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Gedanken experiments for the determination of two-dimensional linear second gradient1

elasticity coefficients2

Luca Placidi, Ugo Andreaus, Alessandro Della Corte and Tomasz Lekszycki3

Abstract. In the present paper, a two-dimensional solid consisting of a linear elastic isotropic material, for which the4

deformation energy depends on the second gradient of the displacement, is considered. The strain energy is demonstrated5

to depend on 6 constitutive parameters: the 2 Lamé constants (λ and µ) and 4 more parameters (instead of 5 as it is in6

the 3D-case). Analytical solutions for classical problems such as heavy sheet, bending and flexure are provided. The idea is7

very simple: The solutions of the corresponding problem of first gradient classical case are imposed, and the corresponding8

forces, double forces and wedge forces are found out. On the basis of such solutions, a method is outlined, which is able to9

identify the six constitutive parameters. Ideal (or Gedanken) experiments are designed in order to write equations having10

as unknowns the six constants and as known terms the values of suitable experimental measurements.11

Keywords. Second gradient · Elasticity · Variational approach · Isotropy · Analytical solution.12

1. Introduction13

It has been known since the first half of the nineteenth century, namely since the pioneering works by14

Gabrio Piola [13], that many microstructural effects in mechanical systems can be modeled by means of15

continuum theories [23]. A natural way to build a suitable theoretical model, when strongly localized defor-16

mation features are observed [2,35,53,54,58], is to complement the displacement field with some additional17

kinematical descriptors [11,34,36,42,46,52,67]; this approach leads to the so-called micromorphic models.18

Another possibility is to consider higher-order gradient theories, in which the deformation energy depends19

on second and/or higher gradients of the displacement [17,33,40]. This is done in the literature for both20

monophasic systems (see [14,15,19,22,24,25,44,57], in which continuous systems are investigated, and21

[1,26,56,64] for cases of lattice/woven structures) and for biphasic (see, e.g., [16,18,20,21,41,45,60,61])22

or granular materials [72]. Unlike classical Cauchy continua [4,62,63], second- and higher-order continua23

can respond to concentrated forces and other generalized contact actions (highly localized stress/strain24

concentration effects are studied, e.g., in [10]). This theoretical feature is becoming increasingly impor-25

tant for practical and applicative reasons in the last years, as the novelties in manufacturing procedures26

(due to, e.g., 3D printing and self-assembly) are making possible the realization of a much wider class of27

new architectured materials [12]. The investigation of the continuous limit of such materials is therefore28

of great importance for both theoretical and technological reasons. In [3], the simplest model of strain29

gradient elasticity is considered. It appears that many possible sets of moduli can be defined, each of30

them constituted of 4 moduli—a result that is confirmed in the present work. The deficiencies of classical31

approaches when the material behavior exhibits size-scale effects are investigated in [59], and in [47] a32

novel invariance requirement (micro-randomness) in addition to isotropy is formulated, which implies33

conformal invariance of the curvature. The numerical investigation of structures of the type considered34

also requires special attention, and it is therefore important in the development of novel techniques [5–35

9,37,38,48–51,65] or the proper employment of the existing ones (see, for instance, [68], where Galerkin36

boundary element method is used to address a class of strain gradient elastic materials).37
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A two-dimensional solid consisting of a linear elastic isotropic material is considered in this paper.38

The strain energy is expressed as a function of the strain and its gradient. The balance equations and the39

boundary conditions are found using the variational method, setting equal to zero the first variation of40

the total potential energy. Thus, forces, double forces and wedge forces are highlighted, the existence of41

which is necessary for the satisfaction of the above balance equations. Adopting the general constitutive42

relation proposed by Midlin for second gradient 3D solids and specializing it to the 2D case, the strain43

energy is demonstrated to depend on 6 constitutive parameters: the 2 Lamé constants (λ and µ) and44

other 4 (instead of 5 for the 3D case) constants (A, B, C and D). Analytical solutions of the same problem45

can be found in [55], see also [66]. However, in this paper a method is outlined, which is able to identify46

the six constitutive parameters (see [69] for another identification technique) and to design some ideal47

experiments that allow to write equations having as unknowns the six constants and as known terms48

the values of the experimental measurements of appropriately selected quantities. The ideal experiments49

are as simple as possible: heavy sheet, bending and flexure. In each of the three problems, the solution50

of the corresponding classical (first gradient) solution is imposed, and the resulting forces, double forces51

and wedge forces are found out. At this point, the variables to be measured experimentally are chosen in52

order to identify the six unknown parameters. The heavy sheet experiment (rectangular sample) provides53

two conditions on λ and µ and one condition on D; the trapezoidal sample, in turn, provides a condition54

on A, B and C; the bending provides 1 condition combining the whole set of six coefficients λ, µ A, B, C55

and D; Finally, the flexure provides 4 conditions on the whole set of six coefficients λ, µ A, B, C and D56

for a total of 9 conditions. The six constants can then be identified from 84 subsets selected from the 957

equations in 6 unknowns.58

Therefore, the result of this work provides a theoretical and practical guide to the design of laboratory59

experiments, capable of identifying the constitutive parameters of 2D solids characterized by a strain60

energy dependent on the first and second gradient of the displacement.61

2. Formulation of the problem62

2.1. Definition of the deformation energy functional63

Xi are the coordinates of the material points of the 2D body B in the reference configuration. The64

internal energy density functional U (Gij , Gij,h) depends not only on the deformation matrix Gij =65

(FhiFhj − δij) /2 but also on its gradient Gij,h, where Fij = χi,j ,χi is the placement function and66

subscript j after comma indicates derivative with respect to Xj . The energy functional E (ui (Xi)) is67

given by the contributions of the internal and the external energies as follows,68

E (ui (Xi)) =

∫∫

B

[

U (Gij , Gij,h) − bext
α uα

]

−

∮

∂B

[

text
α uα + τ ext

α uα,jnj

]

−

∫

[∂∂B]

f ext
α uα (1)69

where ui is the ith component of the displacement field and bext
α , text

α , τ ext
α and f ext

α are the external70

actions: bext
α is the external force per unit area and is applied on the whole two-dimensional domainB; text

α71

and τ ext
α are the external force and double force (respectively) and are applied on the one-dimensional72

boundary ∂B of the domain B; and f ext
α is the external concentrated force applied on the set of points73

belonging to the boundary of the boundary [∂∂B], so that the last integral has to be intended as relative74

to a discrete measure concentrated on the vertexes and can also be represented as the sum of the external75

works made by the concentrated forces acting on each vertices of the domain. In other words, if we define76

the boundary ∂B as the union of m regular partsΣc with c = 1, . . . , m and [∂∂B] as the union of the77

corresponding m vertex points Vc with c = 1, . . . , m,78

Journal: 33 Article No.: 588 TYPESET DISK LE CP Disp.:2015/9/22 Pages: 27

A
u

th
o

r 
P

ro
o

f

defined and

. First, we define the following problems

Please, insert a space



un
co

rr
ec

te
d 

pr
oo

f

Gedanken experiments for the determination

∂B =
m
⋃

c=1

Σc, [∂∂B] =
m
⋃

c=1

Vc,79

then the line and vertex integrals of a generic field g (Xi) are represented as follows,80

