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In the last decades, noncommutative spacetimes and their deformed relativistic symmetries have usually been studied in the context
of field theory, replacing the ordinaryMinkowski backgroundwith an algebra of noncommutative coordinates. However, spacetime
noncommutativity can also be introduced into single-particle covariant quantum mechanics, replacing the commuting operators
representing the particle’s spacetime coordinateswith noncommuting ones. In this paper, we provide a full characterization of awide
class of physically sensible single-particle noncommutative spacetime models and the associated deformed relativistic symmetries.
In particular, we prove that they can all be obtained from the standardMinkowskimodel and the usual Poincaré transformations via
a suitable change of variables. Contrary to previous studies, we find that spacetime noncommutativity does not affect the dispersion
relation of a relativistic quantum particle, but only the transformation properties of its spacetime coordinates under translations
and Lorentz transformations.

1. Introduction

In recent years, a sizeable literature has been devoted to
exploring the physical consequences of assuming nontrivial
commutation relations among spacetime coordinates. Much-
studied examples include the so-calledΘ-Minkowski [1] and𝜅-Minkowski [2] spacetimes, defined by

[𝑥], 𝑥�휆] = 𝑖ℓ2Θ]�휆, (1)

[𝑥], 𝑥�휆] = 𝑖ℓ (𝑥]𝛿0�휆 − 𝑥�휆𝛿0]) , (2)

respectively. This research program is based on the idea that,
regardless of the specific form a fully-fledged theory of quan-
tum gravity may take, the quantization of the gravitational
field should result in ordinary spacetimemanifolds becoming
some kind of noncommutative manifolds [3].This possibility
is particularly intriguing from a phenomenological point
of view, because it could provide corrections to known
physics before even addressing the problem of quantum
gravity, by merely adapting existing physical theories to the
new noncommutative framework. In particular, ordinary
Poincaré symmetries of flat spacetime could be broken or

deformed by noncommutativity, thereby leading to poten-
tially observable quantum gravity effects even in the absence
of strong gravitational fields [4].

So far, most studies in this field have focused on devel-
oping suitable formal tools to deal with classical or quantum
fields propagating on noncommutative backgrounds [1, 5–7].
In this context, ordinary Lie algebras have proved ill-suited
to deal with deformed spacetime symmetries and have been
replaced by more general structures called Hopf algebras [8].
While this generalization makes sense and is indeed quite
natural at the level of symmetry generators, it leads to puz-
zling results about infinitesimal symmetry transformations,
such as the noncommutativity of transformation parameters
and the impossibility of arbitrarily assigning their values [7].

In this paper, we advocate a completely different point
of view about spacetime noncommutativity, pioneered to
some extent in [9, 10]. We argue that noncommutative
coordinates should be regarded as single-particle operators,
like in standard, nonrelativistic quantum mechanics, rather
than spacetime indices of classical or quantum fields. In this
framework, symmetries are described as automorphisms of
a canonical algebra, like in ordinary quantum mechanics,
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and there is no need for Hopf-algebraic concepts. We study
generic spacetime noncommutativity of the form

[𝑥], 𝑥�휆] = 𝑖ℓΓ]�휆�훼𝑥�훼 + 𝑖ℓ2Θ]�휆 (3)

and provide a full characterization of the corresponding
single-particle quantummodels and the associated deformed
relativistic symmetries. In particular, we prove that they can
all be obtained from the commutativemodel and the standard
Poincaré transformations by means of a suitable change of
variables, thereby finding an explicit expression for the action
of the deformed symmetries on the canonical variables.

Thepaper is structured as follows. In Section 2, we discuss
the physical import of spacetime noncommutativity and state
our fundamental assumption. In Section 3, we quickly review
single-particle covariant quantummechanics [11]. In Sections
4 and 5, we introduce spacetime noncommutativity into this
framework and find all possible deformed Poincaré symme-
tries which preserve the nontrivial commutation relations
among the particle’s coordinates. In Section 6, we discuss the
general features of our models and compare our approach
with the usual one based onHopf algebras. In the last section,
we make some conclusive remarks.

2. Which Noncommutative Coordinates?

In theoretical physics, we can refer to two distinct concepts
when talking about spacetime coordinates. On the one hand,
we can mean arbitrary real functions defined on a spacetime
manifold, like in differential geometry. These coordinates
are just mathematical labels used to distinguish spacetime
points and are not physical observables. A good example
is given by spacetime coordinates in quantum field theory.
In this context, observables are smeared field operators
and coordinates only serve as a means of describing their
relationships and tracing their dynamics. In fact, we canwrite
quantum field theories with respect to arbitrary coordinate
systems by changing variables in the equations of motion.
The same can be said of classical general relativity, where
the equations of motion are even covariant under general
coordinate transformations. Let us call this first kind of
coordinates “background coordinates.” On the other hand,
we can refer to the observable spacetime position of some
actual event with respect to some physical reference frame. In
this case, coordinates are genuine dynamical quantitieswhose
values can be theoretically computed and experimentally
measured. A good example is given by the inertial Cartesian
spatial coordinates of a point particle at time 𝑡0 in nonrela-
tivistic quantum mechanics. It is clear that formal changes of
variables can have no effects on such objects. Let us call this
second kind of coordinates “particle coordinates.”

