 

1 − r

t

γ /2−1
(4.15)

for 0 < r < t, γ > 0. To check this, it suffices to evaluate the following derivative

Pr


t3

t2 + Rγ (Tt )2 ∈ dr


dr = 2√

π

Γ


γ+1
2



Γ
 γ

2

 t
d
dr

∫ ∞


t3−r t2
r

yγ−1/2−1

(y2 + t2)
γ+1

2

dy.

For γ = 1 from (4.15) one obtains the law of sojourn time on (0, ∞) of Brownian motion and
the even-order pseudo-processes, while for odd values of γ the distribution of the sojourn time
on the half-line for odd-order pseudo-processes emerges (for γ = 3 see [31], γ = 2n + 1, n > 2
see [22]).

Remark 4.6. Set

S(t) = 1
Rγ (Tt )

, for t > 0.

After some calculation we find that

P{S(t) ∈ dr}/dr = 2√
π

Γ


γ+1
2



Γ
 γ

2

 t

(1 + r2t2)
γ+1

2

, r, t > 0. (4.16)

We note that for t = 1√
n
, γ = n, density (4.16) coincides with a folded t-distribution with n

degrees of freedom and its density takes the form

f (r; n) = 2√
πn

Γ


n+1
2



Γ
 n

2

 1


1 + r2

n

 n+1
2

, r > 0. (4.17)

For n = 1, density (4.17) coincides with a folded Cauchy and coincides with (4.12) for γ = 1
and at time t = 1.

Theorem 4.6. Fix γ > 0 and t > 0. The pdf of Rγ (Tt ) is a solution to the following equation

− ∂2q

∂t2 (r, t) =


∂2

∂r2 − (γ − 1)
∂

∂r

1
r


q(r, t), r, t > 0. (4.18)
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Proof. By differentiating the pdf q(r, t) = ∞
0 pγ (r, s) f (s, t)ds twice with respect to t and

using (4.2), we immediately get

∂2q

∂t2 (r, t) =
∫ ∞

0
pγ (r, s)

∂2

∂t2 f (s, t)ds = 2
∫ ∞

0
pγ (r, s)

∂ f

∂s
(s, t)ds

=


2pγ (r, s) f (s, t)

s=∞

s=0

− 2
∫ ∞

0

∂

∂s
pγ (r, s) f (s, t)ds

= −


∂2

∂r2 − (γ − 1)
∂

∂r

1
r


q(r, t). �

Remark 4.7. For γ = 1 the Bessel process coincides with the reflected Brownian motion so
that R1(Tt ), t > 0 is a reflected Brownian motion stopped at the random time Tt and therefore
becomes a folded Cauchy process. It is easy to prove that the Cauchy density

q(r, t) = t

π(t2 + r2)
, r, t > 0

solves the Laplace equation and this agrees with (4.18).

By inverting the role of the Bessel process and that of the first-passage time we obtain a new
process somehow related to Rγ (Tt ), t > 0 which we denote by

TRγ (t) = inf{s ≥ 0 : B(s) = Rγ (t)}. (4.19)

For t > 0, TRγ (t) is the first instant where a Brownian motion B independent from Rγ attains the
level Rγ (t). The pdf of (4.19) is given by

Pr

TRγ (t) ∈ dx


/dx =

∫ ∞

0

se− s2
2x√

2πx3

2

Γ
 γ

2

 sγ−1e− s2
2t

(2t)γ /2
ds

= 2

2
γ+1

2 Γ
 γ

2

√
π t

γ
2 x

3
2

∫ ∞

0
sγ e

− s2
2


1
x + 1

t


ds

=
Γ


γ+1
2



√
πΓ

 γ
2


√

t xγ /2−1

(x + t)
γ+1

2

, x, t > 0, γ > 0. (4.20)

Remark 4.8. It can be easily checked that the following relationship holds


TRγ (t2)
i.d.= Rγ (Tt ), t > 0. (4.21)

From (4.21) one can also infer that

TRγ (t)
i.d.=


Rγ (T√
t )
2

, t > 0. (4.22)