∮

∂B

g (Xi) =
m

∑

c=1

∫

Σc

g (Xi) ,

∫

[∂∂B]

g (Xi) =
m

∑

c=1

g (Xc
i ) (2)81

where Xc
i are the coordinates of the vertex Vc.82

2.2. Formulation of the variational principle83

If we assume δE = 0, then from (1) we get the final form of the system of partial differential equations,84

which can be explicited once kinematical restrictions are defined. The procedure to find the minimum of85

a deformation energy functional E is standard, see [55]. The result is given by reporting the variation of86

the deformation energy functional,87

δE = −

∫∫

B

δuα

[

(Fαi (Sij − Pijh)),j + bext
α

]

88

+

∮

∂B

[

δuα

(

tα − text
α

)

+ δuα,jnj

(

τα − τ ext
α

)]

89

+

∫

∂∂B

δuαfα −

∫

[∂∂B]

δuαf ext
α , (3)90

where the so-called contact force tα, contact double force τα and contact wedge force fα are defined,91

tα = Fαi (Sij − Pijh,h) nj − Pka (FαiPihjPahnj),k (4)92

τα = FαiPijknjnk (5)93

fα = FαiνkPkhPihjnj (6)94

and ni is the normal to the boundary∂B, Pij is its tangential projector operator (Pij = δij − ninj), νk is95

the external tangent unit vector defined on the side of the wedge it is considered, and stress and hyper96

stress are defined,97

Sij =
∂U

∂Gij
, Pijh =

∂U

∂Gij,h
. (7)98

The integral99

∫

∂∂B

δuαfα =

∫

∂∂B

δuαFαiνkPkhPihjnj100

is intended as the sum of the integrand for each vertex, and for every vertex we intend the sum of the101

contribution of the two sides corresponding to that vertex, i.e.,102

∫

∂∂B

δuαFαiνkPkhPihjnj =
m

∑

c=1

(

δuc
αF c

αiν
cl
k P cl

khP c
ihjn

cl
j + δuc

αF c
αiν

cr
k P cr

khP c
ihjn

cr
j

)

,103

where the superscript c of a generic variable g means the value g (Xc
i ) of such variable at the vertex Vc,104

the superscript cl of a generic variable g means the value g (Xc
i ) of such variable at the vertex Vc relative105

to the left-hand side and the superscript cr of a generic variable g means the value g (Xc
i ) of such variable106

at the vertex Vc relative to the right-hand side.107
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2.3. The deformation energy functional for 2D linear second gradient elasticity108

In Mindlin [43], a general form of the density of the deformation energy functional of a linear isotropic109

second gradient elastic material is given,110

U (Gij , Gij,h) =
λ

2
GiiGjj + µGijGij + +4α1Gaa,bGbc,c + α2Gaa,bGcc,b + 4α3Gab,aGcb,c111

+ 2α4Gab,cGab,c + 4α5Gab,cGac,b (8)112

where λ and µ are the Lamé’s coefficients and αi with i = 1, 2, 3, 4, 5 are the 5 second gradient constitutive113

parameters. Although the bulk modulus κ and the shear modulus µ are usually the most convenient pair114

of elastic constants for the description of the elastic properties of an isotropic material (on isotropy-115

related properties of classical, first gradient, linear elastic materials, see, e.g., [27–32,39,70,71]), for our116

expression of deformation energy density (8), we prefer to employ the Lamé’s coefficients λ and µ.117

In the same reference [43], in order to have the positive definiteness of U , the following constraints on118

the 7 constitutive parameters must be satisfied,119

µ > 0, 3λ + 2µ > 0, −4α1 + 2α2 + 2α3 + 6α4 − 6α5 > 0, α4 > α5, α4 + 2α5 > 0 (9)120

4α1 + α2 + 4α3 + 2α4 + 4α5 > 0, α1 + α2 < α3, 4α1 − 2α2 − 2α3 − 3α4 + 3α5 > 0.121

With (8), the system of partial differential equations that can be extrapolated by the first line of (3) is122

calculated for the present linear case,123

u1,11 (λ + 2µ) + u1,22µ + u2,12 (λ + µ)124

= u1,1111B + u1,2222A + u1,1122 (A + B) + (u2,1222 + u2,1112) (B − A) − bext
1 (10)125

u2,22 (λ + 2µ) + u2,11µ + u1,12 (λ + µ)126

= u2,2222B + u2,1111A + u2,1122 (A + B) + (u1,1222 + u1,1112) (B − A) − bext
2 , (11)127

where128

A = 2α3 + 2α4 + 2α5, B = 8α1 + 2α2 + 8α3 + 4α4 + 8α5. (12)129

The definitions of the strain matrix Gij = (FhiFhj − δij) /2 and its gradient Gij,h allow us to write130

the deformation energy density U as a function Ũ only of the displacement fields u1 and u2 in the131

two-dimensional case,132

U (Gij , Gij,h) = Ũ (ui) = (λ + 2µ)
(

u2
1,1 + u2

2,2

)

+ µ
(

u2
1,2 + u2

2,1

)

+ 2λu1,1u2,2 + 2µu1,2u2,1133

+
1

2
A

(

u2
1,22 + u2

2,11

)

+
1

2
B

(

u2
1,11 + u2

2,22

)

+ C
(

u2
1,12 + u2

2,12

)

134

+ 2D (u1,11u2,12 + u2,22u1,12)135

+
1

2
(A + B − 2C) (u1,11u1,22 + u2,11u2,22)136

+ (B − A − 2D) (u1,12u2,11 + u1,22u2,12) , (13)137

where138

C = 2α1 + α2 + α3 + 3α4 + 5α5, D = 3α1 + α2 + 2α3. (14)139

Thus, the 5 independent coefficients of an isotropic three-dimensional second gradient elastic material140

reduce to 4 in the two-dimensional case. In terms of the new set (λ, µ,A,B,C and D) of constitutive141

coefficients, the positive definiteness of the deformation energy functional (13) is guaranteed by the142

classical (first gradient) two-dimensional restrictions:143

µ > 0, λ + µ > 0,144
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Fig. 1. Picture of the two-dimensional body B

and by the positive definiteness of the following matrix145

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A 0 1
2 (A + B − 2C) 0 0 B − A − 2D

0 A 0 1
2 (A + B − 2C) B − A − 2D 0

1
2 (A + B − 2C) 0 B 0 0 2D

0 1
2 (A + B − 2C) 0 B 2D 0

0 B − A − 2D 0 2D 2C 0
B − A − 2D 0 2D 0 0 2C

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.146

Common numerical data for the graphical representations that will be given in this paper are here shown147