Schrödinger quantum field theory, that is, second-
quantized nonrelativistic quantum mechanics, provides us
with an explicit expression of inertial particle spatial coor-
dinates 𝑥�푖 at time 𝑡0 in terms of inertial background spatial
coordinates 𝑧�푖, thereby making manifest the deep conceptual

difference between the two. Let a quantum field 𝜓̂(𝑧, 𝑡) be a
solution of the Schrödinger equation:

𝑖ℏ𝜕�푡𝜓̂ (𝑧, 𝑡) = (− ℏ22𝑚∇2�푧 + 𝑉 (𝑧, 𝑡)) 𝜓̂ (𝑧, 𝑡) , (4)

and let H1 be the Hilbert space of one-particle states |1; 𝛼⟩,
defined by

𝑁̂ |1; 𝛼⟩ = ∫ 𝜓̂ (𝑧, 𝑡)† 𝜓̂ (𝑧, 𝑡) 𝑑3𝑧 |1; 𝛼⟩ = |1; 𝛼⟩ . (5)

Then it is easy to verify that the observable

𝑥�푖 (𝑡0) = ∫ 𝑧�푖𝜓̂ (𝑧, 𝑡0)† 𝜓̂ (𝑧, 𝑡0) 𝑑3𝑧, (6)

when restricted to H1, is the 𝑖th particle coordinate at
time 𝑡0 of standard Heisenberg quantum mechanics. In this
simple example, we clearly see that particle coordinates, being
smeared field operators, are genuine observables, whereas
background coordinates are mathematical labels devoid of
direct physical meaning. In particular, we could write the
theory in any background coordinate system and get back the
same observable 𝑥�푖(𝑡0) by changing variables in the integral.

In the last decades, noncommutative spacetime coordi-
nates have been proposed as an effective way of taking into
account some quantum properties of the gravitational field
without having to solve the full quantum gravity problem.
The naı̈ve idea is that, even when gravitational dynamics can
be neglected and spacetime is Minkowski at large scales, the
mere quantization of the gravitational degrees of freedom
should result in spacetime points becoming fuzzy at scales of
the order of the Planck length

𝐿�푃 = √ℏ𝐺𝑐3 , (7)

in the same way as the mere quantization of single-particle
degrees of freedom 𝑞 and 𝑝 results in phase space points
becoming fuzzy at scales of the order of the Planck constant ℎ.
Drawing on this analogy, it is then natural to effectivelymodel
spacetime fuzziness through the introduction of nontrivial
commutation relations among spacetime coordinates. In the
light of our previous discussion, however, it is important to
ask whether we are talking about background coordinates or
particle coordinates. In order to make the vague suggestion
of spacetime noncommutativity into a workable physical
hypothesis, we must first of all give a definite answer to this
question.

Most papers about noncommutative spacetime physics
are based on the assumption of noncommutative background
coordinates [1, 5–7]. In these studies, classical or quantum
field theories are defined and characterized after replacing
the ordinary Minkowski background with some noncom-
mutative algebra of coordinates. Unlike nontrivial commu-
tation properties of quantum observables, which reflect the
incompatibility of the corresponding physical quantities, this
kind of background noncommutativity does not admit a
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straightforward physical interpretation and appears therefore
somewhat removed from the näıve intuition described above.
Of course there are good reasons to explore this scenario, such
as its actual relevance in 3D quantum gravity [12], but we
feel that the alternative point of view has not been sufficiently
worked out for all its intuitive appeal and direct applicability
to phenomenology.

In this paper, we will therefore assume that spacetime
noncommutativity is a property of particle coordinates. The
obvious analogy with nonrelativistic quantum mechanics
and the well-established physical interpretation of non-
commuting quantum observables make this, in our view,
the most natural and straightforward assumption. Adopting
this perspective, we will study the deformation of Poincaré
symmetries induced by spacetime noncommutativity and
eventually provide a full characterization of the resulting
covariant quantum models.

3. Covariant Quantum Mechanics

In order to introduce spacetime noncommutativity into a
single-particle quantum model, we must first of all address
one fundamental problem. In the standard formulation of
quantum mechanics, time is a classical evolution parameter.
In particular, it is not an observable of the theory and it does
not make mathematical nor physical sense to consider its
commutation relations with the particle spatial coordinates.
This serious obstruction undermined most attempts at mod-
elling spacetime noncommutativity from a single-particle
point of view and provided a strong reason for focusing on
field theory and noncommutative background coordinates.