In particular, for γ = 1, result (4.22) says that

TR1(t)
i.d.=


B(T√
t )
2 i.d.=


C(

√
t)
2

, t > 0. (4.23)
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Remark 4.9. We note that the probability density (4.20) for γ = 1, t = 1 coincides with the
ratio of two first-passage times through level 1 of two independent Brownian motions. In other
words we have that

Pr

TR1(1) ∈ dw

 = Pr

W1/2 ∈ dw

 = 1
π

w− 1
2

w + 1
dw, w > 0 (4.24)

where W1/2 = T 1
1/2/T 2

1/2 and T 1
1/2, T 2

1/2 are the first-passage times of B1 and B2 through level

1. Noticing that T 1
1/2, T 2

1/2 are stable r.v.’s of order 1/2, this statement is a special case of the

following result. For stable positive, independent r.v.’s T 1
ν , T 2

ν , 0 < ν < 1 with Laplace transform

Ee−λTν = e−λν

, λ > 0 (4.25)

the pdf of the ratio Wν = T 1
ν /T 2

ν is given by the Lamperti law

Pr {Wν ∈ dw} /dw = sin πν

π

wν−1

w2ν + 2wν cos πν + 1
, w > 0 (4.26)

(see e.g. [10,19,35]).

We now consider some subordinated processes involving the first-passage time of a Brownian
motion with drift µ.

4.4.2. Brownian motion with drift
Let us consider the Bessel process Rγ (T µ

t ), t > 0 subordinated by the first-passage time
process T µ

t , t > 0 related to an independent Brownian motion Bµ(t), t > 0 with drift µ, starting
at 0. Let qµ(r, t) denote the pdf of the random variable Rγ (T µ

t ): q(r, t) = Pr{Rγ (T µ
t ) ∈ dr}/dr .

Theorem 4.7. Fix t > 0 and µ ∈ R. The pdf qµ(r, t) admits the following form for r > 0

qµ(r, t) = 4t eµt rγ−1

2
γ
2 Γ (γ /2)

√
2π


µ2

r2 + t2

 γ+1
4

K γ+1
2


|µ|


r2 + t2


, r, t > 0. (4.27)

Proof. We have

qµ(r, t) =
∫ ∞

0

2
Γ (γ /2)

rγ−1e− r2
2s

(2s)
γ
2

t e− (t−µs)2
2s√

2πs3
ds

= 2t eµt rγ−1

2
γ
2 Γ (γ /2)

√
2π

∫ ∞

0
s− γ+1

2 −1e− r2+t2
2s − sµ2

2 ds

= 4t eµt rγ−1

2
γ
2 Γ (γ /2)

√
2π


µ2

r2 + t2

 γ+1
4

K γ+1
2


|µ|


r2 + t2


.

Result (4.27) emerges on applying the formula

∫ ∞

0
xν−1 exp

−βx p − αx−p dx = 2
p


α

β

 ν
2p

K ν
p


2


αβ


, p, α,β, ν > 0 (4.28)

where ν = (γ +1)/2, α = µ2/2, β = (r2 + t2)/2, p = 1 and Kν is the modified Bessel function
(see [15, formula 3.478]). �
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Remark 4.10. By applying the asymptotic formula for the modified Bessel function Kν

Kν(x) ≈ 2ν−1Γ (ν)

xν
, for x → 0+

(see p. 929 of [15] and p. 136 of [26]) we have that

q0(r, t) = 4

2
γ
2 Γ (γ /2)

√
2π

trγ−1

(r2 + t2)
γ+1

4

2
γ+1

2 Γ ((γ + 1)/2)

(r2 + t2)
γ+1

4

= 2Γ ((γ + 1)/2)

Γ (γ /2)
√

π

trγ−1

(r2 + t2)
γ+1

2

, r, t > 0.

The equation governing the distribution qµ(r, t) is given in the next theorem.

Theorem 4.8. Fix µ ≥ 0 and t > 0. The pdf of Rγ (T µ
t ) solves the following PDE


2µ

∂

∂t
− ∂2

∂t2


qµ(r, t) =


∂2

∂r2 − (γ − 1)
∂

∂r

1
r


qµ(r, t), r, t > 0. (4.29)

Proof. We apply the differential operator ∂2

∂t2 − 2µ ∂
∂t to the function

qµ(r, t) =
∫ ∞

0
pγ (r, s) fµ(s, t)ds, r ≥ 0, t > 0.