(see Fig. 1)148

L = 2m, l = 1m, µ = 10MPa m, λ = 15MPa m, ρ = 105 kg/m2 E =
µ (3λ + 2µ)

λ + µ
= 26MPa m,149

(15)150

α1 = El2m, α2 = El2m, α3 = 2El2m, α4 = El2m, α5 =
1

2
El2m, lm = 10 cm, (16)151

and therefore152

A = 7El2m, B = 34El2m, C =
21

2
El2m, D = 8El2m.153

With these data, the positive definiteness of the deformation energy functional is verified.154

2.4. Balance of forces and moments155

Partial differential equations (10) and (11) that govern the deformation process have been derived assum-156

ing the arbitrariness of the displacement variation δuα inside the body. The balance of force and moments,157

in the present formulation, is obtained by considering the subset of admissible motions constituted by158

the particular case of rigid motion, which in our case is a superposition of a rigid translation u0
α and a159

rotation, e.g., around the origin and of an arbitrary angle θ,160

uα = u0
α + θεαijδ3iXj = u0

α − θδ1αX2 + θδ2αX1, ⇒ δuα = δu0
α − δθ (δ1αX2 − δ2αX1) . (17)161

With this assumption, we have from (13) that U = 0, from (4), (5) and (6) tα = 0, τα = 0 and fα = 0,162

respectively, while the variation of the deformation energy functional is163

0 = −δE =

∫∫

B

δuαbext
α +

∮

∂B

[

δuαtext
α + δuα,jnjτ

ext
α

]

+

∫

[∂∂B]

δuαf ext
α . (18)164
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Inserting the right-hand side of (17) into the (18) yields165

0 = −δE = δu0
α

⎧

⎪

⎨

⎪

⎩

∫∫

B

bext
α +

∮

∂B

text
α +

∫

[∂∂B]

f ext
α

⎫

⎪

⎬

⎪

⎭

166

− δθ

⎧

⎪

⎨

⎪

⎩

∫∫

B

X2b
ext
1 − X1b

ext
2 +

∮

∂B

[

X2t
ext
1 − X1t

ext
2 + n2τ

ext
1 − n1τ

ext
2

]

+

∫

[∂∂B]

X2f
ext
1 − X1f

ext
2

⎫

⎪

⎬

⎪

⎭

167

Thus, for an arbitrary pure translation (δθ = 0) we have the so-called balance of forces,168

∫∫

B

bext
α +

m
∑

c=1

∫

Σc

text
α +

m
∑

c=1

f ext
α (Xc

i ) = 0, (19)169

and for an arbitrary pure rotation (δu0
α = 0) we have the so-called balance of moments,170

∫∫

B

X2b
ext
1 − X1b

ext
2 +

m
∑

c=1

∫

Σc

[

X2t
ext
1 − X1t

ext
2 + n2τ

ext
1 − n1τ

ext
2

]

+
m

∑

c=1

(

Xc
2f ext

1 − Xc
1f ext

2

)

= 0 (20)171

where we have used the definitions given in Eqs. (2).172

3. The case of a rectangle173

3.1. The general framework of straight lines174

In Fig. 1, we represent the scheme of a rectangle with side names Q,R, S and T and vertex names175

V1, V2, V3 and V4. In this case and for small displacements, the sides are straight lines, and the contact176

force in (4), the contact double force in (5) and the contact wedge force (6) are177

tα = Sαjnj − (Pαjh,h + Pαhj,h) nj + Pαhj,knhnknj , τα = Pαjknjnk, fα = νinjPiαj , (21)178

that, in terms of the displacement fields, yield,179

tα = λua,anα + µuα,jnj + µuj,αnj − ua,abbnα (6α1 + 2α2 + 4α3)180

−ua,aαknk (6α1 + 2α2 + 4α3 + 2α4 + 8α5) − uα,aaknk (2α3 + 4α4 + 6α5)181

−uk,αaank (2α1 + 2α3 + 2α4 + 6α5) + ua,ajknαnjnk (4α1 + 2α2 + 2α3)182

+uj,aaknαnjnk (2α1 + 2α3) + uα,abcnanbnc (2α4 + 2α5) + ua,αbcnanbnc (2α4 + 6α5) , (22)183

τα = ua,abnαnb (4α1 + 2α2 + 2α3) + ua,bbnαna (2α1 + 2α3)184

+ (2α1 + 2α3) ua,aα + uα,abnanb (2α4 + 2α5) + 2α3uα,aa + ua,αbnanb (2α4 + 6α5) . (23)185

We remark that the formulation expressed in (22) and (23) can also be used in the three-dimensional186

case. This is the reason why (22) and (23) are expressed in terms of the 5 three-dimensional constitutive187

coefficients αi with i = 1, 2, 3, 4, 5 and not in terms of the 4 two-dimensional constitutive coefficients188

A, B, C and D.189
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Gedanken experiments for the determination

3.2. Sides190

The characterization of side S is done by setting ni = δi1. Thus, from (22) with α = 1, 2, and from (23)191

with α = 1, 2, we have192

t1 = tS1 = u1,1 (λ + 2µ) + u2,2λ − Bu1,111 − 2Du2,222 −
1

2
(A + B + 2C) u1,122 − (B − A) u2,211, (24)193

t2 = tS2 = µ (u1,2 + u2,1) − (B − A) u1,112 − (B − A − 2D) u1,222 − Au2,111 −
1

2
(A + B + 2C) u2,122,194

(25)195

τ1 = τS
1 = Bu1,11 +

1

2
(A + B − 2C) u1,22 + 2Du2,12, (26)196

τ2 = τS
2 = (B − A − 2D) u1,12 + Au2,11 +

1

2
(A + B − 2C) u2,22. (27)197

The characterization of side Q is done by setting ni = −δi1. Thus, from (22) with α = 1, 2, and from (23)198

with α = 1, 2, we have199

t1 = tQ1 = −u1,1 (λ + 2µ) − u2,2λ + Bu1,111 + 2Du2,222 +
1

2
(A + B + 2C) u1,122 + (B − A) u2,211, (28)200

t2 = tQ2 = −µ (u1,2 + u2,1) + (B − A) u1,112 + (B − A − 2D) u1,222 + Au2,111 +
1

2
(A + B + 2C) u2,122,201

(29)202

τ1 = τQ
1 = Bu1,11 +

1

2
(A + B − 2C) u1,22 + 2Du2,12, (30)203

τ2 = τQ
2 = (B − A − 2D) u1,12 + Au2,11 +

1

2
(A + B − 2C) u2,22. (31)204

We remark that tQ1 in (28) and tQ2 in (29) are the opposite of tS1 in (24) and of tS2 in (25), respectively,205

and that τQ
1 in (30) and τQ

2 in (31) are the same of τS
1 in (26) and of τS

2 in (27), respectively.206

The characterization of side R is done by setting ni = δi2. Thus, from (22) with α = 1, 2, and from207