In the last decades, however, a covariant formulation of
quantum mechanics has been developed which puts time
and particle spatial coordinates on the same footing [11].
In this context, the extended phase space of the particle,
including time 𝑥0 and its conjugate momentum −𝑝0, is
quantized and canonical coordinates (𝑝�휇, 𝑥]) become self-
adjoint operators (𝑝�휇, 𝑥]) on a kinematical Hilbert space K
satisfying canonical commutation relations:

[𝑝�휇, 𝑝�휏] = 0, (8)

[𝑝�휇, 𝑥]] = 𝑖ℏ𝛿�휇], (9)

[𝑥], 𝑥�휆] = 0. (10)

Starting fromK and the extended canonical algebraV gen-
erated by 𝑝�휇 and 𝑥], standard Heisenberg quantum mechan-
ics is then recovered specifying a self-adjoint Hamiltonian
constraint𝐻(𝑝�훼, 𝑥�훼) ∈ V. In particular, the physical Hilbert
space P is given by the (improper) kernel of 𝐻 equipped
with a suitably modified scalar product, while the usual
algebra of Heisenberg observables is identified requiring that
it commutes with𝐻. The special constraint

𝐻�푛�푟 (𝑝�훼, 𝑥�훼) = 𝑝0 − 𝐻0 (𝑝�푘, 𝑥�푘) (11)

reproduces standard nonrelativistic quantummechanics with
Hamiltonian 𝐻0, but the covariant formalism is obviously

more powerful. For example, the dynamics of a free relativis-
tic scalar particle of mass 𝑚 is described by the quadratic
constraint

𝐻�푟 (𝑝�훼, 𝑥�훼) = 𝑝�훼𝑝�훼 − 𝑚2𝑐4. (12)

Since both time and particle spatial coordinates are
represented by self-adjoint operators at the kinematical level,
covariant quantummechanics is the ideal tool for introducing
arbitrary commutation relations among spacetime coordi-
nates into a single-particle setting. It is sufficient to replace the
trivial commutation rules (10) with more general ones. This
realization, in the special case of 𝜅-Minkowski spacetime,
was the main ingredient of a pioneering but somewhat
underappreciated work by Amelino-Camelia et al. [9] and is
in fact the starting point of the present paper. In the following,
as anticipated in the introduction, wewill study commutation
rules of the form

[𝑥], 𝑥�휆] = 𝑖ℓΓ]�휆�훼𝑥�훼 + 𝑖ℓ2Θ]�휆, (13)

where ℓ is a fundamental length of the order of the Planck
scale, while Γ]�휆�훼 andΘ]�휆 are constant dimensionlessmatrices
antisymmetric in the indices ] and 𝜆. These are the most
general commutation relations which trivialize in the limitℓ → 0 and are analytic in both the spacetime coordinates 𝑥]
and the deformation parameter ℓ. They include the popularΘ-Minkowski (1) and 𝜅-Minkowski (2) as particular cases.

4. Deformed Canonical Algebra

First of all, we must redefine the extended canonical algebra
in the noncommutative models. Taking the canonical com-
mutation relations (8)–(10) and replacing (10) with (13), we
obtain

[𝑝�휇, 𝑝�휏] = 0, (14)

[𝑝�휇, 𝑥]] = 𝑖ℏ𝛿�휇], (15)

[𝑥], 𝑥�휆] = 𝑖ℓΓ]�휆�훼𝑥�훼 + 𝑖ℓ2Θ]�휆. (16)

These commutation rules are not consistent in general,
because the Jacobi identities for 𝑝�휇, 𝑥], and 𝑥�휆 are violated.
To take care of this problem, we allow for a momentum-
dependent deformation of the Heisenberg relations (15) and
write

[𝑝�휇, 𝑝�휏] = 0, (17)

[𝑝�휇, 𝑥]] = 𝑖ℏ[Δ (ℓ𝑝)]�휇], (18)

[𝑥], 𝑥�휆] = 𝑖ℓΓ]�휆�훼𝑥�훼 + 𝑖ℓ2Θ]�휆. (19)

A priori, the dimensionless matrix Δ �휇] could also depend
on ℓ−1𝑥], but we are ruling out this possibility in order
to avoid nonanalyticity in either the spacetime coordinates𝑥] or the deformation parameter ℓ. We are also leaving
(17) undeformed because we are assuming that gravity is
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negligible and spacetime is flat. In order for (17)–(19) to be
consistent and reduce to (8)–(10) in the commutative limit,Δ �휇] must satisfy [Δ(0)]�휇] = 𝛿�휇] and

ℓΓ]�휆�훼Δ �휇�훼 + ℏΔ �훼]𝜕�훼Δ �휇�휆 − ℏΔ �훼�휆𝜕�훼Δ �휇] = 0, (20)

where we have set 𝜕�훼 = 𝜕/𝜕𝑝�훼. Since these conditions
do not determine Δ �휇] uniquely, we must conclude that
the modified commutation relations (13) are not sufficient
to fully characterize spacetime noncommutativity in our
covariant single-particle setting, but must be complemented
by a compatible deformation of the Heisenberg relations.
It is worth explicitly pointing out that different choices ofΔ �휇] are not physically equivalent, because they determine
different uncertainty relations between particle coordinates
and momenta.