We readily have in light of (4.4)


∂2

∂t2 − 2µ
∂

∂t


qµ(r, t) =

∫ ∞

0
pγ (r, s)2

∂ fµ
∂s

(s, t)ds

= −2
∫ ∞

0

∂pγ

∂s
(r, s) fµ(s, t)ds

= −


∂2

∂r2 − (γ − 1)
∂

∂r

1
r


qµ(r, t). �

For µ = 0 in (4.29) one retrieves Eq. (4.18).

5. Some generalized compositions

We somehow generalize the previous results. First consider the twice iterated Brownian first-
passage time. By

I 2
T (t) = T 1

T 2
t

= inf{s1 ≥ 0 : B1(s1) = inf{s2 ≥ 0 : B2(s2) = t}}, t > 0 (5.1)

we mean a process which represents the first instant T 1 where a Brownian motion B1 hits the
level T 2

t and T 2
t represents the first instant where a Brownian motion B2 (independent of B1)

hits level t . Clearly the pdf of the r.v. (5.1) is given by

Pr{I 2
T (t) ∈ dx}/dx =

∫ ∞

0

se− s2
2x√

2πx3

te− t2
2s√

2πs3
ds. (5.2)
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Consider now the n-stage iterated Brownian first-passage time recursively defined by

I n
T (t) = T 1

I n−1
T (t)

, t > 0, n ≥ 2

or explicitly by

I n
T (t) = inf{s1 ≥ 0 : B1(s1) = inf{s2 ≥ 0 : B2(s2) = · · · = inf{sn ≥ 0 : B(sn) = t} . . .}}.

The corresponding pdf is expressed by

f n(x, t) = Pr{I n
Tt

∈ dx}/dx

=
∫ ∞

0
. . .

∫ ∞

0

s1e− s2
1

2x√
2πx3

s2e
− s2

2
2s1


2πs3

1

. . .
te

− t2
2sn−1


2πs3

n−1

ds1 . . . dsn−1. (5.3)

We have the following theorem.

Theorem 5.1. Fix t > 0. The pdf of I n
T (t) satisfies the following PDE

∂2n
f n

∂t2n (x, t) = 22n−1 ∂ f n

∂x
(x, t) (5.4)

and possesses the simple Laplace transform

∫ ∞

0
e−λx f n(x, t)dx = exp


−21− 1

2n tλ
1

2n


. (5.5)

Proof. In view of (4.2), by successive integration by parts we have that

∂ f n

∂x
(x, t) =

∫ ∞

0
. . .

∫ ∞

0

∂ f

∂x
(x, s1) f (s1, s2) . . . f (sn−1, t)ds1 . . . dsn−1

= 1
2

∫ ∞

0
. . .

∫ ∞

0

∂2 f

∂s2
1

(x, s1) f (s1, s2) . . . f (sn−1, t)ds1 . . . dsn−1

= 1
2

∫ ∞

0
. . .

∫ ∞

0
f (x, s1)

∂2 f

∂s2
1

(s1, s2) . . . f (sn−1, t)ds1 . . . dsn−1

= 1

21+2

∫ ∞

0
. . .

∫ ∞

0
f (x, s1)

∂4 f

∂s4
2

(s1, s2) . . . f (sn−1, t)ds1 . . . dsn−1.

By iterating this procedure, we finally get

∂ f n

∂x
(x, t) = 1

21+2+···+2n−2

∫ ∞

0
. . .

∫ ∞

0
f (x, s1) f (s1, s2) . . .

∂2n−1
f

∂s2n−1

n−1

(sn−1, t)ds1 . . . dsn−1

= 1

21+2+···+2n−1

∫ ∞

0
. . .

∫ ∞

0
f (x, s1) f (s1, s2) . . .

∂2n
f

∂t2n (sn−1, t)ds1 . . . dsn−1

= 1

22n−1

∂2n
f n

∂t2n (x, t).
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Concerning the Laplace transform of f n , we successively have by (4.3)
∫ ∞

0
e−λx f n(x, t)dx

=
∫ ∞

0
. . .