(23) with α = 1, 2, we have208

t1 = tR1 = µ (u1,2 + u2,1) − (B − A) u2,122 − (B − A − 2D) u2,111 − Au1,222 −
1

2
(A + B + 2C) u1,112,209

(32)210

t2 = tR2 = u2,2 (λ + 2µ) + u1,1λ − Bu2,222 − 2Du1,111 −
1

2
(A + B + 2C) u2,112 − (B − A) u1,122, (33)211

τ1 = τR
1 = (B − A − 2D) u2,12 + Au1,22 +

1

2
(A + B − 2C) u1,11, (34)212

τ2 = τR
2 = Bu2,22+

1

2
(A + B − 2C) u2,11+2Du1,12. (35)213

We remark that, because of isotropy, tR1 in (32) and tR2 in (33) are the same of tS2 in (25) and of tS1 in214

(24), respectively, by changing the indexes 1 and 2. Similarly, because of isotropy, τR
1 in (34) and τR

2 in215

(35) are the same of τS
2 in (26) and of τS

1 in (27), respectively, by changing the indexes 1 and 2.216
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Finally, the characterization of side T is done by setting ni = −δi2. Thus, from (22) with α = 1, 2 and217

from (23) with α = 1, 2, we have218

t1 = tT1 = −µ (u1,2 + u2,1) + (B − A) u2,122 + (B − A − 2D) u2,111 + Au1,222 +
1

2
(A + B + 2C) u1,112,219

(36)220

t2 = tT2 = −u2,2 (λ + 2µ) − u1,1λ + Bu2,222 + 2Du1,111 +
1

2
(A + B + 2C) u2,112 + (B − A) u1,122, (37)221

τ1 = τT
1 = (B − A − 2D) u2,12 + Au1,22 +

1

2
(A + B − 2C) u1,11, (38)222

τ2 = τT
2 = Bu2,22+

1

2
(A + B − 2C) u2,11+2Du1,12. (39)223

We remark that tT1 in (36) and tT2 in (37) are the opposite of tR1 in (32) and of tR2 in (33), respectively,224

and that τT
1 in (38) and τT

2 in (39) are the same of τR
1 in (34) and of τR

2 in (35), respectively.225

3.3. Vertices226

The last term of (3) is reduced, because of (2)2, to227

∫

∂∂B

δuαfα −

∫

[∂∂B]

δuαf ext
α228

=
[

δuα

(

fα (Q) + fα (R) − f ext
α

)]

V1

+
[

δuα

(

fα (R) + fα (S) − f ext
α

)]

V2

229

+
[

δuα

(

fα (S) + fα (T ) − f ext
α

)]

V3

+
[

δuα

(

fα (T ) + fα (Q) − f ext
α

)]

V4

, (40)230

where [f (∂iB)]
Vj

is the contact wedge force calculated for the wedge Vj and for the boundary ∂iB. We231

have already pointed out the form of the unit normals for each side. The form of the tangent νi is set232

taking into account that such tangent points off the edge. Thus,233

∂iB = Q, Vj = V1 =⇒ nj = −δ1j νi = δi2, =⇒ [fα (Q)]V1
= −P2α1234

∂iB = R, Vj = V1 =⇒ nj = δ2j νi = −δi1, =⇒ [fα (R)]V1
= −P1α2235

∂iB = R, Vj = V2 =⇒ nj = δ2j νi = δi1, =⇒ [fα (R)]V2
= P1α2236

∂iB = S, Vj = V2 =⇒ nj = δ1j νi = δi2, =⇒ [fα (S)]V2
= P2α1237

∂iB = S, Vj = V3 =⇒ nj = δ1j νi = −δi2, =⇒ [fα (S)]V3
= −P2α1238

∂iB = T, Vj = V3 =⇒ nj = −δ2j νi = δi1, =⇒ [fα (T )]V3
= −P1α2239

∂iB = T, Vj = V4 =⇒ nj = −δ2j νi = −δi1, =⇒ [fα (T )]V4
= P1α2240

∂iB = Q, Vj = V4 =⇒ nj = −δ1j νi = −δi2, =⇒ [fα (Q)]V4
= P2α1.241

Keeping this in mind, we have that242

∫

∂∂B

δuα

(

fα − f ext
α

)

=
[

δuα

(

−P2α1 − P1α2 − f ext
α

)]

V1

243

+
[

δuα

(

P2α1 + P1α2 − f ext
α

)]

V2

244

+
[

δuα

(

−P2α1 − P1α2 − f ext
α

)]

V3

245

+
[

δuα

(

P2α1 + P1α2 − f ext
α

)]

V4

, (41)246

whereP2α1 + P1α2, in terms of the displacement field, becomes for α = 1247

P211 + P112 = 2Cu1,12 + (B − A − 2D) u2,11 + 2Du2,22, (42)248
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Gedanken experiments for the determination

and for α = 2,249

P221 + P122 = 2Cu2,12 + (B − A − 2D) u1,22 + 2Du1,11. (43)250

3.4. Explicit form of the balances of forces and moments251

The balance of force is obtained from (19)252

∑

J=1,2,3,4

[

f ext
α

]

VJ
+

∑

J=Q,S

l
∫

−l

text,J
α +

∑

J=R,T

L
∫

0

text,J
α = 0.253

The balance of moments is obtained from (20) and must be satisfied by taking into account not only the254

edge and wedge forces but also the double forces,255

l
[

f ext
1

]

V1

+ l
[

f ext
1

]

V2

− L
[

f ext
2

]

V2

− l
[

f ext
1

]

V3

− L
[

f ext
2

]

V3

− l
[

f ext
1

]

V4

256

+

l
∫

−l

X2t
ext,Q
1 + l

L
∫

0

text,R
1 −

L
∫

0

X1t
ext,R
2 +

l
∫

−l

X2t
ext,S
1 − L

l
∫

−l

text,S
2 − l

L
∫

0

text,T
1257

−

L
∫

0

X1t
ext,T
2 +

l
∫

−l

τ ext,Q
2 +

L
∫

0

τ ext,R
1 −

l
∫

−l

τ ext,S
2 −

L
∫

0

τ ext,T
1 = 0.258

3.5. An analytical solution for the heavy sheet259

3.5.1. Preliminary remarks and kinematical constraints. We consider a heavy sheet hanging by the top260

side R. The kinematical constraints on the displacement field are conceived in order to avoid the Poisson261

effect, see also the sliding system in Fig. 4. Therefore, such kinematical constraints are imposed not only262

on the side R but also on the two vertical sides Q and S,263

(δu2)R = 0, (δu1)Q = 0, (δu1)S = 0. (44)264

In the following, we consider the general solution of this simple problem in the first gradient case. Thus,265

we calculate the whole set of boundary conditions to be applied in the second gradient case.266