Assuming that Δ �휇] is an invertible matrix, we can define
a set of deformed self-adjoint coordinates 𝑞] as
𝑞] = 12 {[𝑥�훼 − ℓΣ�훼 (ℓ𝑝)] [Δ−1 (ℓ𝑝)]�훼] + h.c.}

= 𝑥�훼[Δ−1 (ℓ𝑝)]
�훼

] + 12 𝑖ℏ[Δ (ℓ𝑝)]�훾�훼𝜕�훾[Δ−1 (ℓ𝑝)]�훼]
− ℓΣ�훼 (ℓ𝑝) [Δ−1 (ℓ𝑝)]

�훼

]

= [𝑥�훼 − ℓΣ�훼 (ℓ𝑝) − 𝑖ℓΩ�훼 (ℓ𝑝)] [Δ−1 (ℓ𝑝)]
�훼

],

(21)

where Σ�훼 is a still unspecified vector depending on the
momenta and we have introduced the shorthand notation

Ω�훼 (ℓ𝑝) = ℏ2ℓ𝜕�훾[Δ (ℓ𝑝)]�훾�훼. (22)

Inverting the previous relations, we can express 𝑥] as func-
tions of 𝑞] and 𝑝�휇:

𝑥] = 12 {𝑞�훼[Δ (ℓ𝑝)]�훼] + ℓΣ] (ℓ𝑝) + h.c.}
= 𝑞�훼[Δ (ℓ𝑝)]�훼] + ℓΣ] (ℓ𝑝) + 𝑖ℓΩ] (ℓ𝑝) .

(23)

This change of variables is useful because we canmake𝑝�휇 and𝑞] satisfy canonical commutation relations by appropriately
choosing Σ�훼. In fact, computing the relevant commutators,
we find

[𝑝�휇, 𝑞]] = 𝑖ℏ𝛿�휇], (24)

irrespectively of Σ�훼, and
[𝑞], 𝑞�휆] = 12 {(Δ−1)�훼](Δ−1)�훽�휆 [(𝑖ℓΓ�훼�훽�훾Δ �휇�훾
+ 𝑖ℏΔ �훾�훼𝜕�훾Δ �휇�훽 − 𝑖ℏΔ �훾�훽𝜕�훾Δ �휇�훼) 𝑞�휇 + (𝑖ℏℓΔ �훾�훼𝜕�훾Σ�훽
− 𝑖ℏℓΔ �훾�훽𝜕�훾Σ�훼 + 𝑖ℓ2Γ�훼�훽�훾Σ�훾 + 𝑖ℓ2Θ�훼�훽)] + h.c.} .

(25)

The first term in square brackets vanishes because of the
identities (20), and the second can be put to zero by choosingΣ�훼 such that

𝑖ℏΔ �훾�훼𝜕�훾Σ�훽 − 𝑖ℏΔ �훾�훽𝜕�훾Σ�훼 + 𝑖ℓΓ�훼�훽�훾Σ�훾 + 𝑖ℓΘ�훼�훽 = 0. (26)

Therefore, we can describe our deformed canonical algebra(𝑝�휇, 𝑥]) as just a standard canonical algebra (𝑝�휇, 𝑞]) equipped
with momentum-dependent functions Δ �휇] and Σ�훼 satisfying
(20) and (26), respectively. Noncommutative coordinates 𝑥]
are then given by (23). This description of (𝑝�휇, 𝑥]) is a
generalization of the concept of pregeometric representation
introduced and developed in [5] and [9], respectively. Since
conditions (26) are not sufficient to univocally determine Σ�훼,
different choices ofΣ�훼 are associatedwith different, physically
equivalent representations of the deformed canonical algebra.
Commutative coordinates 𝑞]Σ and 𝑞]Σ+�훿Σ corresponding to
representations Σ�훼 and Σ�훼 + 𝛿Σ�훼 via (21) are related by

𝑞]Σ+�훿Σ = 𝑞]Σ − ℓ𝛿Σ�훼[Δ−1]�훼]. (27)