∫ ∞

0

[∫ ∞

0
e−λx f (x, s1)dx

]
f (s1, s2) . . . f (sn−1, t)ds1 . . . dsn−1

=
∫ ∞

0
. . .

∫ ∞

0

[∫ ∞

0
e−2

1
2 λ

1
2 s1 f (s1, s2)ds1

]
f (s2, s3) . . . f (sn−1, t)ds2 . . . dsn−1

=
∫ ∞

0
. . .

∫ ∞

0

[∫ ∞

0
e−2

1
2 + 1

4 λ
1
4 s2 f (s2, s3)ds2

]
f (s3, s4) . . . f (sn−1, t)ds3 . . . dsn−1.

By iterating this procedure we get
∫ ∞

0
e−λx f n(x, t)dx =

∫ ∞

0
e−2

1
2 + 1

4 +···+ 1
2n−1 λ

1
2n−1 sn−1 f (sn−1, t)dsn−1

= exp

−2

1
2 + 1

4 +···+ 1
2n λ

1
2n t


= exp

−21− 1

2n λ
1

2n t


. �

Remark 5.1. If we take the Laplace transform of Eq. (5.4) we get that for L(λ, t) =∞
0 e−λx f n(x, t)dx = E


e−λI n

T (t)


∂2n L
∂t2n (λ, t) = 22n−1λL(t, λ). (5.6)

It is straightforward to realize that (5.5) satisfies Eq. (5.6).

Remark 5.2. If we consider the generalization of (4.12), that is

Rγ (I n
T (t)), t > 0

the corresponding probability law satisfies the 2n-th order equation

−∂2n
q

∂t2n = 22n−2


∂2

∂r2 − (γ − 1)
∂

∂r

1
r


q, r > 0, t > 0.

Remark 5.3. The following shows that there is a strict connection between the iterated first-
passage time I n

T and the iterated Brownian motion. Indeed distribution (5.2) can be written, for
n ≥ 2, as

Pr{I n
T (t) ∈ dx}/dx = t

2n−1x
Pr{Bn(| . . . |B1(x)| . . . |) ∈ dt}/dt, x > 0, t > 0.

6. Compositions of hyperbolic Brownian motions on the Poincaré half-space

6.1. Case of dimension 2

We consider the classical model of hyperbolic space represented by the Poincaré half-space
H+

2 = {(x, y) ∈ R2 : y > 0} with the metric

ds2 = dx2 + dy2

y2 .
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The hyperbolic Brownian motion Bhp
2 (t), t > 0 on H+

2 is the diffusion process with generator
H2 defined as

H2 = y2

2


∂2

∂x2 + ∂2

∂y2



and its transition function is the solution to the Cauchy problem




∂u

∂t
= H2u, x ∈ R, y > 0

u(x, y, 0) = δ(y − 1)δ(x).

(6.1)

It is convenient to study the hyperbolic Brownian motion in terms of hyperbolic coordinates
(η, α) where η is the hyperbolic distance of (x, y) from the origin (0, 1) of H+

2 . In explicit terms
(η, α) and (x, y) are related by

cosh η = x2 + y2 + 1
2y

, tan α = x2 + y2 − 1
2x

.

Conversely the formulas transforming (x, y) into (η, α) are




x = sinh η cos α

cos η − sinh η sin α
, η > 0

y = 1
cosh η − sinh η sin α

, −π

2
< α <

π

2
.

Some details on these formulas can be found in [9,17,25,33]. The Cauchy problem (6.1) can be
converted into hyperbolic coordinates as follows

∂u

∂t
= 1

2

[
1

sinh η

∂

∂η


sinh η

∂

∂η


u + 1

sinh2 η

∂2u

∂α2

]
, η > 0, t > 0 (6.2)

subject to the initial condition

u(η, α, 0) = δ(η) for all α ∈ [0, 2π).

If we concentrate on the distribution of the hyperbolic distance of the Brownian motion particle
from the origin we disregard the dependence in (6.2) from α and study





∂u

∂t
= 1

2
1

sinh η

∂

∂η


sinh η

∂

∂η


u

u(η, 0) = δ(η).