3.5.2. The external surface forces. Let us take into account the following displacement field,267

u1 = 0, u2 =
ρg (X2 − l) (3l + X2)

2 (λ + 2µ)
, (45)268

also represented in the first row of Fig. 2 and in the first two rows of Fig. 3. The two partial differential269

equations (10) and (11) are satisfied with the following external force per unit area,270

bext
1 = 0, bext

2 = −ρg, (46)271

that is the external force due to the weight where we have used the following intermediate results,272

u2,2 =
ρg (l + X2)

(λ + 2µ)
, u2,22 =

ρg

(λ + 2µ)
. (47)273
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g

V4

V1 V2

V3

Q

R

S

T

Actual Configuration

Reference Configuration

Dashed

arrows are

the wedge

forces

Force per

unit line at

vertical sides

is scaled 1/2

Double force per unit line

at vertical sides is scaled 1/ 5

Fig. 2. A column of figures is represented for the heavy sheet case. In the first row, reference and actual configuration
are represented. In the second row, wedge forces and force per unit line are represented. In the third row, we represent the
double force per unit line
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Gedanken experiments for the determination

3.5.3. The external edge forces. In the following, we calculate the edge forces that are necessary to have274

the displacement field (45). Such forces per unit line are also graphically represented in the second row275

of Fig. 2 and in the third and fourth rows of Fig. 3.276
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Fig. 3. A grid of figures represents the heavy sheet case. In the first, second, third and fourth column, we show characteristics
of sides A, B, C and D, respectively. In the first and in the second row, we show the displacement fields, respectively, in the
two directions. In the third and in the fourth row, we show the force per unit line fields, respectively, in the two directions.
In the fifth and in the sixth row, we show the double force per unit line fields, respectively, in the two directions
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Side S. From (24) and (45), we have277

t1 = text,S
1 =

ρg (l + X2)

(λ + 2µ)
λ (48)278

Such force in the horizontal direction is due to the Poisson effect and it is associated with the kinematical279

constraint (44)3. From (25), we have simply (t2 = text,S
2 = 0), i.e., no traction condition.280

Side Q. From (28) and (45), we have281

t1 = text,Q
1 = −

ρg (l + X2)

(λ + 2µ)
λ, (49)282

that, for symmetry reasons, is the opposite of that on side S and it is connected to the kinematical283

constraint (44)2. From (29), we have simply (t2 = text,Q
2 = 0), i.e., no traction condition.284

Side R. From (32) and (45), we have t1 = tR1 = 0 (no traction condition) in the horizontal direction and285

from (33) we have286

t2 = tR2 = u2,2 (λ + 2µ) =
ρg (l + X2)

(λ + 2µ)
(λ + 2µ) = ρg (l + X2)x2=l = 2ρgl, (50)287

that is the usual reaction at the upper boundary, and it is connected to the kinematical constraint (44)1.288

Side T. From (36) and (45), we have no traction condition (t1 = tT1 = 0) in the horizontal direction and289

from (37) we have290

t2 = tT2 = −u2,2 (λ + 2µ) = −
ρg (l + X2)

(λ + 2µ)
(λ + 2µ) = −ρg (l + X2)X2=−l = 0, (51)291

that means that we have no reactions at the bottom of the body.292

3.5.4. The external edge double forces. In the previous subsubsection, we calculated the forces per unit293

line that are necessary to have the solution (45) with the kinematical constraints (44). In this subsub-294

section, we calculate the analogous double force per unit line. Such double forces per unit line are also295

graphically represented in the third row of Fig. 2 and in the fifth and sixth rows of Fig. 3.296

Side S. From (26) and (45), we simply have (τ1 = τ ext,S
1 = 0) no double force condition in the horizontal297

direction. On the other hand, in the vertical direction from (27) and (45) we have298

τ2 = τ ext,S
2 =

(A + B − 2C) ρg

2 (λ + 2µ)
. (52)299

Side Q. From (30) and (45), for symmetry reasons, we again have (τ1 = τ ext,Q
1 = 0) no double force300

condition in the horizontal direction, and from (31) and (45), we have the same double force per unit line301

of (52),302

τ2 = τ ext,Q
2 =

(A + B − 2C) ρg

2 (λ + 2µ)
. (53)303

Side R. From (34) and (45), we have (τ1 = τ ext,R
1 = 0) no double force condition in the horizontal304

direction, and from (35) and (45), we have305

τ2 = τR,ext
2 =

ρgB

(λ + 2µ)
. (54)306

Side T. For symmetry reasons, from (38) we have (τ1 = τ ext,T
1 = 0) again no double force condition in307

the horizontal direction, and from (39) and (45), we have308

τ2 = τT,ext
2 =

ρgB

(λ + 2µ)
. (55)309
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3.5.5. The external wedge forces. The kinematical restrictions (44) imply no displacement at vertices V1310

and V2 and no horizontal displacement at vertices V3 and V4. This means that the external (or reaction)311

wedge forces in order to keep the displacement field in (45) are from (41), (42) and (43),312

f ext
α = −P2α1 − P1α2313

for wedges V1 and V3 and the opposite314

f ext
α = P2α1 + P1α2315

for wedges V2 and V4. We have from (42), (45) and (47)316

P211 + P112 =
2Dρg

(λ + 2µ)
∼= 0.12MN,317

where the coefficient D is defined in (14), and the exemplifying numerical values employed are those in318

(15) and (16). We have from (43) and (45) and (47)319

P221 + P122 = 0.320

Thus, the external (or reaction) wedge forces for the 4 vertices are the following,321

(

f ext
1

)

V1

= −
2Dρg

(λ + 2µ)
∼= −0.12MN,

(

f ext
2

)

V1

= 0, (56)322

(

f ext
1

)

V2

=
2Dρg

(λ + 2µ)
∼= 0.12MN,

(

f ext
2

)

V2

= 0, (57)323

(

f ext
1

)

V3

= −
2Dρg

(λ + 2µ)
∼= −0.12MN,

(

f ext
2

)

V3

= 0, (58)324

(

f ext
1

)

V4

=
2Dρg

(λ + 2µ)
∼= 0.12MN,

(

f ext
2

)

V4

= 0, (59)325

that are also graphically represented in the second row of Fig. 2.326

3.5.6. The trapezoidal case. Let us cut the rectangle from the vertex V3 to a general vertex V o in the327

side Q or R or at the vertex V1, see also Fig. 4. The new side has the following normal,328

nj = − sin θδ1j − cos θδ2j ,329

and, at vertexV3, has the following tangent,330

νi = cos θδ1i − sin θδ2i,331

where θ is the angle between the horizontal side and the new oblique side. At the vertex V3, the necessary332

external (or reaction) force must be333

Fig. 4. Picture of the cut bodyB
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f ext
α = [fα (S) + fα (O)]Vo