5. Deformed Poincaré Symmetries

Weare now ready to discuss deformed relativistic symmetries
in our single-particle framework. In covariant quantum
mechanics, continuous groups of kinematical symmetries
are described by continuous groups of automorphisms of
the extended canonical algebra V. Such transformations
can always be unitarily implemented on K and are fully
characterized by a set of self-adjoint generators 𝑔�푖 ∈ V. Kine-
matical symmetries which leave invariant the Hamiltonian
constraint𝐻 are automatically automorphisms of the algebra
of Heisenberg observables and can therefore be identified
as actual physical symmetries like in ordinary quantum
mechanics. A Poincaré transformation (Λ, 𝑎), for example, is
described by the following map:

𝑥] 󳨃󳨀→ Λ]
�훼𝑥�훼 + 𝑎], (28)

𝑝�휇 󳨃󳨀→ Λ �휇�훽𝑝�훽, (29)

which obviously preserves canonical commutation relations
(8)–(10). This group of automorphisms is generated by the
self-adjoint operators 𝑝�휇 and 𝑚̂�휌�휎, where

𝑚̂�휌�휎 = 𝑥�휌𝑝�휎 − 𝑥�휎𝑝�휌. (30)

If we impose the Poincaré-invariant constraint 𝐻�푟 given
in (12), 𝑝�휇 and 𝑚̂�휌�휎 become constants of motion and the
resulting model, describing a free relativistic scalar particle,
is Poincaré-symmetric.

When we introduce spacetime noncommutativity,
Poincaré transformations are not kinematical symmetries
anymore. In fact, the modified commutation rules (13) are
not preserved in general by the action (28)-(29). There are
two alternative attitudes we can take towards this breaking
of standard relativistic symmetries. On the one hand,
we can view it as evidence of the failure of the relativity
principle and the existence of preferred reference frames.
On the other hand, we can just take it as an indication
that ordinary Poincaré transformations are inadequate to
describe relativistic symmetries in this regime and must be
deformed to accommodate the new fundamental scale ℓ, in
the same way as Galileo transformations had to be deformed
to accommodate the universal speed constant 𝑐. We adopt
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this second perspective, usually referred to as DSR in the
literature [13], and assume that our noncommutative models
admit deformed relativistic symmetries which reduce to
Poincaré transformations in the limit ℓ → 0.

A priori, the kinematical symmetry group could be dis-
continuous in the presence of spacetime noncommutativity.
If this were the case, though, we could not even speak of
symmetry generators and the commutative limit would be
exceedingly singular to be dealt with. Therefore, we will rule
out this possibility and assume that deformed relativistic
symmetries are described by a 10-dimensional Lie group of
automorphisms of the deformed canonical algebra (17)–(19),
like in the commutative case. Even requiring that these
transformations reduce to standard Poincaré symmetries in
the limit ℓ → 0, the problem is obviously underconstrained
andwe expect to findmanypossible deformations of the usual
relativistic symmetries for any given noncommutative single-
particle model (17)–(19). Our aim is to characterize as sharply
as we can these possibilities.

First of all, we observe that deformed translationsmust be
generated by 𝑝�휇, because momenta are physically defined as
the generators of spacetime translations. Let us then denote
the deformed Lorentz generators with 𝑚̂�휌�휎, like in the com-
mutative case. The deformed symmetry algebra generated by
(𝑝�휇, 𝑚̂�휌�휎) must contract to the Poincaré algebra in the limitℓ → 0. However, it is a well-known result by Levy-Nahas
[14] that the only Lie algebra deformations of the Poincaré
algebra are the de Sitter and anti-de Sitter algebras. Since we
are assuming that spacetime is flat, we can conclude that 𝑝�휇
and 𝑚̂�휌�휎 must satisfy their usual commutation relations, that
is,

[𝑝�휇, 𝑝�휏] = 0, (31)

[𝑝�휇, 𝑚̂�휌�휎] = 𝑖ℏ (𝑔�휌�휇𝑝�휎 − 𝑔�휇�휎𝑝�휌) , (32)

[𝑚̂�휇], 𝑚̂�휌�휎]
= 𝑖ℏ (𝑔�휌]𝑚̂�휇�휎 − 𝑔�휇�휌𝑚̂]�휎 + 𝑔�휎]𝑚̂�휌�휇 − 𝑔�휇�휎𝑚̂�휌]) , (33)

even in the noncommutative case. This means that deformed
Poincaré symmetries have their usual action (29) on
momenta, with the deformation only affecting the transfor-
mation (28) of spacetime coordinates.