(6.3)

It is well known that the solution to (6.3) has the following form

k2(η, t) = e− t
8√

π t3

∫ ∞

η

ϕ e− ϕ2
2t√

cosh ϕ − cosh η
dϕ, η > 0, t > 0. (6.4)

Remark 6.1. If we pass from problem (6.3) to




∂u

∂t
= 1

sinh η

∂

∂η


sinh η

∂

∂η


u

u(η, 0) = δ(η)
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(by means of the change of variable t ′ = t/2) we obtain a somewhat different distribution which
reads

k2(η, t ′) = e− t ′
4


π(2t ′)3

∫ ∞

η

ϕ e− ϕ2

4t ′√
cosh ϕ − cosh η

dϕ, η > 0, t > 0. (6.5)

In the first paper Gertsenshtein and Vasiliev [14] (and also in the subsequent literature) the factor
1/2 does not appear and the heat kernel is (6.5) (up to some constant). A detailed derivation of
(6.4) and (6.5) is given in [25].

It is well known that the pdf of the distance from 0 of the hyperbolic Brownian motion at a
fixed time t > 0 is given by

p2(η, t) = sinh ηk2(η, t) = sinh η e− t
8√

π t3

∫ ∞

η

ϕ e− ϕ2
2t√

cosh ϕ − cosh η
dϕ, η > 0, t > 0. (6.6)

This function solves the adjoint equation

∂p2

∂t
= 1

2


∂2 p2

∂η2 − ∂

∂η
(coth ηp2)


, η > 0, t > 0. (6.7)

For distribution (6.6) further characterizations are possible. Indeed, we can rewrite p2(η, t) as
follows

p2(η, t) = √
2e− t

8

∫ ∞

η

sinh η√
cosh ϕ − cosh η

g(ϕ, t)dϕ

where g(ϕ, t) = Pr{Tϕ ∈ dt}/dt is the pdf of Tϕ = inf{t > 0 : B(t) = ϕ}. Moreover,

p2(η, t) = e− t
8√

2π t3
E


I[R2(t)>η]

sinh η
cosh R2(t) − cosh η


, η > 0, t > 0

where R2(t), t > 0 is the two-dimensional Bessel process described above and the mean-value
is taken with respect to the distribution of Bessel process R2(t), t > 0.

We give now an alternative form of p2(η, t) in terms of the Euclidean distance. Indeed, the
distribution of Bhp

2 (t), t > 0 in H+
2 can be written as

p2(η, t) = −2
e− t

8√
π t

d
dη

∫ ∞

η

ϕ e− ϕ2
2t

t


cosh ϕ − cosh η dϕ

= −2
e− t

8√
π t

d
dη

E


I[R2(t)>η]


cosh R2(t) − cosh η


, η > 0, t > 0. (6.8)

If we take a Euclidean right triangle with one cathetus of length
√

cosh η and hypotenuse√
cosh ϕ, then

√
cosh ϕ − cosh η represents the length of the second cathetus. Therefore the

integrals above represent the length of the second cathetus weighted by means of the probability
distribution of the Bessel process in the plane. Thus, formula (6.8) highlights the relation between
the distribution of the hyperbolic distance in H+

2 and the corresponding Euclidean distance in
R2. We can recognize the additional factor of (6.8) as a gamma distribution with parameters
1/2, 1/8 (up to some normalizing constant).



462 M. D’Ovidio, E. Orsingher / Stochastic Processes and their Applications 121 (2011) 441–465

We now examine the hyperbolic Brownian motion Bhp
2 (t), t > 0 stopped at the first-passage

time Tt , t > 0 of an independent standard Brownian motion B defined as Tt = inf{s ≥ 0 :
B(s) = t}. In other words we study the process

J2(t) = Bhp
2 (Tt ), t > 0. (6.9)

The pdf of J2(t) for a fixed t > is given for η > 0 by

pJ2(η, t) =
∫ ∞

0
p2(η, s)

t e− t2
2s√

2πs3
ds

= t sinh η√
2π

∫ ∞

0

∫ ∞

η

ϕ e− ϕ2+t2
2s√

cosh ϕ − cosh η

e− s
8

s3 dsdϕ

= t sinh η

2
√

2π

∫ ∞

η

ϕ dϕ√
cosh ϕ − cosh η

1

(ϕ2 + t2)
K2


1
2


ϕ2 + t2


(6.10)

where we have used formula (4.28). In analogy with representation (6.8) we can give the
following expression for the distribution of hyperbolic Brownian motion stopped at Tt , for
η > 0, t > 0

pJ2(η, t) = − 1

2
√

2

d
dη

E


I[C(t)>η]C(t)


cosh C(t) − cosh ηK2


1
2


(C(t))2 + t2



where C(t), t > 0 is a Cauchy process. For distribution (6.10) we can state the following result.