= [νinjPiαj ]S,Vo
+ [νinjPiαj ]O,Vo

334

= [−δ2iδ1jPiαj ]S,Vo
− [(cos θδ1i − sin θδ2i) (sin θδ1j + cos θδ2j) Piαj ]Vo

335

= −P2α1 − P1α1 sin θ cos θ − P1α2 cos θ cos θ + P2α1 sin θ sin θ + P2α2 cos θ sin θ336

= − (P2α1 + P1α2) cos2 θ + (P2α2 − P1α1) sin θ cos θ. (60)337

We have for α = 1,338

f ext
1 = − (P211 + P112) cos2 θ + (P212 − P111) sin θ cos θ, (61)339

where340

P211 + P112 = 2Cu1,12 + (B − A − 2D) u2,11 + 2Du2,22, (62)341

and342

P212 − P111 = −
1

2
(B − A + 2C) u1,11 −

1

2
(B − A − 2C) u1,22 − (A − B + 4D) u2,12, (63)343

while for α = 2,344

f ext
2 = − (P221 + P122) cos2 θ + (P222 − P121) sin θ cos θ, (64)345

where346

P221 + P122 = 2Du1,11 + + (B − A − 2D) u1,22 + 2Cu2,12, (65)347

and348

P222 − P121 =
1

2
(B − A − 2C) u2,11 + +

1

2
(B − A + 2C) u2,22 + (A − B + 4D) u1,12. (66)349

By insertion of the solution (45) into (62), (63), (65) and (66), the forces (61) and (64) are evaluated,350

f ext
1 = − cos2 θ

[

2ρgD

(λ + 2µ)

]

∼= −0.12 cos2 θ MN, (67)351

f ext
2 = sin θ cos θ

[

ρg

2 (λ + 2µ)
(B − A + 2C)

]

∼= 0.17 sin θ cos θ MN, (68)352

where the exemplifying numerical values employed are those in (15) and (16).353

3.6. An analytical solution for bending354

Let us take into account the following displacement field,355

u1 =
3M ext (λ + 2µ) X1X2

8l3µ (λ + µ)
,356

u2 = −
3M ext

[

λX2
2 + (λ + 2µ) X2

1

]

16l3µ (λ + µ)
, (69)357

also represented in the first row of Fig. 5 and in the first and second rows of Fig. 6. The two partial358

differential equations (10) and (11) are satisfied with null external force per unit area, bext
1 = bext

2 = 0,359

where we have used the following intermediate results,360

u1,1 =
3M ext (λ + 2µ) X2

8l3µ (λ + µ)
, u1,12 =

3M ext (λ + 2µ)

8l3µ (λ + µ)
, u1,2 =

3M ext (λ + 2µ) X1

8l3µ (λ + µ)
, (70)361

u2,1 = −
3M ext [(λ + 2µ) X1]

8l3µ (λ + µ)
, u2,11 = −

3M ext (λ + 2µ)

8l3µ (λ + µ)
= −u1,12, (71)362

u2,2 = −
3M extλX2

8l3µ (λ + µ)
, u2,22 = −

3M extλ

8l3µ (λ + µ)
. (72)363
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Gedanken experiments for the determination

V4

V1 V2

V3

Q

R

S

T

Actual Configuration

Reference Configuration

Dashed
arrows are
the wedge

forces

Force per
unit line at

vertical
sides

Double force per unitl ine

at vertical sides

is scaled 10 times

Fig. 5. A column of figures is represented for the bent sheet case. In the first row, reference and actual configuration are
represented. In the second row, wedge forces and force per unit line are represented. In the third row, we represented the
double force per unit line
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Fig. 6. A grid of figures is represented for the bent sheet case. In the first, second, third and fourth column, we show
characteristics of sides A, B, C and D, respectively. In the first and in the second row, we show the displacement fields,
respectively, in the two directions. In the third and in the fourth row, we show the force per unit line fields, respectively, in
the two directions. In the fifth and in the sixth row, we show the double force per unit line fields, respectively, in the two
directions

In the following, we consider the general solution of this simple problem in the first gradient case. Thus,364

we calculate the whole set of boundary conditions to be applied in the second gradient case.365

3.6.1. The external edge forces. In the following, we calculate the edge forces that are necessary to have366

the displacement field (69). Such forces per unit line also graphically represented in the second row of367

Fig. 5 and in the third and fourth rows of Fig. 6.368
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Side S. From (24) and (69), we have369

t1 = text,S
1 =

3M extX2

2l3
. (73)370

Such force in the horizontal direction is the classical bending solution. We remark that the moment of371

the force per unit line text,S
1 is372

l
∫

−l

text,S
1 X2 =

l
∫

−l

3M extX2

2l3
X2 = M ext (74)373

that gives a justification of the name of the parameter M ext. We remark that the vertical tip displacement374

ub
t of the middle line is from (69)375

ub
t = u2 (x1 = L, x2 = 0) = −M ext 3L2 (λ + 2µ)

16l3µ (λ + µ)
,376

so that377

M ext = −ub
t

16l3µ (λ + µ)

3L2 (λ + 2µ)
. (75)378

From (25) and (69), we have simply t2 = text,S
2 = 0.379

Side Q. From (28) and (69), we have380

t1 = text,Q
1 = −

3M extX2

2l3
, (76)381

that, for symmetry reasons, is the opposite of that on side S. From (29), we have simply t2 = text,Q
2 = 0.382

Sides R and T. From (32), (33), (36) and (37), we have no traction conditions383

text,R
1 = text,R

2 = text,T
1 = text,T

2 = 0, (77)384

for sides R and T .385

3.6.2. The external edge double forces. In the previous subsubsection, we calculated the force per unit386

line that are necessary to have a solution (69). In this subsubsection, we calculate the analogous double387

force per unit line. Such double forces per unit line are also graphically represented in the third row of388

Fig. 5 and in the fifth and sixth rows of Fig. 6.389

Side S. From (26) and (69), we simply have τ1 = τ ext,S
1 = 0, and from (27) and (69), we have390

τ2 = τ ext,S
2 =

3M ext [− (5λ + 8µ) A + (λ + 4µ) B + 2λC − (4λ + 8µ) D]

16l3µ (λ + µ)
. (78)391

Side Q. From (30) and (69), we simply have τ1 = τ ext,Q
1 = 0, and from (31) and (69), we have392

τ2 = τ ext,Q
2 = τ ext,S

2 . (79)393

Side R. From (34) and (69), we haveτ1 = τ ext,R
1 = 0, and from (35) and (69), we have394

τ2 = τR,ext
2 = −

3M ext [(λ + 2µ) A + (3λ + 2µ) B − (2λ + 4µ) C − (4λ + 8µ) D]

16l3µ (λ + µ)
. (80)395

Side T. From (38) and (69), we haveτ1 = τ ext,T
1 = 0, and from (33) and (69), we have396