To complete our analysis, it is convenient to choose
a representation Σ�훼 and express 𝑚̂�휌�휎 as functions of the
canonical variables (𝑝�휇, 𝑞]Σ). It now follows from (32) that 𝑚̂�휌�휎
must be linear in 𝑞]Σ, so that we can generically write

𝑚̂�휌�휎 = [𝑞Σ�휌 + ℓΦ�휌 (ℓ𝑝)] 𝑝�휎 − [𝑞Σ�휎 + ℓΦ�휎 (ℓ𝑝)] 𝑝�휌. (34)

Requiring that 𝑚̂�휌�휎 satisfy the last commutation rules (33), we
obtain the following conditions on Φ�휌:

𝑔�휎�훾𝜕�훾Φ�휌 − 𝑔�휌�훾𝜕�훾Φ�휎 = 0. (35)

If we make the substitution

Φ�휌 = 𝛿Σ�훼(Δ−1)
�훼

�휌, (36)

a tedious but straightforward calculation shows that Φ�휌
satisfy (35) if and only if 𝛿Σ�훼 satisfy the homogeneous version
of (26). As a consequence, Σ�훼 = Σ�훼 − 𝛿Σ�훼 defines another
representation of the deformed canonical algebra. Writing𝑚̂�휌�휎 in terms of the canonical variables (𝑝�휇, 𝑞]Σ), we obtain
at last

𝑚̂�휌�휎 = 𝑞Σ�휌𝑝�휎 − 𝑞Σ�휎𝑝�휌. (37)

In other words, we have proved that it is always possible
to find a unique set of commutative coordinates 𝑞]

Σ
which

transform like standard 4-vectors under the action of the
deformed Lorentz symmetries. This means that the corre-
sponding representation Σ�훼 univocally determines the action
of the deformed Lorentz transformations on the deformed
canonical algebra and is therefore physically distinguished
from the others.

We can finally provide a complete and very compact
characterization of all possible single-particle quantummod-
els of spacetime noncommutativity (13) and their deformed
relativistic symmetries.They are all obtained from a standard
canonical algebra (𝑝�휇, 𝑞]) by specifying an invertible matrix[Δ(ℓ𝑝)]�휇] and a vector Σ�훼(ℓ𝑝) satisfying (20), (26), and
the boundary conditions [Δ(0)]�휇] = 𝛿�휇]. Noncommutative
spacetime coordinates 𝑥] are defined via (23) and the action
of deformed relativistic symmetries (Λ, 𝑎) is given by the ordi-
nary Poincaré action on the standard canonical coordinates(𝑝�휇, 𝑞]):

𝑞] 󳨃󳨀→ Λ]
�훼𝑞�훼 + 𝑎],

𝑝�휇 󳨃󳨀→ Λ �휇�훽𝑝�훽. (38)

This results in a deformed action on the spacetime coordi-
nates 𝑥], given by

𝑥] 󳨃󳨀→ 𝑥�훾[Δ−1 (ℓ𝑝)]
�훾

�훽Λ�훼�훽[Δ (ℓΛ𝑝)]�훼]
+ 𝑎�훼[Δ (ℓΛ𝑝)]�훼] + ℓ [Σ] (ℓΛ𝑝) + 𝑖Ω] (ℓΛ𝑝)]
− ℓ [Σ�훾 (ℓ𝑝) + 𝑖Ω�훾 (ℓ𝑝)]
⋅ [Δ−1 (ℓ𝑝)]

�훾

�훽Λ�훼�훽[Δ (ℓΛ𝑝)]�훼].
(39)

The deformed symmetry group is generated by the momenta𝑝�휇 and the self-adjoint operators

𝑚̂�휌�휎 = 𝑞�휌𝑝�휎 − 𝑞�휎𝑝�휌, (40)

and the corresponding infinitesimal variations of the coordi-
nates 𝑥] are given by

𝛿�휀𝑥] = 1𝑖ℏ𝜀�휇 [𝑝�휇, 𝑥]] = 𝜀�휇[Δ (ℓ𝑝)]�휇],
𝛿�휑𝑥] = 1𝑖ℏ𝜑�휌�휎 [𝑚̂�휌�휎, 𝑥]]
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= 2𝜑�휌�휎 {𝑥�훾[Δ−1 (ℓ𝑝)]
�훾

�훼 (𝑔�훼[�휌[Δ (ℓ𝑝)]�휎]]
+ 𝑝[�휌𝜕�휎][Δ (ℓ𝑝)]�훼]) − ℓ [Σ�훾 (ℓ𝑝) + 𝑖Ω�훾 (ℓ𝑝)]
⋅ [Δ−1 (ℓ𝑝)]

�훾

�훼 (𝑔�훼[�휌[Δ (ℓ𝑝)]�휎]]
+ 𝑝[�휌𝜕�휎][Δ (ℓ𝑝)]�훼]) + ℓ𝑝[�휌𝜕�휎] [Σ] (ℓ𝑝)
+ 𝑖Ω] (ℓ𝑝)]} ,

(41)

where little square brackets denote antisymmetrization.
In order to obtain a complete covariant quantum model,

we must still specify a Hamiltonian constraint which is
invariant under deformed Poincaré symmetries and reduces
to the usual one in the commutative limit. In the light of
our previous findings, however, the problem is trivial. In fact,
since momenta have their usual transformation properties,
the undeformed relativistic constraint (12) is invariant under
deformed symmetries and is therefore the only natural
choice.