Theorem 6.1. The pdf of J2(t) solves the following Cauchy problem

−∂2 pJ2

∂t2 =


∂2

∂η2 − ∂

∂η
coth η


pJ2 , pJ2(η, 0) = δ(η), η, t > 0.

Proof. The distribution of (6.9) can be written as

pJ2(η, t) =
∫ ∞

0
p2(η, s) f (s, t)ds.

In view of (6.7) we have therefore that

−∂2 pJ2

∂t2 (η, t) = −
∫ ∞

0
p2(η, s)2

∂ f

∂s
(s, t)ds

= 2
∫ ∞

0
f (s, t)

∂p2

∂s
(η, s)ds = ∂2 pJ2

∂η2 (η, t) − ∂

∂η


coth ηpJ2(η, t)


. �

6.2. Case of dimension 3

The hyperbolic Brownian motion on H+
3 = {(x, y, z) ∈ R3 : z > 0} is the diffusion with the

generator

H3 = z2


∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2


− z

∂

∂z
.
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The distribution of the hyperbolic distance of Brownian motion in H+
3 possesses the form

p3(η, t) = sinh2 ηk3(η, t) = sinh η e−t

2
√

π t3
η e− η2

4t , η > 0, t > 0 (6.11)

where k3(η, t) is the kernel

k3(η, t) = e−t

2
√

π t3

η e− η2
4t

sinh η
, η > 0, t > 0.

The function k3 is the solution to




∂u

∂t
= 1

sinh2 η

∂

∂η


sinh2 η

∂

∂η


u

u(η, 0) = δ(η).

(6.12)

Remark 6.2. By means of the transformation t = t ′/2, Eq. (6.12) is converted into

∂u

∂t
(η, t) = 1

2
1

sinh2 η

∂

∂η


sinh2 η

∂

∂η


u(η, t)

and formula (6.11) leads to the different pdf

p3(η, t) = 2
sinh ηe− t

2√
2π t3

ηe− η2
2t , η > 0, t > 0. (6.13)

Distribution (6.11) solves the PDE

∂p3

∂t
(η, t) = ∂2 p3

∂η2 − 2
∂

∂η
(coth ηp3(η, t))

which involves the adjoint of the operator appearing in (6.12).
We now consider the process J3(t), t > 0 obtained by composing the three-dimensional

hyperbolic Brownian motion Bhp
3 (t), t > 0 with Tt = inf{s ≥ 0 : B(s) = t} where B is a

Brownian motion independent of Bhp
3 . The pdf of J3(t) is equal to

pJ3(η, t) =
∫ ∞

0
p3(η, s) f (s, t)ds = η sinh η

∫ ∞

0
e−s e− η2

4s

2
√

πs
3
2

t e− t2
2s√

2πs3
ds

= 2
√

2
π

ηt sinh η
η2 + 2t2

K2


η2 + 2t2


, η > 0, t > 0. (6.14)

For the governing equation of (6.14) we present the following result.

Theorem 6.2. The pdf of J3(t), t > 0 solves

−∂2 pJ3

∂t2 =


∂2

∂η2 − 2
∂

∂η
coth η


pJ3 , η, t > 0

subject to the initial condition pJ3(η, 0) = δ(η).
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Proof. We have

−∂2 pJ3

∂t2 (η, t) = −
∫ ∞

0
p3(η, s)2

∂ f

∂s
(s, t)ds

= 2
∫ ∞

0
f (s, t)

∂p3

∂s
(η, s)ds =


∂2

∂η2 − 2
∂

∂η
coth η


pJ3(η, t). �
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