τ2 = τT,ext
2 = τR,ext

2 . (81)397
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3.6.3. The external wedge forces. We do not impose any kinematical restriction on wedges. This means398

again that the external (or reaction) wedge forces, in order to have the displacement field (69), are399

f ext
α = −P2α1 − P1α2400

for wedges V1 and V3 and the opposite401

f ext
α = P2α1 + P1α2402

for wedges V2 and V4. We have from (42) and (69)403

P211 + P112 =
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= 0.04MN, (82)404

where the exemplifying numerical values employed are those in (15) and (16), with the assumption405

M ext = 1MNm. From (43) and (69), on the other hand, we simply have,406

P221 + P122 = 0. (83)407

Thus, the external (or reaction) wedge forces for the four vertices are the following,408

(

f ext
1

)

V1

= −
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= −0.04MN,

(

f ext
2

)

V1

= 0, (84)409

(

f ext
1

)

V2

=
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= 0.04MN,

(

f ext
2

)

V2

= 0, (85)410

(

f ext
1

)

V3

= −
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= −0.04MN,

(

f ext
2

)

V3

= 0, (86)411

(

f ext
1

)

V4

=
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= 0.04MN,

(

f ext
2

)

V4

= 0, (87)412

that are also graphically represented in the second row of Fig. 5.413

3.7. An analytical solution for flexure414

Let us take into account the following displacement field,415

u1 = −
QX2

[

(λ + 2µ)
(

3X2
1 − X2

2 − 6LX1

)

+ 2 (λ + µ)
(

6l2 − X2
2

)]

16l3µ (λ + µ)
, (88)416

u2 = −
Q

[

(3L − X1) (λ + 2µ) X2
1 + 3 (L − X1) λX2

2

]

16l3µ (λ + µ)
, (89)417

also represented in the first row of Fig. 7 and in the first and second rows of Fig. 9. The two partial418

differential equations (10) and (11) are satisfied with null external force per unit area, bext
1 = bext

2 = 0,419

where we have used the following intermediate results,420

u1,1 =
3Q (λ + 2µ) (L − X1) X2

8l3µ (λ + µ)
, u1,12 =

3Q (λ + 2µ) (L − X1)

8l3µ (λ + µ)
, u2,2 =

3Q [(X1 − L) λX2]

8l3µ (λ + µ)
, (90)421

u2,1 =
3Q [(X1 − 2L) X1 (λ + 2µ) + X2λ]

16l3µ (λ + µ)
, u2,11 =

3Q (λ + 2µ) (X1 − L)

8l3µ (λ + µ)
= −u1,12, (91)422

u1,2 =
3Q

[

(λ + 2µ)
(

X2
2 − X2

1 + 2LX1

)

+ 2 (λ + µ)
(

X2
2 − 2l2

)]

16l3µ (λ + µ)
, u2,22 =

3Q [(X1 − L) λ]

8l3µ (λ + µ)
, (92)423

In the following, we again consider the general solution of this simple problem in the first gradient case.424

Thus, we calculate the whole set of boundary conditions in the second gradient case.425
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V4
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Q
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Fig. 7. A column of figures is represented for the flexure sheet case. In the first row, reference and actual configuration are
represented. In the second row, wedge forces and force per unit line are represented. In the third row, we represented the
double force per unit line
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Fig. 8. Graphical scheme for flexure. If the whole set of external force and double force per unit line are not considered,
then it is not balanced in the second gradient case

3.7.1. The external edge forces. In the following, we calculate the edge forces that are necessary to have426

the displacement fields (88) and (89). Such forces per unit line also graphically represented in the second427

row of Fig. 7 and in the third and fourth rows of Fig. 9.428

Side S. From (25) and (88) and (89), we have429

t2 = text,S
2 = −

3F
[

−Aλ + B (5λ + 4µ) + 2Cλ − 4D (3λ + 4µ) + 4µλ
(

l2 − X2
2

)

+ 4µ2
(

l2 − X2
2

)]

16l3µ (λ + µ)
. (93)430

that is the usual force per unit line in the vertical direction and in the first gradient (A = B = C = D = 0)431

and flexural case. We remark that the resultant force, see also the right-hand side of Fig. 8, on the side432

S is433

l
∫

−l

text,S
2 = −F

[

1 +
3λ (2C − A) + 3B (5λ + 4µ) − 12D (3λ + 4µ)

8l2µ (λ + µ)

]

= −F2g (94)434

that, on the one hand, it is again equal to −Q in the first gradient (A = B = C = D = 0) flexural case.435

On the other hand, the resultant shear force is equal to −F2g in the present second gradient case. We436

remark that the downward vertical tip displacement uf
t of the middle line is from (89)437

uf
t = −u2 (X1 = L, X2 = 0) = F

L3 (λ + 2µ)

8l3µ (λ + µ)
,438

so that439

F = uf
t

8l3µ (λ + µ)

L3 (λ + 2µ)
. (95)440

Besides, the resultant moment on the same side, see again Fig. 8, is null,441

l
∫

−l

text,S
1 X2 = 0. (96)442

Finally, from (24), (88) and (89) we have simply t1 = text,S
1 = 0.443

Side Q. From (29), we have444

t2 = text,Q
2 = −text,S

2 , (97)445

that is the opposite of that on side S, thus giving a vertical resultant446

l
∫

−l

text,Q
2 = F2g447

that is coherent with that shown on the left-hand side of Fig. 8.448

From (28), we have simply449

t1 = text,Q
1 = −

3LFX2

2l3
.450
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Such force in the horizontal direction is the usual (in the case A = B = C = D = 0) flexural solution as451

well as its resultant,452

l
∫

−l

text,Q
1 = 0,453

and its moment resultant,454

l
∫

−l

(−X2) text,Q
1 = LF,455

see the left-hand side of Fig. 8.456

Sides R and T. From (32), (33), (36) and (37), we have on the one hand no traction conditions in the457

vertical direction,458

text,R
2 = text,T

2 = 0.459

On the other hand, in the horizontal direction we need shear force per unit line,460

text,R
1 = −text,T

1 = −
3F

16l3µ (λ + µ)
[(λ + 2µ) (A − 2C − 4D) + B (3λ + 2µ)] . (98)461

This contradicts the usual no traction condition on the lateral surface on the first gradient case. Thus,462

(98) means that, in order to have the solution (88) and (89) also in the second gradient case, some shear463

condition on the lateral surface is necessary.464

3.7.2. The external edge double forces. In the previous subsubsection, we calculated the force per unit465

line that are necessary to have a solution (88) and (89). In this subsubsection, we calculate the analogous466

double force per unit line. Such double forces per unit line are also graphically represented in the third467

row of Fig. 7 and in the fifth and sixth rows of Fig. 9.468

Side S. From (27), (88) and (89), we simply have τ2 = τ ext,C
2 = 0 null double force per unit line and from469