6. Discussion and Comparison with
Other Approaches

Having obtained a precise characterization of all possible
single-particle quantum models of spacetime noncommu-
tativity (13), we can now discuss their general features and
comment on other approaches.

Our main result is that spacetime noncommutativity has
the only effect of deforming the relation between the particle
spacetime coordinates𝑥] and the conjugate variables 𝑞] of the
corresponding momenta, replacing the simple identification

𝑥] = 𝑞] (42)

with the general momentum-dependent formula

𝑥] = 12 {𝑞�훼[Δ (ℓ𝑝)]�훼] + ℓΣ] (ℓ𝑝) + h.c.} . (43)

In particular, the momentum space of our models is not
affected by the noncommutativity and the dispersion relation
is undeformed. This negative result is quite relevant from a
phenomenological point of view, because modified relativis-
tic dispersion relations have been the main target of recent
searches for observable quantum gravity effects [4]. It is also
at odds with what was proposed for 𝜅-Minkowski in the
pioneering papers [9, 10], which actuallymotivated our study.
On the positive side, our models exhibit deformed Heisen-
berg relations, that is, nontrivialΔ �휇], whenever Γ]�휆�훼 ̸= 0.This
deformation generally affects the translation properties of
both the particle’s physical position and the associated quan-
tum uncertainty. We expect the resulting effects to include
features of relative locality [15] such as those reported in
[10, 16], which could provide interesting targets for quantum
gravity phenomenology. Even when Γ]�휆�훼 = 0, the deformed
commutation rules among 𝑚̂�휌�휎 and 𝑥] should give rise

to relative locality effects under Lorentz transformations.
Since our framework allows for physical amplitudes to be
computed at any order in the deformation parameter ℓ, this
phenomenology can be quantitatively characterized beyond
the previous qualitative remarks.We postpone such a detailed
analysis to a forthcoming study.

As discussed in the first section, spacetime noncom-
mutativity is usually introduced in a field-theoretical set-
ting, replacing the usual Minkowski background with a
noncommutative algebra of coordinates. In this context,
continuous groups of kinematical symmetries are described
by continuous groups of diffeomorphisms of the background
manifold, which are generated by a set of derivation operators
acting on the spacetime coordinates. Poincaré transforma-
tions (Λ, 𝑎), for example, are described by the background
diffeomorphisms

𝑥] 󳨃󳨀→ Λ]
�훼𝑥�훼 + 𝑎], (44)

which are generated by the differential operators

𝑃�휇 = 𝑖ℏ 𝜕𝜕𝑥�휇 ,
𝑀�휌�휎 = 𝑖ℏ (𝑥�휌 𝜕𝜕𝑥�휎 − 𝑥�휎 𝜕𝜕𝑥�휌) .

(45)

In order to fully characterize this symmetry group, it is
sufficient to specify the action of the generators on the
coordinate basis 𝑥]:

𝑃�휇 ⊳ 𝑥] = 𝑖ℏ𝛿�휇],
𝑀�휌�휎 ⊳ 𝑥] = 𝑖ℏ (𝑥�휌𝛿�휎] − 𝑥�휎𝛿�휌]) , (46)

and require that

𝑃�휇 ⊳ 𝑧 = 0,
𝑀�휌�휎 ⊳ 𝑧 = 0, (47)

for every 𝑧 ∈ C. In fact, the action of the generators on
arbitrary analytic functions of 𝑥] can then be computed by
repeated application of the Leibniz rules

𝑃�휇 ⊳ 𝑓 (𝑥) 𝑔 (𝑥)
= [𝑃�휇 ⊳ 𝑓 (𝑥)] 𝑔 (𝑥) + 𝑓 (𝑥) [𝑃�휇 ⊳ 𝑔 (𝑥)] ,

𝑀�휌�휎 ⊳ 𝑓 (𝑥) 𝑔 (𝑥)
= [𝑀�휌�휎 ⊳ 𝑓 (𝑥)] 𝑔 (𝑥) + 𝑓 (𝑥) [𝑀�휌�휎 ⊳ 𝑔 (𝑥)] .

(48)

This minimal characterization of symmetries is purely alge-
braic and could in principle make sense even in the non-
commutative case, where the standard notion of derivation
is not available. However, in order to preserve the nontrivial
commutation relations among spacetime coordinates, one
cannot proceed as we have done before and deform the
action of the generators. In fact, we have proved in our
single-particle setting that all possible deformations of this
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kind must mix particle coordinates and momenta. Since they
do not admit a restriction to real space, they cannot be
implemented in a field-theoretical context, where there are no
particle momenta and the algebra of background coordinates
must be mapped onto itself. The only possibility is then to
deform the Leibniz rule, turning the ordinary Lie algebra
of generators into a Hopf algebra with nontrivial coproduct
[8]. This modification is the reason why it is necessary to
introduce noncommutative transformation parameters [7].
The nontrivial coproduct can also affect the commutation
properties of symmetry generators and thus lead to deformed
relativistic wave equations and dispersion relations. In the
special case of 𝜅-Minkowski, for instance, a popular choice
of the coproduct [2] induces nonlinear commutation rules
among momenta and boost generators and consequently
determines a deformed Casimir operator. This description of
the 𝜅-Poincaré Hopf algebra is actually the starting point of
our main reference [9] and the source of our disagreement.

All the difference between our treatment and the usual
approach can be traced back to our assumption that deformed
Poincaré symmetries are standard quantum symmetries
described by a Lie algebra of generators.Without this hypoth-
esis, we would have obtained a much wider class of models,
including those explored in the seminal works [9, 10], and we
too would probably have relied on Hopf-algebraic consider-
ations to identify the relevant ones. A general classification
of this kind is actually available in the literature. In a recent
paper [17], a variety of noncommutative spacetimes and the
corresponding Hopf symmetries have been characterized in
terms of nonlinear realizations of the Heisenberg algebra.
Even if the authors adopt a field-theoretical point of view
based on Hopf algebras, it is straightforward to recast their
results in our single-particle framework and obtain a formal
generalization of our models.

The problem with these generalized models is that their
symmetry generators do not admit a clear physical inter-
pretation. In fact, nonlinear commutation relations among
the generators, as found in [9], cannot hold if the group
of finite symmetry transformations is continuous. But if it
was discontinuous, then there would be no well-defined
infinitesimal transformations to begin with, and symmetry
generators would lose their usual physical meaning. By
assuming standard quantum symmetries, we found all covari-
ant single-particle models which are not affected by such
interpretive difficulties and can directly provide interesting
phenomenology. Our approach has the additional advantage
of being entirely independent of Hopf-algebraic concepts,
thereby avoiding all the problems associated with noncom-
mutative transformation parameters.

7. Conclusions and Outlook

For various reasons, not least because of the problem of
time in standard quantum mechanics, spacetime noncom-
mutativity has so far mostly been studied from a field-
theoretical point of view, replacing Minkowski spacetime
with some noncommutative algebra of background coordi-
nates. In this paper, inspired by the pioneering works [9,
10], we advocated and explored the alternative approach of

introducing nontrivial commutation relations among particle
coordinates into covariant quantum mechanics, providing
a full characterization of deformed relativistic symmetries
in this framework. In particular, assuming that deformed
symmetries admit a standard Lie-algebraic description, we
proved that they are just ordinary Poincaré transformations
acting on some undeformed canonical variables 𝑝�휇 and𝑞](𝑝�휇, 𝑥]). This means that momenta retain their usual
transformation properties and the Hamiltonian constraint,
that is, the relativistic dispersion relation, is undeformed.
Spacetime noncommutativity only affects the transformation
properties of spacetime coordinates𝑥] under translations and
Lorentz transformations.

A notable feature of our models is the possibility of
computing physical amplitudes at any order in the defor-
mation parameter ℓ. This means that their phenomenology
can be quantitatively explored along the lines of [10]. We
have postponed a detailed phenomenological analysis to a
forthcoming study.

In this paper, we have considered for simplicity momen-
tum-independent deformation matrices Γ]�휆�훼 and Θ]�휆, but
our analysis also applies with little changes to momentum-
dependent commutation relations

[𝑥], 𝑥�휆]
= 12 𝑖 (ℓ[Γ (ℓ𝑝)]]�휆�훼𝑥�훼 + ℓ2 [Θ (ℓ𝑝)]]�휆 + h.c.) . (49)

Therefore, our results can be readily extended to include
the much-studied Snyder noncommutative spacetime [18]
and similar examples. A further generalization to curved
noncommutative spacetimes would be very interesting from
a phenomenological point of view, but it is beyond the reach
of our framework at the present stage of development. Before
attempting to deal with curved noncommutative spacetimes,
it is necessary to better understand the physics of covariant
quantum mechanics on ordinary curved spacetimes.

Being independent of Hopf-algebraic concepts, our
approach could shed some light on the nature of the puz-
zling noncommutative transformation parameters associated
with Hopf symmetry generators. In the simple case of 𝜅-
Minkowski, it is actually possible to express these objects in
terms of single-particle momenta [9]. Our framework could
be used to find such a representation for generic spacetime
noncommutativity.
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mutative spaces and Poincaré symmetries,” Physics Letters B,
vol. 766, pp. 181–185, 2017.

[18] H. S. Snyder, “Quantized space-time,” Physical Review, vol. 71,
no. 1, pp. 38–41, 1947.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