(26), (88) and (89) we have470

τ1 = τ ext,S
1 =

3FX2 [(3λ + 4µ) (A − 2C) + λ (B + 4D)]

16l3µ (λ + µ)
. (99)471

Side Q. From (31), (88) and (89), we have472

τ2 = τ ext,Q
2 = −

3FL [(5λ + 8µ) A − (λ + 4µ) B − 2λC + (λ + 2µ) 4D]

16l3µ (λ + µ)
.473

and from (30), (88) and (89), we have474

τ1 = τ ext,Q
1 = τ ext,S

1 . (100)475

Side R. From (34), (88) and (89), we have476

τ1 = τ ext,R
1 =

3F [(λ + 2µ) (3A + 2C) + (λ − 2µ) B − 4λD]

16l2µ (λ + µ)
.477

and from (35), (88) and (89), we have478

τ2 = τR,ext
2 = −

3F (L − X1) [(λ + 2µ) (A − 2C − 4D) + (3λ + 2µ) B]

16l3µ (λ + µ)
. (101)479

Side T. From (38), (88) and (89), we have480

τ1 = τ ext,T
1 = −τ ext,R

1481
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Fig. 9. A grid of figures is represented for the flexure sheet case. In the first, second, third and fourth column, we show
characteristics of sides A, B, C and D, respectively. In the first and in the second row, we show the displacement fields,
respectively, in the two directions. In the third and in the fourth row, we show the force per unit line fields, respectively, in
the two directions. In the fifth and in the sixth row, we show the double force per unit line fields, respectively, in the two
directions

and from (33), (88) and (89), we have482

τ2 = τT,ext
2 = τR,ext

2 . (102)483
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3.7.3. The external wedge forces. We do not impose any kinematical restriction on wedges. This means484

again that the external (or reaction) wedge forces, in order to have the displacement fields (88) and (89),485

are486

f ext
α = −P2α1 − P1α2487

for wedges V1 and V3 and the opposite488

f ext
α = P2α1 + P1α2489

for wedges V2 and V4. We have from (42), (88) and (89)490

P211 + P112 =
3F (L − X1) [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
,491

and the numerical values in (15) and (16) are used, for the sake of giving an example, with the assumption492

M ext = 1MN . From (43), (88) and (89), on the other hand we simply have,493

P221 + P122 = −
3Fx2 [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l3µ (λ + µ)
.494

Thus, the external (or reaction) wedge forces for the four vertices are the following,495

(

f ext
1

)

V1

= −
3QL [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= −0.085MN, (103)496

(

f ext
2

)

V1

=
3Q [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l2µ (λ + µ)
∼= −0.27MN, (104)497

(

f ext
1

)

V2

= 0,
(

f ext
2

)

V2

= −
3Q [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l2µ (λ + µ)
∼= 0.27MN, (105)498

(

f ext
1

)

V3

= 0,
(

f ext
2

)

V3

= −
3Q [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l2µ (λ + µ)
∼= 0.27MN, (106)499

(

f ext
1

)

V4

=
3QL [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
∼= 0.085MN, (107)500

(

f ext
2

)

V4

=
3Q [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l2µ (λ + µ)
∼= −0.27MN, (108)501

that are also graphically represented in the second row of Fig. 7.502

4. An important conclusion from these analytical solutions503

In this section, we prove that if we are able to produce the simple displacement fields (45) in the presence504

of gravity for the heavy sheet, the simple displacement field (69) for bending and the simple displacement505

fields (88) and (89) for flexure, then we can measure the 4 independent constitutive coefficients A, B, C506

and D by just measuring forces.507

For the heavy sheet, we measure the maximum lateral forces Rhs
1 from (48) or (49) at the top of508

vertical sides due to Poisson effects,509

Rhs
1 = text,S

1 (x2 = l) =
2λlρg

(λ + 2µ)
, (109)510

the vertical displacement at the bottom-side T from (69)511

Rhs
2 = u2 (x1, x2 = −l) = −

2l2ρg

(λ + 2µ)
, (110)512
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the necessary horizontal wedge forces (56) at vertices of the rectangular sheet,513

Rhs
3 =

2Dρg

(λ + 2µ)
, (111)514

and the necessary vertical forces from (68) at vertices of the trapezoidal sheet,515

Rhs
4 = sin θ cos θ

[

ρg

2 (λ + 2µ)
(B − A + 2C)

]

. (112)516

For the bending case, we measure the necessary horizontal wedge forces from (82) in one of the 4517

vertices,518

Rb
5 =

(

f ext
1

)

V2

=
3M ext [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
, (113)519

where the resultant bending force M ext is given by (75) and it is not independent of that of (109) and of520

(111).521

For the flexural case, we measure (i) the maximum vertical force per unit line at side S at the middle522

point x2 = 0,523

Rf
6 = text,S

2 (x1 = L, x2 = 0) =
3F

[

−Aλ + B (5λ + 4µ) + 2Cλ − 4D (3λ + 4µ) + 4µl2 (λ + µ)
]

16l3µ (λ + µ)
, (114)524

where the parameter F is related to the resultant bending force via the (94) and to the vertical tip525

displacement via the (95); (ii) the horizontal shear force on sides R or T from (98),526

Rf
7 = text,T

1 =
3F

16l3µ (λ + µ)
[(λ + 2µ) (A − 2C − 4D) + B (3λ + 2µ)] ; (115)527

(iii) the horizontal wedge force at one of the left-hand side wedges,528

Rf
8 =

(

f ext
1

)

V4

=
3FL [(λ + 2µ) (A − B + 2C) + 4µD]

8l3µ (λ + µ)
, (116)529

and (iv) one of the vertical wedge forces at one of the 4 vertices,530

Rf
9 =

(

f ext
2

)

V4

=
3F [(3λ + 4µ) (A − B) − 2λC + 4 (2λ + 3µ) D]

8l2µ (λ + µ)
. (117)531

On the one hand, Gedanken experiments (109) and (110) can be used to evaluate the Lamé coefficients λ532

and µ. Gedanken experiments (111), (112), (113) and (114) are, on the other hand, sufficient to measure533

the 4 independent coefficients A, B, C and D. The results in (115), (116) and (117) can also be used.534

5. Conclusion535

A two-dimensional solid consisting of a linear elastic isotropic material has been considered, where the536

strain energy, within the framework of objectivity and isotropy, has been expressed as the most general537

function of the strain and of the gradient of strain. Variational methods have been used to formulate538

the corresponding balance equations and boundary conditions. In this paper, analytical solutions of this539

problem have been outlined with the purpose of identifying the whole set of constitutive parameters. This540

has been achieved through the design of some ideal experiments that allow to write equations that having541

as unknowns such a set of constants and as known terms the values of the experimental measurements. The542

results of this work can provide a theoretical and practical guide to the design of laboratory experiments,543

capable of identifying all the constitutive parameters of the 2D solids, characterized by strain energy544

density dependent on the first and second gradient of the displacement.545
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